For the today

- Pooling cross sections across time. Simple panel data methods.
- Chapter 13 (pp. 408 – 434).

For the next week

- Advanced Panel Data Methods.
- Chapter 14 (pp. 441 – 460).
Panel Data vs. Pooled Cross Sections

Up until now, we covered multiple regression analysis using:

- Pure cross-sectional data – each observation represents an individual, firm, etc.
- Pure time series data – each observation represents a separate period.
- In an economic applications, we often have data which have both these dimensions – we may have cross sections for different time periods.
- We will talk about 2 types of pooled data:
 - Independently pooled cross sections
 - Panel data (sometimes called longitudinal data)
- Panel data are not independently distributed across time as pooled cross sections!
- We will cover basics to introduce the methods.
Panel Data vs. Pooled Cross Sections

Pooled Cross Sections

- Population surveys - each period, Statistical Bureau independently samples the population
- \(\Rightarrow\) At each period, the sample is different.
- these are independent cross-sections, but we can take time into account.

Panel Data

- Each year, the European Community Household Panel surveys the same individuals on a range of questions: income, health, education, employment, etc.
- These are cross-sections with time order.
- We have observations for each individual with temporal ordering.
- Sample does not change.
What is the basic intuition?

Time Series vs. Panel Data

\[y_{it} = \beta_0 + \beta_1 x_{it1} + u_{it} \quad u_{it} \sim N(0, \Sigma) \]

\[t = 1, 2, \ldots, n \]

\[i = 1, 2, \ldots, N \]

cross-sections

But let us introduce the intuition step by step first...
Pooling Independent Cross Sections Across Time

- If a random sample is drawn at each time period, resulting data are **independently pooled cross sections**.
- Reasons for pooling cross sections:
 - To increase sample size \(\Rightarrow \) more precise estimators.
 - To investigate the effect of time (simply add dummy variable)

We may assume that parameters remain constant

\[
wages_{it} = \beta_0 + \beta_1 educ_{it} + u_{it}
\]

Alternatively, we may want to investigate the effect of time

\[
wages_{it} = \beta_0t + \beta_1 educ_{it} + u_{it}
\]

Or, we may want to investigate whether relations change in time

\[
wages_{it} = \beta_0 + \beta_1 t educ_{it} + u_{it}
\]
Pooling Independent Cross Sections Across Time cont.

Let’s find out if an hourly wage pooled across the years 1978 and 1985 was dependent on an education and gender gap.

Example: Changes in the Return to Education

\[
\log(\text{wage}) = \beta_0 + \delta_0 y_{85} + \beta_1 \text{educ} + \delta_1 y_{85}\text{educ} + \beta_2 \text{female} + u
\]

- \(y_{85}\) is a dummy equal to 1 if observation is from 1985 and zero if it comes from 1978 (the number of observations is different + different people in the sample).
- Thus the intercept for 1978 is \(\beta_0\) and intercept for 1985 is \(\beta_0 + \delta_0\).
- The return to education in 1978 is \(\beta_1\) and the return to education in 1985 is \(\beta_1 + \delta_1\).
- \(\delta_1\) measures the 7-year change. We can test the null hypothesis that nothing has changed over the period \(H_0 : \delta_1 = 0\) to alternative that the effect has been reduced, \(H_0 : \delta_1 > 0\).
The Chow Test for Structural Change

We may want to determine if regression function differs across 2 groups

\[y = \alpha_1 + \beta_1 x + u_1 \text{ vs. } y = \alpha_2 + \beta_2 x + u_2 \]

Clearly, \(\alpha_1 \neq \alpha_2 \text{ and } \beta_1 \neq \beta_2 \)

Resulting \(y = \alpha_0 + \beta_0 x + u_0 \) in the worst fit.
The Chow Test for Structural Change cont.

- We may want to test if there are 2 (or more) periods in a regression:

 \[y_{it} = \beta_0 t + \beta_1 t x_{it} + u_{it} \]

- It may not be as obvious as from the example on previous slide.

- \(H_0 : \beta_{01} = \beta_{02}, \beta_{11} = \beta_{12}. \)

- Compute simple F test.

- Alternatively, use pooled cross-sections as in previous example with wages.
Example: What effect will building a garbage incinerator (in Czech “spalovna”) have on housing prices? (Wooldridge book, Ex.13.3.)

Consider only simple one-period case of 1981 data:

\[\text{prices} = \beta_0 + \beta_1 \text{near} + u \]

where \text{near} is dummy variable (1 for houses near incinerator, 0 otherwise)

The hypothesis is that prices of houses near the incinerator fall when it is built:

\[H_0 : \beta_1 = 0 \quad \text{vs.} \quad H_A : \beta_1 < 0 \]

Unfortunately, this test does not really imply that building incinerator is causing the lower prices.

\(\hat{\beta}_1 \) is inconsistent as \(\text{cov(\text{near}, u)} \neq 0 \).
Let’s include also another year into the analysis so we can really study the impact.

\[t = \{1978, 1981\} \text{ now:} \]

\[\text{prices}_{it} = \beta_0 + \beta_1 \text{near}_{it} + \beta_3 D_{it}^{1981} + \beta_4 \text{near}_{it} D_{it}^{1981} u_{it} \]

The hypothesis is the same, that location of incinerator will decrease the prices, but:

\[H_0 : \beta_4 = 0 \quad \text{vs.} \quad H_A : \beta_4 < 0 \]

\(\hat{\beta}_4 \) is called difference-in-differences estimator.
Let’s look at the logics of the **difference-in-differences** estimator.

- \(E[prices|\text{near}, 1981] = \beta_0 + \beta_1 + \beta_3 + \beta_4 \)
- \(E[prices|\text{near}, 1978] = \beta_0 + \beta_1 \)
- The difference:
 \[
 E[\Delta prices_{\text{near}}] = E[prices_{1981} - prices_{1987}|\text{near}] = \beta_3 + \beta_4
 \]
- \(E[prices|\text{far}, 1981] = \beta_0 + \beta_3 \)
- \(E[prices|\text{far}, 1978] = \beta_0 \)
- The difference:
 \[
 E[\Delta prices_{\text{far}}] = E[prices_{1981} - prices_{1987}|\text{far}] = \beta_3
 \]
- The difference: \(E[\Delta prices_{\text{near}} - \Delta prices_{\text{far}}] = \beta_4 \)
- \(\beta_4 \) reflects the policy effect if the incinerator is built with no “different inflation”.
Two-period Panel Data

- For a cross-section of individuals, schools, firms, cities, etc., we have two time periods of data.
- Data are not independent as in pooled cross-sections, so they can be more helpful.
- It can be used to address some kinds of omitted variable bias.

Fixed Effects Model (Unobserved Effects Model)

\[y_{it} = \beta_0 + \beta x_{it} + a_i + u_{it} \]

- \(a_i \) is time-invariant, individual specific, \textit{unobserved effect} on the level of \(y_{it} \).
- \(a_i \) is referred to as \textbf{fixed effect} – fixed over time.
- \(a_i \) is referred to as \textbf{unobserved heterogeneity}, or individual heterogeneity.
- \(u_{it} \) is \textit{idiosyncratic error}.

Two-period Panel Data cont.

- We can rewrite the model as:

\[y_{it} = \beta_0 + \beta x_{it} + \nu_{it}, \]

where \(\nu_{it} = a_i + u_{it} \)

- \(\nu_{it} \) is also called composite error.

- We can simply estimate this model by pooled OLS.

- But it will be biased and inconsistent if \(a_i \) and \(x_{it} \) are correlated: \(\text{cov}(a_i, x_{it}) \neq 0 \Rightarrow \text{heterogeneity bias} \).

- In real-world applications, the main reason for collecting the panel data is to allow for the unobserved effect \(a_i \) to be correlated with explanatory variables.

- I.e. we want to explain crime, and allow unmeasured city factors \(a_i \) affecting the crime to be correlated with i.e. unemployment rate.

- Simple solution follows...
Two-period Panel Data cont.

- This is simple to solve as a_i is constant over time.
- **Solution:** first - differenced estimator

Let’s write

\begin{align*}
 y_{i2} &= \beta_0 + \beta x_{i2} + a_i + u_{i2}, \quad (t = 2) \\
 y_{i1} &= \beta_0 + \beta x_{i1} + a_i + u_{i1}, \quad (t = 1)
\end{align*}

Subtracting second equation from the first one gives:

$$
\Delta y_i = \beta \Delta x_i + \Delta u_i
$$

- Here, a_i is “differenced away”.
- And we have standard cross-sectional equation.
- If $\text{cov}(\Delta u_i, \Delta x_i) = 0$, $\hat{\beta}_{FD}$ is consistent (strict exogeneity).
Differencing two years is a powerful way to control unobserved effects.

If we use standard cross-sections instead, it may suffer from omitted variables.

But, it is often very difficult to collect panel data (i.e., for individuals), as we have to have the same sample.

Moreover, a_i can greatly reduce the variation in the explanatory variables.

Still, this is solution only when we have 2 data periods (more general next lecture).

Organization of Panel Data is crucial (more during the seminars).
Differencing with More than Two Periods

- We can extend FD to more than two periods.
- We simply difference adjacent periods

A general fixed effects model for N individuals and T=3.

\[y_{it} = \delta_1 + \delta_2 d_{2t} + \delta_3 d_{3t} + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + a_i + u_{it}, \]

- The total number of observations is 3N.
- The key assumption is that idiosyncratic errors are uncorrelated with explanatory variables: \(\text{cov}(x_{itj}, u_{is}) = 0 \) for all \(t, s \) and \(j \Rightarrow \text{strict exogeneity} \).
- How to estimate? Simply difference equation for \(t = 1 \) from \(t = 2 \) and \(t = 2 \) from \(t = 3 \).
- It will result in 2 equations which can be estimated by pooled OLS consistently under the CLM assumptions.
- We can simply further extend to \(T \) periods.
- Correlation and heteroskedasticity are treated in the same way as in time series data.
Assumptions for Pooled OLS Using First Differences

Assumptions revisited

Assumption FD1
For each i, the model is
\[y_{it} = \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + a_i + u_{it}, \quad t = 1, \ldots, T, \]
where parameters β_j are to be estimated and a_i is the unobserved effect.

Assumption FD2
We have a random sample from the cross section.

Assumption FD3
Let X_i denote x_{itj}, $t = 1, \ldots, T$, $j = 1, \ldots, k$. For each t, the expected value of the idiosyncratic error given the explanatory variables in all time periods and the unobserved effect is zero:
\[E(u_{it}|X_i, a_i) = 0. \]
Assumptions for Pooled OLS Using First Differences cont.

An important implication of Ass. FD3 is that $E(\Delta u_{it}|X_i) = 0$, $t = 2, \ldots, T$. Once we control for a_i, there is no correlation between the x_{isj} and remaining error u_{it} for all s and t. x_{itj} is strictly exogenous conditional on the unobserved effect.

Assumption FD4: No Perfect Collinearity

Each explanatory variable changes over time (for at least some i), and no perfect linear relationship exist among the explanatory variables.

Assumption FD5: Homoskedasticity

The variance of the differenced error, conditional on all explanatory variables, is constant: $Var(\Delta u_{it}|X_i) = \sigma^2$, for all $t = 2, \ldots, T$.
Assumptions for Pooled OLS Using First Differences cont.

Assumption FD6: No Serial Correlation

For all $t \neq s$, the differences in the idiosyncratic errors are uncorrelated (conditional on all explanatory variables):

$$\text{Cov}(\Delta u_{it}, \Delta u_{is}|X_i) = 0, \ t \neq s.$$

- Under the Ass. FD1 – FD4, the first-difference estimators are unbiased.
- Under the Ass. FD1 – FD6, the first-difference estimators are BLUE.

Assumption FD7: Normality

Conditional on X_i, the Δu_{it} are independent and identically distributed normal random variables.

- Last assumptions assures us that FD estimator is normally distributed, t and F statistics from the pooled OLS on the differenced data have exact t and F distributions.
Thank you

Thank you very much for your attention!