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Abstract

Textural appearance of many real word materials is not
static but shows progress in time. If such a progress is spa-
tially and temporally homogeneous these materials can be
represented by means of dynamic texture (DT). DT mod-
elling is a challenging problem which can add new quality
into computer graphics applications. We propose a novel
hybrid method for colour DTs modelling. The method is
based on eigen-analysis of DT images and subsequent pre-
processing and modelling of temporal interpolation eigen-
coefficients using a causal auto-regressive model. The pro-
posed method shows good performance for most of the
tested DTs, which depends mainly on the properties of the
original sequence. Moreover, this method compresses sig-
nificantly the original data and enables extremely fast syn-
thesis of artificial sequence, which can be easily performed
by means of contemporary graphics hardware.

1 Introduction

Dynamic or temporal textures (DT) can be defined as
spatially repetitive motion patterns exhibiting stationary
temporal properties and have also indeterminable spatial
and temporal contents. Water surface, fire or straw in the
wind can serve as typical DT examples. A video sequence
as basic representation of DTs has finite duration. This fea-
ture limits the use of DTs in virtual reality systems of any
kind so temporally unconstrained modelling of DT is a chal-
lenging problem concerning such research areas as com-
puter vision, pattern recognition and computer graphics.

According to the application area we can classify [1]
published works on DT to recognition, representation or
synthesis, respectively. The DT synthesis is obviously the
most difficult one and there are only few papers on this topic
available, which can be roughly divided in three major cat-
egories.

The first category of DT synthesis approaches use statis-
tical auto-regressive models. Szummer in [11] used spatio-

temporal causal auto-regressive model for DT modelling.
His implementation has high computational demands and
assumes stationarity of the input DT sequence. In the work
of Soatto [10] there is proposed a DT model based on auto-
regressive moving average process. The model is applied on
responses of dimensionality reduction filter based on SVD.
However, the model use time consuming iterative gradient
descent method for parameters estimation and, similarly to
the previous approach it is restricted to mono-spectral DTs
only.

The second category of methods is based on synthesis
of parametric transformation of original data. In [12] there
is presented a generative mono spectral DT model based
on moving object structure modelling and their trajectories
by means of dictionary containing Gabor bases for particle
elements and Fourier bases for wave elements. The syn-
thesis of short DT sequence using this method takes several
minutes. Similar problem occurs in the approach of Joseph
[4] based on a combination of spatial steerable pyramid and
temporal wavelet transformation.

Finally, the last category of DT synthesis methods use
video editing techniques. Schödl et al. [9] suggested
method generating “video textures”, i.e., DTs of arbitrary
length. The method is based on searching for transition
points where the video can be looped back on itself ad-
ditionally with blending and morphing techniques. This
method shows good results for many colour video se-
quences, not necessarily textures, however works only if
a pair of similar-looking frames can be found, which can
be problem when observing fluids such as fire, smoke etc.
The further extension of this idea was done by Kwatra et al.
[5] who represented DT by several 3D spatio-temporal tex-
ture patches with mutually optimal spatio-temporal seams.
The seams are computed in temporal neighbourhood of es-
timated transition points. This method enables fast synthe-
sis of new DT, with relatively high storage requirements of
the computed patches. Wei [13] used tree-structured vector
quantization for DT synthesis. Although such a synthesis is
visually almost perfect, the algorithm require tens of second



per one frame. Modelling of DTs using pixel-wise polyno-
mials was mentioned in [6].

The main goal of this paper is to propose straightfor-
ward colour DT modelling method with low computational
demands enabling extremely fast synthesis of arbitrarily
long DT sequence. The method, illustrated on Fig.1, is
based on combination of input data dimensionality reduc-
tion using eigen-analysis (Section 2) and modelling of re-
sulted temporal coefficients (Section 3) by means of auto-
regressive model. Section 4 describes synthesis of new DT
sequence while Section 5 illustrates and discusses results of
the method with the conclusions in Section 6.

2 Dynamic Texture Eigen-Analysis

RGB pixels of individual images from the DT sequence
are arranged into normalised column vectors forming ma-
trix C (n× t) where n is number of pixel values n = 3MN
depending on the image resolution M ×N , t is a number of
DT colour learning frames (t � n) and µC is a mean image
of the sequence. From the matrix C a covariance matrix A
(t×t) is created including spatial and spectral correlation of
the DT sequence according to A = CT C. The resulted ma-
trix A is decomposed using singular value decomposition
A = UDUT [2] where U is orthogonal matrix of eigen-
vectors and D is diagonal matrix of corresponding eigen-
numbers sorted in ascending order. From matrix U only a
number k of eigen-vectors fulfilling k < t � n is preserved
in the matrix Ũ corresponding to eigen-numbers bearing the
most of the information (see Tab.1). Using Û = CŨD̃,
where D̃ = diag{σ−

1
2

1 , . . . , σ
− 1

2
k }, we obtain the matrix

of eigen-images Û ordered into k columns of the length n.
Finally the course of temporal mixing coefficients of indi-
vidual eigen-images Û for all frames from the original DT
sequence is computed using M = ÛT C. Only the matrix
M (k × t) is a subject of further processing and modelling
as it is explained in the following sections.

3 Temporal Features Analysis
The matrix M contains time behaviour of eigen-image

temporal coefficients of the original DT sequence length.
However, the data of such a length (typically 250 frames)
are insufficient to learn our statistical model. Moreover the
data often show spatial discontinuity between successive
images in DT sequences of very fast processes, and con-
sequently between corresponding temporal coefficients in
M. For this purpose we performed the interpolation of in-
dividual temporal coefficients separately by means of cubic
splines [8]. This simple technique enables us to obtain ar-
bitrarily smooth interpolation between columns of M, i.e.,
individual frames of the original DT. As a result of this
preprocessing step generating s additional frames between

each pair of original ones we obtain the enlarged matrix M̂
of size k × L where L = s(t− 1) + t.
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Figure 1. Scheme of the proposed dynamic
texture hybrid model.

Modelling of all smoothed temporal coefficients of the
matrix M̂ was done simultaneously by means of Gaussian
noise driven causal auto-regressive (CAR) model. The ad-
vantage of the CAR models is that they can be solved, un-
der several additional and acceptable assumptions, analyti-
cally. Let the matrix M̂ represents a finite rectangular two-
dimensional underlying lattice I (k×L). Let us denote a r
as index in time axis of matrix M̂. The CAR random field
is a family of random variables with a Gaussian probability
density on the set of all possible realizations Y of the lattice
I , subject to several conditions [3]. The CAR model can be
expressed as a stationary causal uncorrelated noise driven
autoregressive process:

Yr = Γ(r−1)Xr + Er , (1)

where Γ (k × kh) is the parameter matrix with h denoting
the length of the causal neighbourhood Ic

r , i.e., how many
positions in history is taken into account for creating of de-
sign data vector during each shift of r on lattice I , Er is a
Gaussian white noise vector with zero mean and a constant
but unknown covariance matrix Σ (k×k) and Xr is a cor-
responding vector of Yr−h collecting previously generated
data from Ic

r .
Parameter estimations (2),(4) of the CAR model using

the Bayesian method and the normal-Wishart parameter
prior can be found analytically. The CAR model parame-
ter matrix [3] is

Γ̂T
r−1 = V−1

XX(r−1)VXY(r−1) (2)

where the used notion is Ṽ∆Ω(r−1) =
∑r−1

i=1 δiω
T
i ,

Ṽr−1 =
(

ṼYY(r−1) ṼT
XY(r−1)

ṼXY(r−1) ṼXX(r−1)

)
, (3)

where Vr−1 = Ṽr−1 + V0 matrix V0 is the matrix
derived from the normal-Wishart parameter prior [3].
The Gaussian noise variance matrix is defined as

Σ̂r−1 = Λ(r−1)/β(r) , (4)



where β(r) represents number of model movements in M̂
β(r) = β(0) + r − 1 , β(0) > 1 and

Λ(r) = VYY(r) −VT
XY(r)V

−1
XX(r)VXY(r) . (5)

4 Dynamic Texture Synthesis

The CAR model synthesis is very simple, new tempo-
ral mixing coefficients of individual eigen-images can be
directly generated from the model equation (1) using the
model parametric matrix Γ̂ (k × hk). and a multivariate
Gaussian generator with estimated noise variance Σ̂ (k×k).
A new DT frame Ĉr (vector of size n) is obtained as a lin-
ear interpolation of k individual eigen-images Û according
to synthesised temporal coefficients Yr = [yr,1, . . . , yr,k]
synthesised from the CAR model

Ĉr = [Γ̂(r−1)Xr]T Û + µC = YrÛ + µC . (6)

Both the synthesis of new temporal coefficients and the fol-
lowing eigen-images interpolation can be done even faster
using features of contemporary graphics hardware. More-
over, this technique enables significant compression of the
original DT data, typically of the ratio between 1

5 and 1
10 ,

depending on the length and the character of DT sequence.
After several thousand of synthesised steps the DT frames
can converge to a mean image of the original sequence or
become unstable. To solve this problem the original esti-
mated model parameters Γ̂, Σ̂ can be iteratively reloaded for
the infinite DT synthesis.

5 Results and Discussion

As a source of test data we used the dynamic texture data
sets from DynTex texture database [7] and one data set from
MIT [11]. Each DT sample is typically represented by 250
RGB images. For testing purposes we down-sampled these
data to resolution 200×150. As a test sequences were cho-
sen fire, boil, escalator, smoke and straw.

Robust and reliable similarity comparison between two
static textures is still unsolved problem up to now. More-
over, when we switch to the dynamic textures the complex-
ity of comparison between original and synthesised DT se-
quence increase even more. We proposed two statistical DT
similarity measures: either original DT images with syn-
thesised ones (A) or the original underlying temporal coef-
ficients with those synthesised (B).

For (A) we computed pixel-wise mean value and vari-
ance both resulting into corresponding mean and variance
images of original and synthesised DT (see Fig.2). Ad-
ditionally we compared averaged means and variances of
24 Gabor features (6 orientations and 4 scales, filter vari-
ance σ = 1.2 pixels) through all DT images in CIE Lab
space of original and synthesised sequence as it is shown in

fire boil escalator smoke straw

Figure 2. The mean (rows 1,2) and variance
(rows 3,4) images comparison of original
(rows 1,3) and synthesised DT (rows 2,4).

Tab.2. The table shows differences of averaged Gabor fea-
tures (means and variances) between the first and the sec-
ond part of the original DT (O), between original DT and
results of its eigen-analysis (E), and between original and
synthesised DT (S). From the table we can see that the av-
erage difference between Gabor coefficients caused by di-
mensionality reduction was significantly higher than addi-
tional difference caused by synthesis of the resulted tempo-
ral coefficients. For (B) we computed averaged mean value

Table 1. Difference of the averaged mean and
variance for all original temporal coefficients
of DT (E) and their synthesis (S).

model params. Dµ(M) Dσ(M)

DT k h s 1
2

- 2
2
E E-S 1

2
- 2
2
E E-S

fire 18 2 10 3.91 40.82 1.1·107 1.5·107

boil 25 1 22 2.23 22.56 4.8·104 3.3·105

escal. 25 1 5 25.92 14.73 1.1·106 1.1·106

smoke 25 1 7 9.08 46.45 7.1·105 5.9·105

straw 17 2 34 3.35 6.26 1.5·105 3.4·105

and variance through all temporal coefficients with results
figured in Tab.1. The table shows that average mean and
variance values of spline interpolation of PCA temporal co-
efficients M̂ (E) and their synthesis (S) are similar. The
only significant difference for boil DT was probably caused
by fitting of AR model to the different temporal frequencies
than those presented in the original DT which are actually
very fast causing clear spatial discontinuities between indi-
vidual frames. This table includes also optimal numbers of
eigen-components k, length of model history h and interpo-
lated extra frames s for individual DTs. The comparison of
original DT frames with those being synthesised is shown in
Fig.3. Distance between frames of individual DTs is chosen
to show the most of the DT’s dynamics and the 5th synthe-
sised image shows always the 300. synthesised frame.

Analysis time of the original DT was ∼3 minutes. Syn-



thesis of a new DT sequence is very fast∼60 frames/s using
SW implementation on the PC Athlon 2GHz.

Table 2. Averaged Gabor features statistics
comparing original DT frames (O), eigen-
analysed (E) and synthesised (S) frames.

Dµ(C) Dσ(C)

DT 1
2

- 2
2
O O-E O-S 1

2
- 2
2
O O-E O-S

fire 0.86 1.53 1.60 1.29 2.22 2.63
boil 0.45 4.32 3.23 0.46 4.66 3.37
escalator 0.57 1.22 1.58 0.59 0.93 1.52
smoke 1.37 2.05 2.47 1.25 2.01 2.08
straw 0.40 1.91 2.16 0.33 1.73 1.98

6 Conclusions

A novel method for fast synthesis of dynamic multi-
spectral textures was proposed. The method is based on
probabilistic modelling of temporal coefficients resulted
from input data dimensionality reduction step. The pro-
posed approach enables extremely fast synthesis of arbitrary
number of multi-spectral frames, which can be efficiently
performed by contemporary graphical hardware. Moreover,
the proposed analytical estimation of model parameters is
very fast and this approach enables DT synthesis in variable
temporal scales.
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