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Chapter 1Introdu
tion and MotivationIn 
ontemporary virtual reality (VR) systems demands grow for realisti
 and a

uratemodelling of visual properties of real materials in parti
ular for purposes of visual safetysimulation in automotive industry and 
ar/ar
hite
tural interior design among others.Standard smooth textures 
ombined with re
e
tan
e models and bump mapping show notto be able to a

urately 
apture real material behaviour, whi
h depend on mesostru
tureroughness and anisotropi
 re
e
tan
e properties. The solution is employing rough texturesthat imitate re
e
tive properties as 
lose as possible to an original material with respe
tto illumination and view positions.Although there is not any de�nition of texture generally a

epted we 
an assume tex-ture as random �eld realisation with spatially homogeneous properties whose prin
ipal
hara
teristi
 is a repetition of a basi
 visual pattern. We 
an prin
ipally divide texturesinto two major 
ategories. The smooth textures are textures whi
h ful�l Lambertian law,i.e., their appearan
e is independent on illumination and view dire
tion and representideally di�use material. However, many of real-world materials violate this Lambertianassumption whi
h results into the se
ond major 
ategory - rough textures. Rough texturere
e
tan
e depends on illumination and viewing dire
tion and this is 
aused by surfa
estru
ture of the original material (shadowing, masking) or its underlying physi
al proper-ties (anisotropi
 spe
ularity, inter-re
e
tions, subsurfa
e s
attering).Although the rough textures allows a

urate simulation of surfa
e appearan
e, dueto their high dimensionality their measurement, representation and modelling was signif-i
antly limited in the past. Nowadays with 
onstant in
rease of available 
omputationalpower the number of available VR systems in
reases as well as their overall 
omplexity.Moreover, 
ontemporary graphi
s hardware be
ame a very powerful tool for 
omputationsperformed in ea
h individual fragment of virtual s
enes. These advan
ed and 
ontinuallydeveloping graphi
s te
hniques enable to pro
ess relatively 
omplex models that representappearan
e of real-world materials used to 
over obje
ts in VR systems.Visual per
eption of su
h obje
ts signi�
antly depends not only on their shape butparti
ularly on the representation of the surfa
e materials. The most 
ommon, 
om-putationally simple approa
h in the past was based on using a single smooth texture lita

ording to empiri
al re
e
tan
e model, optionally 
ombined with a bump-mapping te
h-nique. Later the real material re
e
tan
e was measured to 
apture the original re
e
tan
ewith respe
t to varying light and 
amera positions. This so 
alled Bidire
tional Re
e
tan
eDistribution Fun
tion (BRDF) was 
ompressed and approximated by variety of analyti-
al models in the past. BRDF, in itself, does not preserve texture information, so this1



2 Chapter 1. Introdu
tion and Motivationapproa
h was suitable mainly for homogeneous materials as, e.g., metals, plasti
s, ivoryand another polished homogeneous surfa
es. However, a large number of real rough sur-fa
es su
h as plaster, leathers, fabri
s et
. have 
ompli
ated spatial stru
ture that 
ausese�e
ts su
h as shadowing, masking, inter-re
e
tion and sub-surfa
e s
attering dependenton di�erent illumination and view dire
tions. During last years a new pre
ise rough tex-ture representation has appeared in form of Bidire
tional Texture Fun
tion (BTF). BTFis a six-dimensional fun
tion whi
h introdu
es additional dependen
y of measurements onmaterial planar position. This means that BTF preserves, in 
ontrary to BRDF, also thedesired spatial texture information.The importan
e of BTF is shown in Fig. 1.1. The �gure depi
ts obje
ts 
overedby two di�erent BTF materials lighted from three di�erent illumination dire
tions. The
hange of illumination and view dire
tions 
onsiderably a�e
ts the visual appearan
e ofreal materials and ea
h of them in di�erent way - this 
an be relatively easily re
orded bymeans of BTF.
Figure 1.1: Example of BTF behaviour for two di�erent materials.The BTF measurements are usually represented by means of thousands of images takenfor di�erent illumination and viewing dire
tions. Consequently, the storage size of su
hmeasurements is several GB depending on planar and angular BTF resolution. Due tothis huge storage size the raw BTF data 
an not be dire
tly used for any fast appli
ationeven when high-end 
ontemporary graphi
s hardware is employed.For fast rendering of BTF on obje
ts in VR an eÆ
ient BTF model is required. Themain motivations and goals of the BTF modelling are:� Data 
ompression - Due to limited GPU memory the data size of original BTFmeasurements prevents any fast appli
ation. The size of BTF have to be 
onsider-ably redu
ed to enable rendering of 
omplex s
enes 
omprehending several di�erentmaterials 1.� BTF enlargement - Measured BTF is always too small to seamlessly 
over virtualobje
t surfa
e of required size.� BTF re
onstru
tion - Ideal BTF modelling method should allow BTF re
onstru
-tion for unmeasured 
ombinations of view and illumination angles within range ofpossibly spare set of BTF measurements.� Visual quality preservation - Measured BTF des
ribes real material re
e
tan
eproperties and its main visual features and 
hara
teristi
s that have to be preserved.� Fast rendering of data from a BTF model - Fast appli
ations implementeddire
tly in graphi
s hardware require eÆ
ient synthesis algorithms working preferablyin pixel-wise manner.1All 
ompression ratios in this thesis are related to a size of the original University Bonn BTF measure-



1.1: Obje
tives of the Thesis 3As BTF modelling is quite a new resear
h area at the frontiers of 
omputer graphi
s,
omputer vision and image pro
essing, not too many publi
ations exist so far in this�eld when 
ompared to other resear
h areas. Most of them address sample based BTF
ompression methods to store original or pixel-wisely parametrised BTF samples, thus theproblem of texture enlargement remains open. Most re
ent methods are based either on
lustered pixel-wise BRDF models (ABRDF) or on linear basis de
omposition. The BTFmeasurements are enlarged by means of simple image repetition or seamless image tilingapproa
hes. The rest of the methods synthesises novel BTF images by interpolation ofspare set BTF measurements a

ording to Lambertian re
e
tan
e fun
tion or by mat
hingestimated range-map of material with these spare BTF measurements.However, till now no generi
 BTF modelling approa
h is available whi
h does not needto store neither BTF samples nor any of their pixel-wise parametri
 representation. Noneof 
ontemporary BTF models 
an be 
onsidered perfe
t for all appli
ation �elds, types ofapproximated material, required speed and visual quality.1.1 Obje
tives of the ThesisThe main obje
tives of this thesis are as follows:� Provide a survey of rough texture measurement, representation, 
ompression andmodelling methods published up to now.� Provide an overview and 
omparison of publi
ly available BTF databases.� Introdu
e two novel BTF modelling approa
hes and the 
orresponding models.The �rst of them is probabilisti
 BTF modelling approa
h based on BTF segmen-tation and subsequent modelling of obtained subspa
e images by means of severaldistin
t Markov Random Field (MRF) models. Due to the fa
t that simple MRFshave diÆ
ulties to reprodu
e regular low frequen
y stru
ture of measured material,we have used displa
ement mapping �lter whi
h 
ombines the synthesised subspa
eimages with estimated range-map of modelled material.The se
ond proposed BTF modelling approa
h is a polynomial extension of pixel-wise Lafortune re
e
tan
e model. Synthesised BTF data are enlarged by means ofimage tiling of the model parameter spa
e. To a
hieve higher 
ompression ratios weemploy an additional parameter 
lustering te
hnique.Both of these approa
hes enable fast hardware implementation in 
ontemporary VRsystems and were developed in the s
ope of EC proje
t IST-2001-34744 RealRe
e
t(Real Time Visualization of Complex Re
e
tan
e Behaviour in Virtual Prototyping)[1℄. The main obje
tive of this proje
t was the development of advan
ed VR systemaimed to high-end interior design in ar
hite
ture and automotive industry. Fordesign purposes the appearan
e of virtual obje
ts has to be realisti
, whereas thespeed of rendering is assumed to be at intera
tive frame-rates. Although raw BTFmeasurements 
an with an additional enlargement method reprodu
e the re
e
tan
eproperties of observed material very realisti
ally, due to huge size of this BTF dataments [98℄. Ea
h su
h a BTF dataset has angular resolution ni � nv = 81� 81 and 
orresponding planarresolution of BTF images is 800 � 800 (see Se
tion 3.3).



4 Chapter 1. Introdu
tion and Motivationthe rendering speed is unfortunately very low. However, the proposed BTF modelso�er reasonable visual quality while the amount of data to be stored is 
onsiderablyredu
ed and fast rendering is guaranteed.1.2 Chapter OutlinesThe thesis is divided in 
hapters as follows:Chapter 2: Rough Surfa
e Re
e
tan
e Representation Contains a short reviewof material surfa
e appearan
e measurement and modelling methods published up to now.In
ludes brief des
ription of methods for representation and modelling of BRDFs, BSS-RDFs and BTFs and dis
uses their basi
 properties.Chapter 3: BTF Databases This 
hapter des
ribes three publi
ly available BTFdatabases and dis
usses their properties and limitations.Chapter 4: BTF Rendering The basi
 problems o

urring in BTF rendering and
orresponding suggested solutions are proposed in this 
hapter. In
ludes BTF mapping,interpolation and additional surfa
e ma
rostru
ture simulation by means of bump or dis-pla
ement mapping.Chapter 5: Range-Map A
quisition Range-maps and normal-maps enable one wayof surfa
e height simulation and takes part in proposed probabilisti
 BTF model introdu
edin Chapter 7. Di�erent methods of range data a
quisition and estimation are dis
ussedand 
ompared, and their results on real materials are provided.Chapter 6: Segmentation of BTF Data This 
hapter des
ribes the proposed ap-proa
h of BTF segmentation of spa
e of illumination and view dire
tions into several BTFsubspa
es. This enables eÆ
ient subspa
e modelling by means of probabilisti
 BTF modelintrodu
ed in Chapter 7.Chapter 7: Probabilisti
 BTF modelling A novel BTF model based on 
ombinationof BTF segmentation, MRF probabilisti
 model and rough stru
ture modelling based ondispla
ement �lter is introdu
ed together with numerous results for distin
t materials.Additionally, properties of the proposed model are dis
ussed as well as possibilities of itsfast implementation in hardware.Chapter 8: BTF Modelling Using Re
e
tan
e Models This 
hapter introdu
esthe novel re
e
tan
e BTF model based on polynomial extension of one-lobe Lafortunere
e
tan
e model and its 
lustered variant. Several ways of BTF enlargement are dis
ussedand the 
hapter provides obtained results in 
omparison with original BTF measurements.Chapter 9: Results Veri�
ation and Testing This 
hapter summarises the methodsfor quality veri�
ation and testing of individual proposed BTF models.



1.2: Chapter Outlines 5Chapter 10: Con
lusions and Future Work This 
hapter summarises a
hievedresults of BTF modelling and also mention open problems beyond the s
ope of our resear
hand suggests further resear
h dire
tions of BTF modelling.



Chapter 2Rough Surfa
e Re
e
tan
eRepresentationThe main purpose of this 
hapter is to provide general information about resear
h per-formed so far in the �eld of realisti
 modelling of real-world materials appearan
e. Ea
hsu
h a rough material 
an be 
hara
terised with respe
t to its visual appearan
e usingfollowing three major appearan
e levels:� Ma
rostru
ture level - representing texture pattern repetition (usually low fre-quen
ies in 
orresponding texture image). Texture information on this level 
an beapproximated by means of surfa
e height measurements using displa
ement mappingwith additional polygonal tessellation.� Mesostru
ture level - in
ludes relatively small yet still visible geometri
 details(usually higher frequen
ies in 
orresponding texture image), e.g., small bumps,woollen knits, et
.� Mi
rostru
ture level - involves surfa
e mi
rofa
ets whi
h are visually indistin-guishable and whi
h 
ontrol the overall appearan
e of material depending on viewangles a

ording to physi
al rules, e.g., smooth �bers of textile, whi
h re
e
t lightmore eÆ
iently if the light shines parallel to their orientation.Depending on a
tual appli
ation task the real materials are modelled in s
ope of ap-propriate level. This approa
h enables signi�
ant redu
tion of the 
omplexity of inputhigh-dimensional data and 
onsequently allows using simpler data representation. E.g.,material modelling in s
ope of mi
rostru
ture level redu
es to single 
olour re
e
tan
emodelling while the ma
rostru
ture level requires a model that preserves the spatial stru
-ture of the material.Several types of material representation have been used in 
omputer graphi
s up to nowwhose 
omplexity 
onsiderably depends on 
on
rete appli
ation �eld. The most 
ommonmaterial representations as well as their mutual relations are shown in Fig. 2.1. Firstwe des
ribe the most 
ommon BRDF representation that provides material re
e
tan
einformation depending on illumination and viewing position. Several of BRDF modellingmethods based on fa
torisation or re
e
tan
e models published up to now are dis
ussed.However, the BRDF have proved to be insuÆ
ient for satisfa
tory representation of roughor textured materials, what led to further resear
h and introdu
tion of more 
omplex6
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functionFigure 2.1: The overview of real-world material representations in 
omputer graphi
s.representation models. The most general of them is Bidire
tional Subsurfa
e S
atteringRe
e
tan
e Distribution Fun
tion (BSSRDF). This eight-dimensional fun
tion 
omprisesre
e
tan
e values for any 
ombination of in
oming / outgoing planar positions on materialsample and illumination / viewing dire
tions. Sin
e it is quite diÆ
ult to measure andeven model su
h a 
omplex fun
tion, its simpli�
ation 
onsisting in uni�
ation of in
omingand outgoing planar position was ne
essary. This simpli�
ation results in six dimensionalBTF whi
h is used for photo-realisti
 rendering of real-world materials nowadays. Thisfun
tion is usually represented by a set of illumination / view dependent images and thusits size is still 
onsiderably large. Thus the development of eÆ
ient BTF 
ompressionand synthesis algorithms to enable fast BTF rendering using standard graphi
s hardwareis one of main 
hallenges in 
omputer graphi
s 
ommunity as well as main topi
 of thisthesis. As BTF modelling is quite a new resear
h area, there is not as many related resultsas in other resear
h �elds available. However, many 
ontemporary image data pro
essingalgorithms 
an be favourably employed.2.1 Bidire
tional Re
e
tan
e Distribution Fun
tionMaterial surfa
e at mi
ro-stru
ture level 
an be represented by Bidire
tional Re
e
tan
eDistribution Fun
tion (BRDF). BRDF is a 4D fun
tion introdu
ed in work of Ni
odemus[88℄ whi
h des
ribes the relation between in
ident irradian
e E from dire
tion !i = [�i; �i℄and radian
e L re
e
ted o� observed material to dire
tion !v = [�v; �v ℄ (see Fig. 2.2 and(8.1)) a

ording to the following equationBRDF (�i; �i; �v; �v) = dLv(�i; �i; �v; �v)dEi(�i; �i) (2.1)where � and � depi
t elevation and azimuthal angles respe
tively (see Fig. 2.2). BRDF
aptures physi
al re
e
tan
e behaviour of uniform surfa
e elements. It is 
alled bidire
-tional be
ause the in
ident and re
e
ted dire
tions 
an be reversed for the fun
tion toreturn the same value. This fa
t follows from the physi
s of light [5℄.BRDF has two main important properties. The �rst one is the Helmholtz re
ipro
ity
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CFigure 2.3: Light ve
tor traje
tory above thesample. The movement of illumination starts atthe top of.rule [10℄ ful�lling 8!v 2 H 8!i 2 H (2.2)BRDFr3(�i;1; �i;1; �v;1; �v;1) = BRDFr3(�i;2; �i;2; �v;2; �v;2)where �i;2 = �v;1; �i;2 = �v;1; �v;2 = �i;1; �v;2 = �i;1 and H means the set of all possiblepositions on a hemisphere above the material.The se
ond property is the energy 
onservation law where the BRDF has to ful�lfollowing normalisation 
ondition8!v 2 H Z!i2HBRDFr3(�i; �i; �v; �v)(N � !v)d!v � 1 : (2.3)where N is surfa
e normal at a given point and !v is viewing ve
tor.A

ording to BRDF shape two kinds of surfa
es are distinguished:� Di�use surfa
es { the light is re
e
ted in every dire
tion. The limit 
ase is Lamber-tian surfa
e, i.e., the BRDF be
omes a 
onstant fun
tion when the light is re
e
tedin every dire
tion equally.� Spe
ular surfa
es { the light is re
e
ted only in a small area 
lose to the mirrorre
e
tion. The limit 
ase, i.e., the perfe
tly spe
ular (Fresnel) surfa
e, is obtainedwhen the BRDF be
omes a Dira
 fun
tion when the light is re
e
ted in one singledire
tion.2.1.1 BRDF MeasurementBRDF 
an be measured using goniore
e
tometers. This devi
e me
hani
ally moves theposition of light sour
e and spe
tral sensor owing to measured material and 
olle
ts largenumber of point samples. Be
ause the BRDF is in general a fun
tion of four angles, twoin
ident and two re
e
ted, su
h a devi
e must have four degrees of freedom to measurethe 
omplete fun
tion [116℄.Another advan
ed BRDF measurement system together with data-driven re
e
tan
emodel was presented by Matusik et al. in [74℄. This measurement pro
ess gives 20-80millions of BRDF samples per material. These samples are a
quired at spe
ial 
oordinate
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tion 9system based on view and illumination angles with respe
t to the half angle ve
tor insteadof the normal ve
tor as it is 
ommon. This 
oordinate system allows to vary the samplingdensity near the spe
ular highlight. This results in assigning higher angular resolutionnear spe
ular re
e
tion and vi
e versa.Dire
t measurement is not the only way of obtaining BRDF. Ashikhmin introdu
esin [2℄ an eÆ
ient method that takes as input 2D mi
ro-fa
et orientation distribution andprodu
es a 4D BRDF. This method uses a simple shadowing term allowing to handlegeneral mi
ro-fa
et distributions while maintaining re
ipro
ity and energy 
onservation.Finally, the simplest way to obtain BRDF data is BTF data averaging in 
ontextualneighbourhood 
ontaining all kinds of stru
ture elements presented in original material.2.1.2 BRDF ModellingThe main goal of BRDF modelling has been to develop a 
ompa
t BRDF representation toenable fast rendering in graphi
s hardware. The BRDF measurements were approximatedby several methods in the past. We present the main ones in the following.2.1.3 BRDF Fa
torisationBRDF 
an be represented by means of spheri
al harmoni
s [120℄ whi
h are analogous toFourier series, but in the spheri
al domain. Spheri
al harmoni
s are espe
ially suitable forrepresenting smooth spheri
al fun
tions. This is often the 
ase with re
e
tan
e fun
tions.Using this method the BRDF (
ontaining hundreds of measurements) 
an be representedusing only up to 25 
oeÆ
ients. 4D BRDF representation for real-time rendering appli
a-tions utilising a 2D table of spheri
al harmoni
s 
oeÆ
ients was introdu
ed in [55, 102℄.Another BRDF fa
torisation method [52℄ exploits singular value de
omposition (SVD)for separable BRDF de
omposition. BRDF is repla
ed by the sum of produ
ts of two2D fun
tions stored in texture maps. Final BRDF re
onstru
tion 
an be performed bymeans of a fast hardware-implemented multipli
ation of these texture maps. Moreover,the authors re
ommend normalised de
omposition instead of SVD. This de
omposition isfaster, simpler and uses no more 
omponents than is required for �nal representation.Even more eÆ
ient BRDF fa
torisation method based on homomorphi
 fa
torisation(HF) was introdu
ed in [76℄. Homomorphi
 fa
torisation, similarly to SVD, de
omposesBRDF into several fa
tors of lower dimensionality, ea
h fa
tor dependent on a di�erentinterpolated geometri
 parameter. Compared to SVD this te
hnique generates a fa
tori-sation with only positive fa
tors, enables 
ontrol over the result smoothness and workswell with s
attered, sparse data without a separate resampling and interpolation algo-rithm. This approa
h was extended in [65℄ for isotropi
 BRDF lighting 
omputation usingenvironment maps.A 4D surfa
e light �eld fun
tion fa
torisation by means of non-negative matrix fa
-torisation was shown in [9℄ to be signi�
antly easier to implement than the homomorphi
fa
torisation mentioned above. Compared to PCA the HF produ
es non-negative basisimages that form a parts-based representation and all of them are needed to reprodu
ea 
onsistent approximation of the input data.
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e Re
e
tan
e Representation2.1.4 BRDF Approximation Using Re
e
tan
e ModelsAnother BRDF modelling approa
h employs re
e
tan
e models for BRDF approximation.Several re
e
tan
e models have been 
ommonly used for surfa
e rendering in 
omputergraphi
s. They 
an be divided into two major 
ategories. The �rst in
ludes simple butphysi
ally in
orre
t empiri
al models while the se
ond 
omprises theoreti
al, physi
allyvalid and more 
omplex models. Both kinds of models attempt to approximate the realre
e
tan
e fun
tion, represented by the BRDF, but the respe
tive approa
hes are quitedi�erent.Empiri
ally Derived Re
e
tan
e ModelsThe empiri
al model is usually based on a very simple formula with several adjustableparameters designed to �t 
ertain 
lass of re
e
tan
e fun
tions. Empiri
al model designdoes not pay attention to physi
al derivation or signi�
an
e of individual parameters.Although these models are not physi
ally plausible, they 
an o�er 
omputational simpli
ityfollowing from low number of model parameters. The simpli
ity of empiri
al modelsenables their fast hardware implementation, what is the reason of their wide use to thisday.Probably the best known empiri
al model was introdu
ed by Phong in 1975 [91℄.This model has only three parameters in separated di�use and spe
ular terms [64℄. Themodel is not physi
ally plausible, therefore it is very hard to �nd the relation betweenthe parameters of the model and the physi
al 
hara
teristi
s of the represented material.Thus the Phong model 
an not 
apture important re
e
tan
e e�e
ts, e.g., it enables toemit more light than is re
eived.A modi�
ation of the original Phong model targeted to a
hieve more realisti
 re
e
tionsis the Blinn-Phong model introdu
ed by Blinn in [6℄. This model is usually used forhardware a

elerated bump-mapping.Next empiri
al anisotropi
 re
e
tan
e model was introdu
ed by Banks et al. in [4℄.This model assumes small �bers along the given tangent, resulting in anisotropi
 re
e
-tions. It 
an be 
omputed using a 
ombination of dot-produ
t 
omputations and blendingoperations.Another BRDF model 
ombining the advantages of the various empiri
al models wasintrodu
ed in Ashikhmin et al. [3℄. The authors use a Phong-based spe
ular lobe but makethis model anisotropi
 and in
orporate Fresnel behaviour while attempting to preservethe simpli
ity of the initial model as well as physi
al plausibility. For improving energy
onservation of the Phong model for metalli
 materials the result of [87, 86℄ is used.Although the model is mostly empiri
al it interprets 
ertain parts of spe
ular term usingphysi
al-based mi
ro-fa
et models [12, 116℄. The approximation presented in [99℄ is used asa Fresnel fa
tor. The di�use term is realised in form of a modi�
ation of non-LambertianBRDF presented in [100℄ whi
h allows the di�use-spe
ular trade-o� to 
onserve energy.This model is easy to use in Monte Carlo frameworks.A di�erent empiri
al BRDF model was introdu
ed by Matusik et al. [74℄. A BRDFmeasurement devi
e is introdu
ed and used to a
quire BRDFs for more than hundred dif-ferent materials was measured by means of this devi
e, in
luding metals, plasti
s, paintedsurfa
es, et
.. Ea
h measured BRDF is treated as high-dimensional ve
tor and its di-mensionality is subsequently redu
ed by means of linear analysis (PCA) and non-linearredu
tion (
harting - subspa
e proje
tions of measured samples). These redu
tions lead to
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e
tan
e Distribution Fun
tion 1110D manifold whi
h is approximately 
onsistent with many theoreti
al isotropi
 re
e
tan
emodels. Finally the model is tuned for a
tual material by visual inspe
tion evaluating 16user de�ned dire
tions to navigate in the redu
ed-dimensions of BRDF spa
e. On the low-dimensional manifold, movement along these dire
tions produ
es novel but valid BRDFs.This empiri
al model ful�l re
ipro
ity, non-negativity and energy 
onservation.Another empiri
al model is des
ribed in [84℄. Authors use the same V-fa
ets as Tor-ran
e and Sparrow [112℄, but assume Lambertian re
e
tan
e of these fa
ets. First a re-
e
tan
e model is developed for anisotropi
 surfa
es with one type of V-fa
ets with allfa
ets aligned in the same dire
tion of surfa
e plane. This result is then used to derivea model for the more general 
ase of isotropi
 surfa
es that have normal fa
et distribu-tions with zero mean and arbitrary standard deviation whi
h parametrises the ma
ros
opi
roughness of the surfa
e. The authors have pointed out that several real-world obje
tshave di�use 
omponents that are signi�
antly non-Lambertian. They intended their modelfor use in algorithms that analyse images of di�use surfa
es and re
over a

urate shapeinformation.Physi
ally Derived Re
e
tan
e ModelsOne of the �rst theoreti
al re
e
tan
e models has been introdu
ed in 
omputer graphi
sby Torran
e and Sparrow [112℄. This analyti
al BRDF model assumes a surfa
e 
onsistingof verti
al V grooves { perfe
tly spe
ular mi
ro-fa
ets. The mi
ro-fa
ets normals deviationfrom the average surfa
e normal is assumed to be a zero-mean Gaussian - the higher is thevarian
e of deviation the rougher the surfa
e. The model 
an be divided to two parts. The�rst one is asso
iated with bulk material e�e
ts leading to a Lambertian lobe 
oloured bythe di�use albedo at a parti
ular position on the surfa
e. The se
ond is entirely relatedto surfa
e s
atter.The Torran
e and Sparrow model was later enhan
ed by Cook and Torran
e [12℄, whotake use of the work previously done in physi
s by Torran
e and Sparrow [112℄ aboutre
e
tion of ele
tromagneti
 waves on rough surfa
es. In that model, a surfa
e is againsupposed to be 
omposed of mi
ro-fa
ets, i.e., small smooth planar elements. Only a partof mi
ro-fa
ets 
ontribute to the re
e
tion. The approximated BRDF depends on �vedi�erent angles and is expressed as a linear 
ombination of a di�use and spe
ular re
e
tor.The more 
omplete BRDF model has been proposed by He et al. [42℄. This sophis-ti
ated model based on physi
al opti
s in
orporates the spe
ular, dire
tional di�use, anduniform di�use re
e
tions of a surfa
e. The model a

ounts for every physi
al phenomenainvolved in light re
e
tion on rough surfa
es su
h as polarisation, di�ra
tion, interferen
e,
ondu
tivity. In 
omparison to Cook and Torran
e model [112℄ an additional term appearsin the linear 
ombination to represent 
oherent re
e
tion on the mean plane of the surfa
e(i.e., not the mi
ro-fa
ets).Ward [116℄ presented even more 
omplex, physi
ally plausible anisotropi
 re
e
tan
emodel based on Gaussian distribution of mi
ro-fa
ets. In 
ontrast to previous work of Heel al. [42℄ where not enough attention had been paid to normalisation of the re
e
tan
efun
tion the presented model has built-in normalisation as well as other desirable features,su
h as permitting qui
k evaluation for data redu
tion and Monte Carlo sampling [117℄.The model has the ne
essary bidire
tional 
hara
teristi
s and all four of its parametershave physi
al meaning and 
an be �t independently to measured BRDF data to produ
ephysi
ally valid re
e
tan
e fun
tion. This re
e
tan
e model was �tted to BRDF measure-



12 Chapter 2. Rough Surfa
e Re
e
tan
e Representationments of real materials obtained by means of measurement setup presented in the samepaper [116℄. Ward's measurement method exploits hemispheri
al mirrors re
e
ting thewhole hemisphere of the 
at probe at on
e onto a CCD 
amera equipped with �sh-eyelens. This method 
aptures the entire hemisphere of re
e
ted dire
tions simultaneouslywhat 
onsiderably a

elerates the whole measurement pro
edure.S
hli
k's BRDF model published in [99℄ stands halfway between empiri
al and the-oreti
al models. In this paper a rational fra
tion distribution is utilised for re
e
tan
efun
tion representation. The idea is based on kernel 
onditions, whi
h 
an be any intrin-si
 
hara
teristi
 of the fun
tion (value at a given point of the fun
tion and one of itsderivatives, integral or di�erential equations, et
.). Introdu
ed rational fra
tion approxi-mation s
heme enables to speed-up the 
omputation of re
e
tan
e model. Moreover, theauthor introdu
es an approximation of Fresnel fa
tor, geometri
al attenuation 
oeÆ
ientand slope distribution while the BRDF gets separated into spe
tral and dire
tional fa
-tors. The model requires only a few intuitively des
ribe re
e
tan
e parameters to de�nea material and a formulation of varying 
omplexity is provided whi
h is well suited toMonte Carlo rendering methods.One of the �rst BRDF models whi
h take into a

ount the wave-like properties oflight was published by Stam in [108℄. This physi
al model is based on Kir
hho� integralsand is able to approximate di�ra
tion of light on arbitrary surfa
e stru
ture and 
an betaken as a 
ommon generalisation of earlier approximative physi
al models mentioned inthis se
tion above. This model does not 
omprise su
h e�e
ts as multiple s
attering andsubsurfa
e s
attering and enables relatively easy implementation.Phong's, Blinn-Phong's and Ward's models were de
omposed into several fa
tors toenable their 
omputation dire
tly in graphi
s hardware [53℄ . The individual models were
ombined with material textures (range-map, et
.) whi
h 
ontrol strength of the modelanisotropy.The main goal in optimal BRDF model development is �nding a 
ompa
t representa-tion whi
h 
an a

urately des
ribe the dominant behaviour of the BRDF. The representa-tion should be 
omputable using an iterative algorithm that would monotoni
ally 
onvergeto a 
orre
t solution. Moreover, su
h a model should be physi
ally plausible, re
ipro
aland energy 
onserving as well as easy to implement in graphi
s hardware. These 
ondi-tions are ful�lled by the model presented in Lafortune et al. [63℄. This model is basedon 
osine lobes and represents material re
e
tan
e by means of a new 
lass of primitivefun
tions with nonlinear parameters. These fun
tions are re
ipro
al, energy-
onserving,
apture important BRDF features as o�-spe
ular re
e
tion, in
reasing re
e
tan
e withangle of in
iden
e, retro-re
e
tion while the representation is 
ompa
t and uniform.Generally, the re
e
tan
e fun
tion representation by means of BRDF works well for smoothnon-textured materials as, e.g., metal or glass, but is absolutely insuÆ
ient for roughtextures like textiles or leathers due their lo
al non-homogeneity, whi
h 
auses:� Masking - parts of the material surfa
e are invisible from view position due to theiro

lusion by other surfa
e parts (masking by interse
tion) or due to their orientationaway from view position (self-masking).� Shadowing - parts of the surfa
e are not irradiated due to their orientation (self-shadowing) or be
ause the in
ident beam is interse
ted (shadowing by interse
tion).
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e S
attering Re
e
tan
e Distribution Fun
tion 13� Interre
e
tions - parts of the surfa
e irradiate other parts, thus produ
ing multiples
attering.� Subsurfa
e s
attering o

urs in slightly translu
ent materials. Light enters theirsurfa
e, is s
attered around inside the material, and then exits the surfa
e, poten-tially at a di�erent point from where it entered.To represent at least some of these e�e
ts the following material des
ription fun
tionshave been introdu
ed re
ently.2.2 Bidire
tional Subsurfa
e S
attering Re
e
tan
e Distri-bution Fun
tionA general material surfa
e introdu
es subtle lighting e�e
ts, su
h as masking, shadowing,interre
e
tions and subsurfa
e s
attering. To 
apture all these e�e
ts a more generalapproa
h than simple BRDF is inevitable.The most general des
ription of material re
e
tan
e properties o�ers a 8D Bidire
tionalSubsurfa
e S
attering Re
e
tan
e Distribution Fun
tion (BSSRDF) des
ribed as followsBSSRDFr3(ri1; ri2; r1; r2; �i; �i; �v; �v) (2.4)where ri1; ri2 represent planar 
oordinates where the light enters into the material, r1; r2represent planar 
oordinates where the light emits from the material while � and � areelevation and azimuthal angles of illumination i and view v positions (see Fig. 2.2).BSSRDF des
ribes the light transport between every point on the surfa
e for anyillumination and view position. Obviously, the 
omplexity of BSSRDF based methods [45℄limits their appli
ation mainly to homogeneous di�use materials su
h as 
uids, marble,et
..Re
ent measurement te
hniques [32℄ enable to 
apture BSSRDF for translu
ent in-homogeneous materials with strong subsurfa
e s
attering e�e
ts. However, the authorsassumed di�use surfa
e re
e
tions and did not pay attention to angular dependen
y oflaser beam light sour
e or light sensor. The rendering method exploiting subsurfa
e s
at-tering e�e
t is presented in [67℄. Nowadays there is no method enabling us to measure oreven model the BSSRDF in its whole 
omplexity available.2.3 Bidire
tional Texture Fun
tionSin
e there is not any fast method available neither for measurement nor for modellingof BSSRDF up to now, it is inevitable to use a simpli�ed variant of the BSSRDF en-abling universal measurement of re
e
tan
e data for rough materials. One solution isthe Bidire
tional Texture Fun
tion (BTF). BTF is a six dimensional fun
tion, similarlyto BSSRDF, dependent on illumination and view angles as well as on planar position onobserved material surfa
e (2.5).BTFr3(r1; r2; �i; �i; �v; �v) (2.5)A
tually, the BTF represents one planar texture for ea
h 
ombination of illuminationand view position. Thus the BTF integrates subsurfa
e s
attering light intensity from
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e Re
e
tan
e Representationneighbouring material surfa
e lo
ations in individual BTF images by means of samplemeasurements. Thus the subsurfa
e s
attering e�e
t 
an not be �gured out, however, itis preserved in BTF measurements and 
an be modelled together with other re
e
tan
eproperties of an observed material sample.BTF was �rst presented in work of Dana et al. [16℄. Only three BTF measurementdatabases have been made publi
 so far. Real BTF measurements 
onsist of several thou-sands material sample images taken for di�erent 
ombinations of illumination and viewpositions. The standard BTF measurement 
omprehends whole hemisphere of possiblelight and 
amera positions of observed material sample a

ording to presele
ted angularquantisation steps (see Fig. 2.3 for University of Bonn BTF measurement quantisation).An appropriately measured BTF o�ers enough information about material propertiesas is anisotropy, masking or self-shadowing. In 
ontrast to a regular 2D texture or toBRDF, BTF is high-dimensional and involves large amounts of data. To render BTF ongraphi
s hardware, a 
ompa
t representation of the BTF is needed. The best 
urrentlyavailable BTF [98℄ takes up about 2GB of storage spa
e per sample. BTF databasefor moderately 
omplex VR s
enes 
an take up to several TB of data spa
e. Hen
e some
ompression and modelling method of this huge BTF datasets is inevitable. Su
h a methodshould provide 
ompa
t parametri
 representation and preserve main visual features ofthe original BTF as mu
h as possible, while enabling its fast rendering in 
ontemporarygraphi
s hardware.The modelling of BTF as a 6D fun
tion is not trivial, thus task so many resear
hersfa
torised BTF into individual subsets of textures. The two most frequently used BTFsubsets are Surfa
e Light Field (SLF) and Surfa
e Re
e
tan
e Field (SRF).The surfa
e light �eld (2.6) represents the BTF sli
e 
ontaining all the BTF images
orresponding to a �xed illumination position i.SLFr3(r1; r2; �i; �i) � Li (2.6)Similarly the surfa
e re
e
tan
e �eld (2.7) represents the BTF sli
e 
ontaining all the BTFimages 
orresponding to a �xed view position v.SRFr3(r1; r2; �v; �v) � Rv (2.7)2.3.1 BTF MeasurementOnly few BTF measurement systems exist up to now. These systems are (similarly toBRDF measurement systems) based on light sour
e, video or still 
amera and materialsample moving using a robot arm. The main di�eren
e between individual BTF measure-ment systems is in type of measurement setup allowing four degree of freedom and type ofmeasurement sensor (CCD, video, et
.). In some systems the 
amera is �xed and the lightis moving while in others it is 
ontrariwise. The main requirement on BTF measurementsis a

urate image re
ti�
ation, i.e., aligning of texture normal with view ve
tor, mutualregistration of single BTF measurements and visual 
onstan
y during measurement. There
ti�
ation a

ura
y strongly depends on used light/
amera and robot positioning errorswhile the visual 
onstan
y depends on stability of material properties during long mea-surement time when exposed to strong light sour
e. Most of these problems are solved bythe re
ently proposed measurement setup [83℄ based on array of 151 digital still 
amerasmounted on hemispheri
al 
hassis above the material sample. Camera built-in 
ashes are
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tional Texture Fun
tion 15used as light sour
es. The homomorphi
 transformation ne
essary for re
ti�
ation of in-dividual BTF images 
an be pre
isely 
al
ulated in advan
e for ea
h 
amera, sin
e thereare not any moving parts. This approa
h 
an signi�
antly de
rease re
ti�
ation errors tosub-pixel values and speeds up the whole measurement pro
ess 
onsiderably. The mainknown BTF measurements systems are des
ribed in more detail in Chapter 3.2.3.2 BTF Data RepresentationIt is possible to de�ne at least two possible ways of BTF data representation whi
h are
ommonly used in variety of BTF modelling and 
ompression methods as depi
ted in Fig.2.4.Texture representation BTFTEX(i; v) (i; v) 2 B (2.8)where (i; v) is illumination and view position and B represents a set of all BTF images.The BTFTEX(i;v) des
ribes BTF as a set of dis
rete textures depending on view andillumination dire
tion. The number of images is produ
t of the numbers of all view andillumination positions (in the 
ase of University of Bonn BTF datasets it is 81 � 81).Apparent BRDF (ABRDF) representationBTFABRDF (r1; r2) (r1; r2) 2 I � (M �N) (2.9)where (r1; r2) is planar index in BTF image andM�N is resolution of original BTF images.In this representation the BTF 
an be seen as a set of apparent BRDFs (ABRDF), onefor ea
h planar position (r1; r2). The term apparent BRDF was �rst introdu
ed in [120℄.The ABRDF en
odes re
e
tion of a single point given a illumination and view position.It is 
alled apparent be
ause the underlying geometry is of a mu
h larger s
ale 
omparedto normal BRDFs. The ABRDF, in 
ontrary to BRDF, does not ful�l physi
al re
ipro
itysin
e it in
ludes strong shadowing and masking e�e
ts as well as s
attering e�e
ts fromneighbouring parts of the surfa
e as depi
ted in Fig. 2.5. Te
hni
ally this representation
an be 
onsidered as a set of subsequent images where ea
h image 
orresponds to onepixel in BTF. Su
h an image provides information about pixel re
e
tan
e value (ABRDF)when the view, illumination position represent horizontal, verti
al index in ABRDF imagerespe
tively. The number of images in the ABRDF representation is given as the numberof pixels in original BTF images M � N . From our observations as well as from [82℄ itfollows that the image to image varian
e in BTFABRDF representation depends mainlyon the stru
ture of observed material surfa
e produ
ing spatial variation of re
e
tan
eproperties as well as on s
attering e�e
ts on observed pixel neighbourhood. These e�e
tsare ni
ely illustrated in Fig. 2.5. Two ABRDFs of four di�erent materials for di�erentplanar positions representing distin
t re
e
tive properties are shown.InBTFABRDF representation the re
e
tan
e 
hanges o

urring between individualABRDFimages are 
aused by shadowing and masking e�e
ts. However, the spe
ular re
e
tan
epeaks (light parts in Fig. 2.5) are pla
ed at the �xed positions for all ABRDF images.Whereas, in BTFTEX representation additional visual varian
es between individualBTF images are presented. These varian
es 
an be 
aused by measurement and registra-tion errors of individual BTF images or by di�erent material spe
ularity and shadowing for
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al ABRDF Models 17di�erent view and illumination dire
tions. Moreover, due to an o

lusion e�e
t the samepixel in all BTF images does not ne
essarily 
orresponds to the same point on materialsurfa
e (see Fig. 2.6).2.4 BTF Compression Methods Based on Analyti
al ABRDFModels2.4.1 Pixel-Wise Analyti
al ABRDF ModelsSimilarly to other high-dimensional data the BTF exhibit lo
al linearity whi
h 
an beexploited for data fa
torisation and subsequent use of simpler models or methods. Oneexample 
an be pixel-wise fa
torisation of original BTF. In this fa
torisation individualpixel data represents apparent BRDF and 
an be approximately modelled by means ofvarious BRDF models.Pixel-wise ABRDF Lafortune ModelOne of the �rst attempts to hardware a

elerate BTF approximation in graphi
s hardwareusing analyti
al BRDF model was done by M
Allister [75℄. This model introdu
es spatialBRDF (SBRDF) whi
h represents ABRDF of ea
h pixel in BTF by means of sum ofseveral re
e
tan
e lobes a

ording to Lafortune model parametrisationBTF (r1; r2; i; v) � �d;r1;r2 + nlXk �s;r1;r2;k[!Ti Dr1;r2;k!v℄nr1;r2;k ; (2.10)where !i; !v are illumination and view ve
tors in lo
al 
oordinate system, D is a diagonalmatrix with model parameters. The remaining parameters �d; �s; nk represent di�use,spe
ular albedo and spe
ular exponent, respe
tively.The number of re
e
tan
e lobes nl is less or equal to three. The model parameters areestimated a

ording to Levenberg-Marquardt non-linear �tting pro
ess [94℄. Although theM
Allister's model provides very 
ompa
t BTF representation together with one of the�rst real-time BTF rendering appli
ation, its use is limited to materials with more or lesssmooth stru
ture. For 
oarse materials with surfa
e height variations this method 
an not
apture ABRDF a

urately and produ
es blurred results.S
aled Pixel-wise ABRDF Lafortune ModelAn extension of M
Allister's BTF model was presented by Daubert et al. [19℄. Theapproa
h was originally intended for realisti
 
loth modelling. It 
onsists of two Lafortunere
e
tan
e lobes s
aled by additional 
oeÆ
ients stored in a look-up table T as followsBTF (r1; r2; i; v) � T!v;r1;r2  �d;r1;r2 + nlXk [!Ti Dr1;r2;k!v℄nr1;r2;k! ; (2.11)where !i; !v are illumination and view ve
tors in lo
al 
oordinate system, D is diagonalmatrix with model parameters, �d is di�use albedo and nk is spe
ular exponent.Ea
h spe
tral 
hannel uses dedi
ated lobe parameters obtained by means of non-linear�tting pro
ess and multipli
ative look-up table T!v;r1;r2 whose values are result of an ad-ditional iterative pro
ess. The look-up table stores pixel-wise 
olour and alpha values for
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h of the original viewing dire
tions that model shadowing and masking e�e
ts of indi-vidual rough material stru
ture elements as well as strong spe
ular highlights and othere�e
ts 
aused by 
omplex material geometry. However, the look-up table requires to storesigni�
antly more parameters than in M
Allister's approa
h. This is not a big problem forBTFs of regular materials , as shown by the authors in the 
ase of fabri
s, but for generalmaterials this approa
h involves quite large data storage spa
e.2.4.2 Pixel-Wise Analyti
al Re
e
tan
e Field ModelsAnother straightforward BTF de
omposition avoiding high-dimensionality is per-view fa
-torisation. This fa
torisation enables separate modelling of BTF images 
orresponding toone given view dire
tion only, i.e., so 
alled Surfa
e Re
e
tan
e Field Rv. This approa
havoids problem 
aused by non-
orresponding pixels in BTF images for di�erent view di-re
tions as it is shown in Fig. 2.6.
Figure 2.6: Pixel-wise in
onsisten
y for di�erent view dire
tions in BTF. The �rst image showsoriginal BTF image 
ompared with pixel-wisely non-
orresponding re
ti�ed images for two di�erentview positions, respe
tively.Polynomial Texture MapsIn the approa
h of Malzbender et al. [72℄ the surfa
e re
e
tan
e �eld is approximatedby means of per-pixel polynomials. Therefore the authors 
all this method PolynomialTexture Maps (PTM). PTM models illumination dependen
e of individual pixels usingfollowing pixel-wise biquadrati
Rv(r1; r2; i) � ao(r1; r2)u2r1 + a1(r1; r2)u2r2 + a2(r1; r2)ur1ur2 + (2.12)+a3(r1; r2)ur1 + a4(r1; r2)ur2 + a5(r1; r2) ;where ur1 ; ur2 are proje
tions of the normalised light ve
tor into the lo
al 
oordinatesystem r1; r2. The six polynomial 
oeÆ
ients a0 � a5 are �tted in ea
h pixel by means ofsingular value de
omposition (SVD) [30℄.The authors found this image-based method useful for 
olour pixel re
onstru
tion in�xed-point hardware as well as for produ
tion of number of other e�e
ts su
h as anisotropi
and Fresnel shading models or variable depth of fo
us. The method 
an be also used for
ontrast enhan
ement or for temporal s
ene 
ompression. Moreover, a devi
e for surfa
ere
e
tan
e �elds measurement is presented as well.
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al ABRDF Models 19This method enables very fast rendering sin
e its per-pixel 
osts for PTM evaluationdepend only on 11 multipli
ations and 5 additions. However, as mentioned by the au-thors, the method assumes that the modelled surfa
es are either di�use or their spe
ular
ontribution had been separated in the previous modelling step. This separation 
an bequite problemati
 for re
e
tan
e �elds obtained as a BTF sli
e. For su
h a re
e
tan
e�eld the PTM exhibits 
onsiderable errors mainly for high grazing angles as shown in[78℄. For BTF rendering this method requires six parametri
 images to be stored forea
h re
e
tan
e �eld Rv and 
olour 
hannel. Sin
e this model is 
omputed in pixel-wisemanner for ea
h re
e
tan
e �eld separately the �nal BTF rendering requires additionalinterpolation between individual view dire
tions.Re
e
tan
e Fields Using Lafortune ModelAnother BTF 
ompression approa
h based on fa
torisation into individual re
e
tan
e�elds was introdu
ed by Meseth et al. in [78℄. The approa
h exploits, similarly to M
Al-lister's [75℄ and Daubert's [19℄ work, a pixel-wise model based on Lafortune re
e
tan
elobes of the following formRv(r1; r2; i; v) � �d;r1;r2 + �s;r1;r2;k nlXk [!Ti Dr1;r2;k℄nr1;r2;k ; (2.13)where !i represents illumination ve
tor in lo
al 
oordinate system, D is diagonal ma-trix with model parameters and �d; �s; nk represent di�use, spe
ular albedo and spe
ularexponent, respe
tively.Due to the expensive non-linear parameters �tting, the number of Lafortune lobes nlis pra
ti
ally limited to three lobes. Unlike previously mentioned BTF models based onLafortune lobes where ea
h 
olour 
hannel used individual set of �tting lobes this modeluses lobes to 
ompute luminan
e values only. These luminan
e values are further used tos
ale the albedo of individual 
olour 
hannels. This arrangement redu
es the number ofparameters needed to be stored, but on the other hand de
reases approximation a

ura
y.Similarly to other re
e
tan
e �eld based BTF modelling approa
hes this method re-quires additional interpolation between individual view dire
tions during BTF renderingto suppress disturbing edges. The model 
an be implemented in graphi
s hardware andensures reasonable BTF approximation for less spe
ular materials. However, for 
omplexanisotropi
 and highly spe
ular materials its performan
e is not satisfa
tory [79℄.Spatial BRDF Fa
torisation ModelsOne of the �rst BRDF models based on fa
torisation te
hniques was presented by Kautzin [52℄. This model exploits SVD for BRDF fa
torisation and produ
es two 2D fa
torsinstead of 4D BRDF. It 
an be exploited for pixel-wise BTF 
ompression a

ording to theformula BTF (r1; r2; i; v) � KjXk=1Pk;r1;r2(�1(!i; !v))Qk;r1;r2(�2(!i; !v)) ; (2.14)where the fun
tions �1; �2 are proje
tion fun
tions whi
h map the 4D spa
e determinedby illumination and view dire
tions to a 2D spa
e. The fa
tors Pj;k and Qj;k are even-tually stored in texture maps from whi
h the ABRDF is easily re
onstru
ted in graphi
shardware.



20 Chapter 2. Rough Surfa
e Re
e
tan
e RepresentationThe main limitation of this method is the de
omposition into two fa
tors only. Thisrestri
tion has been over
ame by M
Cool [76℄ using single term ABRDF approximationa

ording to equation BTF (r1; r2; i; v) � JYj=1Pj;r1;r2(�j(!i; !v)) : (2.15)This approa
h exploits homomorphi
 fa
torisation whi
h unlike the previous SVD basedmethod generates a fa
torisation with only positive fa
tors. This makes it more suitablefor hardware implementation.Even more eÆ
ient multiple term ABRDF approximation was suggested by Suykenset al. in [110℄. This model de
omposes ABRDF of ea
h pixel into a produ
t of three ormore two-dimensional positive fa
tors using a te
hnique 
alled 
hained matrix fa
torisation(CMF). This te
hnique uses a sequen
e of matrix de
ompositions, ea
h in a di�erentparametrisation, allowing to obtain the multiple fa
tor approximation as followsBTF (r1; r2; i; v) � JYj=1 KjXk=1Pj;k;r1;r2(�j;1(!i; !v))Qj;k;r1;r2(�j;2(!i; !v)) : (2.16)This de
omposition enables easier fa
tor 
omputation in 
omparison to previously dis-
ussed methods. As the authors 
laim, the CMF fa
tors have lower dynami
 range sotheir quantisation into 8-bits is mu
h safer.When using any of these fa
torisation approa
hes, an eÆ
ient BTF representation isusually obtained by fa
tor 
lustering in form of a 
ompa
t set of 2D textures. BRDF fa
-torisation approa
hes enable BTF rendering at intera
tive frame-rates with a 
ompressionratio of more than 1100 .2.4.3 Surfa
e Light Field ModellingAlike per-view fa
torisation also per-illumination fa
torisation is possible. This approa
his often referred to as Surfa
e Light Fields (SLF). It des
ribes material re
e
tan
e fordi�erent view positions while the illumination position is �xed. These SLFs were �rstintrodu
ed and parametrised by Miller et al. in [81℄. Large SLFs are very 
ommon inhigh-quality rendering systems, however, their size is a limiting fa
tor whi
h prevents fastappli
ations in graphi
al hardware. Several SLF 
ompression methods have been thereforintrodu
ed as, e.g., in [9, 89℄. Sin
e SLF modelling is not subje
t of this thesis we will donot dis
uss it in more detail.2.5 BTF Compression Methods based on PCAAlthough pixel-wise BRDF models dis
ussed in the previous se
tion 
an provide satis-fa
tory quality of BTF approximation, they are often limited to 
ertain kinds of realmaterials or 
an not handle all 
omplex e�e
ts that appear due to using of ABRDF in-stead of assumed BRDF. These e�e
ts in
lude sub-surfa
e s
attering from neighbouringpixels, using not perfe
tly dire
tional light, ina

ura
ies in re
ti�
ation or image �lter-ing pro
essing of original BTF data that violate Helmholtz re
ipro
ity rule and result in
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 BRDF. The re
e
tan
e models often fail to �t this 
omplex data as a resultof violating basi
 model assumptions.These problems hinder the use of another 
ategory of BTF models represented byimage statisti
s linear model Prin
ipal Component Analysis (PCA) typi
ally 
omputedby means of Singular Value De
omposition (SVD). Basi
 information 
an be found in [94℄while a rigorous mathemati
al ba
kground is given in [30℄. The SVD is linear algebrate
hnique for solving a set of linear equations whi
h provides the 
losest possible solutionin a least-square sense. This method de
omposes input matrix A (even singular one), intomatri
es U;VT 
ontaining orthonormal 
olumns and rows, respe
tively, so 
alled eigen-ve
tors (see 2.17). The non-negative diagonal matrix D 
ontains so 
alled eigen-numbersor eigen-values. The size of the eigen-values determines importan
e of the 
orrespondingeigen-ve
tor for original data re
onstru
tion.A = UDVT : (2.17)This te
hnique enables high data 
ompression sin
e only a relatively small numberof eigen-ve
tors have to be stored to a
hieve reasonable approximation error. This erroris given by ratio of squared sum of preserved eigen-values to squared sum of all eigen-values. This te
hnique 
an lead to signi�
ant 
ompression of redundant input data and assu
h stands behind many 
ompression algorithms appli
able to BTF data as des
ribed infollowing se
tions.2.5.1 Entire BTF Spa
e Fa
torisationA PCA based BTF fa
torisation approa
h was published by Koudelka et al. [59℄. Indi-vidual BTF sub-images are arranged into ve
tors forming matrix A of size 3MN3�nvni.The prin
ipal 
omponents are the eigen-ve
tors Ek of the symmetri
 matrix AAT . How-ever, the 
omputation requirements for larger BTF image of resolution M �N are enor-mous. Computing eigen-images (i.e., the eigen-ve
tor with image attributes) for non-homogeneous materials takes often several days. BTF re
onstru
tion is stated by thefollowing equation BTF (r1; r2; i; v) � n
Xk=1�k(i; v)Ek(r1; r2) : (2.18)To obtain good BTF approximation results the authors suggest the number of preservedprin
ipal 
omponents to be at least to n
 = 150. However, any fast 
omputation of linear
ombination of su
h a number of eigen-images is impossible nowadays even on high-endhardware. Dire
t use so using of this method for any real-time BTF rendering appli
ationis 
urrently 
onsidered impossible.2.5.2 Multimodal BTF Spa
e Fa
torisationThe image-based BTF 
ompression method by Vasiles
u and Terzopoulos [114℄ is based onN-mode SVD, being an extension of the 
onventional unimodal matrix SVD. The methodassumes the individual BTF 
olour images to be ordered into ve
tor features forminginput BTF data tensor B 2 R(dNN)�ni�nv . N-mode SVD performs the following tensorde
omposition B = Z �1 Utex �2 Ui �3 Uv ; (2.19)
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e Re
e
tan
e Representationwhere A �n M denotes mode-n produ
t of tensor A, Z is 
ore tensor that steers theintera
tion between the di�erent modes, mode matrix Uv spans the view spa
e, its rowsen
ode illumination and texel invariant representation for ea
h of the di�erent views,mode matrix Ui spans the illumination spa
e, its rows en
ode view and texel invariantrepresentation for ea
h of the di�erent illumination and mode matrix Utex spans thetexel spa
e and are, the PCA eigen-ve
tors (i.e., eigen-images). The authors re
ommendfollowing tensor-texture representation varying with view and illumination positionsT = B �2 Ui �3 Uv : (2.20)This representation requires to store more than ten times less parameters in 
omparisonwith unimodal SVD [59℄ and enables eÆ
ient BTF data 
ompression that 
an be 
ontrolledindependently with respe
t to viewing and illumination positions. The method enablesBTF rendering for both planar and non-planar surfa
es. Planar version followsBTF (i; v) = T �2 iT �3 vT ; (2.21)where i and v are, respe
tively, view and illumination representation ve
tors 
orrespondingto desired view and illumination dire
tions.Although, as reported by authors, RMS error of this method is higher in 
omparisonwith unimodal SVD with the same number of 
omponents, the visual performan
e is sig-ni�
antly better. However, this method involves high 
omputational times for multi-modalSVD de
omposition of BTF data with higher view and illumination angular resolution,e.g., [98℄. This 
on
erns o�ine de
omposition as well as online rendering. Unfortunately,the authors have tested the method mostly on arti�
ial BTF data; their tests on realUniversity Bonn BTF were not 
ompared with methods [98, 59℄ neither in terms of BTF
ompression rate ( 110 � 1100?) nor o�ine and online time 
omplexity. Due to the men-tioned limitations this method is not suitable for fast hardware implementations of BTFrendering. However, its 
ompa
t representation sets it as a good 
andidate for o�ine highquality rendering tasks.2.5.3 Re
e
tan
e Field Fa
torisationThe huge fa
torisation demands of whole BTF spa
e as well as the ne
essity of storingrelatively high number of 
omponents whi
h 
an not be evaluated in graphi
s hardwareled to development of another approa
h by Sattler et al. [98℄. The basi
 idea 
onsists in
omputation of maximally n
 = 16 prin
ipal 
omponents for individual re
e
tan
e �eldsinstead of the whole BTF spa
e. Individual images 
orresponding to re
e
tan
e �eld Rvare used as matrix input ve
tors to produ
e 16 eigen-images Ev;k for ea
h Rv togetherwith 
orresponding weights �v;k by means of SVD. The re
e
tan
e �eld re
onstru
tionformula is Rv(r1; r2; i) � n
Xk=1�v;k(i)Ev;k(r1; r2) : (2.22)The �nal BTF image is obtained by interpolation between the 
losest re
e
tan
e �eldsRv.Although this approa
h enables fast BTF rendering, the size of stored weight parametersand eigen-images is still quite high. To ensure reasonable results best 
ompression ratio
annot ex
eed 110 .
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hes 232.5.4 BTF Segmentation and Lo
al PCAA BTF 
ompression method well suited to 
ontemporary graphi
al hardware was pre-sented by M�uller et al. in [82℄. Unlike BTF fa
torisation approa
hes employing PCA asmentioned before, this method exploits the fa
t that high dimensional datasets, in this
ase BTF, show a lo
ally linear behaviour. The authors propose a BTF 
ompressionalgorithm based on 
ombination of lo
al PCA [49℄ 
omputed in both BTFABRDF andBTFTEX representations and ve
tor quantisation. The BTF spa
e is iteratively dividedup to 32 
lusters, ea
h to be represented by by means of lo
al PCA. The squared eigen-texture/eigen-ABRDF re
onstru
tion error is used as distan
e measure in the 
lusteringpro
ess.The des
ribed BTF fa
torisation 
an be stated asBTF (r1; r2; i; v) � n
Xk=1�m(r1;r2);k(r1; r2)Em(r1;r2);k(i; v) ; (2.23)where m(r1; r2) is a 
luster index look-up table given by planar 
oordinates (r1; r2), n
 isnumber of preserved prin
ipal 
omponents, �k are PCA weights and Ek are either eigen-images or eigen-ABRDFs. The entire BTF re
onstru
tion together with illumination andview interpolation is performed in graphi
s hardware enabling fast BTF rendering.The authors 
laim the BTFABRDF arrangement more appropriate in terms of 
om-pression ratio whi
h is approximately ten times higher than in the 
ase of BTFTEX ar-rangement. It follows from the observation that resembling material areas lead to nat-ural 
lustering of similar ABRDF images and lower dimension of prin
ipal 
omponentsin BTFABRDF arrangement than in BTFTEX arrangement. This method provides BTF
ompression ratio of about 1100 while ensuring high re
onstru
tion quality and renderingspeed [79℄.2.6 BTF Synthesis and Modelling Approa
hesBTF models des
ribed in the previous se
tion are intended mainly for eÆ
ient BTF 
om-pression enabling fast hardware supported BTF rendering. Most of these approa
hespreserve ex
ellent visual quality of restored BTFs, but several signi�
ant disadvantagesremain inherited in this kind of models. They 
an not produ
e larger BTF images thanthose present in original BTF and they o�er only mild 
ompression ratio. To enable BTFsynthesis of large obje
ts in VR by means of this kind of models it is ne
essary to em-ploy additional BTF enlargement methods. These methods are usually based either onsimple texture repetition with edge blending or on more or less sophisti
ated image tilingmethods [24, 11, 62, 103℄. Up to now there are only few image-based methods availablethat enable BTF synthesis of arbitrary resolution. Moreover, these methods are oftentoo slow to enable fast BTF rendering. Till now there is no generally appli
able gener-ative BTF modelling approa
h available. All des
ribed BTF modelling methods requireto store samples of BTF either in form of image tiles, textons or in form of some kind oftheir pixel-wise parametri
 representation.2.6.1 BTF Synthesis from Parametri
 TilesThe most 
ommon way of arbitrary resolution BTF synthesis is employing image tilingmethods. The BTF synthesis approa
h based on image tiling was introdu
ed in [124℄. This
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e Re
e
tan
e Representationapproa
h involves BTF 
ompression based on polynomial texture maps [72℄. Estimatedresulted parametri
 images 
ontaining polynomial 
oeÆ
ients are subsequently enlargedby means of Efros's image quilting algorithm [24℄. Dong and Chantler [22℄ present a surveyof several BTF synthesis approa
hes. The authors have tested an image based relightingmethod [21℄ based on BTF image re
onstru
tion from several known BTF images a

ordingto Lambertian re
e
tan
e fun
tion, overdetermined photometri
 stereo based on SVD of36 images, polynomial texture maps [72℄ and �nally PCA analysis of all BTF images. BTFsynthesis in all of these methods is a

omplished again by means of tiling algorithm [24℄.2.6.2 Copy and Paste Based BTF SynthesisCopy and paste BTF synthesis is generally based on reprodu
ing the BTF data fromoriginal BTF measurements to generate 
orresponding large BTF synthesis. These syn-thesis methods usually do not introdu
e any 
ompression and are often unusable for fastreal-time BTF synthesis appli
ations.One of the �rst BTF synthesis algorithms was developed by Liu et al.[70℄. The methodstarts with range-map estimation using modi�ed shape-from-shading algorithm basedon [66℄. The range-map is enlarged to the required size by means of a

elerated non-parametri
 sampling [25℄. This enlarged range-map is used to generate syntheti
 templateimage for the given view/illumination dire
tion to be subsequently 
overed using albedomap.For ea
h illumination and view dire
tion the nearest original BTF image is taken asa referen
e image. The �nal stage of BTF synthesis 
onsists of 
opying image blo
ks fromreferen
e image that are similar to those in synthesised template image. Better results
an be obtained by employing additional referen
e images obtained by means of weightedBTF image averaging. The authors tested the method performan
e on CUReT BTF data[16, 96℄. Two main drawba
ks have shown up; the synthesis is too slow and the methoddoes not guarantee any reasonable data 
ompression.Later Liu et al. [71℄ developed another BTF model similar to [82℄. This methodworks with BTFABRDF data arrangement. The BTF synthesis on arbitrary surfa
es isbased on the smallest texture elements in BTF, so 
alled 3D textons introdu
ed in [68℄.To 
apture surfa
e appearan
e at di�erent illumination and viewing 
onditions the 3Dtextons are 
onstru
ted using K-means 
lustering of appearan
e ve
tors, i.e., the ve
tors
ontaining responses to a set of orientation and spatial-frequen
y sele
tive linear �ltersapplied at 
ertain planar position in BTF. Thus only sele
ted appearan
e ve
tors, those
orresponding to textons in 
luster 
enters, are stored. This leads to 
onsiderable dataredu
tion.In the following step a matrix is 
reated so that its rows 
orrespond to ABRDFs ofpreviously sele
ted textons. The matrix is then de
omposed by means of SVD to obtain2D geometry map �i(:) together with a set (n
 = 5 � 40) of eigen-ABRDFs Ei. BTFre
onstru
tion from these eigen-ABRDFs is then des
ribed by the following equationBTF (r1; r2; i; v) � n
Xk=1�k(r1; r2)Ek(i; v) : (2.24)During BTF rendering a surfa
e is 
overed by ABRDFs restored from PCA 
omponentsa

ording to previously 
omputed texton vo
abulary assigning a texton label to ea
h



2.7: Alternative BTF Modelling and Classi�
ation Methods 25pixel-ABRDF. The authors implemented this method in graphi
s hardware for fast BTFrendering on arbitrary surfa
es with maximal BTF 
ompression ratio about 1100 .Very similar BTF synthesis approa
h based on the 3D texton analysis was publishedin [111℄. The paper des
ribes 3D texton sear
h algorithm in more detail and suggests BTFrendering based on surfa
e synthesis from individual textons.Another 
opy and paste BTF synthesis method was published by Neube
k et al. in[85℄. The authors extend standard smart 
opy and paste smooth texture synthesis (e.g.,[25, 24℄) to BTF synthesis. The authors introdu
e their own BTF measurement setupand dis
uss the impa
t of proje
tion plane position during re
ti�
ation of BTF images onBTF smoothness and suggest as optimal the plain alignment that 
orresponds to maximalheight of material. This 
onsiderably in
reases BTF smoothness during varying illumina-tion and view 
onditions. The des
ribed BTF synthesis method does not 
opy all BTFpixel values, but only the values 
orresponding to individual viewing position whi
h pro-du
es novel syntheti
 BTF pixel re
e
tan
e values. For this purpose the authors mat
hthe original input frontal view with synthesised support view using multis
ale dynami
weighting s
heme to obtain 
orre
t BTF pixel values. The method starts with single viewsynthesis and 
ontinues with sequential synthesis of other views. Although this methodprodu
es high quality BTF synthesis, it does not solve the issue of BTF 
ompression andit is relatively slow with problemati
 hardware implementation.2.7 Alternative BTF Modelling and Classi�
ation Methods2.7.1 BTF Classi�
ation Based on Image Des
riptive HistogramsCula and Dana [14, 15℄ present a method for BTF representation and 
lassi�
ation (CUReT[96℄). The authors modify the method presented in [68℄, so that instead of 
omputing �lterbank responses for BTF pixel during varying view and illumination dire
tions K-means
lustering of �lter bank responses for individual BTF images is performed separately toobtain so-
alled image texton library. This representation is favourable sin
e it does notrequire spatial registration of individual BTF images. The distributions of texton librarylabels over individual images are subsequently approximated by the texton histogramswhi
h forms BTF dataset representation. PCA is employed to redu
e the dimensionalityof these texton histograms. The resulting representation in the eigen-spa
e is the refer-en
e manifold indexed by illumination and view positions. When novel BTF measurement(material) is to be 
lassi�ed, its image texton histogram is proje
ted onto the universaleigen-spa
e and the 
losest manifold is found 
orresponding to BTF whi
h is the 
lass ofthe query.2.7.2 BTF Compression Based on Image HistogramsExploiting of individual BTF image (CUReT [96℄) histograms for purpose of estimationof material parameters, veri�
ation of texture models, BTF 
lassi�
ation, geometry esti-mation and texture rendering is introdu
ed by van Ginneken in [113℄. A

ording to thismethod BTF images 
orresponding to the same view position are generated by means ofa histogram mat
hing te
hnique [31℄ using only one original BTF image, its histogramand histograms 
orresponding to other BTF images taken from the same view position.This te
hnique enables relatively high BTF 
ompression sin
e only one image and sev-
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e Re
e
tan
e Representationeral histograms have to be stored for satisfa
tory approximation of remaining BTFs formany kinds of real-world materials. The authors found this method signi�
antly better in
omparison with simple image brightness adjustment a

ording to BRDF data.2.7.3 Predi
tion of Lambertian Rough Texture Illumination Chara
ter-isti
sDire
tional 
hara
teristi
s of rough textures was also studied by Chantler in [8℄ with
on
lusion that illumination during image 
apture 
an a
t as a dire
tional texture �lterand that dire
tional 
hara
teristi
s of su
h a texture are not just a fun
tion of surfa
erelief but are also a�e
ted by the illumination angles. The author presents a simpletexture model based on a linearised version of Lambertian law, applied to a frequen
ydomain representation of the surfa
e texture, whi
h su

essfully predi
ts the dire
tional�ltering e�e
t for 
losely Lambertian materials.2.7.4 Image Based RelightingAnother alternative approa
h of rough texture modelling based on Lambertian re
e
tan
efun
tion was presented by Dong and Chantler in [21℄. The proposed method - Image-Based Relighting (IBR) uses a spe
i�
 linear 
ombination of BTF images to generate newone with di�erent illumination 
onditions. If Lambertian re
e
tan
e law is assumed, thefollowing re
e
tan
e fun
tion is validI(�i;�i)(x; y) = ���p 
os�i sin �i � q sin�i 
os �i + 
os �ipp2 + q2 + 1 (2.25)where I is the intensity of image pixel at position (x; y), � is the in
ident intensity tothe surfa
e, � is the albedo value of the Lambertian re
e
tion, (�i; �i) are elevation andazimuthal illumination angles and (p; q) are the partial derivatives of the surfa
e in x andy dire
tion.A

ording to these assumptions the interpolating formula is a linear sum of threeimages 
aptured in three di�erent illumination dire
tions (�i = 0o; 90o; 180o when �i =60o): I(�i;�i)(x; y) = �
os�i sin �i2 sin 60o � sin�i sin �i2 sin 60o + 
os �i2 
os 60o� � I(0o;60o)(x; y)+sin�i sin �isin 60o � I(90o;60o)(x; y)+� 
os �i2 
os 60o � 
os�i sin �i2 sin 60o � sin�i sin �i2 sin 60o � � I(180o;60o)(x; y) (2.26)Fig. 2.7 shows the three original 
aptured images as well as two interpolated imagesobtained by applying the formula to ea
h pixel. The des
ribed method is useful for gener-ation of new views not in
luded in a spare sampled BTF dataset, while assuming that thematerial more or less ful�ls the Lambertian law. Nevertheless, this interpolation methoddoes not solve BTF modelling or 
ompression problems. To 
ompress one re
e
tan
e �eldthis method requires to store relatively high number of BTF images. Moreover, it does notsolve the BTF enlargement problem so some additional image tiling method is ne
essary.
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a) b)Figure 2.7: Original BTF images with illumination elevation angle �i = 60o and azimuthal angles�i = 0o, �i = 90o, �i = 180o during 
onstant viewing position (a), generated images based onIBR formula with illumination elevation angle �i = 60o and azimuthal angles �i = 45o, �i = 135oduring 
onstant viewing position.



Chapter 3BTF DatabasesRepresentation of real-world materials by means of BTF is relatively new approa
h, how-ever, its importan
e 
onstantly in
reases. Due to a 
omplex measurement pro
edure in-volving a

urate data a
quisition setup and long a
quisition and post-pro
essing time thereare only several BTF databases available 
omprising tens of di�erent materials. Variousattributes of three main publi
ly available BTF databases are subje
t of this 
hapter.
3.1 Columbia-Utre
ht Re
e
tan
e and Texture DatabaseDana et al. [16℄ a
quired one of the �rst real BTF measurements for 61 di�erent naturaland man-made materials - Columbia-Utre
ht Re
e
tan
e and Texture Database - CUReT.This database 
ontains materials as fabri
, leather, plaster, paper, pebbles, velvet, feather,leaf, human skin and several others. On image Fig. 3.1-a is illustrated measurementsetup of CUReT BTF database. During measurement the material sample position isadjusted by robot arm and the 3-CCD 
olour 
amera moves around the material samplein seven di�erent positions (see Fig. 3.1-b) while the light position is �xed. Verti
es onhemisphere in Fig. 3.1-b 
orrespond to possible orientations of material sample surfa
enormals and images are a
quired for the subset of sample orientations whi
h are visible andilluminated. As a result ea
h datasets 
omprises of 205 BTF images for isotropi
 materialsamples and 410 BTF images for anisotropi
 material samples where extra measurementsare obtained by sample rotation by 45o or 90o. For �xed 
amera position there is from1 to 13 di�erent BTF images, i.e., from 2 to 26 for anisotropi
 samples. Size of raw BTFimages is 640 � 480 pixels with 24bits per pixel. However, exploitable size of su
h BTFimages is not more than 500 � 400 pixels and used video 
amera had low dynami
 rangeand, moreover, produ
ed visible dis
ontinuity, interla
e and moire artifa
ts. The majordrawba
k of CUReT BTF data is absen
e of any points of 
orresponden
e so performingof 
orre
t pixel-wise re
ti�
ation a

ording to image 
ontents is impossible. NeverthelessCUReT BTF samples 
an be useful for testing purposes where dense angles quantisationand images registration is not ne
essary and this BTF data are available via proje
t website [96℄. 28
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a) b)

)Figure 3.1: (a) BTF CUReT measurement setup, (b) Camera positions a

ording to materialsample and illumination position, (
) Examples of CUReT BTF images of fabri
.3.2 Yale University BTF DatabaseThe Yale university BTF database have been 
reated by Koudelka et al. [59℄. Thisdatabase 
ontains BTFs of more than ten di�erent rough materials: 
arpet, fur, gravel,li
hen, moss, sponge, velvet and even lego bri
k. BTF images were a
quired by a stati
digital video 
amera (CANON XL-1) while the illumination (LED array) was moving ina robot arm with two degrees of freedom over hemisphere above the surfa
e of texture sam-ple. The texture sample was mounted on pan/tilt head providing two degrees of freedomin viewpoint as well. Overall measurement setup is depi
ted in Fig. 3.2 Ea
h su
h a BTF
ontains 90 possible view positions and 120 possible illumination positions whi
h resultsin 10 000 BTF images per sample. Individual BTF images (Fig. 3.3) 
an be re
ti�edusing marks on sample support. Obtainable resolution of re
ti�ed BTF measurement is192� 192 pixels. The resolution of the BTF measurements is unsatisfa
tory for statisti
almodels training, mainly for materials with slightly non-homogeneous appearan
e 
ontain-ing lower spatial frequen
ies. On the other hand, an advantage of this dataset is highangular resolution in both view and illumination angles. Due to use of video 
amera withrelatively low resolution the measurement time is about 10 hours. The Yale UniversityBTF database is available for resear
h purposes upon request to author [18℄.3.3 Bonn University BTF DatabaseAn extension of the CUReT BTF measurement setup have been 
onstru
ted on Bonnuniversity [98℄ and is illustrated in Fig. 3.4. This measurement devi
e 
onsists of a robotfor material sample setting, a light sour
e, a digital 
amera mounted on a rail leadingaround the robot and a 
omputer for robot arm, rail and 
amera 
ontrol. The lightsour
e with a HMI (Hydrargyrum Media Ar
 Length Iodide) bulb (Bron
olor HMI F575)is equipped with the Fresnel lens to generate parallel light rays and should guaranteehomogeneous illumination of the sample and 
onstant emission over whole measurementperiod. The six-megapixels digital 
amera Kodak DCS Pro 14N is fully remote 
ontrolled.This measurement setup enable to measure every 
ombination of view and illumination
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Figure 3.2: BTF measurement setup of Yale University. Figure 3.3: A
quired BTFimages of Yale University(material: moss).dire
tion over the material sample. This is useful mainly for samples with anisotropi
re
e
tan
e properties. A
quired raw images are of size 4300 � 3000 pixels in 12-bit RGBformat. The measurement time for one material using des
ribed setup is about 14 hoursand most of it takes data transfer from the 
amera to the 
omputer.Sample holder 
ontains features for easy raw image re
ti�
ation (Fig. 3.6-a). The re
-ti�
ation pro
edure 
onsists of two steps. The �rst is dete
tion of sample holder 
orners asinterse
tions of four main outlines (Fig. 3.6-b) in Hough spa
e illustrated in Fig. 3.6-
. Inse
ond step is 
omputed a homomorpi
 proje
tion matrix from four points 
orrespondingto outlines interse
tion of four points 
orresponding to 
orners positions of re
ti�ed im-age. By means of this matrix the raw BTF image is transformed into a re
ti�ed head-onposition (�v = 0o; �v = 00) as it is shown in Fig. 3.6-d. Re
ti�
ation error is less than�ve pixels. The size of material sample is 10 � 10 
m2 and 
orresponding re
ti�ed BTFimages have resolution of 256 � 256 pixels. The Bonn university BTF datasets 
ontains6561 images per texture sample whi
h 
orresponds to all 
ombinations of 81 view and 81illumination dire
tions. Ea
h BTF dataset takes up about 1.2GB. A subset of these BTFdatasets are publi
ly available via proje
t web page [17℄.In the framework of EU proje
t IST-2001-34744 RealRe
e
t we were provided witheven more a

urate Bonn University BTF measurements with a maximal resolution of800� 800 pixels. Thanks to improved images post-pro
essing and re
ti�
ation algorithmsthe re
ti�
ation error of these measurements is less than three pixels, while all otherparameters and the measurement setup remains un
hanged.At this point we have to mention that for all experiments with BTF data in this thesisthe extended Bonn university BTF datasets were used of size 800� 800 pixels introdu
ing81 di�erent view and illumination dire
tions.To improve 
orresponden
e of the individual BTF images as well as a speed up whole
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Figure 3.4: BTF measurement setup of Bonn University. Figure 3.5: A
quired BTF im-ages of Bonn University (material:
orduroy).
a) b) 
) θ

ρ d)Figure 3.6: BTF image re
ti�
ation: (a) measured image, (b) binary image for Hough transform,(
) Hough transform a

umulator with four main lines 
orresponding to sample holder edges, (d)�nal re
ti�ed image.the BTF measurement pro
edure Bonn University proposes [83℄ a new BTF measurementdevi
e based on array of 151 digital still 
ameras mounted on the hemispheri
al 
hassisabove the material sample. As light sour
es will be used the built-in 
ashes in these 
am-eras. Angular resolution of this planned measurement setup depends only on a number of
ameras. The biggest advantage of this system is that it does not involve any moving parts,so the a
quired images 
an be �nally re
ti�ed at sub-pixel pre
ision. System will enablefast measurement as individual 
ameras 
an take images subsequently and do not needto wait on a previous image data transfer. The time 
onsuming post-pro
essing shouldbe mu
h faster and more a

urate as the individual images are re
ti�ed and 
orre
ted a
-
ording to exa
tly known parameters and positions of the individual 
ameras. The spatialresolution of this setup would be up to 280DPI resulting to re
ti�ed BTF textures of size1024 � 1024 pixels. The measurement time is expe
ted to be less than one hour.



32 Chapter 3. BTF Databases3.4 Comparison of BTF Databases' ParametersThe following table summarises properties of individual BTF databases.BTF databaseparameter CUReT Yale Bonn Bonn ext.Number of materials 61 �17 5 �12Raw BTF images resolution [pixels℄ 640�480 480�360 3032�2008 3032�2008Re
ti�ed BTF images resolution [pix-els℄ 500�400 192�192 256�256 800�800Number of view positions 7 90 81 81Number of illumination positions max. 50 120 81 81Number of BTF images / material 205 10 000 6561 6561Material sample size [
m℄ 10�12 < 102 10�10 10�10Average size of re
ti�ed BTF dataset inPNG format �100MB �700MB �700MB �5GBRe
ti�
ation a

ura
y [pixels℄ { ? �5 �2Camera type [Video / Still℄ V V S SMovement of [Sample / Camera /Light℄ during measurement S,C S,L S,C S,CRaw data publi
ly available yes yes no noRe
ti�ed data publi
ly available no yes yes no



Chapter 4BTF RenderingThe BTF is relatively new approa
h for material re
e
tan
e properties des
ription whi
his only 
urrently possible due to re
ent progress in 
omputer te
hnology. However, eventhe most sophisti
ated graphi
s hardware have limited 
apability of fast raw BTF datarendering therefore employing of BTF modelling methods is inevitable. Additionally thereare neither any standards for BTF rendering and modelling nor BTF rendering supportavailable implemented in widely used 3D rendering software pa
kages. This is 
aused beboth huge dimensionality of BTF data and the prin
ipal dissimilarity of individual BTFmodelling methods so the BTF rendering is usually inevitably tailored to a needs of theseindividual methods. Therefore in the s
ope of this thesis we have implemented a BTFrendering s
heme, for proposed BTF modelling methods, based on the OpenGL libraryfor one point-light sour
e.During implementation several te
hni
al problems o

urred and this se
tion des
ribesthe most important of them as well as their proposed solution: the BTF mapping ona 3D obje
t surfa
e, the BTF interpolation for given view and illumination dire
tions andsurfa
e height simulation te
hniques.4.1 BTF Mapping on a 3D Obje
tA texture mapping lays the texture onto an obje
t in a VR s
ene. During this pro
ess animage is applied to a polygon (or some other surfa
e fa
et) of an obje
t shape surfa
e byassigning texture 
oordinates to the polygon's verti
es. These 
oordinates index a textureimage, and are interpolated a
ross the polygon to determine, at ea
h of the polygon'spixels, a texture image value. The result is that some portion of the texture image ismapped onto the polygon when the polygon is viewed on the s
reen.Additionally to geometri
al mapping in the 
ase of BTF (assuming homogeneous illu-mination for ea
h polygon) we have to 
ompute the two pairs of polar angles (�i; �i) and(�v; �v) for ea
h polygon in texture 
oordinate system a

ording to a
tual illumination and
amera dire
tion as is illustrated in Fig. 4.1. These angles are ne
essary for identi�
ationwhi
h BTF image from the whole BTF dataset should be synthesised and subsequentlymapped on the polygon. For this the 3D world 
oordinates of polygon verti
es v1;v2;v3are known as well as their 
orresponding 2D texture 
oordinates t1; t2; t3.33
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cfFigure 4.1: The lo
al 
oordinate system of obje
t surfa
e polygon spe
i�ed by angles �i; �i; �v ; �v .As a �rst step the polygon normal ve
tor is 
omputed using equation (4.1).n = (v1 � v2)� (v3 � v2)knk : (4.1)The 
enter of the polygon (triangle) isf
 = v1 + v2 + v33 : (4.2)Ve
tors pointing from the polygon 
enter f
 to the illumination and 
amera positions inworld 
oordinates iw;vw are i = iw � f
kik v = vw � f
kvk : (4.3)The elevation angles �v and �i are then�i = ar

os n iknk kik �v = ar

os n vknk kvk : (4.4)To determine azimuthal angles �i and �v we need to 
ompute the proje
tion of illuminationand view ve
tors i;v to a polygon plane (4.5):ip = n� (n� i) vp = n� (n� v) (4.5)and to obtain ve
tor x giving x-axis of a lo
al texture 
oordinate system. Ve
tor x isproje
tion of a 2D ve
tor (1; 0) to 3D spa
e. Our task is to 
ompute the 3� 3 proje
tionmatrixM having set of three 2D texture 
oordinates (tu1; tv1); (tu2; tv2); (tu3; tv3) and 
or-responding 3D verti
es 
oordinates (vx1; vy1; vz1); (vx2; vy2; vz2); (vx3; vy3; vz3) for a givenpolygon a

ording toM264 tutv1 375 = 264 a1 a2 b1a3 a4 b2a5 a6 b3 375264 tutv1 375 = 264 vxvyvz 375 : (4.6)Parameters of the matrix M 
an be determined as the Gauss elimination [94℄ of matrixequation:AMT = B , i.e., 264 tu1 tv1 1tu2 tv2 1tu3 tv3 1 375264 a1 a3 a5a2 a4 a6b1 b2 b3 375 = 264 vx1 vy1 vz1vx2 vy2 vz2vx3 vy3 vz3 375 (4.7)



4.1: BTF Mapping on a 3D Obje
t 35where M is the wanted solution. In the 
ase that we need only proje
tion of ve
torx2D = (1; 0) { it means only di�eren
e of 3D 
oordinates of points A(0,0), B(1,0) usingthe equation (4.6) with the resultx = 264 xxxyxz 375 = 264 xB � xAyB � yAzB � zA 375 = 264 1 � a1 + b1 � b11 � a3 + b2 � b21 � a5 + b3 � b3 375 = 264 a1a3a5 375 : (4.8)Thus we see that only three parameters have to be 
omputed, whi
h 
an be done analyt-i
ally with the following resultxx = a1 = vx3(tv2�tv1)�vx2(tv3�tv1)�vx1(tv2�tv3)tu3(tv2�tv1)�tu1(tv3�tv1)�tu1(tv2�tv3)xy = a3 = vy3(tv2�tv1)�vy2(tv3�tv1)�vy1(tv2�tv3)tu3(tv2�tv1)�tu1(tv3�tv1)�tu1(tv2�tv3)xz = a5 = vz3(tv2�tv1)�vz2(tv3�tv1)�vz1(tv2�tv3)tu3(tv2�tv1)�tu1(tv3�tv1)�tu1(tv2�tv3) : (4.9)The azimuthal angles are then 
omputed as angles between the ve
tor x and proje
tionsip;vp of illumination and view ve
tors onto the polygon. To obtain information of 
om-puted angles greater then 180o we need to introdu
e auxiliary ve
tor y = jn � xj. Theazimuthal angles �i and �v are 
omputed as follows�i = 8><>: 2� � ar

os ip xkipk kxk if ar

os ip ykipk kyk > �2ar

os ip xkipk kxk else�v = ( 2� � ar

os vp xkvpk kxk if ar

os vp ykvpk kyk > �2ar

os vp xkvpk kxk else : (4.10)All this 
omputation 
an be done in advan
e and stored in a 
ube-map texture wherea ve
tor to illumination/
amera is used as an index in the 4-dimensional images 
overing
ube sides storing the already pre
omputed values. This enables to 
onsiderably speed upthe whole pro
ess of BTF mapping. For more details see [101℄.4.1.1 Additional Texture Mapping TasksConstrained Texture SizeThe texture is normally stored as a sampled array of 
onstrained size, so a large 
ontinuousimage must �rst be re
onstru
ted from the samples/tiles. The repeatable tiles publishedin [103℄ were 
omputed from the original (see Se
tion 8.3.1) BTF image using the fastand adjustable sub-optimal path sear
h algorithm for �nding the minimum error bound-aries between the overlapping images. Another image tiling approa
hes are mentioned in[24, 11, 62℄. Alternative solution of BTF enlargement using probabilisti
 texture modelsapproximating real measurements is proposed in Chapter 7. The presented probabilisti
models enable to produ
e the BTF images of an arbitrary size. The tiling approa
h wasused to obtain textured obje
ts for 
omparison with methods developed in the thesis.AliasingThe texture image must be warped to mat
h any distortion (
aused, perhaps, by perspe
-tive) in the proje
ted obje
t being displayed. Then this warped image is �ltered to remove
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y 
omponents that would lead to aliasing in the �nal step. This problem isusually solved using mip mapping approa
h [119, 101℄ whi
h stores pyramid of images ofthe same texture with subsequently de
reasing resolution. During the texture mappinga 
ertain texture image from the pyramid is taken a

ording to distan
e of observer fromthe obje
t polygon being mapped. This suppress aliasing artifa
ts and save 
omputationtime too be
ause there is not ne
essary to have the same level of detail mapped on both
losed and distant polygons of the obje
t.Due to time and memory 
omplexity of BTF synthesis and mapping we do not dealwith mip mapping in the s
ope of this thesis at all. Thus all the polygons of renderedobje
ts are 
overed with BTF with the same level of details.However, all of the mathemati
al texture models presented in Chapter 7 uses theGaussian-Lapla
ian pyramid whose individual image levels 
an be stored and used as mipmap images.4.2 BTF InterpolationFor purpose of the BTF 
orre
t visualisation on obje
ts in VR s
ene, there is ne
essaryto perform interpolation between individual view and illumination dire
tions with respe
tto original quantisation step of the measured BTF. In the 
ase that only the 
losest BTFimage is 
hosen for texture mapping on a
tual polygon there be
ame visible seams ofdi�erent 
olour / brightness on obje
t surfa
e. These artifa
ts 
an be suppressed usinginterpolation between three or more view / illumination position from BTF databasewhi
h are 
losest to a
tual polygon's view and illumination dire
tions. Next problem is
omputation of optimal weights of these 
losest view/illumination dire
tions. In 
omputergraphi
s are for this aim 
ommonly used bary
entri
 
oordinates whi
h were derived byM�obius in 1827 [13, 26℄. Using this te
hnique the weights of three 
losest triangle verti
es(v1;v2;v3) (view/illumination positions) 
orresponding to point p are 
omputed as ratioof masses of parti
ular sub-triangle and whole triangle. The relative magnitude of the
oordinates (weights) 
orresponds to area ratios in triangle depi
ted in Fig. 4.2.
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1w

v

v

v

p

Figure 4.2: The bary
entri
 
oordinates in triangle.Then bary
entri
 weights are then 
omputed asw1 = 4(p;v2;v3)4(v1;v2;v3) w2 = 4(p;v1;v3)4(v1;v2;v3) w3 = 4(p;v1;v2)4(v1;v2;v3) (4.11)where 4(a; b; 
) means area of triangle a; b; 
. The point p is interpolated from 
losestthree points using equation p = w1v1 +w2v2 + w3v3 (4.12)



4.3: Surfa
e Height Simulation 37while following 
ondition is ful�lledw1 + w2 + w3 = 1 : (4.13)From this is obvious that following s
heme 
an be simply utilised for BTF interpolationif the three 
losest measurements are known. These measurements 
an be obtained asthree 
losest ve
tors to a
tual 
amera/light positions. Now having these three 
losestview/illumination positions the bary
entri
 weights (wi; wv) are 
omputed for the 
losestview and illumination dire
tions. To determine the BTF image 
orresponding to thesedire
tions there is ne
essary to spe
ify both view and illumination dire
tions at a time.By permutation of three 
losest view and illumination positions we obtain nine pairs ofview and illumination position when ea
h of them spe
ify one of BTF measurement. Thetexture �nally mapped on ea
h polygon is then linear 
ombination of these nine BTFimages while the �nal weight fa
tors for ea
h su
h a image are obtained usingwi;v = wiwv : (4.14)Implementation of bary
entri
 
oordinates is quite straightforward when assuming thatea
h triangle in 3D 
an be represented using two ve
tors and the area of this triangle isproportional to ve
tor norm of a 
ross-produ
t of these two ve
tors. So the bary
entri
weights from equation (4.11) are �nally 
omputed asw1 = k(v2 � p)� (v3 � v2)kk(v2 � v1)� (v3 � v2)kw2 = k(v3 � p)� (v1 � v3)kk(v2 � v1)� (v3 � v2)kw3 = k(v1 � p)� (v2 � v1)kk(v2 � v1)� (v3 � v2)k : (4.15)The bary
entri
 
oordinates have the following interesting properties:� If w1; w2 and w3 are all greater than zero, p is stri
tly inside the triangle.� If wi = 0 and the other two 
oordinates are positive, p lies on the edge opposite vi.� If wi = 0 and wj = 0, p lies on vk.� If wi < 0, p lies outside the edge opposite vi.There is a lot of resear
h work, mainly in 
omputer graphi
s, 
on
erning bary
entri

oordinates. The arti
le [80℄ des
ribes generalisation of bary
entri
 
oordinates to anyirregular polygon (not only triangle).The same interpolation s
heme 
an be exploited also for 
luster interpolation withinBTF model introdu
ed in Chapter 7. In this 
ase there are not used original BTF imagesfor interpolation but synthesised subspa
e images instead of them spe
i�ed by means ofa 
luster index �le.4.3 Surfa
e Height SimulationRough material surfa
es 
an be in 
ertain 
onditions eÆ
iently approximated by meansof methods exploiting surfa
e height information. Two main approa
hes of rough surfa
e



38 Chapter 4. BTF Renderingrepresentation based on height information were developed in 
omputer graphi
s. The�rst one is relative 
omputationally 
heap method proposed by Blinn in [7℄ 
alled bumpmapping. The se
ond one, displa
ement mapping is more 
omputationally demandingmethod modelling texture surfa
e by means of dire
t move of surfa
e verti
es a

ording tothe range-map. Both of these methods are supported by 
ontemporary graphi
s hardwareand thus their fast implementations and di�erent modi�
ations are available [122, 118, 56,90, 92℄.4.3.1 Bump MappingBump mapping [7℄ is a normal-perturbation rendering te
hnique for simulating lightinge�e
ts 
aused by patterned irregularities on otherwise lo
ally smooth surfa
es. This te
h-nique adds more realism to syntheti
 images without adding a lot of geometry. Bumpmapping adds per-pixel surfa
e relief shading and in
reasing the apparent 
omplexity ofthe surfa
e, however its real geometry remains un
hanged as is illustrated in Fig. 4.3 [77℄.
Surface normals Range−map

s

Perturbed surface normalsFigure 4.3: Prin
iple of bump mapping.The 
olour of a surfa
e is determined by the angle between the normal ve
tor N ofthat surfa
e and the light ve
tor L. On a 
at surfa
e the normal ve
tor N is the sameeverywhere on that surfa
e, so the 
olour of that surfa
e will be the same everywhere,however, if the normal ve
tor is perturbed at various points on that surfa
e, it would yieldareas that are darker or lighter, thereby 
reating the per
eption that parts of the surfa
eare raised or lowered.The information about normals perturbation 
an be stored in a texture map so 
alledrange-map or bump-map whi
h is an array of values that represent an obje
t's heightvariations. The material range-map 
an be measured and estimated by means of varietymethods and most 
ommon of them are des
ribed in Chapter 5.The normals perturbation 
an be performed by means of the �rst derivative of therange-map values whi
h 
an be eÆ
iently found by the following pro
ess (see 1D examplein Fig. 4.4):1. Render the range-map image as a texture (A).2. Shift the texture 
oordinates at the verti
es towards the light (B).3. Re-render the range-map as a texture, subtra
ting from the �rst image (A-B).In order to perform a

urate texture shift, the light sour
e dire
tion L must be rotatedinto a tangent spa
e. The tangent spa
e has three perpendi
ular axes, T, B and N. T,
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B

A

A−BFigure 4.4: Subtra
tion of bump shiftedtowards light sour
e from original bump pro-du
es visual per
eption of lit bump.
T

T

B

N

N

N

L

L

L

T

B

B
t

sFigure 4.5: The tangent spa
e de�ned on polyg-onal 3D surfa
e.the tangent ve
tor, is parallel to the dire
tion of in
reasing texture 
oordinates s or t ona parametri
 surfa
e (see Fig. 4.5). N, the normal ve
tor, is perpendi
ular to the lo
alsurfa
e. B, the bi-normal, is perpendi
ular to both N and T, and like T, also lies onthe surfa
e. They 
an be thought of as forming a 
oordinate system that is atta
hed tothe surfa
e, keeping the T and B ve
tors pointing along the tangent of the surfa
e, andpointing away. If the surfa
e is 
urved, the tangent spa
e orientation 
hanges at everypoint on the surfa
e.In order to 
reate a tangent spa
e for a surfa
e, it must be mapped parametri
ally. Butsin
e this te
hnique requires applying a 2D texture map to the surfa
e, the obje
t mustalready be parametri
ally mapped in texture 
oordinates s and t. The only requirementfor well working bump mapping is 
onsistent parametri
 mapping on the polygon.A ve
tor pointing to the light sour
e must be rotated into tangent spa
e at ea
h vertexof the polygon. To �nd the tangent spa
e ve
tors at a vertex, use the vertex normal forN, �nd the tangent axis by �nding the ve
tor dire
tion of in
reasing s in the obje
t's
oordinate system. Find B by 
omputing the 
ross-produ
t of N and T. The normalisedvalues of these ve
tors 
an be used to 
reate a rotation matrix:R = 26664 Tx Ty Tz 0Bx By Bz 0Nx Ny Nz 00 0 0 1 37775 (4.16)The matrix (4.16) rotates the T ve
tor, de�ned in obje
t spa
e, into the x axis of tangentspa
e, the B ve
tor into the y axis, and the normal ve
tor N into the z axis. It rotatesa ve
tor from obje
t spa
e into tangent spa
e. For all non-planar surfa
es, this matrixwill di�er at ea
h vertex of the polygon.Now we 
an apply this matrix to the light dire
tion ve
tor L, transforming it intotangent spa
e at ea
h vertex. Then the transformed x and y 
omponents of the lightve
tor are used to shift the texture 
oordinates at the vertex. The overall des
ription ofthree pass bump mapping algorithm is given in Alg. 1.Example of bump mapping for leather02 smooth texture on sphere with additionaldi�use lighting is depi
ted in Fig. 4.6-left.Although this te
hnique approximates the surfa
e eÆ
iently, there are following limi-tations to its a

ura
y [77℄:



40 Chapter 4. BTF RenderingAlgorithm 1: Bump mapping algorithm1. Render the polygon with the range-map textured on it (pass 1 ).2. Find N, T and B at ea
h vertex a

ording to Fig. 4.5.3. Use these ve
tors to 
reate a rotation matrix R (4.16).4. Use the matrix R to rotate the light ve
tor into tangent spa
e (L0 = RL).5. Use the rotated L0x and L0y 
omponents of L0 to shift the s and t texture 
oordinatesat ea
h polygon vertex in dire
tion of the light.6. Re-render the textured polygon with the range-map using the shifted texture 
oor-dinates (pass 2 ). See 1D example in Fig. 4.4.7. Subtra
t the se
ond image (pass 2 ) from the �rst (pass 1 ).8. Render the polygon with original 
olour texture (i.e., smooth texture or BTF syn-thesised and interpolated a

ording to illumination and view position) and add it topreviously \bumped" polygon (pass 3 ).
� Bump Map Sampling - the range-map is not 
ontinuous, but is sampled intothe texture. The resolution of the texture a�e
ts how faithfully the bump map isrepresented. In
reasing the size of the bump map texture 
an improve the samplingof the high frequen
y height 
omponents.� Texture Resolution - the shifting and subtra
tion steps produ
e the dire
tionalderivative. Sin
e this is a forward di�eren
ing te
hnique, the highest frequen
y
omponent of the bump map in
reases as the shift is made smaller. As the shift ismade smaller, more demands are made on the texture 
oordinate pre
ision. The shift
an be
ome smaller than the texture �ltering implementation 
an handle, leading tonoise and aliasing e�e
ts.� Surfa
e Curvature - the tangent 
oordinate axes are di�erent at ea
h point ona 
urved surfa
e. This te
hnique approximates this by �nding the tangent spa
etransformation at ea
h vertex. Texture mapping interpolates the di�erent shift val-ues from ea
h vertex a
ross the polygon. For polygons with very di�erent vertexnormals, this approximation 
an break down. A solution would be to subdivide thepolygons until their vertex normals are parallel to within some error limit.� Maximum Bump Map Slope - the range-map normals used in this te
hnique aregood approximations if the bump map slope is small. If there are steep tangentsin the range-map, the assumption that the perturbed normal is length one be
omesina

urate, and the highlights appear too bright. This 
an be 
orre
ted by 
reatinga fourth pass, using a modulating texture derived from the original bump-map.



4.3: Surfa
e Height Simulation 41Many of these problems are avoided when using displa
ement mapping approa
h instead.Due to its simpli
ity we have used variant of bump mapping 
alled parallax mapping[118℄ to introdu
e regular ma
ro-stru
ture to proposed probabilisti
 BTF model in Chap-ter 7. This approa
h approximates 
orre
t appearan
e of uneven surfa
es by modifyingthe texture 
oordinate for ea
h pixel and thus does not require to draw any additionalpolygons and 
an be implemented dire
tly in graphi
s hardware.

Figure 4.6: Bump Mapping (left) vs. Displa
ement Mapping (right) for leather02 material(smooth texture with di�use lighting).4.3.2 Displa
ement MappingDispla
ement mapping [115℄ is a powerful te
hnique that allows the range-map to ma-nipulate the position of rendered obje
t fa
es. Unlike bump mapping, where the normalsare perturbed to give the per
eption of a bump, this 
reates real surfa
e relief. They 
astshadows, o

lude other obje
ts, and do everything real geometry 
an do. The displa
ementmapping is in 
omparison with bumpmapping signi�
antly more 
omputationally demand-ing sin
e it requires to tessellate original polygon mesh into even �ner one. Displa
ementmapping works for all 3D obje
t types. However, be
ause of need for �ne render-fa
es,not all obje
ts are equally well suited for displa
ement mapping. Fig. 4.6-right showsexample of displa
ement mapping for leather02 material on sphere with additional di�uselighting 
ompared with 
orresponding bump mapping result. Note the di�eren
e mainlynear an obje
t's silhouette, where the bump mapping fails to perform realisti
 o

lusions.The main advantage of this method is no limitation on bump height so it 
an by used forapproximation of variety of real-world materials, e.g., fur as shown in [54℄.To sum up, the displa
ement mapping te
hnique provides better results than the bumpmapping alternative espe
ially at 
ontours of textured obje
ts, where the bump mappedtextures remains 
at while displa
ement mapping preserve material relief 
orre
tly (seeFig. 4.6). On the other hand the displa
ement bump mapping is not so 
omputationallyexpensive sin
e this method doesn't require further tessellation of ea
h polygon of thetextured obje
t.



Chapter 5Range Data A
quisitionFor the sake of rough textures modelling as is often the 
ase of BTF, the original ma-terial stru
ture should be preserved as reliably as possible. One way of material surfa
erepresentation is surfa
e height �eld so 
alled range-map. In this thesis we have foundthe range-map useful for enhan
ing the quality of probabilisti
 BTF model introdu
ed inChapter 7. Sto
hasti
 nature of the proposed models has diÆ
ulties with modelling oftextures 
onsisting of regular patterns. So the regularity is introdu
ed into these modelsby means of surfa
e height information stored in the range-map. Therefore this 
haptersummarises and dis
usses di�erent approa
hes for material surfa
e height a
quisition andtheir suitability for BTF height a
quisition.The range-map is usually stored in a form of monospe
tral image whose intensity inindividual pixels 
orresponds to relative height of observed surfa
e. In our 
ase the lighterthe pixel is, the 
loser the 
orresponding surfa
e is to the 
amera. The range-map enablesus to produ
e 3D representation of rough texture from single texture image using renderingte
hniques whi
h are widely supported by today's graphi
s hardware.There are several options how to obtain the range-map. The easiest but 
ostly isdire
t measurement using a range-s
anner. Mu
h 
heaper but 
omputationally more de-manding alternative is using of analyti
al methods for range-map estimation. There arenumerous methods for range-map estimation and their modi�
ations. The range-map
an be estimated by means of shape from stereo [58℄, shape from shading (SFS) methods[44, 66, 126, 29℄, spe
i�
 
ase of SFS - photometri
 stereo [121, 104℄ or other alternativemethods [69℄. For purposes of this thesis we have implemented and tested the two of themost know and widely used approa
hes:� Shape from shading� Photometri
 stereo{ using lo
al integration of surfa
e normals{ using global integration of surfa
e normals5.1 Range-Map MeasurementRange-s
anners are widely used for obtaining depth information of environment for robotnavigation, shape re
onstru
tion or other image pro
essing tasks and 
an be basi
ally42
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a) b) 
) d)Figure 5.1: Range-map estimation results of 
orduroy material (a). The following �gures il-lustrate: (b) dire
t measurement using FM beat sensor, (
) shape from shading estimate, (d)photometri
 stereo estimate.divided into following two main 
ategories.5.1.1 Stru
tured Light Range SensorsThe �rst 
ategory is based on a stru
tured light s
anner whi
h uses two opti
al paths,one for a CCD sensor and one for the stru
tured light proje
ted on measured obje
t and
omputes depth via triangulation. Light sour
e 
an be laser beam or light pattern. Usingmultiple 
ameras 
an improve measurement a

ura
y and exploit two dimensional lightpattern to speed up measurement. The main drawba
k of this triangulation te
hnique islow a
quisition speed and missing data at parts of the s
ene visible to the 
amera but notvisible to light proje
tor. Moreover, for relatively 
at and smoothly stru
tured obje
tssu
h as rough textures for instan
e, the method is not a

urate enough. An additionaldiÆ
ulties appear also due to spe
ularity of measured material.5.1.2 Time of Flight Range SensorsThe se
ond group of range sensors involves a signal transmitter, a re
eiver and ele
troni
sfor measuring the time of 
ight of the signal during its round trip from the range sensorto the surfa
e of interest. There are three main 
lasses of time of 
ight sensors:� Pulse time delay sensor emits intense pulses of light or ultrasound and the distan
emeasurement is obtained as the amount of time the pulse takes to rea
h the targetand return to the sensor.� AM phase shift sensor measures the phase di�eren
e between the beam emitted byan amplitude-modulated laser and the re
e
ted beam, a quantity proportional tothe time of the 
ight. This sensor su�ers from inherent ambiguities sin
e depthdi�eren
es 
orresponding to phase shifts that are multiples of 2� 
annot be resolved.� FM beat sensor measures the frequen
y shift (or beat frequen
y) between a frequen
y-modulated laser beam and its re
e
tion whi
h is proportional to the round trip 
ighttime. The range-map of 
orduroy rough material (Fig. 5.1-a) obtained using FMbeat sensor is shown in Fig. 5.1-b.All these sensors have problems when imaging spe
ular surfa
es and 
an be relativelyslow due to long integration time at the re
eiver. Compared to stru
tured light basedsystems, time of 
ight sensors o�er greater operating range during variable light 
onditions.



44 Chapter 5. Range Data A
quisition5.2 Range-Map EstimationDire
t range-map measurement devi
e 
ould not be always available or su
h a measurement
ould not be in prin
iple possible. In su
h a situation the analyti
al range-map estimationmethods des
ribed in this se
tion 
an be 
onvenient.5.2.1 Shape from StereoSurfa
e height 
an be restored from at least two images taken from di�erent positions. Theproblem redu
es mainly to dense 
orresponden
e mat
hing. Approa
hes to the 
orrespon-den
e problem 
an be broadly 
lassi�ed into two 
ategories: the intensity-based mat
hingand the feature-based mat
hing te
hniques. In the �rst 
ategory, the mat
hing pro
ess isapplied dire
tly to the intensity pro�les of the two images, while in the se
ond, featuresare �rst extra
ted from the images and the mat
hing pro
ess is applied to the features.Intensity-Based Stereo Mat
hingThe intensity-based stereo mat
hing employs epipolar geometry whi
h redu
es the sear
hfor 
orresponden
es from two-dimensions (the entire image) to one-dimension. This ispossible if we assume that an epipolar lines 
oin
ide with the horizontal s
anlines if the
ameras are parallel so the 
orresponding points in both images must therefore lie on thesame horizontal s
anline. From the 
orresponding row of the image pair reveals that thetwo intensity pro�les di�er only by a horizontal shift and a lo
al foreshortening. Theadvantage of this intensity pro�le mat
hing is that as an output is a dense disparity mapand, 
onsequently a dense range-map. Unfortunately, like all 
onstrained optimisationproblems, whether the system would 
onverge to the global minimum is still an openproblem. An alternative approa
h in intensity-based stereo mat
hing, 
ommonly known asthe window-based method, only mat
hes those regions in the images that are \interesting"[58℄.Feature-Based Stereo Mat
hingIn the feature-based approa
h, the image pair is �rst prepro
essed by an operator so as toextra
t the features that are stable under the 
hange of viewpoint, the mat
hing pro
essis then applied to the attributes asso
iated with the dete
ted features. Edge elements,
orners, line segments, and 
urve segments are features that are robust against the 
hangeof perspe
tive, and they have been widely used in stereo vision. Edge elements and 
ornersare easy to dete
t, but may su�er from o

lusion; line and 
urve segments require extra
omputation time, but are more robust against o

lusion.Stereo mat
hing pro
ess is a very diÆ
ult sear
h pro
edure. In order to minimum falsemat
hes, some mat
hing 
onstraints must be imposed. Several mat
hing 
onstrains wereused in the past as for instan
e similarity, uniqueness, 
ontinuity, ordering and epipolar
onstrain [73℄.When the mat
hing is �nished the essential matrix of both 
ameras 
an be 
omputedbased on 
orresponden
e between two images. From this essential matrix it 
an be derivedthe translation and rotation between the both 
amera positions. Finally a

ording theseinformation about mutual 
amera position and orientation the range-map re
onstru
tion
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an be performed up to a s
ale fa
tor. Note that the 
amera is assumed to be 
alibratedso that its intrinsi
 parameters are known. For more see [104℄.5.2.2 Shape from ShadingShape-from-shading (SFS) is problem of determining the shape of a smooth surfa
e givena single image of that surfa
e illuminated from know dire
tion. The pioneer work in this�eld has been done by Horn [44℄. The SFS task 
an be regarded as 
al
ulating the setof partial derivatives (~zx; ~zy) 
orresponding to surfa
e z(x; y) assuming as a input singleintensity image illuminated under light dire
tion �. The problem redu
es to solving theimage irradian
e equation E(x; y) = �R(zx; zy; !i) (5.1)where E is the intensity value of the pixel at position x; y, � is albedo of the obje
t surfa
eand R is Lambertian re
e
tan
e map (5.2) that maps surfa
e gradients zx = �z(x;y)�x andzy = �z(x;y)�y to an intensity value as followsR(zx; zy; �) = uxzx + uyzy + uzqu2x + u2y + u2zq1 + z2x + z2y ; (5.2)where !i = (ux; uy; uz) is ve
tor to illumination sour
e in sample 
oordinate system.The values (zx; zy;�1) represents normal ve
tor of surfa
e in observed obje
t lo
ation.Unfortunately the equation (5.1) is under
onstrained. To over
ome this under
onstrainednature of Lambertian SFS several 
onstraints were proposed (see SFS survey in [126℄).One of them has been introdu
ed by Frankot and Chellappa in [29℄. This integrability
onstrain transforms estimated slopes (ẑx; ẑy) to nearest integrable slopes (~zx; ~zy) wherefollowing integrability equation is valid��y ~zx = ��x ~zy : (5.3)A possibly non-integrable estimate of surfa
e slopes is represented by a �nite set of basisfun
tions and integrability is enfor
ed by 
omputing the orthogonal proje
tion onto a ve
-tor subspa
e spanning the set of integrable slopes. This proje
tion maps 
losed 
onvex setsinto 
onvex sets in ea
h iteration step of SFS algorithm (Alg. 2) while following distan
emeasure is minimiseddf(~zx; ẑx); (~zy; ẑy)g = Z Z j~zx � ẑxj2 + j~zy � ẑyj2dxdy : (5.4)At the beginning of ea
h pass of the algorithm the previous slopes are smoothed byapproximation of Lapla
ian with the 
enter pixel left out a

ording to^̂zx(x; y) = 15[~zx(x; y + 1) + ~zx(x; y � 1) + ~zx(x+ 1; y) + ~zx(x� 1; y)℄ + (5.5)+ 120 [~zx(x� 1; y � 1) + ~zx(x� 1; y + 1) + ~zx(x+ 1; y + 1) + ~zx(x+ 1; y � 1)℄and similarly for ^̂zy.



46 Chapter 5. Range Data A
quisitionThe following step represents �nite di�eren
e approximation whi
h generates a newset of raw slope estimates during ea
h iteration" ẑx(x; y)ẑy(x; y) # = " ^̂zx(x; y)^̂zy(x; y) #+ 1�(I(x; y) �R(^̂zx; ^̂zy)) " Rx(^̂zx; ^̂zy)Ry(^̂zx; ^̂zy) # ; (5.6)where Rx = �R�^̂zx and Ry = �R�^̂zy are partial derivations of re
e
tan
e fun
tion in (5.2) andI(x; y) is intensity in image at lo
ation (x; y) and � is regularisation parameter whi
hin
uen
es 
onvergen
e speed of the whole iterative algorithm.Surfa
e slopes are represented using integrable basis fun
tions in Fourier domainĈx(u; v) = 12� Z +1�1 Z +1�1 ẑx(x; y)) � ej(ux+vy)dxdy ; (5.7)Ĉy(u; v) = 12� Z +1�1 Z +1�1 ẑy(x; y)) � ej(ux+vy)dxdy :And �nally in the last step the raw slopes estimates are proje
ted onto the nearest inte-grable solution using surfa
e slopes representation in Fourier domain as follows:~C(u; v) = �j2� uN Ĉx(u; v) + vN Ĉy(u; v)uN 2 + vN 2 ; (5.8)~Cx(u; v) = uN ~C(u; v) ;~Cy(u; v) = vN ~C(u; v) ;where Ĉ is Fourier spe
trum 
orresponding to surfa
e height ẑ,u is frequen
y 
orresponding to width of the image 1 : : : N ,v is frequen
y 
orresponding to height of the image 1 : : : N .The raw slope estimates whi
h ful�l integrability 
ondition are obtained as the inverseFourier transformation of slopes represented in Fourier domain:~zx(x; y) = 12� Z +1�1 Z +1�1 ~Cx(u; v) � e�j(ux+vx)dudv ; (5.9)~zy(x; y) = 12� Z +1�1 Z +1�1 ~Cy(u; v) � e�j(ux+vx)dudv :The surfa
e height is obtained as a byprodu
t of integrating surfa
e slope estimatesz(x; y) = 12� Z +1�1 Z +1�1 C(u; v) � e�j(ux+vy)dudv : (5.10)Result of this algorithm applied on texture with 
omplex surfa
e illuminated by lightsour
e with tilt � = 0o and slant � = 60o is illustrated in Fig. 5.2-b and Fig. 5.1-
.Another example of shape from shading algorithm performan
e is given in Fig. 5.3. Therange-maps of three leather materials (right resp.) were estimated from single textureimages (left resp.) for roughly estimated position of illumination sour
e.



5.2: Range-Map Estimation 47Algorithm 2: Shape from Shading Algorithm (Frankot,Chellappa) [29℄1. FOR all (x; y) 2 IN�N set slopes ~zx; ~zy to zero2. WHILE (df(~zx; ẑx); (~zy ; ẑy)g < threshold)(a) FOR all (x; y) 2 IN�N 
ompute smoothing by (5.5)(b) FOR all (x; y) 2 IN�N 
ompute new slopes (5.6)(
) FOR all (x; y) 2 IN�N represent slopes using integrable basis fun
tions inFourier domain, i.e. zx(x; y)! Cx(u; v) and zy(x; y)! Cy(u; v) (5.7)(d) FOR all (x; y) 2 IN�N proje
t the raw slope estimates onto the nearest inte-grable solution using (5.8) in Fourier 
oeÆ
ients spa
e(e) FOR all (x; y) 2 IN�N 
onvert slopes from Fourier domain into raw form, i.e.Cx(u; v)! zx(x; y) and Cy(u; v)! zy(x; y) (5.9)3. FOR all (x; y) 2 IN�N 
ompute height data z(x; y) from last Fourier 
oeÆ
ientsC(u; v) (5.10) by inverse DFT .4. FOR all (x; y) 2 IN�N normalise height data

a) b)Figure 5.2: Result of SFS algorithm [29℄: (a) original image (b) its range-map (� = 500, 28iterations)5.2.3 Photometri
 StereoThe idea of photometri
 stereo is based on a 
hange illumination position between su

es-sive views, while holding the viewing dire
tion 
onstant. Woodham in [121℄ demonstratedthat these intensity measurements from multiple images provide suÆ
ient 
onstraint todetermine surfa
e orientation lo
ally. Thus assumptions of photometri
 stereo are knownre
e
tan
e fun
tion of observed material and existen
e of three or more images obtainedfrom the same viewing position during known illumination position 
hange. This methodenables to 
ompute normal ve
tor in ea
h image pixel [104℄. The desired height data
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quisition
Figure 5.3: Range maps (left resp.) estimated from one image (right resp.) using shape fromshading te
hnique for white leather, 
ushion leather and snake leather from DaimlerChrysler andUTIA texture database.(range-map) are obtained from the estimated normal-map using integration te
hniques.All surfa
es are assumed Lambertian and light sour
es are assumed as point lightsour
es in in�nity. I(x; y) = �R(zx; zy; !i) (5.11)where I(x; y) is image intensity at lo
ation (x; y), � is albedo - the surfa
e re
e
tivity
oeÆ
ient, R(zx; zy) is re
e
tan
e map whi
h determine re
e
ted intensity dependentlyon surfa
e slopes (zx; zy) (for example see (5.2)) and !i is illumination position.All dire
tions to light sour
es are ordered into a matrix L and 
orresponding intensityof the same pixel for di�erent illumination dire
tions are ordered to in matrix form I(x; y)as follows L = 264 L1...Ln 375 ; I(x; y) = 264 I1(x; y)...In(x; y) 375 : (5.12)Then surfa
e slopes n = [zx; zy; 1℄ for ea
h pixel are 
omputed byn(x; y) = L�1I(x; y)jjL�1I(x; y)jj (5.13)Equation (5.13) holds if only three images are used (n = 3), otherwise it is ne
essary touse pseudo-inversion L+ of matrix L where L+ = (LTL)�1LT instead of L�1. The optimalpla
ement of the illumination for three-image photometri
 stereo when used for 
apturing3D surfa
e texture is derived and veri�ed experimentally in [107℄. The gradient images
an be obtained even from images where the illumination positions are unknown. Thisproblem is 
alled un
alibrated photometri
 stereo and is dis
ussed in papers [23, 106℄.As was already mentioned photometri
 stereo 
omputes normal n for every pixel inimage latti
e. Based on these normals, the height data are obtained using either lo
al inte-gration te
hniques introdu
ed, e.g., in [57℄ or global integration te
hniques as for exampleone-pass of shape from shading algorithm, e.g., [126, 29℄.Lo
al integration te
hniquesLo
al te
hniques perform lo
al 
al
ulation of height in
rements by 
urve integral. Thesemethods di�er in spe
ifying an integration path, i.e., s
an lines and a lo
al neighbourhoodfor lo
al approximation of height in
rements. Basi
 idea is multi-pass surfa
e integration inde�ned neighbourhood starting from di�erent parts of gradient image 
ontaining pixel-wisenormals orientation. The resulted range-map is normalised average image of individualpasses. These te
hniques are easy to implement and very fast, however, the lo
ality of
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al
ulations 
auses high data dependen
y and the propagation of height in
rementspropagate the errors as well. These te
hniques doesn't have impose any restri
tions onsurfa
e integrability.One of su
h methods is des
ribed in [57, 97℄. The method require four s
ans through thegradient image a

ording to Fig. 5.4 During the s
an the height information is 
omputed

e

y

x

a b

c d

s

e s

s

s

e

e

Figure 5.4: Dire
tions of s
anning in four di�erent s
ans through array of normals and used
ontextual neighbourhood.for ea
h pixel by following pro
ess. Let n = [zx; zy;�1℄ be the normal ve
tor at position(x; y) (see 
ontextual neighbourhood in Fig. 5.4). This ve
tor is normalised and reordereda

ording to n0 = [zx; zy;�1℄qz2x + z2y + 1 ; �n0 = [�n0x; �n0y;�q1� �n02x � �n02y ℄ (5.14)then the normals are averaged within 
ontextual neighbourhood�nx0 = n0a;x + n0b;x + n0
;x + n0d;x4 ; �ny 0 = n0a;y + n0b;y + n0
;y + n0d;y4 : (5.15)Applying of following formula for ea
h slope position give as range-map from one s
an.z(d) = z(b) + z(
)2 + � �n0x�n0z + �n0y�n0z2 (5.16)To obtain �nal range-map it is ne
essary to perform all four s
ans as it is depi
ted in Fig.5.4 and average their values for ea
h slope position.Result of photometri
 stereo with lo
al integration of slopes applied on texture witha rough surfa
e illuminated by light sour
e with tilt � = 0o and slant � = 60o is illustratedin Fig. 5.5-b. In the image we 
an see the slanted artifa
ts 
aused by the in
rementalerror during 
ontextual neighbourhood movement along image grid from all four s
ans.The solution avoiding these possible artifa
ts is using global surfa
e integration te
hniques.
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a) b) 
)Figure 5.5: Result of photometri
 stereo normals integration : (a) the original image, the normalsintegration (b) using lo
al te
hniques, (
) using shape from shading integration.Global integration te
hniquesGlobal integration te
hniques treat surfa
e integration as optimisation problem where thegoal is to minimise 
ertain fun
tion. The global te
hniques are more robust against noisein 
omparison to lo
al integration te
hniques be
ause the surfa
e gradient data have globalimpa
t on solution pro
ess. One example of these te
hniques is one iteration of shape fromshading algorithm Alg. 2 presented in [29℄. Results of this integration approa
h is depi
tedin Fig. 5.5-b and Fig. 5.1-d. Fig. 5.6 shows examples of estimated normal and rangemaps for six di�erent materials from University of Bonn BTF database and one materialfrom UTIA rough textures database. Normal maps (se
ond row) were obtained by meansof photometri
 stereo using three di�erent BTF images with �xed viewing position and
orresponding range-maps (third row) were re
onstru
ted using mentioned shape fromshading global integration te
hnique.

Figure 5.6: Normal and range maps (se
ond and se
ond row) estimated using photometri
 stereoand global integration te
hnique for six materials from University Bonn BTF database (fabri
01,fabri
02, foil01, foil02, leather02 and knitted wool) together with 
ushion fabri
 from UTIA roughtexture database.



5.3: Range-Map Te
hniques Overview 515.3 Range-Map Te
hniques OverviewThe following table des
ribes main advantages and disadvantages of individual range-mapmeasurement and estimation methods.method � 	Stru
tured Light Sensors easy re
onstru
tion of 
omplexshapes slow, missing data in some areas,problem with spe
ularity, a

u-rate 
alibration requiredTime of Flight Sensors a

urate, wide operation range relatively slow, 
ostly devi
e,problem with spe
ularityShape from Stereo wide operation range slow, for deep s
enes only, onlyapproximate resultsShape from Shading only one image with known illu-mination position ne
essary relatively slow iterative method,only approximate resultsPhotometri
 Stereo fast, a

urate three registered images required(with known lights position), ad-ditional normals integration re-quired5.4 Range-Map SynthesisThe range-map is usually obtained as some kind of material image pro
essing when both:size of the observed material and an a
quisition devi
e resolution are limited. However,this 
onstrained size of a range-map is in
onvenient for surfa
e approximation of largeobje
ts in VR. Thus the estimated range-map 
an be enlarged to required size by meansof image tiling as shown, e.g., in Se
tion 8.3.1. Another possibility is employing of a prob-abilisti
 smooth texture synthesis model introdu
ed in Chapter 7. Apart from image tilingmethods this option is most suitable for range-map modelling of irregular materials, e.g.,plaster, leather, et
. Another range-map synthesis method with real-time performan
e isdes
ribed in [51℄. Although the method enable fast range-maps synthesis on arbitrary levelof details a

ording to given normal density fun
tion the possible range-map representa-tions obtained using this model are limited to bumpy surfa
es without any low frequen
ydetails.



Chapter 6Segmentation of BTF Data6.1 BTF segmentationBTF datasets 
ontain thousands of images taken for varying illumination and view dire
-tions. This overall number of images 
orresponds to angular resolution of BTF measure-ment setup. In the 
ase of used Bonn university database with 81 di�erent view and 81di�erent illumination position we obtain 6561 BTF images.Due to a limited 
omputational 
apability of 
ontemporary hardware, the both analysisand real-time synthesis of all BTF images by means of probabilisti
 MRF-based BTFmodels presented in Chapter 7 would be to 
ostly and also super
uous so a data redu
tionmethod is inevitable.This redu
tion 
an be performed due to the fa
t that an individual BTF measurementshave similar 
olour and brightness properties with nearby illumination and viewing angles.Image similarity depends mainly on individual material re
e
tive properties and it is quiteprobable mainly for 
lose spatial positions of light and 
amera. These fa
ts lead us to ideaof BTF segmentation into a �nite set of BTF 
lusters.During segmentation the BTF data spa
e, spanning all view and illumination dire
-tions, is divided into set of 
lusters. Ea
h su
h a 
luster is represented by the BTF image
losest to 
luster 
enter a

ording to similarity fun
tion. Su
h an ideal similarity fun
-tion should favour the overall brightness and 
olour hue similarity regardless of texture orshadow information presented in 
ompared BTF data.6.1.1 Data RepresentationOne of suitable data arrangements for BTF segmentation isBTFTEX 
ontaining individualimages taken for di�erent illumination and view positions (see Se
tion 2.3.2). Thus theresulting data spa
e 
ontains 81� 81 data features. An appropriate form of these features
onsiderably in
uen
e performan
e and speed of segmentation algorithm. Natural solutionwould be using dire
tly pixel values of BTF image ordered into a feature ve
tor. However,this solution have several short
omings. The �rst of them is length of these feature ve
tors.Even for relatively small data window 
ontaining the largest stru
ture elements involved insimple materials 
annot be smaller than 20� 20. This window in three spe
tral 
hannels,results into feature ve
tor of size 3� 20� 20 = 1200. Su
h long image features 
ause verytime demanding segmentations. Moreover, the pixel-wise registration of individual BTFimages is far from being perfe
t (a

ura
y max� 3 pixels) so the Eu
lidean distan
e of su
h52
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an lead to relatively high distan
e even in 
ases when both images are the samebut shifted for a few pixels. The se
ond problem is 
aused by a nature of BTF in
ludingimages with masked and shadowed areas. The pixels in two BTF images when one wastaken from head-on position and the other for high grazing angle does not ne
essarily
orrespond to the same lo
ation on the measured material sample due to masking e�e
t
aused by rough surfa
e stru
ture (see Fig. 2.6). Additionally, when the view angles are�xed the 
hanging illumination produ
es shadows o

urring in di�erent portions of theBTF image so again the simple Eu
lidean distan
e between two su
h data features fails.6.1.2 Histogram similarityThe simple image statisti
s present in image histogram is handful for the purpose ofa

urate BTF segmentation. As a similarity measure 
an be used di�eren
e between
orresponding histogram bins. However, the di�eren
e of two histograms do not payattention on mutual positions of histogram bins in both images so using the 
umulativehistograms �m instead is 
onvenient.For a 
olour BTF images a 
orresponding histograms in individual 
olour 
hannelsare used. So ea
h BTF image is represented by data features 
ontaining subsequentlythree 
umulative histograms 
orresponding to individual 
olour 
hannels. The size of su
hfeature ve
tors is 3� 256 = 768. The histogram similarity for one 
olour 
hannel r3 is�dH(k; i; v; r3) = nlXi=1 ( �m
k � �mi;v)2 ; (6.1)where the nl is a number of image quantisation levels (i.e., in our 
ase nl = 256), 
krepresents BTF image 
orresponding to k-th 
luster 
enter and r3 = 1 : : : d is spe
tral
hannel. The �nal distan
e for all three 
olour 
hannels is�dH(k; i; v) = �dH(k; i; v; 1) + �dH(k; i; v; 2) + �dH(k; i; v; 3) : (6.2)6.1.3 Colour-Spa
e TransformationThe treatment of 
olour data a

ording to human visual system is an important aspe
tof used 
umulative histogram similarity measure. To avoid weighting of individual RGBvalues a

ording to subje
tive human eye sensitivity we transformed all BTF images intoper
eptually uniform CIE Lab (D65) 
olour-spa
e [123, 28℄. In CIE Lab the same 
olourshift in terms of Eu
lidean distan
e results into the same di�eren
e of visual per
eption ofresulted 
olours and due to this reason the Eu
lidean distan
e be
ome appropriate metri
for BTF histograms 
lustering.6.1.4 K-Means ClusteringWe have used 
ommon iterative K-means 
lustering algorithm [105, 20℄ for the sake of BTFhistograms 
lustering. This te
hnique exploits �rst order statisti
s of the data and �ndsa predetermined number of 
lusters in data spa
e, by minimising the sum of squared errors
riterion. The exploitation of 
lustering algorithm for aim of BTF data segmentation intoD 
lusters forming set K is introdu
ed in Alg. 3.



54 Chapter 6. Segmentation of BTF DataAlgorithm 3: K-means Algorithm for BTF segmentation1. Give random position to 8k 2 K 
entres of all 
lusters, i.e., [i = 0 : : : 81; j = 0 : : : 81℄2. WHILE ((inner 
lass varian
e J > threshold) OR (number of iterations < max.iterations) OR (no further data shifts between 
lusters))(a) FOR ea
h feature ve
tor (BTF image with view position v and illuminationposition i 
ompute distan
e d(k; i; v) to every 
luster 
entre k and assign thisve
tor to 
luster with the 
losest distan
e (Step 1):k� = argmink2K d(k; i; v) :(b) FOR ea
h 
luster k 2 K re
ompute its 
entre a

ording to all assigned ve
tors.(Step 2)3. Corresponding representative of 
luster k 2 K is a BTF image having the 
losestdistan
e d() to the 
enter of the 
luster k.The segmentation quality 
riterion of 
orre
t data distribution into individual 
lustersis the inner 
lass varian
e de�ned byJ = DXk=1 Xj2Sk jxj � �kj ; (6.3)where Sk is a set of data features belonging to 
lass k, xj ve
tor representing j-th datapoint and �k is a mean ve
tor of data in 
lass k, i.e., �k = 1jSkjPj2Sk xj .The whole iterative pro
ess is stopped when J drops under prede�ned threshold orthere is no any further shift of data features between individual 
lasses whi
h indi
atesoptimal distribution of data features into the 
lusters.Finally for ea
h 
luster is 
hosen one representative whi
h is the 
losest BTF imageto 
luster 
entre in sense of mentioned Eu
lidean metri
 between multispe
tral CIE Labhistograms.6.2 Optimal Number of ClustersThe estimate of optimal number of BTF 
lusters is very important step, when using K-means 
lustering method. We will denote this number a BTF dimensionality D. Thereare several methods based usually on BTF linear analysis using the PCA performed on all6561 BTF images or on their spatial 
orrelations. Here have to be noted that �nding ofprin
ipal 
omponents for whole BTF spa
e is tremendous 
omputational task whi
h evenfor relatively small part of original BTF images takes many hours of 
omputations.An alternative solution avoiding these problems 
onsist in starting with prede�nedminimal number of 
lusters. The number of 
lusters is then iteratively in
reased by split-ting the 
luster of the biggest inner-varian
e J (6.3). The 
luster adding iterations arerepeated till the number of data features (
orresponding BTF images) in ea
h 
luster orthe inner varian
e in all individual 
lusters is smaller than prede�ned threshold.



6.2: Optimal Number of Clusters 556.2.1 PCA on Raw DataOne way to obtain optimal BTF dimensionality D is employing the image statisti
almethods. One of them is PCA of whole BTF data spa
e. All pixels from window of sizeM � N 
ut from individual BTF images are ordered into ve
tors X and 
entered usingmean BTF image ve
tor �X. All these ve
tors form matrixA of size 3MN�ninv as followsA = [X1 � X̂;X2 � X̂; : : : ;Xni�nv � X̂℄ (6.4)In the following step the symmetri
 matrix M = ATA is 
omputed. Note than even thissymmetrisation step is quite long sin
e the size of matrix A, even if taking into a

ountonly BTF image area 20�20, is 1200�6561. So for material with large stru
ture elementsthe matrix 
an be 
onsiderably larger whi
h 
auses very long 
omputational times.When having the symmetri
 matrix M the SVD is performed resulting into the fol-lowing de
omposition M =UDVT (6.5)where U;VT 
ontain orthonormal 
olumns, rows respe
tively and D is non-negative di-agonal matrix 
ontaining sorted eigen-values.The individual eigen-values from diagonal matrix D weight the importan
e of eigen-ve
tors 
ontained in matri
es U and VT for matrix M re
onstru
tion. The number ofpreserved eigen-numbers approximately 
orresponds to the BTF dimensionality D a

ord-ing to the equation PDi=1 �2iPninvi=1 �2i � F : (6.6)where �2i are squared eigen-values sorted downwardly on diagonal of matrix D and F isa fra
tion 
lose to 1 whi
h enables preservation of the most important BTF features. Inour experiments on several BTFs we suppose F = 0:9 as satisfa
tory approximation.From this follows that only D eigen-values and 
orresponding eigen-ve
tors (i.e., eigen-BTF images) have to be stored for BTF dataset re
onstru
tion holding most of the originalBTF information.Plotting of the �rst thirty eigen-values and 
orresponding logarithmi
 eigen-values,illustrated in Fig. 6.1, shows that only about 10 to 30 BTF images 
overs most of theinformation in BTF of tested materials. Fig. 6.1 shows that most of the materials 
an besatisfa
tory approximated by means of linear 
ombination of relatively low number D ofeigen-BTFimages.6.2.2 PCA on Raw Data CorrelationsThe BTF dimensionality D should 
orrespond to number of texture images, whi
h arene
essary for 
orre
t re
onstru
tion of whole BTF dataset. Another possible way to obtainD was presented in paper of Suen and Healey [109℄.The method determines texture dimensionality using 
orrelation fun
tions 
omputedin small area of ea
h BTF image. If we assume that all BTF images are already re
ti�ed(rotated to head-on position, i.e., the texture normal is identi
al to 
amera axis), the
orrelation between spe
tra i and j is 
omputed in following wayRij(m) = 1j�(m)j Xx2�;(x+m)2�[Ii(x)� �Ii℄[Ij(x+m)� �Ij ℄ ; (6.7)



56 Chapter 6. Segmentation of BTF Datawhere x = [r1; r2℄T are planar 
oordinates in BTF image,m = [m;n℄ are 
orrelation shifts,�Ii = 1j�jXx2� Ii(x)and similarly for �Ij, � is the region in the image whi
h the sample o

upies, j�(m)j isnumber of lo
ations where x 2 � and (x+m) 2 �.If three spe
tral bands in BTF images are assumed (RGB), we have namely followingnine 
orrelations per ea
h image pixel RRR; RRG; RRB ; RGR; RGG; RGB ; RBR; RBG; RBB .The values of m;n 
an vary in intervals 0 � m � mmax and �nmax � n � nmax. Thus�nally 9(mmax+1)(2nmax+1) 
orrelations for every image are obtained and their values areordered into a 
olumn ve
tor of this length. Su
h a ve
tor is obtained for every BTF imageof all ninv BTF images. Finally the matrixR (6.7) with size 9(mmax+1)(2nmax+1)�ninvis built.On matrix R is performed SVD whi
h �nds diagonal matrix D with eigen-values and
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Figure 6.1: The thirty highest eigen-values plotting for eight distin
t BTFs. The �rst imagedepi
ts standard eigen-values plotting while the se
ond image shows 
orresponding logarithmi
values.
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es U, V with 
orresponding eigen-ve
tors.R = UDVT (6.8)The eigen-values are sorted a

ording to their size downwardly so �1 � �2 � : : : � �ninv .The BTF dimensionality D is obtained from the formula (6.6)6.3 Clustered BTF RepresentationThe �nal BTF re
onstru
tion is based on 
luster index �le whi
h stores indi
es of theindividual 
luster representative images being used for 
ertain light and 
amera positionsi and v. The example of 
luster index for D = 15 together with 
orresponding 
lusterrepresentative images for material leather01 is shown in Fig. 6.2.
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Figure 6.2: Cluster subspa
e index for the leather01 BTF 
ontaining 15 
lusters (left). The BTFimages withdrawn a

ording to 
lustering results (right). Ea
h image represents the 
losest BTFimage to 
enter of ea
h 
luster with respe
t to 
olours in 
luster index (left).Only these images so-
alled BTF subspa
es (Fig. 6.2-right) are synthesised using MRFmodels presented in Chapter 7 and their parameters are stored along with 
luster indextable (Fig. 6.2-left). A

ording to these data the BTF texture image with mesostru
-ture and mi
rostru
ture 
orresponding to required illumination and view dire
tion aresynthesised.From 
luster index in Fig. 6.2-left and Fig. 6.3 it is apparent that the 
hange ofillumination dire
tion, in 
omparison with the 
hange of view dire
tion, results in higher
luster di�eren
e as was mentioned already in [59℄. See horizontal stripes of di�erent\ba
kground" 
lusters whi
h 
orresponds to 
hange of illumination elevation angle.
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Figure 6.3: Subspa
e index images for four di�erent materials: leather02 (12 
lusters), fabri
02(13 
lusters), wool (15 
lusters) and wood02 (15 
lusters).



Chapter 7Probabilisti
 BTF ModellingThe main requirements on ideal BTF model are preservation of visual quality, 
ompa
tsize of parametri
 set and low 
omputational demands. All the BTF 
ompression andmodelling methods mentioned in Chapter 2 are based on repetition of stored BTF im-ages or on some kind of their pixel-wise parametri
 representation. These approa
hesenable relatively low BTF data 
ompression and require additional, usually sample-based,methods for enlargement of synthesised BTF images.This 
hapter introdu
es several novel BTF models whi
h remedy mentioned disadvan-tages of 
ontemporary BTF models at the pri
e of 
ompromise visual quality for somematerials. Proposed models are generative so they do not need to store any form of origi-nal BTF measurements but only very restri
ted model statisti
s. This approa
h allows torea
h huge 
ompression ratio of the original BTF measurements, while the fast BTF datasynthesis and rendering is guaranteed.The proposed probabilisti
 BTF model is based on two main parts: BTF segmentationinto subspa
es and subspa
e modelling as depi
ted in a blo
k s
heme on Fig. 7.1.
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Figure 7.1: The overall s
heme of proposed probabilisti
 BTF model.The BTF segmentation method is in detail des
ribed in the previous 
hapter while thesubspa
e modelling is subje
t of this 
hapter. The proposed BTF modelling approa
h per-forms well on smooth BTFs with sto
hasti
 stru
ture, e.g., wood, plaster, et
. However,due to its inherent prin
iple it has diÆ
ulties to reprodu
e regular low frequen
y stru
turesoften present for instan
e in BTFs of textiles. To over
ome this drawba
k we introdu
emodi�ed BTF model with additional rough surfa
e stru
ture pro
essing pipeline based onheight data estimation and modelling as it is illustrated in Fig. 7.2. The additional pro-
essing 
onsist in range and normal maps estimation and their subsequent enlargement.The �nal BTF image is obtained as 
ombination of original interpolated subspa
e syn-59



60 Chapter 7. Probabilisti
 BTF Modellingthesis and height data in displa
ement or bump mapping �lter. Su
h an approximationis generally possible only for materials ful�lling Lambertian re
e
tan
e law, however, itgives satisfa
tory results also for materials where this assumption does not hold. This
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Subspaces
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 Sub−space
 index

selection
subspaceFigure 7.2: The overall s
heme of proposed probabilisti
 BTF model with additional roughinformation pro
essing pipeline.approa
h simpli�es the underlying probabilisti
 MRF models stru
ture as well as their
orresponding robust parameters estimation problem and allow shading and s
atteringapproximation by means of GPU.7.1 BTF Segmentation into Subspa
esAll three proposed BTF models (Fig. 7.1 and Fig. 7.2) starts with the BTF image spa
esegmentation into several subspa
es. This is done using the K-means algorithm in the fea-ture spa
e that 
onsists of all view and illumination 
ombinations using 
olour 
umulativehistogram data as data features. Currently the best available BTFs are represented by81 view � 81 illumination dire
tions (for University of Bonn data [98℄). To obtain morea

urate segmentation results the 
umulative histograms are 
omputed in per
eptuallyuniform CIE Lab 
olour-spa
e. Des
ribed segmentation divides BTF spa
e into a set ofsubspa
es and ea
h of them is represented by the nearest BTF image that 
orresponds to
luster 
enter in sense of Eu
lidean distan
e between two 
umulative histograms.An important issue is the optimal number of subspa
es. The eigen-value analysis(PCA) of whole BTF data spa
e leads us to the 
on
lusion that the intrinsi
 BTF spa
edimensionality for most BTF texture samples is between ten and thirty. Hen
e the �rstlargest 10 to 30 eigen-values 
ontain often 90% of the whole information. Several exam-ples of BTF spa
e segmentations for di�erent materials are depi
ted in Fig. 6.3. Werestri
ted the maximal number of subspa
e images in our implementations to twenty withrespe
t to limited GPU memory, 
omputational demands as well as satisfa
tory visualBTF re
onstru
tion. More details on BTF segmentation are given in Chapter 6.7.2 Surfa
e Height Data Estimation and EnlargementThe BTF models exploit range and normal map estimated from the original BTF mea-surements for representation of rough material ma
rostru
ture. This 
an be performed by
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ale Multispe
tral Subspa
e Models 61means of several method as it is dis
ussed in Chapter 5. We have used a simple photo-metri
 stereo whi
h is preferable for BTF data having tens of ideally mutually registeredimages with known light positions. The photometri
 stereo enables to a
quire the normaland albedo �elds from intensity images when the Lambertian opaque surfa
e is assumed(for details see [121℄).This method provide relatively a

urate approximation of material ma
rostru
ture. Weobtained satisfa
tory results for many real-world materials su
h as for instan
e plaster,leather, et
. Range data enlargement to required resolution was a

omplished by meansof image tiling method presented in [103℄ (see Se
tion 8.3.1) or using the MRF modellingapproa
h.7.3 Multis
ale Multispe
tral Subspa
e ModelsIn this se
tion we propose the three di�erent Markov Random Field (MRF) subspa
emodels whi
h are responsible for material modelling on mesostru
ture and mi
rostru
turelevel. Individual 
luster representative subspa
e images obtained using BTF segmentationare subsequently analysed by means of one of these probabilisti
 MRF models. Thesimultaneous modelling of su
h multispe
tral subspa
e images generally requires threedimensional models. If a 3D data spa
e 
an be fa
torised then these data 
an be modelledusing a set of less-dimensional 2D random �eld models, otherwise it is ne
essary to usesome 3D random �eld model. Although, full 3D models allow unrestri
ted spatial-spe
tral
orrelation modelling its main drawba
k is the large number of parameters that have tobe estimated and 
onsequently more time demanding analysis as well as synthesis.7.3.1 3D ModelsThe modelling of general multi-spe
tral textures requires three dimensional model thatallow unrestri
ted spatial-spe
tral 
orrelation representation. Three dimensional models
an be divided into two major 
ategories with respe
t to the type of model's 
ontextualneighbourhood (CN): 
ausal and non-
ausal. The non-
ausal models do not have anyparti
ular restri
tion on the shape of CN, however, their 
omputation is very slow sin
ein most MRF models it requires an iterative Monte Carlo methods. On the other hand,the 
ausal models restri
t the CN shape to be either 
ausal or unilateral, i.e., during
omputation the CN take into a

ount during 
omputation only the known or already
omputed image pixels (see example in Fig. 7.6). This enables use some ex
eptionalmodels for fast analyti
al parameter estimation methods as well as to perform fast modelsynthesis.The basi
 blo
k s
heme of 3D multis
ale multispe
tral model is depi
ted in Fig. 7.3The whole subspa
e images modelling pro
ess 
an be split into two major parts. The�rst one is a simultaneous analysis of all subspa
e images by means of 3D MRF model.The se
ond part is a fast subspa
e images synthesis of arbitrary resolution based on MRFmodel parameters 
omputed in the previous analyti
al step.In 
omparison with the o�ine analysis the synthesis has to be fast enough to enablereal-time rendering of synthesised BTFs in VR systems.
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synthesised image resolutionFigure 7.3: The s
heme of 3D MRF multis
ale multispe
tral subspa
e model.AnalysisIndividual subspa
e images are de
omposed into a multi-resolution grid and ea
h resolutiondata are independently modelled by their dedi
ated MRF model. This enable eÆ
ientmodelling of all visual features of subspa
e images. The multi-resolution grid is 
reatedby means of a Gaussian-Lapla
ian pyramid as is des
ribed in full details in Se
tion 7.3.4.The results of the analyti
al part are several MRF models with di�erent parameters
orresponding to di�erent syntheti
 results. Sin
e there is not any suitable similaritymeasure to 
ompare visual quality of 
olour textures available so far, we 
hoose the optimalmodel stru
ture a

ording to subje
tive visual observation as is dis
ussed in Chapter 9.The analysis of 3D MRF models generally leads to the 
omputationally demandingMonte Carlo iterative te
hniques. However, after several restri
tions, as mentioned above,we 
an avoid this iterative parameter estimation and use the fast analyti
al estimationte
hniques.Generally the MRF model is generative so it does not require to store any samples oforiginal subspa
e textures. The number of the 3D model parameters depends only on thenumber of input data spe
tral 
hannels and on size of model's 
ontextual neighbourhood.Thus the 3D MRF model enable unbeatable 
ompression of subspa
e images. The BTFmodel parameters for one material in form of the 
oating point numbers take up typi
allyabout 100KB in average for 
ontextual neighbourhood in
luding six support pixels andthree pyramid layers.SynthesisThe synthesis of 3D model is pro
ess 
omplementary to the analysis, however, in 
ompar-ison with analyti
al part of proposed analyti
al 3D MRF model, its synthesis is very fastand 
onsist of individual multi-resolution pyramid planes synthesis and their subsequentinterpolation during spatial defa
torisation step (inversion pro
ess to (7.4),(7.6)). Basedon the parameters of 3D MRF model the subspa
e images of arbitrary resolution 
an besynthesised.7.3.2 Approximation using 2D ModelThe fa
torisation alternative of 3D data models is attra
tive be
ause it allows using simpler2D data models with less parameters and 
onsequently also easier implementation. Inour 
ase the spe
tral fa
torisation was employed to de
ompose individual multispe
tralsubspa
e images into monospe
tral fa
tors whi
h are modelled independently by theirdedi
ated 2D models. The blo
k s
heme of general 2D multis
ale multispe
tral model is



7.3: Multis
ale Multispe
tral Subspa
e Models 63
image
subspace
Synthesised

Spectral
 correlationdefactorisation

Spatial

Support set
estimation

factorisation
Spatial

decorrelation
Spectral

image

Multispectral
subspace SYNTHESIS

M
R

F
 p

ar
am

et
er

s

Synthesis
2D MRF model

Analysis
2D MRF model

  ANALYSIS

synthesised image resolutionFigure 7.4: The s
heme of 2D MRF multis
ale multispe
tral subspa
e model.illustrated in Fig. 7.4.The whole subspa
e images modelling pro
ess 
an be again split into two major parts.The �rst one is subsequent analysis of subspa
e images by means of a 2D MRF model.The se
ond part is fast subspa
e images synthesis of arbitrary resolution based on MRFmodel parameters 
omputed in the previous analyti
al step.AnalysisApart from 3D model the 2D model starts with a spe
tral fa
torisation step whi
h resultsinto a set of monospe
tral subspa
e fa
tors. The spe
tral fa
torisation is a

omplishedby the Karhunen-Loeve transformation of input multispe
tral data (see Se
tion 7.3.3 fordetails). Ea
h monospe
tral de
orrelated plane is subsequently spatially fa
torised usinga Gaussian-Lapla
ian multi-resolution pyramid and ea
h monospe
tral subband image isanalysed by means of a 2D MRF model resulting into a texture representation by themodel parameters. So ea
h monospe
tral subspa
e fa
tor have dedi
ated multi-resolutionpyramid and ea
h pyramid resolution layer is analysed by dedi
ated 2D MRF model.As a result of multispe
tral data analysis a matrix of inverse Karhunen-Loeve transfor-mation is stored together with 2D MRF model parameters for individual subspa
e images.The number of the 2D MRF model parameters depends again on the number of inputdata spe
tral 
hannels of individual subspa
e images and on the size of model's 
ontextualneighbourhood. Thus the 2D MRF model enable even higher 
ompression of subspa
eimages than 3D model. The BTF model parameters for one material take up typi
allyabout 60KB in average for 
ontextual neighbourhood with six support pixels and threepyramid layers.SynthesisThe synthesis of monospe
tral subspa
e fa
tors requires re
onstru
tion of individual planesof the multi-resolution pyramid. Ea
h monospe
tral �ne-resolution 
omponent is obtainedfrom the pyramid 
ollapse pro
edure (inversion pro
ess to (7.4),(7.6)). Finally the re-sulting synthesised multispe
tral subspa
e image is obtained from the set of synthesisedmonospe
tral images using the inverse Karhunen-Loeve transformation. Based on the pa-rameters of 2D MRF model and the inverse Karhunen-Loeve transformation matrix theproposed 2D model enable synthesis of subspa
e images in arbitrary resolution. Despitethe essential 
omputation of the inverse Karhunen-Loeve transformation the synthesis ofthe proposed 2D model is very fast. Moreover, the 2D multis
ale multispe
tral model 
anbe appropriate 
andidate for fast hardware a

elerated implementation sin
e the synthesis



64 Chapter 7. Probabilisti
 BTF Modelling
onsists of relatively simple operations. The idea of su
h an implementation is des
ribedin Se
tion 7.5.1.7.3.3 Spe
tral Fa
torisationA real data spa
e 
an be de
orrelated only approximately, hen
e the independent spe
tral
omponent modelling approa
h su�ers from some loss of image information, however, thisloss of spe
tral information is only visible in textures with many substantially di�erent
olours. Spe
tral fa
torisation using the Karhunen-Loeve expansion transforms the orig-inal 
entered data spa
e ~Y de�ned on the re
tangular M � N �nite latti
e I into a newdata spa
e with K-L 
oordinate axes �Y . This new basis 
onsists of the eigenve
tors of these
ond-order statisti
al moments matrix (7.1)� = Ef ~Yr ~Y Tr g (7.1)where the multiindex r has two 
omponents r = fr1; r2g, the �rst 
omponent is row andthe se
ond one 
olumn index, respe
tively. The proje
tion of random ve
tor ~Yr onto theK-L 
oordinate system uses the transformation matrixT = [uT1 ; uT2 ; : : : ; uTd ℄T (7.2)whi
h has rows uj that are eigenve
tors of the matrix �. The number d of eigenve
-tors depends on the number of spe
tral bands in the original multispe
tral data ~Yr (forappli
ations in RGB 
olourspa
e the d = 3). Components of the transformed ve
tor�Yr = T ~Yr (7.3)are mutually un
orrelated and if we assume that they are also Gaussian then they areindependent thus ea
h transformed monospe
tral fa
tor 
an be modelled independently ofthe remaining spe
tral fa
tors.7.3.4 Spatial Fa
torisationThe spatial fa
torisation is te
hnique that enables separate modelling of individual fre-quen
y 
omponents of input image data. So these multi-spe
tral image data are de
om-posed into a multi-resolution grid and ea
h resolution data are independently modelled bydedi
ated MRF model. Ea
h grid resolution represents a single spatial frequen
y band ofthe texture whi
h 
orresponds to one layer of Gaussian-Lapla
ian pyramid.The input multi-spe
tral image is de
omposed into a multi-resolution grid and allresolution data fa
tors represents the Gaussian pyramid �Y (k)r of level k. The Gaussianpyramid �Y (k)r is a sequen
e of k images in whi
h ea
h one is a low-pass downsampledversion of its prede
essor. Gaussian �lter is approximated by the weighting fun
tion (FIRgenerating kernel) w whi
h is 
hosen to 
omply:separability ws = ŵs1ŵs2normalisation Pi ŵi = 1symmetry ŵi = ŵ�iequal 
ontribution ŵ0 = 2ŵ1 (l = 1)
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tral Subspa
e Models 65where l represents size of kernel fun
tion and s = fs1; s2g in row and 
olumn index in thekernel.The equal 
ontribution 
onstraint requires that all nodes at the given level 
ontributethe same total weight to the nodes at the next higher level. The solution of above 
onstrainsfor the redu
tion fa
tor 3 (2l + 1) is ŵ0 = 0:5, ŵ1 = 0:25, for redu
tion fa
tor 5 it isŵ0 = �; ŵ1 = 0:25� 0:5� where usual 
hoi
e is � = 0:4.

Figure 7.5: Multis
ale texture de
omposition into the Gaussian-Lapla
ian pyramid. The Gaus-sian, Lapla
ian and Gaussian-Lapla
ian pyramids respe
tively.The Gaussian pyramid for a redu
tion fa
tor n (for n = 2 the N �N image is down-sampled to N2 � N2 ) is �Y (k)r;i =#n ( �Y (k�1)�;i 
 w) k = 1; 2; : : : ; (7.4)where �Y (0)�;i = �Y�;i ; #n denotes down-sampling with redu
tion fa
tor n and 
 is the
onvolution operation. Convolution 
an be substituted using�Y (k)r = lXi;j=�l ŵiŵj �Y (k�1)2r+(i;j) : (7.5)An analysed texture is de
omposed into multiple resolutions fa
tors using the Lapla
ianpyramid and the intermediary Gaussian pyramid �Y (k)�;i whi
h is a sequen
e of imagesin whi
h ea
h one is a low-pass down-sampled version of its prede
essor. Ea
h levelof Lapla
ian pyramid generates a single spatial frequen
y band of the texture and isindependently modelled by its dedi
ated 2D subspa
e model (see se
tions 7.3.7, 7.3.6and 7.3.5). Su
h a Lapla
ian pyramid _Y (k)r;i 
ontains band-pass 
omponents and providesa good approximation to the Lapla
ian of the Gaussian kernel. It 
an be 
onstru
ted bydi�eren
ing single Gaussian pyramid layers:_Y (k)r;i = �Y (k)r;i � "n ( �Y (k+1)�;i ) k = 0; 1; : : : ; (7.6)where "n is the up-sampling with an expanding fa
tor n. The example of resultedGaussian-Lapla
ian pyramid is illustrated in Fig. 7.5.
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 BTF ModellingThere are several alternative spatial fa
torisation approa
hes to the Gaussian-Lapla
ianpyramid available su
h as a steerable pyramid introdu
ed in [43, 93℄. However, this te
h-nique is mu
h slower than the approa
h proposed above so we did not use it in this thesis.7.3.5 3D Causal Auto-Regressive Subspa
e ModelMulti-spe
tral subspa
e images are de
omposed into a multi-resolution grid and ea
h res-olution data is modelled independently by independent Gaussian noise driven 3D CARMRF model that enable simultaneous modelling of all subspa
e images.Let the digitised 
olour texture Y is indexed on a �nite re
tangular three-dimensionalN �M � d underlying latti
e I, where N �M is the image size and d is the number ofspe
tral bands (i.e., d = 3 for usual 
olour textures). Let us denote a simpli�ed multiindexr to having two 
omponents r = fr1; r2; r3g. The �rst 
omponent is a row index, these
ond one is a 
olumn index and the third is a spe
tral index, respe
tively.Ir spe
i�es shape of the 
ontextual neighbourhood (CN) around the a
tual indexr = fr1; r2; r3g. Causality is ful�lled when all data obtained from CN are known (notmissing pixels). The example of 2D 
ausal and non-
ausal CN is depi
ted in Fig. 7.6.
support pixel

predicted pixel

known pixel

unknown pixel

a) b)

contextual
neighbourhood

movement
directionFigure 7.6: The example of 2D 
ausal (a) and non-
ausal (b) 
ontextual neighbourhood.From this 
ausal 
ontextual neighbourhood the known data are arranged into a ve
tor:Xr = [Y Tr�s : 8fsg 2 I
r ℄T : (7.7)The (CAR) random �eld is a family of random variables with a joint probability densityon the set of all possible realisations Y of the M�N�d latti
e I, subje
t to the following
ondition: p(Y j�;��1) = (2�)� d(MN�1)2 j��1j (MN�1)2 (7.8)exp(�12 tr(��1 ��I�T �T ~VMN�1 ��I�T �)) ;where I is identity matrix, � is parameter matrix, � is 
ovarian
e matrix of Gaussianwhite noise and ~Vr�1 =  ~VY Y (r�1) ~V TXY (r�1)~VXY (r�1) ~VXX(r�1) ! : (7.9)The used notion is: ~VXX(r�1) = r�1Xk=1XkXTk ;
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ale Multispe
tral Subspa
e Models 67~VXY (r�1) = r�1Xk=1XkY Tk ;~VY Y (r�1) = r�1Xk=1YkY Tk : (7.10)Simpli�ed notation r; r� 1; : : : denotes the multispe
tral pro
ess position in I, i.e.,r = fr1; r2; r3g, r � 1 is the lo
ation immediately pre
eding fr1; r2; r3g, et
. A dire
tionof movement on the underlying image sub-latti
e is 
ommon rows s
anning. r � 1 =(r1 �41; r2 �42; r3); r� 2 = (r1 � 241; r2 � 242; r3); : : :. The data from model historyobtained during adaptation are denoted as Y (r�1).For the sake of proper model adaptation the standard exponential forgetting fa
torte
hnique in parameter learning part of the algorithm [35℄ 
an be used. This approa
henable to suppress an in
uen
e of distant data in model history during parameter estima-tion step. The exponential forgetting fa
tor is stated by parameter  and afterwards theequations (7.10) be
ome~VXX(r�1) =  r�2Xk=1XkXTk +Xr�1XTr�1 ;~VXY (r�1) =  r�2Xk=1XkY Tk +Xr�1Y Tr�1 ;~VY Y (r�1) =  r�2Xk=1YkY Tk + Yr�1Y Tr�1 : (7.11)The 3D CAR model 
an be expressed as a stationary 
ausal un
orrelated noise driven3D autoregressive pro
ess: Yr = �Xr + er ; (7.12)where � is the d� d� parameter matrix� = [A1; : : : ; A�℄ ; (7.13)and Ai = 0BB� ai1;1 : : : ai1;d... . . . ...aid;1 : : : aid;d 1CCA 8i 2 f1 : : : �g ; (7.14)� = 
ard(I
r) ; I
r is a 
ausal CN, er is a Gaussian white noise ve
tor with zeromean and a 
onstant but unknown 
ovarian
e matrix �.Optimal Support Set EstimationThe sele
tion of an appropriate CAR model support is important to obtain good modellingresults. Too small 
ontextual neighbourhood 
an not 
apture all details while in
lusionof surplus neighbours add the 
omputational burden and 
an potentially degrade theperforman
e of the model as an additional sour
e of noise. The optimal neighbourhood
an be found using the Bayesian de
ision rule for minimising the average probability of
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 BTF Modellingde
ision error. Let us assume a set of CAR models (7.12) M1;M2; : : : whi
h 
an di�ereither in the 
ontextual neighbourhood Ir1;r2;r4 or / and in their exponential forgettingfa
tor  (7.11). The optimal de
ision rule for minimising the average probability ofde
ision error 
hooses the maximum a posterior probability model, i.e., a model whose
onditional probability given the past data is the highest one. The presented algorithm
an be therefore 
ompleted [41℄ as:~Y ir = ~�i;Tr�1Xi;r + ei;r if p(MijY (r�1)) > p(MjjY (r�1)) 8j 6= i (7.15)where Xi;r are data ve
tors 
orresponding to Iir1;r2;r4 . The Following Bayesian frameworkused in our paper, 
hoose uniform a priori model in the absen
e of 
ontrary information,p(MijY (t�1)) � p(Y (t�1)jMi); and assume 
onditional pixel independen
e.Thus the most probable CAR model given past data, the normal-Wishart parameterprior and the uniform model prior is the model whi
h maximise the statisti
s [41℄ is thenp(Mj jY (r�1)) = k expfDjg ; (7.16)where Dj = �d2 ln jVXX(r�1)j � �(r)� d� + d+ 12 ln j�(r�1)j + d2�2 ln�dXi=1 �ln���(r)� d� + d+ 2� i2 �� ln���(0) � d� + d+ 2� i2 ��where k is a 
ommon 
onstant and �(n) is the Euler fun
tion. All statisti
s related toa model Mj ~VXY (r�1), ~VXX(r�1), are 
omputed from data in Xj;r. The determinantjVXX(r)j as well as �r 
an be evaluated re
ursively see [40℄.Parameter EstimationThere are two parameters �̂r; �̂r to estimate / update in ea
h step, i.e., CN shift on imagelatti
e. The �rst one is parameter matrix �̂r and the se
ond one is noise 
ovarian
e matrix�̂r. Be
ause of the model 
ausality the parameter estimations (7.17),(7.18) of the CARmodel using the Bayesian method and the normal-Wishart parameter prior 
an be foundanalyti
ally [40℄. The estimate of parameter matrix is�̂Tr�1 = V �1XX(r�1)VXY (r�1) ; (7.17)while the estimate of pro
ess-history-data 
ovarian
e matrix is�̂r�1 = �(r�1)�(r) ; (7.18)where �(r) = VY Y (r) � V TXY (r)V �1XX(r)VXY (r) ; (7.19)VXX(r�1) = ~VXX(r�1) + VXX(0) ;VXY (r�1) = ~VXY (r�1) + VXY (0) ;VY Y (r�1) = ~VY Y (r�1) + VY Y (0) (7.20)(7.21)
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tral Subspa
e Models 69and matri
es VXX(0); VXY (0); VY Y (0) are the 
orresponding matri
es from the normal-Wishart parameter prior. The estimates (7.17),(7.18) 
an be also evaluated re
ursively ifne
essary. Where the �(r) represents number of model movements on image plane:�(r) = �(0) + r � 1 ; (7.22)�(0) > 1 : (7.23)Subspa
e SynthesisThe CAR model synthesis is very simple and the Markov random �eld 
an be dire
tlygenerated from the model equation (7.12) with respe
t to CN data ve
tor Xr and param-eter matrix �̂r using a multivariate Gaussian white-noise generator. The �ne-resolutionsyntheti
 texture is obtained from the pyramid 
ollapse pro
edure, whi
h is inverse pro
essto the spatial fa
torisation (7.4),(7.6) des
ribed in Se
tion 7.3.4.7.3.6 2D Causal Auto-Regressive Subspa
e ModelSpe
tral fa
torisation (7.3) of multispe
tral subspa
e images into individual monospe
tralfa
tors allows to use simpler 2D CAR model [37℄. These single orthogonal monospe
tralfa
tors of subspa
e image are further de
omposed into a multi-resolution grid and ea
hresolution data are independently modelled by their dedi
ated independent Gaussian noisedriven autoregressive random �eld model (CAR) as follows.The 
ausal autoregressive random �eld (CAR) is a family of random variables witha joint probability density on the set of all possible realisations Y of the M �N latti
eI, subje
t to following 
ondition:p(Y j 
; ��2) = (2��2)� (MN�1)2 (7.24)exp(�12 tr(��2 ���
T �T ~VMN�1 ���
T �)) ;where � is a unit ve
tor, 
 is parameter ve
tor, � is varian
e of Gaussian white noise andthe following notation is used~Vr�1 =  ~VY Y (r�1) ~V TXY (r�1)~VXY (r�1) ~VXX(r�1) ! ;where ~VXX(r�1); ~VXY (r�1); ~VY Y (r�1) are matri
es de�ned in (7.10). Similarly to 3D CARmodel we 
an employ model adaptation by means of exponential forgetting fa
tor te
h-nique a

ording to equation (7.11).The 2D CAR model 
an be expressed as a stationary 
ausal un
orrelated noise driven2D autoregressive pro
ess: Yr = 
Xr + er ; (7.25)where 
 = [a1; : : : ; a�℄ (7.26)is the parameter ve
tor, I
r is a 
ausal neighbourhood with � = 
ard(I
r) and er is a whiteGaussian noise with zero mean and a 
onstant but unknown varian
e �2 and Xr is a
orresponding ve
tor of Yr�s (see (7.7)).
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 BTF ModellingParameters EstimationParameter estimation of a CAR model using the maximum likelihood, the least square orBayesian methods 
an be found analyti
ally. The Bayesian parameter estimations of the
ausal AR model with the normal-gamma parameter prior whi
h maximise the posteriordensity are: 
̂Tr�1 = V �1XX(r�1)VXY (r�1) (7.27)and �̂2r�1 = �(r�1)�(r) ; (7.28)where �(r�1) = VY Y (r�1) � V TXY (r�1)V �1XX(r�1)VXY (r�1) ; (7.29)VXX(r�1) = ~VXX(r�1) + VXX(0)VXY (r�1) = ~VXY (r�1) + VXY (0)VY Y (r�1) = ~VY Y (r�1) + VY Y (0) ; (7.30)�(r) = �(0) + r � 1 (7.31)and submatri
es in VXX(0); VXY (0); VY Y (0) are from normal-gamma parameter prior. Theestimates (7.27) 
an be also evaluated re
ursively if ne
essary.Subspa
e SynthesisThe CAR model synthesis is very simple and a 
ausal CAR random �eld 
an be dire
tlygenerated from the model equation (7.25). Single CAR models synthesise spatial frequen
ybands of the texture. Ea
h monospe
tral �ne-resolution 
omponent is obtained fromthe pyramid 
ollapse pro
edure (inversion pro
ess to (7.4),(7.6)). Finally the resultingsynthesised 
olour texture is obtained from the set of synthesised monospe
tral imagesusing the inverse K-L transformation (7.32).~Yr;� = T�1 �Yr;� (7.32)If a single visualised s
ene simultaneously 
ontains BTF texture view and angle 
ombi-nations whi
h are modelled by di�erent probabilisti
 models (i.e., models supported bydi�erent BTF subspa
es) for the same material all su
h required subspa
e images are eas-ily synthesised simultaneously. Simultaneous synthesis allows to avoid diÆ
ult subspa
eimages registration problems.7.3.7 2D Gaussian-Markov Random Field Subspa
e ModelSimilarly to 2D CAR model the single orthogonal monospe
tral fa
tors of subspa
e imageare further de
omposed into a multi-resolution grid and ea
h resolution data are inde-pendently modelled by their dedi
ated independent Gaussian Markov random �eld model(GMRF).



7.3: Multis
ale Multispe
tral Subspa
e Models 71The Markov random �eld is a family of random variables with a joint probability den-sity on the set of all possible realisations Y of the latti
e I, subje
t to following 
onditions:p(Y�;i) > 0; 8Y ; (7.33)and the Markov property:p(Yr;i jYs;i : 8s 2 I n frg) = p(Yr;i jYs;i : 8s 2 Ir;i) ; (7.34)where Ir;i is a 
ontextual support set (CN) of the i-th monospe
tral �eld.If the lo
al 
onditional density of the MRF model (7.35) is Gaussian, we obtain the
ontinuous Gaussian Markov random �eld model (GMRF):p(Yr;i jYs;i8s 2 Ir;i) = (2��2i )� 12 expf�12��2i (Yr;i � ~�r;i)2g ; (7.35)where the 
onditional mean value is~�r;i = EfYr;i jYs;i8s 2 Ir;ig = �r;i + Xs2Ir;i as;i(Yr�s;i � �r�s;i) ; (7.36)where �r is a lo
al mean value and �i; as;i 8s 2 Ir;i are unknown parameters. The 2DGMRF model 
an be expressed as a stationary non-
ausal 
orrelated noise driven 2Dautoregressive pro
ess: ~Yr;i = Xs2Ir;i as;i ~Yr�s;i + er;i (7.37)where the noise er;i is random variable with zero mean. The er;i noise variables aremutually 
orrelatedRei = Efer;ier�s;ig = 8<:�2i if s = (0; 0),��2i as;i if s 2 Ir;i,0 otherwise. (7.38)Correlation fun
tions have the symmetry property Efer;ier+s;ig = Efer;i er�s;ig hen
ethe neighbourhood support set and their asso
iated 
oeÆ
ients have to be symmetri
, i.e.s 2 Ir;i ) �s 2 Ir;i and as;i = a�s;i :Optimal Support Set Sele
tionThe sele
tion of an appropriate GMRF model support is important to obtain good resultsin modelling of a given random �eld. If the 
ontextual neighbourhood is too small it 
annot 
apture all details of the random �eld. In
lusion of the unne
essary neighbours on theother hand add the 
omputational burden and 
an potentially degrade the performan
e ofthe model as an additional sour
e of noise. We use hierar
hi
al neighbourhood system Ir;i,e.g., the �rst-order neighbourhood is Ir;i = fr� (0; 1); r + (0; 1); r � (1; 0); r + (1; 0)g, et
.thus the 
ontextual neighbourhood is symmetri
. An optimal neighbourhood is dete
tedusing the 
orrelation method [39℄ favouring neighbours lo
ations 
orresponding to large
orrelations over those with small 
orrelations.
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 BTF ModellingParameter EstimationThe GMRF model does not ful�l 
ausality assumption and mutual dependen
ies of pixelsin non-
ausal symmetri
 
ontextual neighbourhood (7.38) leads to numeri
al non-linearMonte Carlo parameters estimation methods. To avoid this slow iterative estimationpro
ess the individual pixel values in CN are assumed to be 
onditionally independent andthus parameters estimation 
an be performed analyti
ally by means of pseudo-likelihoodor alternatively least-squares estimators. The 
orresponding pseudo-likelihood estimatefor as parameters has the form
i = [as;i : 8s 2 Ir;i℄ = [X8r2IXTr;iXr;i℄�1 X8r2IXTr;iYr;i ; (7.39)where Xr;i = [Yr�s;i : 8s 2 Ir;i℄ (7.40)and �2i = 1MN MNXr=1(Yr;i � 
iXTr;i)2 : (7.41)Subspa
e SynthesisThe non-
ausal GMRF model generally requires a time 
onsuming iterative Monte Carlomethods for data synthesis. However, when the input image, i.e., underlying regularre
tangular random �eld index set, is de�ned on toroidal image latti
e a simpler non-iterative methods 
an be employed [33℄ for a �nite latti
e GMRF synthesis. The moste�e
tive synthesis method uses the dis
rete fast Fourier transformation, whi
h somewhatlimits using of this model for fast GPU appli
ations. A

ording to [50℄ the GMRF 
an begenerated from Y�;i = F�1fŶ�;ig+ Ui ; (7.42)where Ui the mean ve
tor of the whole �led and Ŷ�;i is generated from the Gaussiangenerator N (0; NMSY (r; i)). SY (r; i) is the asso
iated power spe
trum [34℄ and N �M isthe underlying generated latti
e size. Single GMRF models synthesise spatial frequen
ybands of the texture. Ea
h monospe
tral �ne-resolution 
omponent is obtained fromthe pyramid 
ollapse pro
edure (inversion pro
ess to (7.4),(7.6)). Finally the resultingsynthesised multispe
tral texture is obtained from the set of synthesised monospe
tralimages using the inverse K-L transformation (7.32) in the same way as in previous 2DCAR model.7.4 ResultsThe results of the proposed probabilisti
 BTF models are presented in two di�erent ways.The �rst one is an approximation of spare set of the original BTF measurements whi
hare visually 
ompared with their original 
ounterparts. The se
ond one is BTF renderingon 3D obje
t. The obje
t surfa
e exhibits many di�erent 
ombination of view and illu-mination dire
tions and show overall behaviour of BTF model while it is 
ompared withoriginal tiled BTF data.



7.4: Results 737.4.1 Synthesis of Individual BTF ImagesThe most straightforward way of veri�
ation of the proposed BTF model results is a 
om-parison of synthesised images with original BTF measurements. In this initial experimen-tal part we pi
ked up three BTF measurements 
orresponding to �xed viewing position(�v; �v) while the illumination elevation angle �i and the illumination azimuthal angle �isigni�
antly di�ers: �i = 45o; �i = 0o, �i = 60o; �i = 90o and �i = 75o; �i = 180o (seeFig. 2.2).We used three distin
t BTF materials from the University of Bonn BTF database[98℄ 
ontaining regular surfa
e stru
ture: fabri
02, foil02 and knitted wool. Additionaltest was performed on 
ushion fabri
 rough texture measurements from the UTIA texturedatabase. Figs. 7.7, 7.8, 7.9 and 7.10 shows results of our tests for all proposed prob-abilisti
 BTF models: GMRF, 2D CAR and 3D CAR. The upper row in ea
h of theseimages illustrates three distin
t 
utouts from original BTF measurements a

ompanied bymaterial range-map estimated by photometri
 stereo (see Se
tion 5.2.3). The se
ond rowshows 
orresponding underlying synthesised images for individual MRF models. The thirdrow shows 
ombination of these synthesised images with the range-map a

ording to lightposition by means of displa
ement mapping te
hnique (see Se
tion 4.3.2). The depi
tedsynthesised images are en
ouraging, however, our approa
h 
an not handle all e�e
ts o
-
urring when an arbitrary real-world material is lit from di�erent dire
tions. E.g., fabri
materials woven from distin
t material threads being oriented to di�erent dire
tions. This
ombination leads to distin
t re
e
tan
e properties of the material dependently on a givensurfa
e lo
ation. These material attributes 
an not be reprodu
ed by means of displa
e-ment �lter and their 
orre
t modelling require substantially more 
omplex physi
al modelof individual mesostru
ture elements, e.g., woven knits, metal grooves et
. This e�e
t 
anbe observed for fabri
02 material in Fig. 7.7 and 
ushion fabri
 in Fig. 7.10. In the �rstoriginal image (upper left) for the both materials are visible light areas whi
h were not
orre
tly reprodu
ed by proposed probabilisti
 BTF model.A similar problem o

urs for translu
ent materials. One example of su
h a materialwhere the Lambertian assumption does not hold is knitted wool in Fig. 7.9. Mainly thesynthesis of the se
ond image does not 
orrespond to the original and the synthesisedimages looks like a rigid surfa
e. In spite of these short
omings the proposed BTF modelis 
apable of reliable approximation of many real-world materials. The best model perfor-man
e was obtained for leather. For instan
e the synthesised results for foil02 materialin Fig. 7.8 are almost visually indistinguishable from their original patterns. However,sin
e the overall mesostru
ture appearan
e is driven by underlying smooth MRF modelthe sele
tion of suitable synthesis is very important. Generally we 
an say, that the morestru
tured texture is in the synthesised image the less noti
eable is the in
uen
e of rangeinformation on �nal BTF image synthesis. This is apparent in 2D CAR model synthesisin Fig. 7.8 in 
omparison with GMRF model synthesis. Choosing the optimal model, i.e.,the 
orresponding set of parameters, have signi�
ant in
uen
e on MRF model stabilityduring synthesis of subspa
e images. Additionally, in some 
ases the MRF model pro-du
es synthesised images 
ontaining artifa
ts 
aused by simplifying 
ausality assumption(see last 3D CAR model synthesis in Fig. 7.8). This 
an be avoided by visual inspe
tionof all synthesised subspa
e images and using the set of model parameters produ
ing stablesynthesis for all subspa
e images.
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 BTF ModellingOriginal fabri
02 BTF measurements �i = 45o; �i = 0o # �i = 60o; �i = 90o ! �i = 75o; �i = 180o Range-map
GMRF model synthesis, 
ombined with range data (next row)

2D CAR model synthesis, 
ombined with range data (next row)

3D CAR model synthesis, 
ombined with range data (next row)

Figure 7.7: Fabri
02 synthesised BTF images obtained using proposed probabilisti
 BTF models:GMRF, 2D CAR and 3D CAR respe
tively 
ompared with 
orresponding raw BTF measurementsfor three distin
t illumination dire
tions. Range data were introdu
ed into the models by meansof displa
ement mapping.



7.4: Results 75Original foil02 BTF measurements �i = 45o; �i = 0o # �i = 60o; �i = 90o ! �i = 75o; �i = 180o Range-map
GMRF model synthesis, 
ombined with range data (next row)

2D CAR model synthesis, 
ombined with range data (next row)

3D CAR model synthesis, 
ombined with range data (next row)

Figure 7.8: Foil02 synthesised BTF images obtained using proposed probabilisti
 BTF models:GMRF, 2D CAR and 3D CAR respe
tively 
ompared with 
orresponding raw BTF measurementsfor three distin
t illumination dire
tions. Range data were introdu
ed into the models by meansof displa
ement mapping.
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 BTF ModellingOriginal knitted wool BTF measurements �i = 45o; �i = 0o # �i = 60o; �i = 90o ! �i = 75o; �i = 180o Range-map
GMRF model synthesis, 
ombined with range data (next row)

2D CAR model synthesis, 
ombined with range data (next row)

3D CAR model synthesis, 
ombined with range data (next row)

Figure 7.9: Knitted wool synthesised BTF images obtained using proposed probabilisti
 BTFmodels: GMRF, 2D CAR and 3D CAR respe
tively 
ompared with 
orresponding raw BTF mea-surements for three distin
t illumination dire
tions. Range data were introdu
ed into the modelsby means of displa
ement mapping.



7.4: Results 77Original 
ushion fabri
 BTF measurements �i = 60o; �i = 0o # �i = 60o; �i = 90o ! �i = 60o; �i = 180o Range-map
GMRF model synthesis, 
ombined with range data (next row)

Figure 7.10: Cushion fabri
 synthesised BTF images obtained using proposed probabilisti
GMRF BTF model 
ompared with 
orresponding raw BTF measurements for three distin
t il-lumination dire
tions. Range data were introdu
ed into the model by means of displa
ementmapping.7.4.2 Rough Texture Model from Spare Set of TexturesThe proposed rough texture model 
an be obtained from several or in extreme 
ase fromone texture image/images as illustrated in this se
tion. However, su
h a simpli�
ationstri
tly requires Lambertian surfa
e so only a limited group of materials 
an be repre-sented in this way otherwise the results will not 
orrespond to real material re
e
tan
eproperties. However, satisfa
tory rough textures synthesis 
an be obtained also for slightlynon-Lambertian surfa
es as shown in 
ase of three di�erent kinds of leather from UTIAtexture database: white leather, snake leather and 
ushion leather. Fig. 7.11 shows threedi�erent synthesised rough texture images for di�erent light azimuth 
ompared with theoriginal texture for ea
h material, its range-map estimate and the 3D CAR model synthe-sis. Additionally, Fig. 7.12 depi
ts sphere 
overed with two mentioned material (
ushion,snake leather) to provide better demonstration of rough texturing. The rough mate-rial regular stru
ture was introdu
ed into the model by means of displa
ement mappingte
hnique. The ultimate advantage of this model is option of rough texture synthesis ofarbitrary resolution from a spare set of BTF images or in the extreme 
ase from a singletexture image only. The range-map of all three example materials illustrated in Fig. 7.11was estimated from one image only by means of the shape from shading method des
ribedin Se
tion 5.2.2. The range map was further tiled to produ
e range image of arbitrary sizeso the �nal storage demands of su
h a model are approximately 150KB in
luding tiledrange-map and MRF model parameters.
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 BTF Modellingmeasurement range-map 2D CAR smooth synthesis
 �i = 0o # �i = 90o ! �i = 180o

measurement range-map 3D CAR smooth synthesis
 �i = 0o # �i = 90o ! �i = 180o

measurement range-map 3D CAR smooth synthesis
 �i = 0o # �i = 90o ! �i = 180o

Figure 7.11: White, 
ushion and snake leather examples, 
orresponding estimated range-map,smooth 3D CAR synthesis and their BTF syntheti
 results rendered for illumination elevationangle �i = 60o and azimuth angles �i = 0o; 90o and 180o.
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Figure 7.12: Rough texture rendering example by means of bump mapping te
hnique. Sphere
overed by 
ushion leather (left) and snake leather (right).7.4.3 BTF on 3D Obje
tsWe have tested the proposed probabilisti
 BTF models again on materials from BTFtexture database of the University of Bonn [98℄ su
h as 
orduroy, upholstery, 
arpet,knitwear or leather textures and several UTIA BTF measurements. The resolution ofUniversity of Bonn BTF images (800 � 800) is satisfa
tory for parameters estimation ofproposed MRF models. As a 3D obje
t we used Mer
edes Class-C armrest (
ourtesyof DaimlerChrysler). The resolution of synthesised texture mapped on this obje
t wasset to 512 � 512. To reprodu
e all visible stru
ture details, the range and normal mapswere enlarged by means of image tiling method presented in [103℄. This method 
utsrange and normal tiles a

ording to sub-optimal path sear
h algorithm from raw rangeand normal maps estimates. These surfa
e height data are estimated using a photometri
stereo te
hnique in resolution of original BTF measurements. Therefore only several smallimage tiles together with the tile index �le are stored taking about 100KB in averagedependently on stru
ture of the material. The 3D obje
t is lit by single point-light sour
eand textures on ea
h polygon for given illumination and view dire
tion are result of BTFinterpolation between the 
losest BTF measurements available as is des
ribed in Se
tion4.2. Detail des
ription of illumination and view angles 
omputation for arbitrary s
enepolygon is given in Se
tion 4.1. Figures 7.13, 7.14, 7.15 and 7.16 illustrate the results of theproposed probabilisti
 MRF models for the individual BTF materials from the Universityof Bonn 
ompared with the original tiled data mapped on a 
ar armrest 3D model. One
an observe a slightly 
ompromised visual quality of the proposed modelling approa
hfor translu
ent and strongly non-Lambertian materials (e.g., fabri
s in Figures 7.14 and7.16). The regular rough stru
ture in Fig. 7.13 was introdu
ed into the model by meansof the parallax bump-mapping (see Se
tion 4.3.1). The results of proposed probabilisti
BTF modelling approa
h with underlying 2D CAR model mapped on 
ar gearbox are
ompared with original tiled BTF data and with results of proposed one-lobe re
e
tan
emodel (PLM-C) in Figs. 9.2 and 9.3.Note that the shown examples of synthesised BTFs are brighter than their original
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Figure 7.13: Original BTF on 
ar armrest for wood01 and wood02 materials (�rst rows) 
omparedwith results of GMRF, 2D CAR and 3D CAR BTF models respe
tively. Regular surfa
e stru
tureintrodu
ed by means of bump mapping.
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Figure 7.14: Original BTF on 
ar armrest for fabri
01 and fabri
02 materials (�rst rows) 
om-pared with results of GMRF, 2D CAR and 3D CAR BTF models respe
tively. Regular surfa
estru
ture introdu
ed by means of bump mapping.
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Figure 7.15: Original BTF on 
ar armrest for foil01 and foil02 materials (�rst rows) 
omparedwith results of GMRF, 2D CAR and 3D CAR BTF models respe
tively. Regular surfa
e stru
tureintrodu
ed by means of bump mapping.
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Figure 7.16: Original BTF on 
ar armrest for leather02 and wool materials (�rst rows) 
omparedwith results of GMRF, 2D CAR and 3D CAR BTF models respe
tively. Regular surfa
e stru
tureintrodu
ed by means of bump mapping.
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ounterpart (�rst row). This is 
aused by additional ambient lighting whi
h was ne
essaryfor bump mapping to work. The original tiled BTF data in the �rst row are interpolatedon individual polygons without any additional lighting whi
h is, however, important toprodu
e shadows of obje
ts in s
ene et
.The 
omparison of smooth texture, only enhan
ed by bump mapping, with resultsof the proposed 3D MRF BTF model for all eight tested materials is shown in FiguresA.1 and A.2. The �rst 
olumn shows 
ombination of smooth albedo texture 
ombinedwith bump mapping only while the se
ond and third 
olumns represent the proposed BTFsynthesis mapped on a 
ylinder and lit from two distin
t positions.7.5 MRF BTF Model Fast Implementation IssuesThe fast implementation of the synthesis part of the proposed BTF model based on un-derlying MRF model 
an be performed with hardware support of 
ontemporary low-endgraphi
s 
ard. This equipment enable to run user de�ned fragment and vertex programsdire
tly in GPU avoiding bandwidth problems 
aused by huge data transfer between GPUand CPU and enabling signi�
ant in
rease of 
omputational performan
e.The most appropriate 
andidate for su
h an implementation from MRF BTF modelspresented in this 
hapter is the BTF model with underlying 2D CAR texture model. Thisapproa
h enables fa
torisation of subspa
e synthesis into synthesis of individual monospe
-tral planes. The synthesis of remaining models requires either relatively slow FFT (GMRFmodel) or involves simultaneous evaluation of high number of models parameters (3D CARmodel).A fast hardware implementation of 
hosen 2D CAR BTF model requires three mainsteps. The �rst one is synthesis of individual subspa
e images, the se
ond one is interpo-lation of synthesised images with respe
t to a
tual view and illumination dire
tion whilethe third step handles the bump-mapping of a rough material stru
ture.7.5.1 Synthesis of BTF Subspa
e ImagesThe synthesis of subspa
e images requires several operations to be performed for ea
hindividual image plane. The �rst one is subsequent image generation a

ording to the 2DCAR model parameters with respe
t to a white-noise generator. In this way all layersof multiresolution pyramid (at most 3) are generated and �nally blended together. Thenoise generator 
an be represented by means of the 
oat-point texture for �xed image-size appli
ations or it 
an be implemented in GPU as well. Finally, every ve
tor of RGBpixels of ea
h subspa
e image is multiplied by the inverse Karhunen-Loeve 3 � 3 matrixto preserve original 
olour 
orrelations. A

ording to the s
hema in Fig. 7.17, the inputof the fragment CG program for one subspa
e image re
onstru
tion is a set of the CARmodel parametri
 ve
tors of the length 3 and the inverse K-L matrix of size 3 � 3. Theusual number of model parameter ve
tors np varies between 6 and 18 depending on thesize of model's 
ontextual neighbourhood. The output of the program is the syntheti

olour BTF image.All these 
omputations 
an be eÆ
iently performed using CG fragment programs andrendering-to-texture te
hnique taking advan
e of 
ontemporary graphi
s hardware. TheCPU synthesis of all subspa
e images takes at most several se
onds in average on Athlon1.9GHz as shown in Tab. 7.1. Obviously any hardware implementation 
an 
onsiderably
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e images (512�512) using proposed MRF BTFmodels on Athlon 1.9GHz.No. of G-L pyramid planes / CN size 3D CAR 2D CAR GMRF1 / 2 5.9 s 3.3 s 16.2 s3 / 2 8.0 s 3.9 s 19.4 sspeed up this pro
ess to enable synthesis at intera
tive frame rates. Subspa
e synthesis
noise

texture

parameters
pyramid
planes inverse K−L

transform

2D CAR

blending

K−L matrix
3 x 3

S
ca

le
s

White noise
generator

plane synthesis

plane synthesis

plane synthesis

GPU fragment program
sub−space
synthesized

image

p

p

p

1...n
1...n
1...n Figure 7.17: Fast subspa
e synthesis s
heme.is performed only on
e for the �rst time when the 
orresponding material appears onthe s
ene so this part does not later require any additional 
omputation during an onlinerendering. So the numeri
al eÆ
ien
y of whole rendering depends mainly on the eÆ
ien
yof following two implementation steps and on GPU attributes.7.5.2 BTF InterpolationDue to relatively sparse measurement of the original BTF data spa
e, the repla
ementof unmeasured BTF data with the nearest available illumination and view dire
tions of-ten produ
es signi�
ant seams visible on the surfa
e of textured obje
t. This problemo

urs when the BTF data are used either for raw data mapping or learning the BTFtexture synthesis model a

ording to the 
luster index. These artifa
ts were 
onsiderablysuppressed when an interpolation s
heme based on bary
entri
 
oordinates was applied(see Se
tion 4.2). The three 
losest BTF measurements, in sense of ve
tor Eu
lidean dis-tan
e on hemisphere, 
ontaining individual measurements points are found for the givenview and illumination dire
tions. The resulting bary
entri
 weights are 
omputed for boththree 
losest view and illumination dire
tions. By multipli
ation of view and illuminationweights we obtain the nine weights 
orresponding to nine synthesised images whi
h arepi
ked up with respe
t to 
luster index �le and 
ombined by means of multitexturing orfragment programs.7.5.3 Surfa
e Height SimulationThere are variety on bump-mapping GPU implementations presented so far. In our 
asewe have used the parallax bump mapping presented in [118℄. This method enables fastbump-mapping e�e
ts by means of simple vertex and fragment programs. It approximates
orre
t appearan
e of rough surfa
es by modifying the texture 
oordinate for ea
h pixelwith no extra polygon requirements using only surfa
e range a normal maps. These maps
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 BTF Modellingare obtained from BTF measurements using the photometri
 stereo (see Se
tion 5.2.3)and arbitrarily enlarged by image-tiling te
hnique 
omputed in a

ordan
e with [103℄ (seeSe
tion 8.3.1). Thus only a few range/normal-map tiles have to be stored together withthe 
orresponding tile-index.



Chapter 8BTF Modelling Using Re
e
tan
eModelsRe
e
tan
e models are mostly introdu
ed as parametri
 fun
tions representing amount ofenergy re
e
ted by a material dependently on illumination and view dire
tion with respe
tto a surfa
e normal (see Fig. 2.2). If we are able to �t a parameters of su
h a model to all
hara
teristi
 features of the original material re
e
tan
e and if they are �tted 
orre
tly,then the model 
an produ
e re
e
tan
e values whi
h are indis
ernible from those of theoriginal material.The simplest re
e
tan
e model is the Lambertian model, representing material with
onstant re
e
tan
e fun
tion for arbitrary view dire
tion. Unfortunately su
h assumptionfor most of the materials does not hold due to their variable re
e
tan
e values for di�erentview dire
tions. Several re
e
tan
e models have been applied in the 
omputer graphi
s inthe past. These models are dis
ussed in Chapter 2.Most of BRDF models presented in Chapter 2 
an be extended to BTF modellingusing dedi
ated pixel-wise BRDF (i.e., ABRDF) models for ea
h planar BTF positions.Thus in this 
ase modelling of the BTF image for a given illumination and view dire
tion
onsists of pixel-wise 
omputation of the 
orresponding re
e
tan
e values from the modelparameters estimated in a pre
eding o�ine phase.For the purpose of fast BRDF rendering in graphi
s hardware the Lafortune model[63℄ be
ame popular, be
ause it enables relative easy and fast evaluation, 
ompa
t BRDFrepresentation and physi
al plausibility.8.1 Lafortune ModelMonospe
tral BRDF is a four-dimensional fun
tion depending on a lo
al viewing (!v) andillumination (!i) dire
tion where!i(�i; �i) = 264 
os �i 
os�i
os �i sin�isin �i 375T = 264 uxuyuz 375T ; !v(�v; �v) = 264 
os �v 
os�v
os �v sin�vsin �v 375T = 264 vxvyvz 375T :(8.1)For multispe
tral modelling three di�erent BRDFs are used for the individual spe
tral
hannels. BRDF usually represented as a 4D table involves storing large amount of dataso some way of BRDF spa
e parametrisation is inevitable.87
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e
tan
e ModelsFor parametrisation of BRDF in the s
ope of this thesis we have developed the gen-eralisation of Lafortune re
e
tan
e model be
ause of its eÆ
ient and 
ompa
t re
e
tan
erepresentation. Moreover, the simpli
ity of this model enables its appli
ation in real-timerendering algorithms implemented dire
tly in 
ontemporary graphi
s hardware.The Lafortune model [63℄ provides a physi
ally 
orre
t BRDF approximation using setof re
e
tan
e lobes. The model is a generalisation of the original 
osine model:Yi;v = �K 
osn � (8.2)where � is the angle between the view dire
tion !v and the mirror dire
tion of the illumi-nation dire
tion !i, denoted by !m and K is the normalisation fa
tor enfor
ing maximumlobe albedo � into a value between 0 and 1. The 
osine part of the model 
an be writtenas a dot produ
t Yi;v = �K[!m!v℄n (8.3)and the mirroring around the normal n 
an be written using a Householder matrixYi;v = �K[!Ti (2nnT � I)!v℄n : (8.4)The model 
an be generalised by repla
ing the Householder matrix and normalisationfa
tor K by a general 3� 3 matrix M a

ording toYi;v = �[!Ti M!v℄n : (8.5)In order to obtain the re
ipro
al re
e
tan
e fun
tion (the same re
e
tan
e value if positionsof light and 
amera are swapped) the matrix has to be symmetri
al M = MT . Whena singular value de
omposition of matrix M is applied we obtain QTDQ where Q istransformation matrix into the new orthogonal 
oordinate system. In this new systemthe matrix M simpli�es to the diagonal matrix D. In this situation the axes are alignedto the normal and to the prin
ipal dire
tions of anisotropy. The diagonal matrix 
an beassumed to be 
omposed of the weights of individual terms of the dot-produ
t !i � !v asit is shown in the following statement of the Lafortune re
e
tan
e model:Yi;v = �[!Ti D!v℄n = �(Dxuxvx +Dyuyvy +Dzuzvz)n : (8.6)The model 
an be extended to nl re
e
tan
e lobes to be able to �t the 
omplex re
e
tan
efun
tions as followsYi;v = nlXk=1�k[!Ti Dk!v℄n = nlXk=1 �k(Dx;kuxvx +Dy;kuyvy +Dz;kuzvz)nk : (8.7)The representation using this model (8.7) is 
ompa
t and relatively memory eÆ
ient sin
eea
h re
e
tan
e lobe is determined by means of only �ve parameters �;Dx;Dy;Dz; n. Themodel is able to handle noisy data and even in 
ase when data are sparse the modelprovides their 
orre
t interpolation. The obtained re
e
tan
e fun
tions are physi
allyplausible, inherently re
ipro
al and they satisfy the rule of energy-
onservation. Moreover,the individual spe
tral 
hannels of re
e
tan
e data 
an be modelled separately.These properties and the simpli
ity make this model suitable for the fast BTF renderingalgorithms implementable dire
tly in graphi
s hardware. The following se
tion explainsthe way of employing of the des
ribed Lafortune model for this task.



8.2: Sample-Size Lafortune BTF Model 898.2 Sample-Size Lafortune BTF ModelMonospe
tral BTF is a six-dimensional fun
tion whose 
orre
t modelling involves eithervery 
omplex and 
omputationally demanding model or some kind of data fa
torisationinto lower-dimensional data spa
es where simpler models 
an be used. A
tually, thesix-dimensional BTF 
an be 
onsidered a spatially varying four-dimensional \apparent"BRDF (ABRDF). This fa
t enables the modelling of these per-pixel ABRDFs by dedi
atedLafortune models as proved in [75℄, [19℄ and [78℄. If all measured re
e
tan
e values areused as input data for a BRDF model (see [75℄ and [59℄) then the results are unsatisfa
toryespe
ially in the 
ase of rough textures. The reason for this is a self-o

lusion e�e
t inBTF images of a rough materials where some parts of the material are o

luded espe
iallyfor high grazing angles and as a result individual pixels in the re
ti�ed BTF images do not
orrespond to the unique planar position on the material surfa
e. Therefore the only wayto obtain a real pixel-wise registration of BRDFs is to model only the individual re
e
tan
e�eld R, i.e., ni images taken for a �xed view and varying illumination dire
tion. So forea
h of nv re
e
tan
e �elds Rv the parameters of the Lafortune model are 
omputed forevery BTF planar position. This pro
edure is done separately for all RGB 
olour 
hannels.As the parameter 
omputation is independent of the view dire
tion !v (whi
h is �xed fora given re
e
tan
e �eld) the model equation be
omesYi;v(r) = nlXk=1 �v;k(r)[!Ti Dv;k(r)℄nv;k(r) = (8.8)= nlXk=1 �v;k(r)(Dv;x;k(r)ux +Dv;y;k(r)uy +Dv;z;k(r)uz)nv;k(r) ; (8.9)(8.10)where !i(�i; �i) = [ux; uy; uz ℄T is a unit ve
tor pointing to light and parametrised bythe illumination elevation and azimuthal angles [�i; �i℄ respe
tively (see Fig. 2.2). Asa re
e
tan
e data the set of pixels Rv(r1; r2; r3; !i) is 
onsidered, where i = 1; :::; ni is theillumination position index and v is the a
tual view position index ranging from 1 to nv.A multiindex r = fr1; r2; r3g represents the planar horizontal, verti
al and spe
tral indexin the BTF image respe
tively.The individual 
olour re
e
tan
e �elds Rv are represented by means of nl sets of �ve
oating point parametri
 images 
orresponding to the model parameters �;Dx;Dy;Dz ; nrespe
tively. This is still relative large amount of data in 
omparison with the 81 originalimages parti
ularly when more than one re
e
tan
e lobe is used. In addition the parameter�tting for several lobes is under
onstrained, time 
onsuming problem and as a resultthe estimation is often numeri
ally unstable. For these reasons we de
ided to use onlysimpli�ed one-lobe variant of the Lafortune re
e
tan
e model (LM):Yi;v(r) = �v(r)[!Ti Dv(r)℄n(r) = �v(r)(Dv;x(r)ux +Dv;y(r)uy +Dv;z(r)uz)n(r) (8.11)The representation of BTF by means of one-lobe LM with �ve parameters involvesstoring of 5� nv = 405 
oating point 
olour parametri
 images instead of 81� 81 = 6561original BTF images.
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e
tan
e Models8.2.1 Non-Linear Estimation of Model ParametersFor every planar position (r1; r2) in the estimated BTF image one model is used, so forea
h view dire
tion from the BTF database we have to estimate N �N models for ea
hspe
tral 
hannel. The model parameters are estimated using Levenberg-Marquardt non-linear estimation te
hnique as des
ribed in [94℄. The Levenberg-Marquardt method isa \single-shot" method whi
h attempts to �nd the lo
al �t-statisti
 minimum nearestto the initialising point. Its prin
ipal advantage is that it uses information about the�rst and se
ond derivatives of the �t-statisti
 as a fun
tion of the estimated parametervalues to guess the lo
ation of the �t-statisti
 minimum. It will not work reasonably wellwith 
omplex statisti
 surfa
es. Apart from that there is no guarantee to �nd the global�t-statisti
 minimum.In pra
ti
al experiments in
luding estimation of model parameters for every view dire
-tion 
ontained in the BTF database, it turned out that the �tting quality of the optimisedmodel parameters strongly depends on their initial value. When the initial values weremanually tuned and �xed for all 
omputed models then in the estimated BTF imagesappeared isolated dots with 
ompletely di�erent spe
tral values than those expe
ted fromthe original. This situation is illustrated in Fig. 8.1-b in 
omparison with the original BTFimage Fig. 8.1-a. To over
ome this problem the parameter estimation pro
ess was splitin two separate steps. In the �rst step the parameters of the model are �tted to manuallytuned initial values. The 
orre
t initial values for the following se
ond estimation stepare �nally obtained as median of parameter values over all models in Rv. Results of su
ha 
orre
t parameter initialisation is depi
ted in Fig. 8.1-
.
a) b) 
) a) b) 
)Figure 8.1: Example how the improper initial values of model parameters in
uen
e the restoredBTF image quality for two di�erent materials. The �rst image is an original (a), the se
ond oneis a result based on the estimated model parameters with wrong initial values (b) and the thirdimage illustrates the result with the 
orre
tly set initial values (
).8.2.2 Proposed Polynomial Extension of the Lafortune ModelThe one-lobe Lafortune model needs to store 
onsiderably lower number of parametersthan the nl-lobes model. However, one 
an assume that the performan
e of su
h a sim-pli�ed model on re
e
tan
e data would not be satisfa
tory. In our experiments testing itbe
ame obvious that the re
e
tan
e fun
tion approximation by one-lobe LM is erroneousespe
ially in 
ases of 
omplex BRDF when the re
e
tan
e values strongly depend on theillumination dire
tion. This situation is most apparent at higher grazing angles when thelight shines from dire
tion opposite to 
amera whi
h 
auses signi�
ant spe
ular re
e
-tions. The problem of one-lobe LM �tting to original data is illustrated in Fig. 8.2. We
omputed BRDF for BTF images of knitted wool material from Rv � �v = 60o; �v = 54oas an average RGB value in a window of size 20 � 20 (solid line) and 
ompared it with



8.2: Sample-Size Lafortune BTF Model 91BRDF obtained in the same way from estimated BTF images 
orresponding to the sameRv (dashed line). From the results we 
on
lude that the used one-lobe model is not ableto follow su
h steep 
hanges of re
e
tan
e fun
tion, whi
h are present in almost all naturalmaterials. The signi�
an
e of this one-lobe model error 
onsiderably depends on prop-erties of individual material sample and on the a
tual viewing dire
tion. Generalisation
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e
tan
e lobes improves its performan
e, how-ever, su
h a model still fails at grazing angles where the 
onsiderable di�eren
e betweenoriginal and estimated re
e
tan
e values persists. In addition the nl lobes model impliesundesirable in
rease of nl-times more parameters to be stored. Moreover, the lobes-�ttingpro
edure is then more 
omplex and time 
onsuming. Even the general Lafortune modelwith all the parameters in the parameter matrix M (not only the diagonal or symmetri
ones) did not signi�
antly suppress the undesirable artifa
ts.

estimation

Resulted
Polyn. LM

Image

Histogram

Computation

Histogram

Computation Computation

Cumulative Mapping

Function
a j=0..nj

LS

Polynomial

Fitting

Original BTF
image

estimation

p

polynomial
coefficients

np

rank of
polynomial

One−lobe LM

Figure 8.3: Pro
edure of polynomial 
oeÆ
ients 
omputation.In order to improve the low �tting a

ura
y of the des
ribed one-lobe model we in-trodu
ed its polynomial extension [27℄. This method is based on a histogram mat
hingte
hnique [31℄ adopted and extended for BTF data and polynomial �tting as illustratedon the s
heme in Fig. 8.3. At the beginning the image histograms in all spe
tral 
hannelsare 
omputed for both the original and the one-lobe LM approximation of every BTF
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e
tan
e Modelsimage. From these histograms we 
ompute the 
umulative histograms. These histogramsrepresent the inputs of the algorithm Alg. 4 whi
h 
omputes the 
oeÆ
ients for the poly-nomial mapping of grays
ale levels of the LM estimated image to the original one. Thealgorithm is based on histogram mat
hing of both images so that the histogram of the LMestimated image is �tted with respe
t to the original BTF image. The resulting mappingbetween both 
umulative histograms is approximated by polynomial using least squares�tting s
heme.The resulting polynomial 
oeÆ
ients ar3;v;i;j are stored for individual 
olour 
hannelsof every BTF image. The proposed polynomial extension of the one-lobe Lafortune model(PLM) using 
oeÆ
ients ar3;v;i;j 
an be des
ribed by following equation~Yi;v(r) =Mr3;v;i(Yi;v(r)) = npXj=0 ar3;v;i;jYi;v(r)j (8.12)whi
h results in a novel model expressed by the following formula:~Yi;v(r) = npXj=0ar3;v;i;j[�v(r)(!Ti Dv(r))nv(r)℄j : (8.13)Here ar3;v;i;j are polynomial parameters spe
ifying the mapping fun
tionMr3;v;i betweenthe histogram values of the image Yi;v(r) (synthesised from one-lobe model parameters)and the original BTF image and (np � 1) is a rank of this polynomial. The parametersar3;v;i;j are estimated by least squares �tting on the original 8 bits quantised mappingfun
tion. We obtained satisfa
tory results already with np = 5.Algorithm 4: Mapping fun
tion 
oeÆ
ients 
omputation1. Input: Cumulative histograms of the original BTF image and its one-lobe LMestimate2. i = 0; j = 03. WHILE (j � 255)(a) WHILE (histCumuLM [i℄ � histCumuOrig[j℄)i. M[i℄ = jii. i = i+ 1(b) j = j + 14. Fit 5-order polynomial toM using Least Squares method.5. Output: Polynomial 
oeÆ
ients aj ; j = 0 : : : np representing mapping fun
tionM.Finally for ea
h BTF image we have to store �fteen additional 
oat polynomial parameters(�ve 
oat numbers for ea
h 
olour 
hannel). The number of these parameters storedwithin ea
h BTF image is negligible in 
omparison to the number of one-lobe Lafortune
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h image pixel. The extended model involves only severaladditional linear operations whi
h 
an be possibly implemented in 
ontemporary graphi
alhardware. Moreover, the results of the proposed polynomial extension of one-lobe modelare en
ouraging as it is shown, e.g., in the shape of re
e
tan
e lobe whi
h is 
omparedwith original measured BRDF lobe and lobe estimated by one-lobe model only in pixel(r1 = 13; r2 = 3) of knitted wool as illustrated in Fig. 8.4. More thorough 
omparison ofmodel performan
e is provided in the following se
tions.
a) b) 
)Figure 8.4: Re
e
tan
e lobes in pixel (r1 = 13; r2 = 3) of knitted wool and illumination angles�i = 75o; �i = 54o. Original re
e
tan
e lobe (a), approximated by the one-lobe LM (b) and by theproposed PLM (
).8.2.3 Results of Sample-Size Re
e
tan
e ModelsIn order to verify the 
onsidered re
e
tan
e models we performed extensive experimentsusing eight BTFs provided by University of Bonn [98℄. The LM parametri
 images wereestimated for all 81 surfa
e re
e
tan
e �elds Rv; v = 1 : : : nv as well as the polynomial
oeÆ
ients 
orresponding to the histogram mat
hing mapping fun
tionsMr3;v;i. All BTFimages were synthesised by means of the estimated parameters. For all materials thesynthesised BTF images based on the one-lobe LM were 
ompared with the BTF synthesisusing the proposed PLM.For the sake of the BTF results 
omparison the standard mean average error (MAE)between original data (Y ) and estimated data (Ŷ ) was used (8.14).The mean average error for one BTF image is given byEv(i) = 1255� X8r1;r2;r32Y jY (r1; r2; r3; v; i) � Ŷ (r1; r2; r3; v; i)j; (8.14)where r1; r2; r3 represent the planar horizontal, verti
al and spe
tral index respe
tively inBTF the image with resolution � = Nx � Ny and i is the illumination position index inRv. For 
omputation of the average error for all estimated images from Rv we used theformula Ev = 1ni niXi=1 Ev(i) ; (8.15)where ni is the number of images in
luded in Rv.Graphs in Fig. 8.5 demonstrate the performan
e in terms of MAE for both methods(LM depi
ted as blue 
urve and PLM depi
ted as red 
urve) on the whole BTF, i.e., for all81 re
e
tan
e �eldsRv along x axis, for eight di�erent materials from the Bonn UniversityBTF database. Individual re
e
tan
e �elds are ordered a

ording to 
amera position
ir
ular movement from top to bottom of a hemisphere above the observed material as
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Figure 8.5: The mean average error (MAE) (a

ording the equation (8.15)) of one-lobe lafortunemodel (LM { blue line) and its polynomial extension (PLM { red line) for all 81 re
e
tan
e �eldsof eight di�erent BTFs: fabri
01, fabri
02, foil01, foil02, wool, leather02, wood01 and wood02respe
tively.



8.2: Sample-Size Lafortune BTF Model 95illustrated in Fig. 2.3. Similarly, the overall MAE errors 
omputed as average value of Evfor all re
e
tan
e �elds and spe
tral 
hannels of individual BTFs are �gured in Tab. 8.1.From the �rst two 
olumns of the table it is apparent that the proposed polynomialextension of one-lobe Lafortune model (PLM) yields 
onsiderably lower MAE values in
omparison with one-lobe model. At the same time, the storage spa
e required by theproposed model is maximally 5% higher in 
omparison with one-lobe Lafortune model.This small in
rease is 
aused by storing of �fteen additional polynomial 
oeÆ
ients forevery BTF image.Table 8.1: The MAE (a

ording to the equation 8.15) of the synthesised BTFs for one-lobeLafortune model (LM), its polynomial extension (PLM) and 
lustered polynomial extension (PLM-C) for di�erent materials. Mean Average Errormaterial LM PLM PLM-Cwool 0.058 0.037 0.038proposte 0.054 0.052 -fabri
01 0.058 0.036 0.038fabri
02 0.053 0.032 0.033foil01 0.067 0.021 0.023foil02 0.048 0.020 0.023leather02 0.032 0.018 0.021wood01 0.047 0.030 0.031wood02 0.058 0.035 0.038Fig. 8.6 shows the results for several BTF images from two di�erent re
e
tan
e �eldsRv. The upper row represents the original BTF images, the middle row shows the 
orre-sponding synthesised images by means of one-lobe LM while the bottom row representsthe results of the proposed PLM.From these images it is apparent that the proposed method o�ers both better approx-imation of 
olour hues than one-lobe LM and in
reased 
ontrast of the estimated BTFimages. This is due to stret
hing the histograms whi
h results in the in
reased 
ontrast,i.e., the in
reased distan
e of individual 
olour levels. This makes possible to re
ognise,e.g., two neighbouring 
olour levels per
eived as one 
olour hue in one-lobe LM. The nextappli
ation example of the proposed model is given in Fig. 8.7. The �gure shows how theaveraged BRDF 
omputed by the proposed polynomial extension (dash-dot line) followsthe original average BRDF (solid line) for re
e
tan
e �eld Rv � �v = 60o; �v = 54o ofthe knitted wool material. From the �gure it is apparent that the original BRDF data�tting based on the proposed method is mu
h more a

urate in 
omparison with theunsatisfa
tory results of the one-lobe Lafortune model.8.2.4 Compression of Lafortune Parametri
 ImagesUsing the polynomial extension of Lafortune model des
ribed above we were able to a
hievethe maximal 
ompression ratio of a real BTF data about 120 depending on the resolutionof parametri
 images. Unfortunately even this 
ompression implies the ne
essity to store
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e
tan
e ModelsRv � �v = 60o; �v = 54o Rv � �v = 75o; �v = 60o Rv � �v = 60o; �v = 54o Rv � �v = 75o ; �v = 60o����a q ����aq ����a q ����a q ����aq ����a q ����a q ����aq ����a q ����a q ����aq ����a q
Figure 8.6: Synthesised BTF examples for knitted wool and proposte materials respe
tively. The�rst row des
ribes mutual position of light (empty 
ir
le) and 
amera (�lled 
ir
le) above thesample, the se
ond row shows original raw BTF data. The third row shows results of one-lobe LMon registered BTF data and �nally the fourth row illustrates results of proposed PLM.
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BRDF − 1−lobe PLM approx.Figure 8.7: Comparison of the original BRDF (solid line), the BRDF approximated by one-lobe Lafortune model (LM) (blue,dashed line) and �nally the BRDF approximated by proposedpolynomial extension (PLM) (red,dash-dot line) for knitted wool material for Rv � �v = 60o; �v =54o.several hundreds megabytes of data per one material. The data resolution to be storeddepends mainly on the homogeneity of material, i.e., for materials with regular texturepattern, as for example fabri
s, the required size of parameter images is rather small in
omparison with the materials 
ontaining large, irregular patterns as for example leather,wood, et
.Using further extension of the proposed BTF re
e
tan
e model we 
an even redu
e thespa
e required for the storage of model parameters while the 
omputational 
osts in
reaseonly slightly and the visual quality is almost the same. The extension 
onsists in thesegmentation of the individual re
e
tan
e �eld image data to obtain the 
orresponding
lusters in parametri
 images. Finally only a 
luster index and model parameters 
or-responding to the individual 
lusters are saved for ea
h RGB spe
trum. The number of
lusters for ea
h spe
trum is set to 256 to enable reprodu
tion of 256 di�erent grays
alelevels. Thus the theoreti
al number of 
olour hues within this setup is 2563 = 16777216.A
tually the number of 
lusters 
an be in
reased arbitrarily, while for BTF tiles segmen-



8.2: Sample-Size Lafortune BTF Model 97tation purposes the 
omputationally reasonable number is less than 1000.The whole LM parameter segmentation pro
edure works as follows. At the beginningthe K-means segmentation algorithm (Alg. 3 in Se
tion 6.1.4) is employed using pixelsfrom all 81 images 
orresponding to a
tual re
e
tan
e �eld Rv as data features. Note thatthe segmentation 
annot be performed on the model parametri
 feature spa
e 
ontainingdire
tly model parameters as these individual parameters have strong non-linear impa
ton the restored pixel value and any general weights 
annot be atta
hed to them.The K-means segmentation pro
ess is 
omputationally very demanding and the seg-mentation of relatively small parametri
 images of resolution 256�256 for all 81 re
e
tan
e�elds takes several hours. The segmentation 
an be signi�
antly speed up for example bymeans of modi�ed K-means algorithm des
ribed in [61℄. This method exploits randomsampling and enable time 
omplexity linear in the size of the input.During model synthesis in a parti
ular pixel the 
orresponding 
luster with the modelparameters is obtained a

ording to number at pixel 
oordinates in 
luster index look-up �le. These model parameters are found for ea
h 
olour 
hannel and the pixel value is�gured out. Using this approa
h the storage size of model parameters redu
es 
onsiderablysin
e only one 
olour parametri
 look-up image and several 
luster parameters have to bestored.Choosing the Re
e
tan
e Field SubsetUnfortunately the size of pixel re
e
tan
e data features (3�81) is too big for segmentationof large parametri
 images whi
h results to many hours of 
omputation for ea
h re
e
tan
e�eld. To avoid this exhaustive 
omputational demands only a 
onstrained set of imagesfrom those 81 in re
e
tan
e �eld are in
luded into a data feature ve
tor. To 
hoose anappropriate subset of images bearing the most information of whole set we used an algo-rithm based on the Kullba
k-Leiber distan
e [60℄ of two di�erent histogram distributionsP;Q dKL(P;Q) = 256Xi=1 P (i) log P (i)Q(i) : (8.16)However, the Kullba
k-Leiber divergen
e is non-symmetri
 and it is sensitive to histogrambinning. For this reason we have used its modi�
ation 
alled Je�rey divergen
e [95℄ whi
his represented by the following equationdJ(P;Q) = 256Xi=1�P (i) log P (i)M(i) +Q(i) log Q(i)M(i)� (8.17)whereM(i) = P (i)+Q(i)2 . This divergen
e is numeri
ally stable, symmetri
 and robust withrespe
t to noise and the size of histograms bins in 
omparison with previous one.The algorithm 
hoosing a subset of the most di�erent images (nmax) from re
e
tan
e�eld Rv is des
ribed in Alg. 5. Basi
ally a new image for the subset S is taken as animage with the minimal distan
e dJ to all images already in
luded in S.BTF Image SynthesisWhen the segmentation is �nished we obtain 
luster indi
es Iv(r1; r2; r3) for the individual
olour spe
tra r3 of ea
h re
e
tan
e �eld Rv. Cluster indi
es are stored in form of 
olour
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e
tan
e ModelsAlgorithm 5: Choosing a subset S of nmax images from the re
e
tan
e �eld Rv1. Compute normalised histograms Hi; i = 1; : : : : ; 81 for all 81 images.2. Add �rst image 
orresponding to (�i = 0o; �i = 0o) into S.3. FOR n= 1 ! nmax(a) Compute minimal Je�rey divergen
e for all images in S to all 81 images inre
e
tan
e �eld R and 
hoose su
h j�-th image histogram from R for whi
hthe 
omputed divergen
e is maximal:j� = argj � maxi=1;:::;n � minj=1;:::;81 dJ(Hi;Hj)��(b) Add j�-th image into S.4. From nmax images 
ontained in S are built up the data features for segmentation.
images of original parameter images resolution, i.e., in ea
h 
olour 
hannel we store the
orresponding 
luster index. An important produ
t of segmentation is the table 
ontainingindividual 
luster 
enters Kv(
) where 
 is the 
luster index. For ea
h 
luster �ve LMparameters are stored for individual 
olour 
hannel. The number of these 
lusters in ourimplementation was �xed to 256 for all 
olour 
hannels.The �nal synthesis is straightforward. The parameters �;DX ;DY ;DY and n of theoriginal model (8.19) are 
omputed as�(r)v = Kv;1(Iv(r)) (8.18)D(r)v;X = Kv;2(Iv(r))D(r)v;Y = Kv;3(Iv(r))D(r)v;Z = Kv;4(Iv(r))n(r)v = Kv;5(Iv(r)) :When the parameters are known the 
omputation of the polynomial expansion of Lafortunemodel is the same a

ording to the equationŶi;v(r) = npXj=0 ar3;v;i;j[�v(r)(!Ti Dv(r))nv(r)℄j : (8.19)We refer to this 
lustered polynomial extension of the Lafortune Re
e
tan
e model asPLM-C in the following text. The synthesis based on the des
ribed approa
h is quitefast, requiring the look-up index tables only whi
h 
an be implemented using standardOpenGL features. Besides, the storage size of LM parameters is redu
ed 
onsiderably as it
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olumn of Tab. 8.2. Thus by means of this method we are able toa
hieve the average BTF data 
ompression ratio more than 1100 , while the 
omputationalexpenses are almost the same. Moreover, the graphi
al hardware 
an take advan
e ofthis 
ompa
t model size to redu
e the amount of data loaded to GPU memory. Thisadvantage may be
ome more apparent primarily for VR s
enes 
ontaining obje
ts 
overedwith many di�erent materials whi
h appear and disappear during s
ene observation. Theaverage MAE for all re
e
tan
e �elds of PLM-C remains almost on the same level as fornon-
lustered variant of PLM as it is apparent from the last 
olumn in Tab. 8.1.8.2.5 BTF Data InterpolationChapter 4 des
ribes the basi
 approa
hes 
on
erning BTF rendering and interpolation.As it was mentioned the 
orre
t raw BTF interpolation involves at least nine BTF imageswhi
h 
orrespond to permutation of three di�erent view and three di�erent illuminationpositions. The proposed polynomial extension of Lafortune re
e
tan
e model have thesame requirements sin
e the polynomial �tting is performed a

ording to angular resolu-tion of the BTF data set. However, the nature of Lafortune model enables to 
omputethe re
e
tan
e smoothly for arbitrary illumination position. To take advantage of thissmooth property of the proposed model the mapping fun
tions 
omputed for given illumi-nation and view angles have to be properly interpolated with respe
t to a
tual illuminationposition. For the sake of this interpolation we utilised bary
entri
 
oordinates as interpo-lation weights between the three 
losest illumination positions. The bary
entri
 weightsare obtained proportionally to triangle areas using the method des
ribed in Chapter 4.Additionally, interpolation of the 
orresponding mapping fun
tions enables us to use onlythree di�erent BTF images (
orresponding to the three 
losest view positions) for �nalinterpolation so the whole BTF rendering speeds up three times. In Fig. 8.8 is shown anexample of rendering of wood02 material using all nine images (left) in 
ontrast with thethree images interpolation only (right). There is an obvious di�eren
e between these twoimages espe
ially for high elevation illumination angles (i.e., ti > 75o) where the texturebe
omes darker due to in
orre
t interpolation. The reason for these problems is interpo-lation of those angles whi
h do not 
orrespond to the a
tual illumination position. Thusthe BTF extrapolation for higher elevation illumination angles would be more appropri-ate approa
h. An overview of results of view angles interpolation for all tested materials
ompared to original BTF data is given in Fig. B.1.8.3 Unrestri
ted Resolution BTF Re
e
tan
e ModelThe size of the raw BTF measurement is always 
onstrained by the size of material sampleand by the resolution of the measurement devi
e. However, to 
over large obje
ts in VR themethod for BTF enlargement is ne
essary. There are several methods on this topi
 avail-able mainly in 
omputer graphi
s. One of them is based on intelligent sampling te
hnique[70℄, whi
h produ
es synthesised BTF images a

ording to spe
i�
 samples from sparse setof original BTF measurements in 
ombination with syntheti
 image obtained by means ofa range-map. The se
ond approa
h 
ombines texture-synthesis using mathemati
al mod-els based either on Gaussian-Markov random �elds [36℄ or on multi-dimensional 
ausalauto-regressive model [38℄ of the original BTF image with estimated range-map. Themost often approa
hes to BTF enlargement are based on di�erent extensions of intelligent
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Figure 8.8: BTF data interpolation using the proposed PML model of wood02 material. Full9-images interpolation of both view and illumination position (left) and 3-images interpolation ofview position only (right).sampling te
hniques [24, 25, 11, 62, 85℄. These methods produ
e set of image/parametri
tiles and the resulted image is obtained as a 
ombination of these tiles. In the 
ontext ofthis thesis two approa
hes are suggested:� Image tiling based on generation of set of LM parametri
 tiles. The large imageis a simple 
ombination of these tiles ful�lling 
ertain 
onstraints. This method
annot produ
e 
olour values not present in the original image and 
annot reprodu
etexture elements with lower spatial frequen
ies than those 
orresponding to the tileresolution.� Image modelling based on Markov random �eld (MRF) models. These modelsmay generate texture image of arbitrary size while only few parameters have tobe stored. On the other hand a quality of these models 
an be 
ompromised in
omparison with image tiling mainly for materials with regular pattern whi
h 
annotbe easily reprodu
ed by means of these sto
hasti
-based models.Both these methods 
an be extended to enable the enlargement of re
e
tan
e model pa-rameters instead of ordinary 
olour image as it is explained in Se
tions 8.3.1 and 8.3.2.8.3.1 Re
e
tan
e Model Parametri
-Plane TilingSome form of tiling the model parameter planes is inevitable when a large obje
t is tobe 
overed by BTF. A simple seamless one-tile repetition does not provide satisfa
toryresults mainly for non-regular textures where 
ertain pattern o

urs on the same positionsubsequently. Thus to obtain more realisti
 results we need more than one tile per textureto support the visual variability of generated images. There is a variety of image-basedtexture synthesis methods published re
ently [24, 11℄. In this thesis we use the imagetiling method based on the image stit
hing introdu
ed in [103℄. The idea of stit
hing isbased on the minimum error boundary 
ut, as used in the image quilting algorithm [24℄.The stit
hing pro
edure is demonstrated in Fig. 8.9.Let us assume that ea
h oriented stit
h is 
reated between two equally sized overlappingimage regions: a sour
e and a target. Creating su
h stit
h 
an be imagined as atta
hinga 
ropped part of sour
e to target (Fig. 8.9). To make the transition between two imagesas invisible as possible the sour
e (i.e., the tile surrounding) is 
ropped from along the
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hing. The sour
e image is 
ropped fromthe right along the minimum error path and pla
ed over the targetba
kground image.
R

1

R
2

1

1

2

2

h

.

.

.

.

. . wFigure 8.10: Simpli-�ed path representationmodel. Ea
h row 
ontainsone 
ontrol point (bla
kdot) and 
omplementarypoints (
rossed dots).minimum error path before atta
hing to target (i.e., the tile 
ontent). The minimumerror path is 
onstru
ted to lead through the error map (8.20) whi
h represents the visualdi�eren
e between sour
e and target for ea
h pixel of the overlapping region w � h.E[i; j℄ = d(IS [i; j℄; IT [i; j℄); i = 1; : : : ; w j = 1; : : : ; h (8.20)where d(:; :) is the Eu
lidian distan
e of two pixel 
olour values. Ea
h error path isrepresented unambiguously by a sequen
e of 
ontrol points 
, one for ea
h row:
 =< 
1; 
2; :::; 
h >; 
j 2 1; :::; w : (8.21)To obtain a 
ontinuous sequen
e the additional points have to be added to a
tual path asis illustrated in Fig. 8.10. From several possible 
omplete path de�nitions the one thatsuits the oriented-stit
h approa
h is adopted:Path
 = f(i; j) : j = 1; :::h; i = �j; :::; 
jg (8.22)where �j =min(
j�1+1; 
j+1+1; 
j). For ea
h path a 
riterion 
an be evaluated to assesthe expe
ted visible transition in
onsisten
y:�(Path
) = X(i;j)2Path
E[i; j℄ (8.23)In [103℄ is de�ned a sub-optimal minimum path algorithm on error map E of size w� h -the os
illating sear
h. The algorithm �rst evaluates single 
ontrol point shifts in ea
h stepas long as the 
riterion value 
an be de
reased. This algorithm is used as a fast alternativeto the slow optimal path sear
h pro
edures like the dynami
al programming. The mainadvantage is the 
omputational speed. The os
illating sear
h has polynomial 
omplexitywhile the optimal sear
h is always exponential. This method is a step-wise pro
edure thatsequentially improves some a
tual solution and thus it 
an be stopped at any momentto yield a usable result. Di�eren
es between the optimal and suboptimal sear
h o

urin the areas of evenly distributed error and thus they remain visually indistinguishable.However, it is very important to assure that the overlap image region itself is positionedand sized not to rule out the existen
e of low error path.The minimum path based stit
hing often produ
es good natural appearan
e of imagetransition areas. However, if no good path exists in the error map, visible artifa
ts 
an not
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Figure 8.12: Pat
h 
reation. the stit
hing te
h-nique is used to 
reate sides and 
orners of thepat
h.be avoided (as demonstrated in simple stit
h in Fig. 8.11). Therefore the authors de�nedthe adaptive boundary blending (Fig. 8.11) to redu
e the visibility of su
h unwantedhigh-error artifa
ts. The idea is to interpolate between the overlapped sour
e region tothe target with a lo
ally adjusted intensity while utilising the minimum error path. Theadaptive blending pro
ess 
an be visualised using the blend intensity and blend 
olour-maps separately. The boundary 
an be made almost unnoti
eable in this way, ex
ept of
ases when the transition is made between prin
ipally in
ompatible texture image areas.The previously des
ribed image stit
hing method 
an be extended to transfer general
ontinuous image regions while keeping the transition between the old and new unnoti
e-able. During tile generation the algorithm sear
hes for su
h a re
tangular region in thesour
e texture image, where the opposite border areas are the most visually 
onsistentin both the horizontal and verti
al dire
tions. As a 
riterion of visual 
onsisten
y it isused RGB Eu
lidean distan
e. New tiles 
an be obtained using the des
ribed pat
hingte
hnique with respe
t to Fig. 8.12. New tiles 
an be 
reated by making a 
opy of thetemplate tile and subsequently 
overing its inner area by pat
hes taken from di�erent po-sitions in the sour
e texture image. Example image synthesis of the des
ribed method isshown in Fig. 8.13.

Figure 8.13: Example of tiling using the des
ribed method. Ten original tiles were used toprodu
e synthesised image of leather02 and wood02 materials.However, BTF tiling is mu
h more 
omplex task as the stit
h should appear 
onsistentin all BTF planes. To de
rease the 
omputational 
omplexity of su
h an extensive data
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essing we adopted a two-stage tiling pro
ess. In the �rst stage we only determine thestit
hing and other parameters to be used later for a
tual tile 
reation. For this purposeonly a few sample parametri
 images are taken (prepared in full size, i.e., 800�800 pixels)to represent di�erent azimuthal and elevation view positions. The optimal stit
hing pathsare found in this subset of parametri
 images by means of the method des
ribed in [103℄.In the se
ond stage the 
omplete raw BTF data are pro
essed using the pre-
omputedstit
hing parameters. On
e all tiles be
ome available, the �nal parameters of the proposedLafortune model are 
omputed based on the BTF tiles. This pro
edure saves 
onsiderable
omputational demands of Lafortune parameters estimation algorithm. For the sake ofthe synthesised BTF rendering quality the number of 
omputed tiles used is usually morethan one. In this thesis the maximal number of 
omputed tiles is ten what we foundto be a reasonable 
ompromise between the 
omputational 
omplexity and quality of theoutput.The time 
omplexity 
an be des
ribed as follows. Preparation (estimation) of sampleLafortune parametri
 planes in original BTF resolution to be used in the �rst tiling stagetakes about 1 hour. The �rst tile 
reation stage (stit
hing parameters learning) takesusually less than 1 hour. The se
ond stage, i.e., 
utting the 
omplete raw BTF datato obtain raw data tiles based on the �rst-stage-parameters takes 3-5 hours, mainly dueto lots of slow data a

ess operations involving thousands of �les. The �nal non-linearestimation of one-lobe Lafortune model parameters for ten di�erent BTF image tiles of size64�64 for all 81 re
e
tan
e �elds 
omprised in the BTF database takes about 10 hours.Note that if more re
e
tan
e lobes were used the time required for parameter �tting would
onsiderably in
rease a thus the storage spa
e for these parameters would be mu
h morelarger.The time 
omplexity mentioned above strongly depends on the BTF image size and
omputational power involved. We used the BTF dataset from Bonn University of size800 � 800 pixels and 
omputer PC Athlon 1.9GHz.ResultsFig. 8.14 shows the error 
urves (MAE) for individual test materials. For ea
h material theMAE is 
omputed for all 81 view positions Rv (depi
ted on x axis) of 
lustered one-lobeLafortune model (LM-C, blue solid line) and its 
lustered polynomial extension (PLM-C,red solid line) are 
ompared with the 
orresponding non-
lustered variants of LM andPLM (both depi
ted as dash-dot line). The overall MAE values of all tested materialswere 
omputed as averaged MAE of all re
e
tan
e �elds and are are shown in Tab. 8.1in 
ontrast to the 
orresponding values of non-
lustered PLM. The MAE for PLM-C isslightly higher in 
omparison with PLM but this higher error is well 
ounterbalan
ed bythe model size. The number of parameters to be stored have been redu
ed using proposedparameter 
lustering at least ten times in 
ontrast to the non-
lustered PLM as it is evidentfrom the last 
olumn of Tab. 8.2. The tile resolutions for individual materials are listed inthis table as well. Generally, the less homogeneous is the material appearan
e the largerimage tiles are required for proper reprodu
tion of the material 
hara
teristi
s.Finally for subje
tive visual 
omparison of results we used the same 3D obje
t aspreviously. This 
ar armrest is 
overed by di�erent BTFs generated using the proposed
lustered PLM-C and it is 
ompared with the non-
lustered PLM as well as with the rawtiled BTF as it is illustrated in Fig. 8.15. The �rst 
olumn shows the obje
t 
overed by
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Figure 8.14: The mean average error (MAE) (a

ording the equation (8.15)) of 
lustered one-lobe lafortune model (LM-C { blue line) and its 
lustered polynomial extension (PLM-C { redline) 
ompared with non-
lustered variants LM and PLM (dash-dot lines) for all 81 re
e
tan
e�elds of eight di�erent BTFs: fabri
01, fabri
02, foil01, foil02, wool, leather02, wood01 and wood02respe
tively.
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e Model 105Table 8.2: Storage size of the proposed PLM and PLM-C in 
omparison with size of the rawBTF data and their tiled representation.storage size in MBmaterial raw BTF 10 BTF tiles PLM PLM-C tile size [pixels℄wool 733.3 103.4 33.5 4.3 25� 25fabri
01 6766 87.1 24.9 2.9 21� 23fabri
02 5863 77.5 24.1 4.0 19� 23foil01 5190 728.1 406.8 19.2 86� 96foil02 5065 527.5 296.7 13.8 74� 79leather02 5074 659.7 381.0 18.6 86� 87wood01 5330 1333.2 771.8 31.8 122 � 125wood02 5083 2405.0 973.4 29.1 137 � 142the raw BTF tiles, the se
ond 
olumn shows results of PLM while the last 
olumn showsthe results of PLM-C. From these images it is apparent that the visual di�eren
e betweenPLM-C and PLM results is almost indis
ernible.To sum up this se
tion, we re
all that the 
ompression ratio of PLM-C ( 1100 ) is ap-proximately ten times higher and 
omputational expenses are mu
h the same.Parametri
 BTF Tiles Rendering on 3D Obje
tTill this point the performan
e of the proposed method was expressed mainly in termsof mean average error. In this se
tion the synthesised BTF data are mapped on 3D tri-angulated obje
t to enable subje
tive visual 
omparison of the obtained results. In thes
ope of this thesis we have used 3D model of Mer
edes Class-C interior by 
ourtesy ofDaimler-Chrysler and Bonn University. The 
ar armrest in Fig. 8.15 is 
overed by eighttested BTFs approximated by means of the proposed model. The �rst 
olumn representsarmrest 
overed by the original tiled BTF measurements, while the se
ond 
olumn repre-sents BTF data approximated using the one-lobe LM and �nally the third 
olumn depi
tsthe armrest 
overed by the BTF data obtained using the proposed polynomial extensionof one-lobe Lafortune model (PLM). A

ording to graphs in Fig. 8.5 the images in these
ond 
olumn were dim and less 
ontrast loosing information in dark parts as it is ap-parent for example for foil01 material in 
omparison with the original BTF data in the�rst 
olumn. On the other hand, observation of the third 
olumn show 
lear improvementof the previous drawba
ks and the images are more or less visually indis
ernible from theoriginal in the �rst 
olumn.Fig. 8.17 shows part of 
ar gearbox 
overed with four BTFs approximated by means ofall proposed re
e
tan
e models. The �rst row shows original BTF tiling, the se
ond rowshows result of one-lobe LM, the third row shows results of proposed PLM, the fourth rowshows 
lustered variant PLM-C and the last row shows PLM-C result for view interpolationonly. The result of PLM-C variant on 
ar gearbox for di�erent illumination angles is shownin Fig. 1.1. Fig. 8.4 depi
ts two di�erent examples of 
ar interior 
overed with seven BTFsapproximated again using PLM-C. The results of proposed PLM-C model are 
ompared
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e Modelswith the results of probabilisti
 2D CAR BTF model in Figs. 9.2 and 9.3.Note that in the presented examples it is not used any shading method and the visualappearan
e is produ
ed by a 
ombination of the BTF images, 
orresponding to the lightand 
amera position, on ea
h obje
t polygon.8.3.2 Modelling of the Re
e
tan
e Model ParametersAn alternative solution to parameter tiling is their synthesis by means of probabilisti
 im-age synthesis algorithm. Chapter 7 des
ribes the following three di�erent Markov random�eld based probabilisti
 texture models: 3D Causal Auto-Regressive model, 2D CausalAuto-Regressive model and Gaussian-Markov Random Field model. These sto
hasti
models enable synthesis preserving important statisti
al properties of the original textureimage.The estimated Lafortune parametri
 images 
an be 
onsidered as texture images andthus they 
an be synthesised by means of these sto
hasti
 models. The main motivation ofthis parametri
 images modelling is a huge 
ompression ratio of the probabilisti
 modelsand parametri
 image synthesis of unrestri
ted size.There are �ve Lafortune parametri
 images 
orresponding to parameters �;Dx;Dy;Dz ; nfor ea
h 
olour 
hannel resulting in �fteen parametri
 planes in total. For the 
orre
tsynthesis all these planes have to be synthesised simultaneously to guarantee the 
orre-sponden
e of the individual stru
tural features. We synthesised the parametri
 imagesof one-lobe Lafortune model for two di�erent materials foil02 and wood02 by means ofall three probabilisti
 models introdu
ed in Chapter 7. The obtained examples of BTFimages 
omputed from the synthesised parametri
 images (
orresponding to the individualprobabilisti
 texture models GMRF, 3DCAR, 2DCAR respe
tively) are shown in Fig. 8.16.Although this approa
h seems to be a promising way of 
ompression and modelling ofthe Lafortune parametri
 images there are several pra
ti
al problems whi
h are not solvedyet. One of them is the synthesis time so the only way to use this modelling approa
his using hardware implementation. The next problem is preserving of the stru
ture ele-ments 
orresponden
e in parametri
 images synthesised in the individual synthesis passesfor di�erent view positions. Unlike the re
e
tan
e BTF model the probabilisti
 modelsare driven by a Gaussian white noise generator so that the individual synthesised images
an di�er 
onsiderably. The most straightforward solution 
an be using the same noisevalues for ea
h Rv's parameter synthesis. Moreover, the probabilisti
 models 
annot pre-serve regular stru
ture of the original pattern suÆ
iently so they are suitable mainly formaterials with irregular stru
ture as , e.g., wood, leather, et
. as it is shown in Fig. 8.16.8.4 Summary of the Re
e
tan
e Models for BTF ModellingAppli
ation of the re
e
tan
e models to BTF modelling is one of the most 
ommon ap-proa
hes whi
h 
an yield very realisti
 results. One 
an 
ompare results of the proposedPLM model with the original BTF tiles as applied on a part of 
ar gearbox in Fig. 8.17.The �gure 
ompares original BTF measurement mapped on 
ar gearbox with results ofall re
e
tan
e models dis
ussed in this 
hapter. These kind of BTF models 
an take ad-vantage of steadily in
reasing power of graphi
s hardware enabling to perform relatively
omplex pro
essing of individual verti
es and fragments of the textured obje
t surfa
e. Sothe pixel-wise re
e
tan
e models 
an be easily implemented in su
h a way, however their
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Figure 8.15: Part of a 
ar armrest 
overed using BTF when only view angle interpolation is used.The �gure in
ludes the tiled original BTF data (�rst 
olumn), the results of one-lobe LM (se
ond
olumn), the result of the proposed one-lobe PLM (third 
olumn) and results of the proposedone-lobe PLM-C (fourth 
olumn) for eight di�erent materials: fabri
01, fabri
02, foil01, foil02,knitted wool, leather02 wood01, wood02.



108 Chapter 8. BTF Modelling Using Re
e
tan
e Models

Figure 8.16: BTF images from the Lafortune parametri
 images obtained by probabilisti
 syn-thesis. The �gure shows the Lafortune parametri
 images estimated from the original BTF images(�rst row), the original BTF images (se
ond row), the BTF images obtained from the Lafortuneparametri
 images synthesised using GMRF model (third row), 2DCAR model (fourth row) and3DCAR model (�fth row), respe
tively, for materials: foil02 and wood02.
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Figure 8.17: A part of Mer
edes C-
lass gearbox 
overed using four BTFs: foil01, wood01 andfoil02, wood02. The �rst row illustrates using of original tiled BTF data, the se
ond row depi
tsapproximation using one-lobe LM, the third row is result of proposed one-lobe PLM model, thefourth row shows result of proposed 
lustered PLM-C model and the last row shows result of fastPLM-C with view angles pixel-wise interpolation only.
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e
tan
e Modelsperforman
e is tightly related to their 
omplexity and kind of mathemati
al fun
tionsinvolved. Nowadays, the pixel-wise BTF re
e
tan
e models 
an be rendered in real-timeframe-rates but an additional problems o

ur when the rendering of 
omplex VR s
enes isrequired 
ontaining large number of distin
t materials. This is quite 
ommon requirementfor example in 
omputer aided design or safety simulation systems where preservationof a real material appearan
e is essential. Fig. 8.4 depi
ts two distin
t examples of 
arinterior 
overed by seven di�erent BTFs. The total memory requirements for the storageof all these materials are 119MB so they 
an be eÆ
iently stored in GPU for fast BTFrendering of simpler VR s
enes. However, the rendering of more 
omplex VR s
enes 
on-taining tens of di�erent materials be
omes time 
onsuming due to two main reasons. The�rst is non-zero time of the pixel-wise re
e
tan
e model 
omputation with ne
essary BTFinterpolation and the se
ond lies in loading-time of the re
e
tan
e model parameters intographi
s hardware memory. Thus the number of model parameters and their representa-tion is a 
ru
ial problem of all pixel-wise BTF re
e
tan
e models. However, a redu
tionof model parameter number leads to 
ompromised visual quality of obtained results. Forinstan
e the BTF data 
ompression ratio of the most advan
ed BTF models is about 1100with the resulting size of 10MB in average per material. The following main drawba
k ofthe re
e
tan
e models is their inability to synthesise BTF image of arbitrary size withoutadditional image synthesis methods as for instan
e image tiling presented in this thesis.So the resolution of the synthesised BTF images is limited by the resolution of the originalBTF measurements.
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Figure 8.18: Two partial examples of 
ar interior modelling (Mer
edes-Class C). Images il-lustrate seven di�erent materials: wood01, wood02, foil01, foil02, fabri
01, fabri
02, leather02approximated by means of proposed PLM-C BTF model.



Chapter 9Results Veri�
ation and Testing9.1 Probabilisti
 BTF Models Veri�
ationProbabilisti
 BTF model results veri�
ation is a diÆ
ult problem. All probabilisti
 BTFmodels presented in this thesis are based on some kind of MRF model - GMRF, 2DCAR,3DCAR. However, these MRF models are sto
hasti
 models whi
h do not produ
e exa
t
opy of an original texture but its a

urate approximation. The original texture is sub-stituted by the analyti
ally synthesised texture preserving the major statisti
al propertiesof the original. The quality of this representation depends on 
hosen model type and itsinitial parameters as is the support set shape and size, dire
tion of movement on imagegrid, et
.. For this reason any di�erential metri
 based on pixel-wise image 
omparisonbetween original and estimated texture image does not make sense. Unfortunately, norobust method is available yet for 
omputation of this similarity. Thus the only knownway is to 
ompare the overall visual similarity of two textures by an independent viewer.There were several attempts of texture similarity metri
s de�nition in the past as, e.g., thework of Julezs [46℄ whi
h suggested similarity measure based on the se
ond order statis-ti
al moments. However, this promising method was questioned later by the same authorin [48, 47℄ sin
e many 
ounter-examples of proposed similarity measure failure have beenshown. Another method based on the same assumption but using third order statisti
swas introdu
ed in [125℄. Although, this method seems to be robust, it 
an only de
idewhether two texture images are identi
al or not, thus the method does not provide anysimilarity measure. So it is 
lear that till today there is no algorithm available providinga

eptable texture similarity measure. The only possible way of 
omparing two textureimages is based on subje
tive visual observation. To provide reliable similarity results bymeans of visual observation we build up a relatively large group of voting observers. How-ever, this is beyond the s
ope of this thesis. Moreover, these tests should be performedfor all pro
essed BTF materials 
omprehending hundreds of distin
t synthesised results.Thus we 
ompared all results in this thesis a

ording to subje
tive visual observation ofa small group of the department 
olleagues. Despite the dependen
e on personal observer'spreferen
es this method provides satisfa
tory results as 
an be seen on examples in Fig. 9.2and Fig. 9.3.In the 
ase of BTF synthesis all synthesised subspa
e images had to be 
omparedwith the 
orresponding set of original 
luster representatives, i.e. 15-25 
ouples of 
olourimages. The ranking priority was set to emhasise preservation of 
olour hues as well asthe mesostru
ture of the material. 112



9.2: Re
e
tan
e BTF Models Veri�
ation 1139.2 Re
e
tan
e BTF Models Veri�
ationUnlike MRF BTF models the veri�
ation of the proposed re
e
tan
e BTF models is mu
heasier, sin
e the overall stru
ture of the material together with its original lo
alisationis preserved. Therefore we 
an employ di�erential measure between individual pixels oforiginal and approximated texture image. We used a mean average error (MAE - see(8.14)) 
omputed for individual BTF images. Fig. 9.1 illustrates the MAE 
ourse forknitted wool re
e
tan
e �eld Rv� �v = 60o; �v = 54o. Ea
h point on the 
urves representsone illumination position for �xed view position. The MAE is 
omputed in ea
h pointwith respe
t to (8.14) between original BTF image and its approximation using the LMand PLM.
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Figure 9.1: Mean Average Error for knitted wool re
e
tan
e �eld Rv � �v = 60o; �v = 54o.
The �nal BTF data veri�
ation is performed when original BTF data and their approx-imation by proposed BTF model are mapped onto the same test 3D obje
t and visually
ompared for the same view and light positions as is depi
ted in Fig. 9.2, Fig. 9.3 andFig. 1.1.During our experiments it be
ame 
lear that no ideal BTF model exists. MRF probabilisti
BTF models yield utmost data 
ompression while produ
ing 
ompromised visual qualityresults for some materials. Whereas the models based on re
e
tan
e models or BTFfa
torisation have ex
ellent visual quality almost indis
ernible from originals, their memoryrequirements are still too high for 
omplex s
ene rendering. Moreover, in 
ontrast toproposed MRF models the re
e
tan
e models 
an only reprodu
e original BTF, thus onehas to deal with BTF enlargement by means of some additional modeling method.For these reasons the type of optimal BTF model should be 
hosen 
arefully a

ordingto appli
ation purpose depending on bandwidth of used graphi
s hardware, speed of BTFrendering, quality requirements, data 
ompression, et
.. For example, in game industry'sVR systems there is no need to have so a

urate material re
e
tan
e approximation asin VR systems aimed to 
ar or ar
hite
tural interior design or for safety simulation inautomotive or airspa
e industry. Moreover, the BTF rendering speed is a 
ru
ial fa
torfor real-time simulations, where di�erent BTF models than are suitable for instan
e forhigh quality rendering appli
ations and so on.



114 Chapter 9. Results Veri�
ation and Testing

Figure 9.2: Comparison of measured BTF with two proposed BTF models. First image showstiled original BTF measurements of foil01 and wood01 materials mapped on part of 
ar gearbox.Following images show results of proposed polynomial extension of Lafortune re
e
tan
e model(PLM) (se
ond) and probabilisti
 BTF model based on 2D CAR subspa
e MRF modelling (third).
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Figure 9.3: Comparison of measured BTF with two proposed BTF models. First image showstiled original BTF measurements of foil02 and wood02 materials mapped on part of 
ar gearbox.Following images show results of proposed polynomial extension of Lafortune re
e
tan
e model(PLM) (se
ond) and probabilisti
 BTF model based on 2D CAR subspa
e MRF modelling (third).



Chapter 10Con
lusions and Future WorkThe main obje
tive of this thesis was development of novel Bidire
tional Texture Fun
tion(BTF) models enabling high BTF data 
ompression and their fast rendering being suitablefor dire
t hardware implementation, while the major visual 
hara
teristi
s of approximatedBTF are preserved.10.1 Contributions of the ThesisIn this thesis we present an overview of BTF 
ompression and modelling methods publishedup to now and propose two novel BTF modelling approa
hes with several 
orrespondingBTF models:� Probabilisti
 BTF models based on a set of the following underlying texturemodels:{ 2D 
ausal autoregressive model{ 3D 
ausal autoregressive model{ Gaussian-Markov random �eld model� Polynomial extension of pixel-wise re
e
tan
e BTF modelDuring development of these BTF models a variety of image pro
essing, statisti
al and
omputer graphi
s methods were employed to develop two di�erent BTF data pro
essingpipelines 
onsisting of BTF analysis, 
ompression and modelling, synthesis and visualisa-tion of synthesised BTF results on 3D obje
ts.We should emphasise that no ideal BTF model 
an be 
laimed the best. Ea
h BTFmodel has its advantages and disadvantages and is tailored for di�erent appli
ation and /or kind of approximated material. In the following text we shortly des
ribe and 
omparethe both BTF modelling approa
hes proposed in this thesis, dis
uss their pros and 
onsand proper appli
ation areas.In the �rst proposed BTF modelling approa
h we a
tually published the �rst genera-tive BTF models. This approa
h is based on statisti
al analysis of BTF subspa
e imagesby means of several Markov random �eld multi-s
ale models. BTF subspa
e images areobtained using BTF segmentation. Based on to these MRF parameters the novel sub-spa
e images are synthesised with 
orresponding spe
tral and spatial information. Thesesubspa
e images are �nally interpolated with respe
t to a
tual view and illumination di-re
tion and for rough materials also 
ombined with surfa
e height information by means116
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ement mapping �lter. Surfa
e height information is enlarged using imagequilting method and the underlying MRF model enables synthesis of subspa
e images inarbitrary resolution so the resolution of syntheti
 BTF is a
tually limited only by hard-ware limits. Due to the model's inherited sto
hasti
 
hara
ter these methods 
an notexa
tly reprodu
e BTF spatial patterns lo
ations as it is 
ommon for re
e
tan
e mod-els. For regular materials the regularity has to be introdu
ed into the model by meansof surfa
e height information. Our test results prove extreme BTF data 
ompression ra-tio of the proposed BTF model simultaneously with very realisti
 visual quality. Somesyntheti
 BTF textures reprodu
e given measured images so that both the natural andsyntheti
 textures are visually almost indis
ernible and even the worst results 
an be usedfor preliminary BTF texturing appli
ations at the least. These models enable huge BTF
ompression ratio unattainable by any other BTF 
ompression method (� 1105 ). Similarlyto the se
ond proposed re
e
tan
e BTF model, this kind of models enables also very fastBTF synthesis and rendering implemented in graphi
s hardware.Advantages:� extreme 
ompression ratio � 1105 ,� synthesis of BTF of arbitrary size,� fast BTF synthesis implementable in GPU (2D CAR model),� mip mapping for free due to a multi-s
ale nature of the model,� possibility of BTF approximation from spare set of BTF images.Disadvantages:� 
ompromised visual quality for highly non-Lambertian or translu
ent materials,Appli
ation �eld:� 
omputer games industry or other VR appli
ations running on low-end hard-ware o�ering satisfa
tory BTF approximation 
apturing its most apparent visualfeatures.The se
ond proposed BTF modelling approa
h is based on polynomial extension ofpixel-wise Lafortune re
e
tan
e model 
omputed for individual spe
tral 
hannel of ev-ery pixel. The advantage of this model 
onsists in using only one re
e
tan
e lobe whilethe remaining �tting is done by means of polynomial extension of one-lobe Lafortunemodel. Using of one-lobe model 
onsiderably redu
es the number of model parameterswhi
h have to be stored. Moreover, the memory requirements of introdu
ed polynomial
oeÆ
ients are negligible in 
omparison to Lafortune parameters. Proposed re
e
tan
emodel has similar 
omputational requirements as pixel-wise Lafortune model while us-ing only few additional linear operations so it 
an be easily implemented in graphi
shardware. To in
rease the model's BTF 
ompression ratio even more we introdu
e a 
lus-tering variant whi
h enables ratios � 12�102 whereas the 
omputational requirements re-main similar. Due to the fa
t that the original Lafortune model itself 
an not enlargeBTF to arbitrary size our generalisation applies a simple image quilting of Lafortuneparametri
 images. The results of this model show its ex
ellent performan
e for alleight tested BTFs even for materials with 
ompli
ated underlying stru
ture produ
ingstrong subsurfa
e s
attering e�e
ts, e.g., in the 
ase of two kinds of la
quered woods.Advantages:� ex
ellent visual quality for all tested materials,� fast BTF synthesis implementable in GPU,� moderate 
ompression ratio � 12�102 .



118 Chapter 10. Con
lusions and Future WorkDisadvantages:� in
ludes additional method for enlargement of synthesised BTF images,� time 
onsuming o�ine parameters estimation and 
lustering.Appli
ation �eld:� professional VR systems (CAD) with high requirements on visual quality anda

ura
y.An overall visual 
omparison of both proposed modelling methods to original BTF isgiven in form of a VR s
ene showing a part of 
ar gearbox (see Fig. 9.2 and Fig. 9.3).The images demonstrate high visual quality of both proposed BTF approa
hes as well asprin
ipal di�eren
es between probabilisti
 and pixel-wise re
e
tan
e BTF models, whi
his apparent mainly in part of the obje
t 
overed by BTF of smooth la
quered wood.Attributes of the individual BTF modelling approa
hes implemented in the s
ope of thisthesis are 
ompared in Tab. 10.1.Table 10.1: A 
omparison of the proposed BTF modeling methods attributes.Tiling PLM-C GMRF 3D CAR 2D CAR
ompression ratio 13 1102 1105 1105 1105seamless enlargement Y Y Y Y Yanal./synt. separated Y Y Y Y Yblo
k-wise pro
essing Y Y N Y YGPU implementation Y Y N Y- Yparallel synthesis N Y Y Y Yunseen data N Y- Y Y Y
10.2 Future Resear
hEven though both proposed BTF modelling methods enable fast and visually 
orre
t BTFmodelling, several problems remain to be solved in this resear
h �led to enable wider useof BTFs.� BTF interpolation for arbitrary view/illumination dire
tion is ne
essary forprodu
ing of BTF renderings without visible seams. However, this is 
ostly opera-tion whi
h 
an take the same time as enumeration of BTF model and 
onsequently
onsiderably prolongs the rendering pipeline.� A

ura
y of BTF data is limited in 
ontemporary BTF databases. This is 
ausedby limited a

ura
y of roboti
 sample holder and the re
ti�
ation pro
edure itself.However, new methods of BTF measurement should solve this problem in near fu-ture.� BTF standards are not suggested or developed yet, be
ause there is no standard-ised BTF 
ompression or modelling method agreed upon. This may be due to therelative novelty of BTF and its 
omplexity, whi
h allows so far only development



119of methods pre
isely tailored to required appli
ation and hardware/software plat-form. Owing to this reason there is not 
ommon 
ommer
ial or publi
 domain BTFrenderer available yet.� Obviously there is vast spa
e of other possible statisti
al models (not only MRFs)whi
h 
an be investigated for BTF modelling purposes.Although the Bidire
tional Texture Fun
tion is a novel resear
h area and BTF is notused yet as a standard material des
ription in 
omputer graphi
s its potential is veryhigh as it enables relatively fast photo-realisti
 modelling of simpler virtual reality s
enes.With 
ontinually developing BTF measurement systems and graphi
s te
hniques as wellas in
reasing 
omputational power it is obvious that the number of possible BTF appli
a-tions will in
rease 
onsiderably in near future and BTF modelling will add a new level ofperfe
tion to 
ontemporary virtual reality systems.
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Appendix A
Proposed Probabilisti
 Models' ResultsBTF material: fabri
01

BTF material: fabri
02
BTF material: wool

Figure A.1: Bump-mapping (left) in 
omparison with proposed 2D CAR probabilisti
BTF model on part of 
ylinder lighted from left and right respe
tively.129
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BTF material: foil01
BTF material: foil02

BTF material: leather02
Figure A.2: Bump-mapping (left) in 
omparison with proposed 2D CAR probabilisti
BTF model on part of 
ylinder lighted from left and right respe
tively.



Appendix B
Proposed Re
e
tan
e Models' ResultsSee other page.
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e
tan
e Model Results

Figure B.1: Part of a 
ar armrest 
overed with BTF when only view angle interpolation is used.Tiled original BTF data (�rst 
olumn), results of one-lobe PLM (se
ond 
olumn) and one-lobePLM-C (third 
olumn) for eight di�erent materials: fabri
01, fabri
02, foil01, foil02, knitted wool,leather02 wood01, wood02.



Appendix C
Contents of the En
losed CDWith this thesis is en
losed a CD 
omprising:� HTML presentation of proposed BTF model's results. This do
ument is also avail-able on html://www.utia.
as.
z/RO/demos/dt_jf/dt_jf.html.� Animations of 
ar interior parts 
overed with results of the proposed BTF modelsfor varying view and illumination dire
tions.� Ele
troni
 version of this do
ument in PDF format.
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