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Abstract

Bidirectional texture function (BTF) is acquired by taking thou-
sands of material surface images for different illumination and
viewing directions. This function, provided it is measured accu-
rately, is typically exploited for visualization of material appear-
ance in visual accuracy demanding applications. However, accurate
measurement of the BTF is time and resources demanding task.
While the sampling of illumination and viewing directions is in
all known measurement systems done uniformly, we believe that
to be more effective the sampling should be tailored specifically
to reflectance properties of materials to be measured. Hence, we
introduce a novel method of sparse BTF sampling. The method
starts with collecting information about material visual behavior by
means of small initial subset of reflectance samples measurement
and analysis. This information is fed into our heuristic algorithm
producing sparse material dependent sampling that is consequently
used for BTF measurement and interpolation. The algorithm was
tested in simulated measurement test with ten BTF samples, their
estimated image subsets were selected, the remaining images were
interpolated, and results were computationally and psychophysi-
cally compared with the measured data. In average the number of
sampling points was less Than half the number of original measure-
ments points, and for most materials the produced BTF renderings
were perceptually indiscernible from the originals.

1 Introduction

Capturing of accurate material surface appearance is required by
many quality demanding application as virtual prototyping, safety
simulation, or culture heritage digitization. Generally feasible ap-
proach for surface appearance acquisition is sampling illumina-
tion and view dependent surface appearance in a form of bidirec-
tional texture function (BTF) [DvGNK99]. This seven dimensional
function BTF (λ, x, y, θi, ϕi, θv, ϕv) describes spectral (λ), spa-
tial (x, y), and directional (θi, ϕi, θv, ϕv) dependence of surface
points reflectance. Each surface point can be represented by a ded-
icated apparent BRDF function (ABRDF). The BTF is in practice
measured as a collection of surface images sampled in fixed illu-
mination and viewing directions. Several ways of BTF measure-
ment exist dependent on a way the required four degrees of free-
dom of illuminating and sensing equipment are realized. They are
based either on mechanically adjustable setups (gonioreflectome-
ter, parabolic mirrors) or static setups without any moving elements
(kaleidoscope principle, camera arrays). A recent overview of BTF
measurements setups is given in [FH09].

All these setups sampled hemisphere of possible illumina-
tion/viewing directions over material sample uniformly. Such a
sampling is intuitively correct as it captures continuously changes
of material reflectance. Uniform sampling is also handy for BTF
rendering and interpolation algorithms where each viewing direc-
tion contains the same number of hemispherically distributed illu-
mination directions and vice versa. However, considerable draw-
back of such a sampling occurs when material exhibits atypical re-
flectance behavior, e.g., sharp specular highlight, complex occlu-
sion effects in material structure. In such cases the uniform sam-
pling might miss important visual information which cannot be re-

trieved by interpolation from closest measured images. Of course
this can be, to certain extent, rectified by increased sampling den-
sity, however, it is difficult to determine this density prior to the
measurement.

Due to nature of the real-world materials meso- and micro-
structure, illumination/view dependency vary significantly from
material to material. However, in most cases there is significant
redundancy in angularly uniformly sampled reflectance. This re-
dundancy is usually tackled by compression approaches (e.g., PCA,
spherical harmonics, reflectance models, probabilistic models -
[FH09]). The aim of this project is to approach the problem from
the other side, i.e., instead of performing lengthy measurement and
data compression in post-processing step, we suggest to measure
surface reflectance sparsely and interpolate the remaining data from
these sparse measurements. Benefits of the latter approach is faster
measurement and higher accuracy.

Main contributions and novelties of this research are:

• Fast heuristic method for automatic material-based estimation
of proper sparse illumination/view dependent sampling.

• Method of efficient and accurate interpolation of missing sam-
ples from the estimated sparse sampling.

• A psychophysically derived and validated approach for
material-based sampling density estimation.

The report is further structured as follows. Section 2 discusses
previous work in the area, and Section 3 describes test datasets.
Section 4 explains the principle of the sparse sampling estimation
method and the following interpolation procedure, while Section 5
computationally and psychophysically evaluates the method’s per-
formance, and Section 6 proposes and verifies approach of auto-
matic sampling density prediction. Finally Section 7 concludes the
paper.

2 Prior Work

Methods of adaptive sampling of reflectance fields were studied ex-
tensively in the past [FBLS07], however, their extension from two
dimensional space of illumination directions (θi, ϕi) to four dimen-
sional space of illumination and viewing directions (θi, ϕi, θv, ϕv)
imposes higher demands on robustness and speed of sampling and
interpolation algorithms.

There were already approaches for adaptive BRDF measurements
of incoming / outgoing directions [LLSS03] based on a planning
algorithm iteratively reducing uncertainty in of BRDF model’s fit-
ted parameters. This method increased accuracy of 3D objects’ re-
flectance renderings with lower number of sparsely measured im-
ages. This approach cannot be easily employed for BTF sampling
as the BTF can be pixel-wisely decomposed to apparent BRDFs
(ABRDF), which unfortunately do not obey illumination and view
direction reciprocity and thus cannot be accurately approximated by
BRDF models. Additionally, applied single lobe isotropic Lafor-
tune model limiting applicability of this approach for anisotropic
materials only.



To our best knowledge, the idea of sparse selective BTF sampling
has not got any attention so far. All BTF measurement systems pro-
posed so far, sample illumination and view directions uniformly.
Such a fixed sampling systems can suffer with improper sampling
of specular highlights or their interpolation. Refer to Fig. 6 (the
second row wood d.) for example of improper angular sampling
producing discontinuities of sharp specular highlights. Although
systems with lower relative distance of light and camera to the
measured sample can increase effective sampling density due to
varying incoming and outgoing directions across material sample
[RMS∗08], this can be practically exploited only for samples hav-
ing either very regular or almost homogeneous surface structure .

In this report we build on a work of Filip et al. [FCGH08], where
compression efficiency of standard BTF compression methods was
considerably improved by keeping less than 20% visually important
samples (i.e., images). This image subset can represent all the other
measurements without loss of objectively perceived visual quality.
However, these material-dependent subset were obtained from anal-
ysis of complete BTF measurements and cannot be reliably applied
for sampling of different, even though similar, materials.

Motivation in our work was to develop a method that can predict
such a sparse sampling BTF subsets based on only very limited in-
formation about material reflectance properties. As the adaptive
sampling methods of BTF would typically require computation-
ally demanding iterative evaluation of reconstruction error on the
fly to infer next sampling step or strategy, we focused on selec-
tive sampling which estimates complete sampling pattern of incom-
ing/outgoing directions prior to the measurement stage. In develop-
ment of our sparse sampling method we took advantage of prior
knowledge about general illumination/view dependent reflectance
(e.g., typical location of specular highlights, higher contrast be-
tween specular and diffuse reflection for high illumination/viewing
elevation angles, etc.).

To sum up, instead of measuring all images and drop many of them
[FCGH08], we suggest different approach, i.e., measure few images
and reconstruct the rest of them.
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Figure 2: Comparison of (a) hemispherically uniform (HU) and (b)
angularly uniform (AU) ABRDF representation. Material alu.

3 Test Datasets

Ten material sample measurements from Bonn University BTF
database [SSK03] 1 were used for our experiments (aluminum pro-
file, corduroy, dark and light fabrics, dark and light leatherettes,
light fabric, dark and light lacquered wood, and knitted wool).
Their angular resolution was 81 × 81 directions distributed uni-
formly over material hemisphere (shown in Fig. 2-left). Although
the sampling density of incoming/outgoing directions in these
dataset is relatively low, we believe that these data capture correctly

1http://btf.cs.uni-bonn.de/

major visual features of the original materials. These complete BTF
measurements we used as reference data in a simulated measure-
ment experiment, i.e., the datasets were sparsely sampled and inter-
polated by the proposed algorithm and its performance was verified
by comparing with the reference data.

As the proposed sampling was performed in angular domain of in-
coming/outgoing directions (i.e., individual images as samples), the
BTF was decomposed to individual ABRDFs. While the sampling
pattern was obtained based on mean ABRDF, the final data interpo-
lation to uniform angular distribution was performed for individual
pixels independently. We have considered BRDF representation
proposed by Rusinkiewitz [Rus98]. While this approach is suit-
able for BRDF compression by basis functions, discontinuities in
ABRDF images produced by this parameterization would require
excessively dense sampling. Therefore, we used standard ABRDF
representation as image whose rows are incoming directions and
columns outgoing directions. The ordering of directions is in a
way that elevation angles θ from surface normal are consequently
increased and for each such elevation available azimuthal angles
ϕ follow. This corresponds to a spiral-like change of directions
from hemisphere top to its bottom. Therefore, the illumination and
view directions are distributed uniformly over hemisphere above
the measured sample. Example of such a hemispherically uniform
(HU) ABRDF representation of the BTF datasets and example of
resulting ABRDF image is shown in Fig. 2-left. Although, this pro-
vide economical way of BTF measurement the number of samples
at individual elevation levels θi/θv is variable. To avoid variable
number of measurements at different elevations, the sparse sam-
pling estimation process is performed in angularly uniform (AU)
ABRDF representation (Fig. 2-right).

Contrary to the original HU ABRDF [SSK03], the AU ABRDF
over-represents locations near hemisphere pole, however, it allows
us representing all combinations of incoming/outgoing elevation
angles by the same number of samples (24 × 24). Each of these
regions represents reflectance behavior for variable illumination
(rows) and view (columns) azimuthal angles ϕi/ϕv . Such regions
are then treated separately during the sparse sampling estimation,
while the final sampling is obtained as union of samples from all
these regions, and can be transformed back to HU ABRDF.

4 Material-Based Sampling and Interpolation

The principle of the proposed algorithm is outlined in Fig. 1. Indi-
vidual enumerated parts of the scheme are now discussed more in
detail.

1 Initial analysis of material reflectance: In the first step a
small subset of BTF images is measured with motivation to cap-
ture most of the information about material reflectance behavior.
We selected such illumination/view positions that form couple of
slices in angular space (Fig. 1-1). The slice aligned with direction
of specular highlights is called axial slice, while the slice perpen-
dicular to the highlights is called diagonal slice. The diagonal slice
captures shape of specular peaks (variable mutual azimuthal po-
sition of light and camera), while the axial slice records material
anisotropic properties (mutual position of light and camera is fixed
and both rotate around sample), i.e. for isotropic samples it is al-
most straight line. The slices for tested materials at elevation angles
[θi, θv] = [75◦, 75◦] are shown in Fig. 3. For instance samples alu,
leath.l. exhibit strong specularity and isotropy while fabric l., wood
l., wool show apparent anisotropic reflectance component.

Attenuation and change of distribution of reflectance intensity at
different illumination/view elevations are captured by measurement
of four of such slices combining θi/θv at elevations 30◦ and 75◦
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Figure 1: Pipeline of sparse incoming/outgoing directions sampling estimation process, based on mean and standard deviation values com-
puted from initial set of surface reflectance values or images.
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Figure 3: Axial (blue outline) and diagonal (red outline) slices at
elevation angles [θi, θv] = [75◦, 75◦].

(see Fig. 1-1). This is crucial for our sample estimation (explained
in point 4), which adapts sampling strategy based on information
obtained from the slices. Note that e.g. width of specular peaks
differs over the elevations so sampling estimated for high eleva-
tion only would not be correct for low elevations, etc. Although in
our simulated simulated measurement test the values in the slices
represent BTF images, one can in the same way measure single re-
flectance values only, which might considerably speed up the slices
acquisition.

2 Slices interpolation: The measured slices at four elevation
combinations are bilinearly interpolated to account for changes of
underlaying reflectance profiles at remaining intermediate eleva-
tions.

3 Angular reflectance reconstruction: Interpolated slices at
each combination of incoming/outgoing directions elevations were
then used for approximate reconstruction of original reflectance
function. This approximative function is obtained by multiplication
of the slices for all missing values at a given elevation as shown in
Fig. 4. Although this approach do not provide accurate absolute val-
ues of real reflectance, it allows capturing of trends of reflectance
behavior for a given material sample.

4 Sparse sampling estimation: When the estimate of
azimuthal-angles-dependent reflectance is reconstructed from the
slices, the remaining tasks are selection of such a set of sparse sam-
ples and their placement allowing high visual fidelity interpolation
of known reconstructed reflectance shape.

The information about slices profiles was used directly for selection
of sample candidates. Ridges and valleys of Laplacian of Gaussian
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Figure 4: Detailed scheme of samples estimation process at single
elevation [θi/θv] = [75◦/75◦]. Material fabric light.

(LoG) image filter were suggested [Rob95] as appropriate locations
of samples. We tested the LoG filter for selection of sampling can-
didates, however, much better results were obtained by candidates
selection based directly on 1D slices profiles. Here, the LoG filter
can be approximated by a second derivation of slice profile (blue
outline in Fig. 5-a). In specific shapes of slides’ profiles the ex-
trema of second derivation was not sufficient to cover all important
sampling points, therefore, we added also extrema points of original
slices profile values (red outline in Fig. 5-a). Extrema points of the
derivation were taken as axial/diagonal candidates. The sampling
candidates were obtained as all combinations of the axial/diagonal
candidates (Fig. 5-b). Note, that in the case the slice values are
represented by images, and not reflectance values only, the image
variance computed in individual slice points can be used as addi-
tional, perceptually validated [FCGH08], source of axial/diagonal
candidates.

As the number of selected candidates was often very high, and
the most of all, the spatial distribution of candidates was close-to-
uniform (Fig. 5-b), the candidates were filtered to remove neigh-
boring candidates at positions of slow reflectance changes. To
achieve this, the candidates were sequentially tested whether they
are far enough apart (threshold ǫ1 = 15◦) from already selected sam-
ples and difference of reconstructed reflectance values in compared
points is less then defined (threshold ǫ2 = 5 (from range 0-255)).

During sparse sampling estimation process we have to account for
decreasing number of samples towards lower elevation angles θ in
HU representation. Hence, we approximate material intensity con-
trast as difference minimal and maximal values in diagonal slices at
measured elevations (red outlines in Fig. 3), interpolate such con-
trast values across all elevations and use them to modulate thresh-
olds ǫ1, ǫ2. This allows us effectively control number of samples
towards lower elevations.
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Figure 5: (a) Axial/diagonal candidate points as extrema points of
luminance (red) and its second derivation (blue). Local maximal
points (green), minimal points (magenta). (b) principle of final sam-
pling points generation from the slides and filtering. Material fabric
light.

5 Estimated samples refinement: The sampling of illumination
and viewing directions obtained in step 4 works, however, it is still
far from optimal performance (see the first row of Fig. 4). How-
ever, optimal sample placement problem is NP-complete and thus
exhaustive search would take excessively long time. Therefore, we
were looking for some computationally effective sub-optimal solu-
tion of sample placement. Finally, heuristic algorithm introduced
by Robinson and Ren [RR95] was applied for refinement of sam-
ples positions obtained in the step 4. The algorithm is based on the
idea that a good position to place a sample is where the reconstruc-
tion has high error. It starts with initial set obtained in step 4. For
each sample the following steps were performed [RR95]:

1. Calculate the reconstruction from other sample points with-
out the current one and rank the reconstruction error on every
position of the data array.

2. Choosing the m positions which have the m largest recon-
struction errors, place the current sample point in each in turn,
recalculating complete interpolation.

3. Rank the m interpolation errors to find the smallest one. If
the minm err(m) is smaller than the error of interpolation
from the original data set, put the current point in that place.
Otherwise, leave the point in its previous location.

We have found that m = 10 is a good compromise between vi-
sual performance and computation time. Generally, this algorithm
considerably improved reconstruction performance (see the second
row of Fig. 4) at the cost of increase of computation time from≈15
seconds to ≈ 5 minutes.

6 Interpolation from sparse samples: Selection of interpola-
tion method is crucial for the speed of the proposed sampling algo-
rithm as well as for reconstruction of missing values (non-measured
images). The interpolation has to be performed in 4D space of il-
lumination/viewing angles, however, to our knowledge there is not
such an efficient interpolation method available so we considered
two-steps RBF interpolation [CBC∗01], which interpolates values
in 3D space. In such a case we would need to interpolate viewing
directions first and illumination directions afterwards or vice-versa.
Disadvantage of this method is that method’s SVD least square fit
of data matrix may become ill-conditioned due to either small num-

ber of (or even missing) samples for the particular direction or con-
centration of the samples (i.e., having similar values), to limited
number of directions, e.g., around specular highlight. Although
some of these problems might be avoided by data regularization,
we decided to exploit well established tools of 2D interpolation.
We tested barycentric interpolation, thin-plate splines, and triangle-
based linear and cubic interpolations applied directly to interpola-
tion of HU ABRDF images. The best speed-quality trade-off was
obtained by the cubic interpolation. This interpolation was used for
sampling points estimation (previous step 5) as well as for resam-
pling of whole BTF dataset. As this interpolation do not extrapolate
well we added additional 40 mandatory sampling points to the es-
timated sampling set positioned around image boundary to avoid
improperly extrapolated values.

a) b)

Figure 7: Specular materials: (a) estimated sampling , (b) with ad-
ditional samples generated along specular lines using linear inter-
polation from specular samples.

As reproduction of very sharp specular highlights, that some mate-
rial exhibit (e.g., wood01, wood02), from a limited number of sam-
ples is very difficult, we propose to detect presence of such a sharp
highlights from width of peaks in the diagonal slice (red outlines in
Fig. 3) and split interpolation in two steps. First, only lines consist-
ing of specular specular points (corresponding to |ϕi − ϕv| = π)
are linearly interpolated. Then all interpolated points are added to
set of sparse sampling points, while in the second step the data are
interpolated by the cubic interpolation from such enlarged sparse
sampling set as shown in Fig. 7-b. This guarantees preservation
of smooth specular highlights without disruptive holes and min-
imizing luminance ”leaks” out of the highlights, without the in-
creasing a number of measured sampling points. For examples
of the proposed ABRDFs interpolation technique refer to Fig. 6,
showing final sparse sampling for the tested materials and compar-
ing measured mean ABRDF with its reconstruction from the es-
timated sampling points. The last row in the figure shows show
MSE/PSNR/SSIM values computed comparing original and inter-
polated mean ABRDFs. Please note that the sparse sampling es-
timation algorithm is independent on a type of interpolation used.
Individual spectral planes were interpolated separately.

To save computational costs, the BTFs were seamlessly tiled
[SH05] and computation was done on tiles only. The interpola-
tion of one pixel took less than 0.5s so tile of moderate size, e.g.,
70 × 70 pixels took ≈ 40 minutes (Matlab @ Core2Duo 2GHz,
2GB RAM).

5 Tests and Results

Verification of the proposed sparse sampling algorithm perfor-
mance was done on dataset of rendered images. Two set of such
images were generated. The first one contains renderings of origi-
nal BTF measurements (using 6561 images), while the second one
contains renderings based on the proposed sparsely sampled sub-
set of original measurements, where the missing illumination/view
combinations were interpolated. Number of samples was selected
similar for all material in order to provide reasonable visual qual-
ity of interpolated renderings. The renderings represent spherical
shape where the BTF is mapped. Although spherical shape was
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Figure 6: Final sampling patterns obtained by means of our method for ten tested BTF materials (the first row). Number of samples ranged
from 1306 to 1702 (original sampling 6561 samples). Measured mean ABRDFs (the second row) compared to those obtained from the
selected samples (the third row) and their difference (the fourth row) with MSE/PSNR/SSIM values.
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Figure 8: Example rendering using all measurements (6561 samples) (the first row), measurements subset selected and resampled using the
proposed method (the second row), difference-map ten-times intensified (the third row).

identified in [VLD07] as inappropriate for testing of visual percep-
tion of BRDFs, in [FCGH08] was shown that for structured BTF
samples the more complex surface curvature impact subject percep-
tion of changes in textured surface appearance. For each tested ma-
terial were generated four images of sphere rendered for point-light
illumination from left, right, top, and bottom respectively, while
the viewing direction stayed fixed effectively covering most of the
combinations of possible viewing angles. A comparison of ren-
dered target and interpolated images for illumination from left and
all tested materials is shown in Fig. 8 side by side with difference
maps (five times multiplied).

Resulting couples of rendered images were compared by means of
several pixel-wise difference metrics: MSE, PSNR, ∆E in CIE Lab,
and SSIM. Results of these metrics for all tested BTF material sam-
ples as well as number of samples used for BTF interpolation are
shown in Tab. 1.

Although the presented values are encouraging they cannot substi-
tute human judgments. Therefore, we run a psychophysical study
on group of ten subjects, showing them couples of rendered im-
ages. The study included 160 stimuli showing couples of the orig-

sample # imgs MSE PSNR CIE ∆E SSIM

alu 1306 10.23 38.18 1.12 0.951
corduroy 1626 14.70 37.12 1.35 0.949
fabric d. 1521 9.36 38.77 1.32 0.924
fabric l. 1702 7.81 39.48 1.01 0.965
leath.d. 1440 2.91 43.87 0.76 0.971
leath.l. 1368 3.63 43.02 0.77 0.975
proposte 1449 23.28 34.66 1.66 0.927
wood d. 1551 14.89 38.65 1.09 0.976
wood l. 1550 12.30 39.24 1.01 0.984
wool 1473 8.13 39.53 1.40 0.955

AVG 1498 10.72 39.25 1.15 0.958

Table 1: Quality comparison of renderings from original BTF mea-
surements vs. renderings from BTF interpolated using quarter of
original samples . Values are average across four images: sphere
illuminated from left, right, top, and bottom.

inal renderings as well as couples of original data and interpolated
data rendering in a random order. Subjects were asked whether
they can see any difference between the images. To avoid lengthy



pixel-wise comparison the viewing time was limited to four sec-
onds, after that the yes/no answer was requested. All subjects had
normal or corrected to normal vision and all were naive to a design
and purpose of the experiment. Their responses were averaged to
obtain response of average human observer. These responses for
individual BTF materials are illustrated in Fig. 9-a and show a per-
ceived similarity ps, i.e., probability that the subjects are not able to
distinguish between renderings from original and interpolated data.
The materials are numbered in the same order as in Fig. 8 . The er-
ror bars in the figure represent twice the standard deviation across
subjects and four rendered images. The average guess rate (i.e.,
subjects response to the same images) was 0.075.

Figure 9: Comparison of (a) perceived similarity from the psy-
chophysical experiment with (b) mean BTF images CIE Luminance
variance σ.

6 Sampling Density Prediction

The psychophysical experiment shown different response of human
perception to different tested materials even though the number of
samples was more or less similar (the second column of Tab. 1).
The average probability ps across the tested materials was 0.48
which represents that only half of the observers was able to dis-
tinguish between the images. However, for spatially structured fab-
rics materials (e.g., corduroy, proposte, wool) the probability was
higher that for spatially less variable samples (e.g., alu, leath. d.,
leath.l.). As the mean variance of BTF images σi was identified as
the most perceptually correlated BTF statistics in [FCGH08], we
applied similarly the same statistics to BTF CIE luminance values
of the tested BTF material samples and obtained values shown in
Fig. 9-b. Not surprisingly they are highly correlated with results
from the experiment (Pearson correlation coefficient R = 0.924).
This correlation suggests that materials with lower spatial variance
cannot mask the artifacts introduced into data by sparse sampling
and following interpolation. Therefore, the number of samples
should adapt to material variance. Although the whole BTF mea-
surement is not known before the sparse sampling is realized, we
have experimentally verified that variance σi can be effectively ob-
tained with similar results from initially measured axial and diago-
nal slices of BTF images.

Lets assume that user would measure one BTF sample completely
for the first time (or take one of the publicly available measure-
ments) and iteratively selects the number of samples k1 of the pro-
posed sparse sampling algorithm that fulfill its visual fidelity re-
quirements. If the variance of such a sample, computed in slices
only, is σi1, the required number of sparse samples kN for every
new material to be measured with variance σiN can be roughly pre-
dicted as

kN = k1(σi1/σiN ) . (1)

This essentially allows automatize not only the estimation of effec-
tive material dependent spatial sampling distribution, but also the
proper estimation of the number of samples providing the required
perceived visual quality.

To validate the proposed material variance-based prediction of
number of samples, we selected sample corduroy with the current
number of samples (1626) as reference sample, as it has the highest
perceived similarity in the experiment (ps = 0.825). Then equa-
tion 1 was used to predict number of sample images required for
the remaining materials. These numbers are shown as kN in Tab. 2.
As the sampling algorithm selects sample candidates as extrema of
slices profile and its second derivation, it often happens, most of all
for spatially smooth materials, that the number of final samples k
is lower than required kN (bold figuers in Tab. 2). Missing samples

alu cord. fabric d. fabric l. leath.d.

kN 2595 1626 2588 3669 4837
k 2347 1626 2435 2653 2529

leath.l. propos. wood d. wood l. wool

kN 4475 1659 2100 2406 2078
k 2608 1700 2180 2403 2064

Table 2: Predicted kN and applied numbers of samples k .
(i.e., BTF images) were then interpolated for all materials and new
set of stimuli images were rendered in the same way as for the first
experiment. Then a second experiment was performed, in the same
way as the previous one, with four subjects from which two of them
participated also in the first experiment. Results of perceived simi-

Figure 10: Perceived similarity from the validation experiment.

larity, shown in Fig. 10 with average value 0.67, proved our expec-
tation that the differences in stimuli should be less apparent. The
average guess rate was 0.05. To achieve even better performance
especially for leather d. material, one would need more generate
more axial/diagonal candidates on slice profiles, preferably by forc-
ing sparse uniformly distributed candidates. Even though, the num-
ber of the samples was increased almost twice in average, it is still
less than half of original samples while the objectively measured
visual performance is almost identical.

7 Conclusions

Our research builds on the fact that each surface material reflectance
exhibit unique illumination/view dependent behavior. Hence, we
introduce a novel heuristic algorithm for material-dependent illumi-
nation/view directions sampling and interpolation of bidirectional
texture functions. The sampling is based on analysis of very lim-
ited sets of reflectance values, which provides a rough estimation
of material illumination and view dependent behavior. Based on
this estimate a proper sampling pattern is estimated and refined by
sub-optimal search algorithm. Performance of the estimated and in-
terpolated BTF sampling patterns is compared with complete BTF
data both computationally and in psychophysical study. The study
revealed high correlation of subjects perception with mean variance
of BTF images. This variance was further exploited for material de-
pendent estimate sparse sampling density. In average between one
quarter and half of the original samples was enough to approach vi-
sually indiscernible quality of BTF renderings. Even though, it has
to be validated in real measurement experiment, we believe that ma-
terial dependent sampling of surface appearance allows achieving
with the same number of samples a higher accuracy than standard
uniform sampling approaches.



As a future work we would like to investigate combination of the
proposed method with computationally feasible adaptive sampling.
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