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Abstract. The highest fidelity representations of realistic real-world
materials currently used comprise Bidirectional Texture Functions (BTF).
The BTF is a six dimensional function depending on view and illumina-
tion directions as well as on planar texture coordinates. The huge size
of such measurements, typically in the form of thousands of images cov-
ering all possible combinations of illumination and viewing angles, has
prohibited their practical exploitation and obviously some compression
and modelling method of these enormous BTF data spaces is inevitable.
The proposed approach combines BTF spatial clustering with cluster in-
dex modelling by means of an efficient Markov random field model. This
method allows to generate seamless cluster index of arbitrary size to cover
large virtual 3D objects surfaces. The method represents original BTF
data using a set of local spatially dependent Bidirectional Reflectance
Distribution Function (BRDF) values which are combined according to
synthesised cluster index and illumination / viewing directions. BTF
data compression using this method is about 1 : 100 and their synthesis
is very fast.

1 Introduction

Recent progress in graphics hardware computational power finally enables fast
and visually realistic rendering of virtual reality models that until recently was
impossible. Such realistic models require, among others, natural looking textures
covering virtual objects of rendered scene. Applications of these advanced texture
models in virtual reality systems now allow photo-realistic material appearance
approximation for such complex tasks as visual safety simulations or interior
design in automotive/airspace industry or architecture.

For the aim of such advanced applications a smooth textures lit by reflectance
models alternatively combined with bump-mapping are not able to offer correct
and realistic reproduction of material appearance. This is caused due to inherited
complexity of many materials whose rough structure produces such visual effects
as self-shadowing, masking, inter-reflection or subsurface scattering. The one way
to capture these material’s attributes is using much more complex representation
of a rough or 3D texture called Bidirectional Texture Function (BTF). BTF is
a six dimensional function depending on view and illumination directions as
well as on planar texture coordinates as illustrated in Fig.1. This function is
typically acquired in the form of several thousands images covering varying light



and camera directions. However, a huge size of measured BTF data prevents
their usage in any useful application so introduction of some fast compression
and modelling method for BTF data is inevitable.

The majority of results in the BTF area deal mainly with compression. They
are based either on eigen-analysis of BTF data space [1–4] or on applications of
pixel-wise reflectance models [5–8]. Although these methods can provide reason-
able compression ratios ( 1

20−
1

200 ) and visual quality, their main drawback is that
they do not allow arbitrary size BTF synthesis, i.e. the texture enlargement.

To solve this problem additional BTF enlargement methods are necessary.
Unfortunately there are not many BTF enlargement approaches available. A
majority of the available methods are based either on simple texture repetition
with edge blending or on more or less sophisticated image tiling methods [9–12]
and they can be adapted also for BTF synthesis, e.g., [13].

Finally a group of probabilistic BTF models was recently proposed [14], [15].
These methods allow unlimited texture enlargement, BTF texture restoration,
huge BTF space compression and even modelling of previously unseen BTF data.
They are based on rough BTF segmentation in a space of illumination and view-
ing directions. The individual clusters representatives are BTF images closest to
cluster centers, which are combined with estimated range-map in bump-mapping
filter for required illumination and viewing angles. Although these methods reach
huge impressive compression ratios they sometimes compromise visual quality
for certain materials. In this paper we present a novel BTF model enabling

Fig. 1. Relationship between illumina-
tion and viewing angles within texture
coordinate system.

Fig. 2. Illumination directions (i = 1 . . . 81)
in used BTF data. Viewing directions (v =
1 . . . 81) are the same.

seamless enlargement of BTF data. The overall scheme of the proposed model
is illustrated in Fig.3. The method starts with normal-map estimation of the
underlying material surface using photometric stereo. The estimated normal-
map N is enlarged to the required size using probabilistic MRF model. In the
following step the original BTF data are clustered in the spatial planar space.
The results are cluster representatives C and cluster index I, which is used for
new cluster index IS generation up to the size of synthesised normal-map NS .
This enlargement exploits matching between estimated N and synthesised NS

normal-maps and BRDFs at neighbouring spatial locations.
This paper is organised as follows. The spatial BTF data segmentation is de-

scribed in Section 2, the surface geometry estimation (normal-map) is described



Fig. 3. The overall scheme of the proposed BTF enlargement method.

in Section 3. The surface geometry synthesis using MRF model is subject of
Section 4, while the final BTF data enlargement step is described in Section 5.
Following sections show results of the proposed model, discuss its properties and
conclude the paper.

2 BTF Space Segmentation

BTF data employed in this study were measured at the Bonn University [16]. We
used BTFs of two different types of lacquered wood. Each dataset comprises 81
viewing positions nv and 81 illumination positions ni (see Fig.2) resulting into
6551 images with resolution (rectified measurements) 800 × 800. To decrease
computational demands of the following BTF clustering step an image tiling
approach was applied. The method [12] finds sub-optimal paths in original data
to cut required set of contactable BTF tiles. In our experiments only one BTF
tile per material was used.

The input to our algorithm is such a seamless BTF tile in the form of ni nv

illumination/view dependent images of size nx×ny. A vector of BTF values for a
fixed planar position will be called local BRDF and denoted as BRDF in scope of
this paper. In the first preprocessing step all BTF images were converted to CIE
Lab perceptually uniform colour space and only data from luminance channel
L was used in data vector. The following K-means clustering was performed in
the nx×ny planar space corresponding to individual pixels of BTF. Each pixel
represents BRDF of surface geometry at a planar location (x, y). The clustering
distance function is:

d(x, y, i, v, k) =
nv∑

v=1

ni∑
i=1

|B(i, v, x, y)−C(k, i, v)| cos θv , (1)

where B(i, v, x, y) is the corresponding BTF value, C(k, i, v) are cluster centers
and i = 1 . . . ni and v = 1 . . . nv are illumination and viewing directions of
the original BTF data (see Fig.2), respectively. The view elevation angle cosine
accommodates the shortening of surface emitting area. The clustering results
in the index array I(x, y) ∈ 1 . . . nc and the set of nc cluster representatives



C(k, i, v) of the size nc × 3ninv corresponding to the closest colour BRDFs
to cluster centers. Note that the individual colour BRDFs representing cluster
centers C correspond to representative set of material locations bearing the most
distinct appearance over the BTF tile. Results of the proposed BTF clustering
(nc = 256) mapped on 3D object in comparison with original BTF data mapping
are shown in the first two rows of Fig.6.

3 Surface Geometry From BTF

In order to find smooth spatial representation of the cluster index I for a fur-
ther enlargement by means of MRF model we used normal-map describing a
geometry of the original material surface. For this purpose the standard photo-
metric stereo technique [17] was applied. This approach is advantageous since
the BTF data comprises number of images with fixed viewpoint and variety of
defined illumination source directions. As we have much more than three differ-
ent light positions we used overdetermined photometric stereo. All directions to
light sources are ordered in rows of matrix L and corresponding pixel intensity
for different illumination directions are ordered to the vector E(x, y). Then sur-
face normal-map N of BTF tile at each pixel was computed by means of the
least-squares fitting

N(x, y) =
(LT L)−1LT E(x, y)
||(LT L)−1LT E(x, y)||

. (2)

Alternative approach using range-scanner is costly and does not allow satisfac-
tory measurement of textile materials due to laser beam scattering in material
structure.

4 Probabilistic Normal-Map Modelling

The smooth texture model based on MRF 3D causal auto-regressive (CAR)
model [18, 19] was applied to normal-map modelling. The overall scheme of the
3D CAR MRF model is depicted in Fig.4. As an input of the model was image
of size N ×M = 512× 512 generated by repetition of the seamless normal-map
tile estimated in the previous step.

Fig. 4. The overall 3D CAR smooth model scheme.



4.1 Spatial Factorisation

Input tiled normal-map Ȳ• (the notation • has the meaning of all possible
values of the corresponding index) is decomposed into a multi-resolution grid
and each resolution data are independently modelled by their dedicated CAR
models. Each one generates a single spatial frequency band of the normal-map.
An analysed normal-map is decomposed into multiple resolutions factors using
Laplacian pyramid and the intermediary Gaussian pyramid Ÿ

(k)
• which is a

sequence of images in which each one is a low-pass down-sampled version of its
predecessor. The Gaussian pyramid for a reduction factor n is

Ÿ (k)
r =↓n

r (Ÿ (k−1)
•,i ⊗ w) k = 1, 2, . . . , (3)

where Ÿ
(0)
• = Ȳ•, ↓n denotes down-sampling with reduction factor n and ⊗

is the convolution operation. The convolution mask based on weighting func-
tion (FIR generating kernel) w is assumed to execute separability, normalisa-
tion, symmetry and equal contribution constrains. The FIR equation is then
Ÿ

(k)
r =

∑l
i,j=−l ŵiŵj Ÿ

(k−1)
2r+(i,j). The Laplacian pyramid Ẏ

(k)
r contains band-pass

components and provides a good approximation to the Laplacian of the Gaussian
kernel. It can be constructed by differencing single Gaussian pyramid layers:

Ẏ (k)
r = Ÿ (k)

r − ↑n
r (Ÿ (k+1)

• ) k = 0, 1, . . . , (4)

where ↑n is the up-sampling with an expanding factor n.

4.2 3D Causal Auto-Regressive Model

Multi-spectral normal-map was in the previous step decomposed into a multi-
resolution grid and each resolution data is modelled independently by inde-
pendent Gaussian noise driven 3D CAR MRF model that enable simultaneous
modelling of all resolution factors.

Let the normal map Y is indexed on a finite rectangular three-dimensional
N ×M × 3 underlying lattice I, where N ×M is the image size. Let us denote
a simplified multi-index r to having two components r = {r1, r2, r3}. The first
component is a row index, the second one is a column index and the third is a
normal vector index, respectively. Ir specifies shape of the contextual neighbour-
hood (CN) around the actual index r = {r1, r2, r3}. Causality is fulfilled when
all data obtained from CN are known (not missing pixels).

From this causal CN the data are arranged in a vector Xr = [Y T
r−s : ∀{s} ∈ Ic

r ]T .
The (CAR) random field is a family of random variables with a joint proba-

bility density on the set of all possible realisations Y of the M ×N × 3 lattice
I, subject to the following condition:

p(Y |Θ,Σ−1) = (2π)−
3(MN−1)

2 |Σ−1|
(MN−1)

2 (5)

exp

{
−1

2
tr

{
Σ−1

(
−I
ΘT

)T

ṼMN−1

(
−I
ΘT

)}}
,



where I is identity matrix, Θ is parameter matrix, Σ is covariance matrix of
Gaussian white noise and

Ṽr−1 =
(

ṼY Y (r−1) Ṽ T
XY (r−1)

ṼXY (r−1) ṼXX(r−1)

)
. (6)

The used notion is ṼAB(r−1) =
∑r−1

k=1 AkBT
k .

Simplified notation r, r−1, . . . denotes the multi-channel process position in
I, i.e., r = {r1, r2, r3}, r− 1 is the location immediately preceding {r1, r2, r3},
etc. A direction of movement on the underlying image sub-lattice is common
rows scanning. The data from model history obtained during adaptation are
denoted as Y (r−1).

The 3D CAR model can be expressed as a stationary causal uncorrelated
noise driven 3D autoregressive process:

Yr = ΘXr + er , (7)

where Θ = [A1, . . . , Aη] is the 3 × 3η parameter matrix and η = card(Ic
r) ,

Ic
r is a causal CN, er is a Gaussian white noise vector with zero mean and a

constant but unknown covariance matrix Σ.

4.3 Parameter Estimation

There are two matrices, the parameterer matrix Θ̂r and the noise covariance
matrix Σ̂r, to estimate / update in each step, i.e., CN shift on image lattice.
Owing to the model causality and the normal-Wishart parameter prior single
CAR model parameters (8),(9) can be estimated analytically [19]. The parameter
matrix estimate is

Θ̂T
r−1 = V −1

XX(r−1)VXY (r−1) , (8)

while the covariance matrix estimate is

Σ̂r−1 =
λ(r−1)

β(r)
, (9)

where λ(r) = VY Y (r) − V T
XY (r)V

−1
XX(r)VXY (r), VAB(r−1) = ṼAB(r−1) + VAB(0)

and matrices VAB(0) are the corresponding matrices from the normal-Wishart
parameter prior. The estimates (8),(9) can be also evaluated recursively if nec-
essary. Where the β(r) = β(0) + r − 1 represents number of model movements
on image plane (β(0) > 1).

4.4 Normal-Map Synthesis

The CAR model synthesis is very simple and the Markov random field can be
directly generated from the model equation (7) with respect to CN data vector
Xr and the estimated parameter matrix Θ̂r using a multivariate Gaussian white-
noise generator. The fine-resolution normal-map is obtained from the pyramid
collapse procedure, which is inverse process to the spatial factorisation (3),(4)
described in Section 4.1. The comparison of synthesised normal-maps NS with
their originals N is illustrated in the first row of Fig.5.



5 New Cluster Index Synthesis

New cluster index IS is obtained by row-wise scanning of synthesised normal-map
NS . For each normal in the NS the nk closest normals from normal-map N of
original BTF tile is determined with respect to the Euclidean metric between two
unite vectors. However, this approach alone is unsatisfactory because it allows
ambiguous normals assignment owing to the material surface. For instance, a
normal vector pointing straight upwards can represent either a peak or a valley
on the surface. Thus, if a new index is created only based on normal matching
the resulted enlarged BTF images are very noisy, while the synthesised structure
of normal-map is considerably suppressed. To improve a spatial continuity of
generated new cluster index we used information of surface height, occlusion
and masking of surface points which is hidden in colour BRDFs of individual
stored clusters C. Individual cluster indices corresponding to candidate normal
k from N are obtained from the same (x, y) location from I as is the spatial
location of the normal k. From obtained nk normal candidates from the original
index I the optimal one k∗ is chosen that minimise distance D between the
candidate’s BRDF and the BRDFs of its surrounding pixels at the locations
(x, y − 1) and (x− 1, y) from the causal neighbourhood in IS (10)

k∗ = arg min
k=1...nc

(D(I(xk, yk), IS(x, y − 1)) + D(I(xk, yk), IS(x− 1, y))) . (10)

To speed up this process a mutual distances between each couple of nc clusters
is precomputed (11) and stored in a form of matrix D of size nc × nc

D(a, b) =
nv∑

v=1

ni∑
i=1

|C(a, i, v)−C(b, i, v)| cos θv . (11)

The (xk∗ , yk∗) position in new index IS is obtained by means of IS(x, y) =
I(xk∗ , yk∗) using the clusters indices from original index I. Proposed matching
scheme incorporates such effects as masking and occlusions and together with
normals matching enable reliable and perceptually correct spatial ordering of
individual clusters in new enlarged index IS . Additionally, this ordering enforces
continuity constraint by placement of the similar BRDFs into neighbouring po-
sitions in generated cluster index IS .

For BTF rendering from the proposed model the cluster representatives C
and synthesised cluster index IS have to be stored enabling compression ratio
approximately 1

100 (for nc = 256). The required BTF value is obtained as

BTF (x, y, i, v) = C(IS(x, y), i, v) .

An example of BTF images synthesised from the model for both tested materials
compared with original BTF tiles is shown in the second row of Fig.5.

6 Results

The proposed method was applied to BTF enlargement of two different types
of smooth lacquered wood. The original BTF tile of wood01 have size 122 ×



Fig. 5. The first row: Estimated normal tiles (small) and their synthesised counterparts
(large) for wood01 (left) and wood01 (right). The second row: clustered BTF tiles
for θi = 15o, φi = 180o, θv = 0o, φv = 0o (small) and corresponding BTF images
synthesised using enlarged cluster index IS (large).

125 and for wood02 it is 137 × 142. The size of synthesised normal-maps and
subsequently index arrays was for both the materials 300×300. Example of single
planar BTF image enlarged by the proposed method is shown in the second row
of Fig.5. Comparison of the enlarged BTF data mapped on 3D object with
original BTF tile mapping is shown in Fig.6. The interpolation for arbitrary
(non-measured) illumination and viewing angles was performed by means of
barycentric coordinates [20]. The time demands of the analytical part of the
proposed method are not too important since the BTF segmentation, normal-
map estimation and synthesis and finally estimated and synthesised normals
matching are offline tasks. The most time-consuming part of the method is BTF
tile clustering that takes approximately one hour when using nc = 256 clusters
for BTF tile of wood02, while the remaining analytical steps are much faster,
depending on the size of original and required normal-map. For BTF tile of
wood02 and required new cluster index IS size 512×512 it takes several seconds
only. All experiments were performed on PC Athlon 1.9GHz, 2GB RAM. A
compression ratio of the proposed method for 256 clusters is approximately 1

100 .

7 Summary and Conclusions

This paper proposes new technique for seamless BTF data enlargement. The
method strictly separates analytical offline part from the fast possibly real-time
synthesis part of the modelling process. The BTF clustering allows to trade-off
compression ration and visual quality. The method shows the best performance
for spatially random i.e. non-regular types of BTFs such as the tested lacquered



Fig. 6. Results of the proposed BTF data enlargement method mapped on 3D object
(third row) in comparison with one original BTF tile mapping (first row) and its
segmentation into nc = 256 clusters (second row) for two kinds of lacquered wood.

wood or leather, etc. The method enables fast seamless BTF data enlargement
to arbitrary size with minimal additional storage requirements since the number
of clusters is fixed.
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