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Measuring light…
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 Light-to-pixel function (look-up 
table to a known source)

 Every camera is different
 Light-to-pixel function

 Camera properties
 Camera-to-camera 

differences

 No as trivial as it looks
 Accuracy questionable

Precalibrated Cameras

Measuring light…
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Precalibrated Cameras Luxmeters

 Point-to-point  sparse 
measurements

 Time consuming for large 
areas

 Manually operated
 Relative cost/accuracy

 Light-to-pixel function (look-up 
table to a known source)

 Every camera is different
 Light-to-pixel function

 Camera properties
 Camera-to-camera 

differences

 No as trivial as it looks
 Accuracy questionable

Measuring light…
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Precalibrated Cameras Luxmeters Simulation software

 Point-to-point  sparse 
measurements

 Time consuming for large 
areas

 Manually operated
 Relative cost/accuracy

 Rendering algorithms  simulate 
light propagation

 Offline / Time consuming
 Manual input, need of scene 

information in advance
 Geometry (closed form), 

CAD models
 Inaccuracies in the CAD 

model
 Lights positioning and 

intensity, characteristics
 Reflectance and material 

properties
 Relatively high accuracy and dense 

mapping

 Light-to-pixel function (look-up 
table to a known source)

 Every camera is different
 Light-to-pixel function

 Camera properties
 Camera-to-camera 

differences

 No as trivial as it looks
 Accuracy questionable

Measuring light…
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 Computer graphics
 Simulate light
 Realistic, lifelike renderings  games, movies, etc…

 Radiosity
 Ray tracing
 Instant radiosity, VPLs
 Photon mapping
 Screen space
 etc….

 Actual light measurements

 Lighting design & modeling field
 Relux, Dialux, AGi32  radiosity
 HILITE, LiteMaker[1]

 photon mapping 
 academic prototypes

Manual input (geometry, lighting, material properties)

Rendering techniques

1. K. Krsl, C. Luksch, M. Schwrzler, and M. Wimmer. LiteMaker: Interactive Luminaire Development using Progressive Photon Tracing and Multi-Resolution Upsampling. Vision, Modeling & Visualization. 

The Eurographics Association, 2017.

Source[1]

Blender 3D Architect

https://www.blender3darchitect.com/light-and-rendering/free-ebooks-about-rendering-for-interior-design-and-architecture-with-mental-ray/
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Radiosity

 Simple, in principle

 Physically-based illumination algorithm

 Indirect illumination effects  global illumination

 Is computed in the object-space  view independent

 Assume, Lambertian surfaces

Pictures from: Light Measurement Laboratory Cornell University, Program for Computer Graphics 
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Radiosity

 Simple, in principle

 Physically-based illumination algorithm

 Indirect illumination effects  global illumination

 Is computed in the object-space  view independent

 Assume, Lambertian surfaces
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Rendering equation

x΄

ω΄

The radiance from a point on a surface in a given direction ω΄
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Rendering equation

The emitted radiance from a point: E considered to be zero or non-zero 

depending whether it is a light source or not. 

x΄

ω΄
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Rendering equation

The contribution from all other surfaces of the scene.

x΄

ω΄
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Rendering equation

For each other x point compute the radiance with direction ω (from x to x΄).

x΄

ω΄

ω

x
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Rendering equation

Scale the contribution by the reflectivity (BRDF) at the surface x΄. 

x΄

ω΄

ω

x
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Rendering equation

For each x compute the G(x,x΄), which describes the geometric relationship

between the two surfaces at x and x΄. 

x΄

ω΄

ω

x
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Rendering equation

For each x compute V(x,x΄), the visibility between x and x΄. 1 in case the two 

surfaces are visible to each other or 0 otherwise. 

ω΄

ω

x
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Radiosity equation

Source[2]

[2] MIT EECS 6.837, Durand and Cutler

Lambertian assumption

(perfectly diffuse surfaces, not directional)
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Radiosity equation

Lambertian assumption

(perfectly diffuse surfaces, not directional)

form factors
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Radiosity equation

[2] MIT EECS 6.837, Durand and Cutler

Lambertian assumption

(perfectly diffuse surfaces, not directional)

form factors

Source[2]
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A solution yields a single radiosity value Bj for each patch in the 

environment by gathering radiosities from all other patches, a view-

independent solution.

Radiosity matrix

n simultaneous linear equations, with n unknown Bj radiosity values which can be

written in a matrix form as:
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Form factors

The form factors are defined as the fraction of 

energy leaving one surface and reaches 

another surface. It is purely geometric 

relationship, independent of viewpoint or 

surface attributes.

• Geometry

• Visibility

Analytical Solution:

r
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Radiosity in practice…

*Souce code initially written from Samuli Siltanen and modified by Theodore Tsesmelis
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Radiosity in practice…



26

Radiosity in practice…
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Radiosity overview

Input

geometry
Form factors

calculation

Solve the

Radiosity Matrix
Reflectance

properties

Radiosity Solution 

Light source

properties

Visualization

(Rendering)

Radiosity Image

Camera

properties
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Radiosity solution

 “full matrix” radiosity solution
 Solves simultaneous linear equations
 Complete solution all together 
 Expensive in time (number of faces, 

complex scenes tend to be ten of thousand faces)
 Expensive to store in memory

 “Progressive” radiosity solution
 incremental method, solves it iteratively
 yielding intermediate results at much lower computation and storage costs
 update the scene each time, user can even stop the iteration in case he 

believes that the output is realistic enough without waiting for convergence
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Real life…
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 Ray tracing problem  fraction of rays (light energy) arriving at patch j, mj, from the 
total rays leaving patch i, , mi

Enhances the uniformity of the generated quasi-random sequence of ray directions and 
leads to faster convergence

Monte carlo Isocell
(unit disc)

Isocell
(unit sphere)

Form factors
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Form factors in real scenarios
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Point based isotropic light sources vs. Luminaires 
Luminous intensity (lumens)
Light Distribution Curve (LDC)

Disregards light perception
Luxmeter’s Sensitivity Curve (LSC)

Light sources and light perception
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Weighted isocell
(unit sphere, LDC/LSC)

LDC, LSC
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Is a camera-aided rendering technique

sufficient enough for light modeling?

RGBD input

Geometry

(mesh from depth)

Radiosity model

with LDC/LSC

Reflectance &

material properties

(photometric stereo)

Dense spatial 

illuminance estimation

L
u

x
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Room 1 Room 2

RGBD

P
o
in

t c
lo

u
d

Dataset
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Dataset
Room 3 Room 4
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Dataset
Room 5 Room 6
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Dataset
(Illumination combinations)
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Dataset
(Illumination combinations)
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Individual light sources

Albedo map

Albedo – photometric stereo
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CAD model
(Relux)

CAD model

Sparse CAD model
Mesh

Ablation studies
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Results
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Results – CAD model
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Results – Luxmeter 4, room 2
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Results – CAD model 
(under/over estimation)
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Results – partial CAD model
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Results – 3D mesh model (Room1)
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Results – 3D mesh model (Room4)

L
u

x
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Results – 3D mesh model (Room6)

L
u

x
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 Knowledge of spatial illumination over time
 Light commissioning
 Smart lighting management systems

 Camera input --> map pixels to lux

 Adjust luminaires, ISO standards, predefined scenarios, etc…

Estimate dense spatial illumination
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Light systems commissioning
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Light systems commissioning
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Light systems commissioning
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Light systems commissioning
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Light systems commissioning
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“Invisible Light Switch”
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“Invisible Light Switch”
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“Invisible Light Switch”
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Summary
Light from lighting field
First light simulation solution with RGBD input
Radiosity model for real life scenarios
Meaningful sufficient and reliable such a solution could be
Remarkable results compared to simulation software

Future work
On the fly albedo estimation
More complicated material properties, more complex BRDF
Dynamic scenes and natural light
Limitations of partial geometry
Full automatic solution, estimating light sources positioning and intensity

Conclusion
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Thank you for your attention!

Questions?


