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Abstract

Although computer graphics uses measured view and illumination dependent data to achieve realistic digital reproduction of real-

world material properties, the extent of their utilization is currently limited by a complicated acquisition process. Due to the high

dimensionality of such data, the acquisition process is demanding on time and resources. Proposed is a method of approximate

reconstruction of the data from a very sparse dataset, obtained quickly using inexpensive hardware. This method does not impose

any restrictions on input datasets and can handle anisotropic, non-reciprocal view and illumination direction-dependent data. The

method’s performance was tested on a number of isotropic and anisotropic apparent BRDFs, and the results were encouraging.

The method performs better than the uniform sampling of a comparable sample count and has three main benefits: the sparse data

acquisition can be done quickly using inexpensive hardware, the measured material does not need to be extracted or removed from

its environment, and the entire process of data reconstruction from the sparse samples is quick and reliable. Finally, the ease of

sparse dataset acquisition was verified in measurement experiments with three materials, using a simple setup of a consumer camera

and a single LED light. The proposed method has also shown promising performance when applied to sparse measurement and

reconstruction of BTFs, mainly for samples with a lower surface height variation. Our approach demonstrates solid performance

across a wide range of view and illumination dependent datasets, therefore creating a new opportunity for development of time and

cost-effective portable acquisition setups.
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1. Introduction1

View and illumination dependent data can be beneficial in2

many computer graphic applications, due to their ability to dig-3

itally represent the actual appearance of respective material.4

However, their measurement is costly and time-consuming, be-5

cause standard acquisition procedures of such data often require6

lengthy measurements, or either a specific shape of the mea-7

sured sample or a dedicated measurement setup. Bidirectional8

reflectance distribution function (BRDF) [25], spatially varying9

BRDF (SV- BRDF) and bidirectional texture function (BTF) [3]10

are examples of such data. While a four-dimensional BRDF de-11

scribes distribution of energy reflected to the viewing direction12

when illuminated from a specific direction, a six-dimensional13

SVBRDF additionally captures the spatial dependency of re-14

flectance across a material surface. While BRDF and SVBRDF15

impose restrictions on reciprocity, opacity and a range of sam-16

ple height variations, the six-dimensional BTF generally does17

not fulfill these restrictions. This is due to local effects in a18

rough material structure such as occlusions, masking, subsur-19

face scattering, and inter-reflections.20

Therefore, individual BTF pixels are not regarded as BRDF21

but rather apparent BRDF (ABRDF). If we process individ-22
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Figure 1: Parameterization (left) of view and illumination-dependent data of a

single/average pixel (right).

ual color/spectral channels separately, the ABRDF can be rep-23

resented by a four-dimensional function ABRDF(θi, ϕi, θv, ϕv).24

ABRDF is the most general data representation of a reflectance25

of opaque materials dependent on local illumination I(θi, ϕi)26

and view V(θv, ϕv) directions; therefore, we focus on its proper27

acquisition and reconstruction in this paper. Its typical param-28

eterization by elevation θ and azimuthal ϕ angles is shown in29

Fig. 1-left. A projection of the 4D ABRDF, representing de-30

pendence of view and illumination directions of a single pixel31

(BTF) or its average value (BRDF) by means of a 2D image, is32

shown in Fig. 1-right. Note that individual rectangles (an exam-33

ple is shown in red) represent 2D subspaces of 4D ABRDF at34

constant elevations (θi/θv). These subspaces are toroidal. That35

is data of the highest ϕ ≈ 2π are followed by data of the lowest36

ϕ ≈ 0.37
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Main contributions of this paper:

• a reconstruction method of the entire anisotropic ABRDF

space from less than two hundred sparsely measured sam-

ples

• a practically verified novel method for intuitive and fast

ABRDF acquisition and reconstruction using a consumer

camera and LED light in under 10 minutes.

38

Main features of the proposed method:

• a correct reconstruction of non-reciprocal, energy non-

conserving ABRDF data

• an arbitrarily dense sampling of specular highlights, with-

out increasing measurement time

• no need for lengthy measurement using a dedicated and

expensive measurement setup

• not necessary to process or extract the measured sample

from its environment

• contrary to analytical BRDF models, this method requires

neither a lengthy fitting procedure nor guessing at initial-

ization values.

39

This paper is structured as follows: Section 2 sets work in40

the context of related research. Section 3 explains the princi-41

ple of the proposed method. Section 4 shows results of per-42

formed experiments. The method’s limitations are discussed in43

Section 5, and pilot project results of the real data acquisition44

scenario are shown in Section 6. Section 7 shows experimen-45

tal reconstruction of BTF samples, and Section 8 concludes the46

paper.47

2. Prior Work48

The proposed work relates to methods of BRDF or SVBRDF49

acquisition and interpolation from sparse samples.50

Such data were initially captured by setups based on go-51

nioreflectometers realizing a required four mechanical degrees52

of freedom (DOF) of camera/light/sample movement [12], [29].53

Because measurement times were too long, setups were used54

which reduced the required number of DOF using parabolic55

mirrors [4], or kaleidoscope [10]. They allowed the capture56

of many viewing directions simultaneously; however a limited57

range of surface height or elevation angles resulted. Measure-58

ment time can also be reduced by using multiple lights and sen-59

sors simultaneously [20]; yet, high financial cost is associated60

with such a setup. Another group of fast acquisition methods61

reduces the number of DOF by using a known shape of the62

sample [19], [32], [17], [23], [13]. However, these approaches63

are often limited to isotropic BRDFs, or focus on represent-64

ing sparsely sampled data using a parametric BRDF model.65

There is an existing statistical acquisition approach [22] allow-66

ing quick and economical measurement of ABRDF; however, it67

requires several samples of material with regular structure, po-68

sitioned in different orientations with respect to the camera. Un-69

fortunately, methods [22],[23] require a specific sample shape70

or placement coupled with its extraction from the original envi-71

ronment. Isotropic SVBRDF can also be estimated from pho-72

tometric stereo using a parametric reflectance model [9] or bi-73

variate BRDF [1]. Finally, it is possible to use portable setups74

measuring SVBRDF by matching sparsely locally measured75

isotropic BRDFs (using condenser lens optics) with sparsely76

measured global reflectance fields [6]. Another approach records77

SVBRDF from a single view using 1 DOF-moving linear light78

source and a set of known BRDF samples recorded simultane-79

ously with the sample [27]. Recently, sparse SVBRDF mea-80

surement and reconstruction have been used based on the mea-81

surement of several images of known geometry illuminated by82

a circularly polarized light [8]. Although this method requires83

the capture of only four sample images, its usage is limited to84

flat and isotropic measurements and it requires a complex mea-85

surement setup.86

View and illumination dependent data interpolation is of-87

ten performed when sparse images of known geometry and il-88

lumination direction are recorded. Reflectance data collected89

from such images can be interpolated either by a parametric90

reflectance model [17], or in the form of isotropic BRDFs in-91

terpolated by means of three-dimensional radial basis functions92

[32] in achieving a reconstruction of SVBRDF. Alternatively, a93

4D BRDF can be decomposed into simpler 1D and 2D compo-94

nents having physical meaning, to allow parametric editing of95

visual properties [16].96

However, to the best of our knowledge, no measurement97

technique yet exists enabling rapid capture of anisotropic ABRDF98

using an consumer camera and light. Proposed is a method99

for fast, non-restricted anisotropic ABRDF space reconstruc-100

tion from extremely sparse samples that can be measured in a101

few seconds by continual movement of the camera and light.102

Contrary to parametric BRDF models [24] or other simplified103

solutions (see Fig. 2), this method is capable of correctly recon-104

structing non-reciprocal, non-energy-conserving ABRDF data.105

Figure 2: A comparison of renderings based on a single texture modulated by

an analytical BRDF model [14] (left), reference BTF measurements using 6561

images (middle), and the proposed sparse data selection and reconstruction us-

ing 168 images (right).
106

Although the principle of the method has been outlined in107

[7], this paper provides additional thorough reasoning of the108

method’s functionality. In addition, an introduction to a novel109

interpolation technique for missing elevations, results of real110

appearance acquisition, and the method’s application on sparse111

reconstruction of BTF datasets are included.112

3. The Proposed Reconstruction Method113

A robust and sparse acquisition of general view and illu-114

mination dependent appearances is a tricky task. While a po-115

sition of specular highlights can be expected near the mirror116

reflection, the location of anisotropic highlights is unknown. It117
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depends on the local macro-geometry as well as on the micro-118

geometry of the measured surface. In our work we look for a119

very sparse set of illumination/view measurement points. They120

should allow a visually tolerable reconstruction of material re-121

flectance, as well as a quick measurement of the sparse dataset122

using simple inexpensive hardware. There would be no need to123

preprocess the measured material sample or remove it from its124

environment.125

Standard angularly uniform or even adaptive sampling strate-126

gies require many samples to preserve high frequencies in the127

data. On the other hand, employing analytical BRDF models128

imposes restrictions on data reciprocity and requires lengthy129

fitting, etc. Therefore, we analyzed a typical ABRDF and em-130

ployed this knowledge to capture and reconstruct its behavior131

using a small set of measurements. This analysis has shown that132

it is most effective to place samples perpendicularly to specular133

highlights in a subspace of view/illumination azimuths. This134

is done in such a way that the samples form slices in the sub-135

space and can be easily measured by horizontal movement of136

the light/camera around the measured sample. As the appear-137

ance of the azimuthal subspaces often depends on elevation an-138

gles, to create a more precise approximation we suggest sam-139

pling four combinations of view/illumination elevations.140

A principle of the proposed method [7] is explained in Fig. 3.141

First, the material’s ABRDF (Fig. 3-a) is sparsely measured in

orig. data             8 slices          reconstruction     interpolation

(a)                    (b)                     (c)              (d)

Figure 3: Example of ABRDF reconstruction: (a) original, (b) sparse-sampling

using 8 slices, (c) reconstructions of elevations where the slices were measured,

(d) missing data interpolation.

142

four subspaces by means of eight slices (Fig. 3-b), then the143

missing values in these subspaces are reconstructed from the144

values of the slices (Fig. 3-c), and lastly the remaining values at145

non-measured elevations are interpolated (Fig. 3-d).146

3.1. Acquisition of Slices147

Because one of our major concerns is the simplicity and148

speed of the acquisition process, we suggest taking samples by149

the continuous movement of light/camera around the sample at150

fixed elevations. By doing so, samples can be taken at an ar-151

bitrary density, limited only by camera movement speed and152

frame-rate. Each subspace of azimuthal angles ϕi/ϕv is sam-153

pled by means of two perpendicular slices (see Fig. 5-a), which154

differ in the direction of mutual movement of camera and light.155

In principle, the slices are, for a majority of the materials, or-156

thogonal to their most prominent features: a specular reflection157

and an anisotropic reflection (see Fig. 4). These features are of-158

ten constant in the direction perpendicular to the slices and thus159

can be effectively represented by their marginal values.160

The slice aligned with the direction of the specular high-161

lights is called axial slice sA (red), i.e., ϕv − ϕi = α holds162

for azimuthal angles. The axial slice records the material’s163

anisotropic properties (mutual positions of the light and cam-164

era are fixed while the sample rotates (see Fig. 14-left)), i.e.,165

its value is almost a constant for near-isotropic samples.166

The slice perpendicular to the highlights is called diagonal167

slice sD (blue), i.e., ϕi+ϕv = 2π holds for azimuthal angles. The168

diagonal slice captures the shape of the specular peaks (light169

and camera travel in mutually opposite directions over the sam-170

ple (see Fig. 14-right)).171

a) b)

Figure 4: Examples of ABRDF toroidal subspaces for derivation of optimal

placement of the axial slices (green and red alternatives).

We focused first on analysis of the ABRDF subspace hav-172

ing the highest elevations, in which the illumination and view173

dependent effects are the most pronounced. See in the first row174

of Fig. 7. The azimuthal difference of light and camera during175

axial slice measurement – α influences the placement of slices176

in the ABRDF toroidal subspace; therefore, we analyzed opti-177

mal placement of axial and diagonal slices across a number of178

ABRDFs. The study has shown that while the placement of a179

diagonal slice can be arbitrary, the highest variance along axial180

slices is achieved near the specular highlight. Consequently,181

this is – most likely – the best placement of the axial slice182

α = 180o (green dots in Fig. 4). However, such a placement183

might omit vital color/luminance information in some parts of184

the subspace. For example, it would completely miss yellow185

anisotropic features as in Fig. 4-a or dark parts as in Fig. 4-b.186

Therefore, we used the slice with the second highest variance187

α = 15o (red dots in Fig. 4) to eliminate occlusion of the camera188

with the light and capture most visual features of the ABRDF189

subspace (see the shift of the red axial slice from image diago-190

nal in Fig. 5-a).191

For experimental purposes the slices can be taken from the192

measured ABRDF (Fig. 5-a) as193

sA,θiθv (ϕi) = ABRDF(θi, θv, ϕi, ϕv = ϕi + α) , (1)

sD,θiθv (ϕv) = ABRDF(θi, θv, ϕi = 2π − ϕv, ϕv) .

3.2. Reconstruction from slices194

ABRDF toroidal subspace reconstruction is performed for195

elevation angles at which the slices were captured. It can be196

explained as a combination of two slices (i.e., sets of marginal197

values) as shown in Fig. 5. The reconstruction of point198

ÂBRDF(θi, θv, ϕi, ϕv) in ABRDF subspace starts with combin-199

ing contributions of the sA and sD slices. We tested their sum200

and product; however, the latter improperly enhanced the loca-201

tions at intersections of the specular and anisotropic highlights202

as shown in Fig. 6-b. Note that the sum of slice contributions203

(see Fig. 6-c) preserves specular highlights, which are less af-204

fected by the anisotropic highlights. Therefore, we finally used205

the sum of slices in our reconstruction procedure:206

vθiθv (ϕi, ϕv) = sA,θiθv (ϕi,R) + sD,θiθv (ϕv,R) , (2)
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(a)                  (b)                 (c)                 (d)

Figure 5: Reconstruction of a toroidal ABRDF subset from two slices at fixed

elevations: (a) reference data with slice placements, (b) data profiles in the

slices, (c) reconstruction from slices ( π
4

rotated), (d) final reconstruction.

[

ϕi,R

ϕv,R

]

=

[

cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

] [

ϕi

ϕv

]

.

(a) (b) (c)

14.0 / 20.9 / 21.7 9.6 / 12.2 / 26.5

Figure 6: Original subspace (a), and its reconstructions using product of

slices (b) and sum of slices (c). Below are the difference values in: CIE ∆

E / RMSE / PSNR[dB].

Note that the original azimuths ϕi, ϕv had to be rotated for207

π/4 (Fig. 5-c) to account for the slant of slices with respect to208

the ϕi, ϕv coordinate system (Fig. 5-a). Finally, the summed209

value v is mapped to a dynamic range of original slices210

ÂBRDF(θi, θv, ϕi, ϕv) = vθiθv (ϕi, ϕv) · (M − m) + m , (3)211

m = min(sA,θiθv∪sD,θiθv ) M = max(sA,θiθv∪sD,θiθv ) .(4)212

Since the axial slice always has a constant value for isotropic213

samples, the slices do not have to be combined and reconstruc-214

tion can be performed using the diagonal slice alone as215

ÂBRDF(θi, θv, ϕi, ϕv) = sD,θiθv (ϕv,R) . (5)216

Fig. 7 shows a reconstruction of anisotropic ABRDF sub-217

space at elevations θi/θv = 75o/75o (the second row) from two218

slices (the third row) and prove the ability of the proposed ap-219

proach to represent a variety of anisotropic materials.

alu corduroy fabrics d. fabrics l. leather d. leather l. Lego wood wool

Figure 7: Comparison of the material’s ABRDF toroidal subspace at elevation

75o (the first row), with its reconstruction (the second row) from the axial (red)

and diagonal (blue) slices (the third row).220

3.3. Interpolation of missing values221

At this point, sparse acquisition and reconstruction of the222

ABRDF subspace has been explained. However, the selection223

of elevations at which the slices are measured significantly in-224

fluences the final ABRDF reconstruction. Therefore, we per-225

formed an experiment with two measured ABRDFs (isotropic226

specular and diffuse anisotropic material) in order to find the227

proper combination of two elevations at which the four sub-228

spaces should be measured. We tested six different combina-229

tions of elevations. Only samples from these illumination/view230

elevations were used for the entire ABRDF interpolation us-231

ing radial basis functions [26]. The average RMSE differences232

between ground-truth ABRDF data and interpolation shown in233

Fig. 8 suggest that the combination of θ = 45o/75o provides234

the lowest reconstruction error. Therefore, we have chosen

Figure 8: ABRDF reconstruction error (RMSE) for different elevation combi-

nations used for selection of four measured subspaces.

235

the highest elevation angles θi = θv = 75o, where the specu-236

lar reflections are the most intensive (see first row of Fig. 12).237

The lower elevation angles were decreased to θi = θv = 30o
238

(the second best choice from Fig. 8) for better representation239

of material appearance at orthogonal viewing and illumination240

directions, which are the most visually salient. More than these241

four subspaces can be used at the expense of more camera/light242

elevations; however, this would increase the number of sam-243

ples and the complexity of their measurement. Finally the four244

subspaces at the following elevations were sampled: θi/θv =245

30o/30o, 75o/75o, 30o/75o, 75o/30o,).246

However, data for the remaining subspaces are still unknown247

and have to be estimated. The BRDF parametric models, e.g.,248

[23], cannot be used to solve this problem because they impose249

restrictions on data properties (reciprocity, energy conservation,250

etc.), require many more samples or a different distribution of251

samples, and lengthy fitting. They also depend on initial values.252

We tried to fit measured samples using the anisotropic paramet-253

ric BRDF model [14]. Due to a low number of samples and254

their distribution we were unable to find a stable parameter fit255

for most of the tested ABRDFs. Moreover, these models are256

not designed to handle non-reciprocal ABRDF data. Therefore,257

we tested the following two interpolation approaches:258

Method A – In the first one, the interpolation was performed259

by means of the four-dimensional radial basis functions [26]260

computed separately in each color channel. We tested several261

parameterizations of illumination and viewing directions, e.g.,262

[θi, ϕi, θv, ϕv], [θh, ϕh, θd, ϕd] from [28], and finally used param-263

eterization according to [11], applied to both illumination and264

view directions [αi, βi, αv, βv]. This parameterization has shown265

the lowest reconstruction error due to alignment of specular266

highlights 0o value of angle βi.267

Method B – Due to relatively high computational demands of268

Method A, we developed a faster hybrid linear interpolation269

constrained by a reflectance model. This interpolation consists270
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of two steps shown in Fig. 9. First we interpolate data at dif-271

ferent viewing and constant illumination elevations. Then the272

remaining illumination elevations are filled. In each interpo-

known 

elevation

interpolated 

elevation

Step 1 Step 2

Figure 9: Steps of the interpolation approach A.
273

lation step, the average ABRDF value for each unknown ele-274

vation was approximated by fitting a simplified monospectral275

one-lobe Lafortune model [15] with parameters k,α to known276

slice values277

fr(k, α) = k(cos θi · cos θv)α . (6)278

Initialization of k, α was constant during all experiments. Val-279

ues obtained from the model at elevations θ are scaled by the280

mean values of the slices and then used for obtaining inter-281

polation weights. These weights are then applied for a linear282

interpolation of missing elevations from slice values at known283

elevations as shown in Fig. 10. Elevations lower than 30o are284

extrapolated using the scaled model’s (6) predictions. This pro-285

cedure is performed over all azimuthal directions as shown in286

Fig. 9.

model’s fit

scaled model

actual slice values

slice’s mean values

interpolated slice values

R
e
fl
e
c
ta

n
c
e
 v

a
lu

e

known values

computed values

Figure 10: An interpolation of non-measured elevation values.
287

Method A is approximately three times more computation-288

ally intensive than Method B and provides better results in most289

cases. While Method A allows arbitrarily dense sampling, even290

for originally unmeasured azimuthal directions, Method B re-291

constructs ABRDF data in their original azimuthal sampling.292

The results in Fig. 11 show the major visual differences be-293

tween both proposed interpolation methods in two illumination294

environments.295

We also tested modification of this step-wise interpolation296

of subspaces (Fig. 9) using a displacement interpolation (de-297

noted as BD) method [2]. Compared to the weighted linear298

interpolation (Method B), its principle is based on solving the299

generalized mass transport optimization problem. As this method300

cannot extrapolate, the low elevation areas were reconstructed301

using Method B. Method BD gives better results than Method302

B and comparable results to Method A. The whole subspace in-303

terpolation is about thirty times slower than Method A, while304

when view or illumination direction is fixed, i.e., individual305

lines in subspaces are interpolated separately, its speed com-306

pares to Method A. For this reason we have not used Method307

BD further in the paper.308

Although both global (A) and local (B) interpolation ap-309

proaches provide similar visual quality (see more discussion310

in Section 4), we believe their performance can be further im-311

proved, e.g., using estimated height-map as an interpolation312

constraint.313
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Figure 11: A comparison of the interpolation methods performance in

grace and st.peters illumination environments [5] . Below are the CIE

∆E / PSNR[dB] / SSIM / VDP2 difference values.

4. Results of Simulated Measurement314

In this section we show results of sparse reconstruction ex-315

periments performed on isotropic BRDF and anisotropic ABRDF316

data. The data served as a source of sparse sampling and were317

simultaneously used for evaluating reconstruction quality of the318

method.319

Generally, the angular resolution used in all experiments in320

this paper was 81 view ×81 illumination directions (6561 val-321

ues) [29] distributed uniformly over the hemisphere (Fig. 1) To322

sample this resolution in the slices of the proposed method we323

need only 168 samples to obtain information sufficient for data324

reconstruction.325

In the first experiment, we tested our method on reconstruc-326

tion of 55 isotropic BRDF samples (resampled to 81 × 81 di-327

rections) from the MERL BRDF database [19]. The advantage328

of isotropic reconstruction is that only four diagonal slices sD329
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have to be obtained (in our case 84 samples instead of the 168330

needed for anisotropic data). Mean reconstruction errors of all331

55 BRDFs (8bits/channel) were: CIE ∆E=9.1, RMSE=15.7,332

and PSNR= 24.9 [7].333

In the second experiment, ten BTF samples (nine from Bonn334

University BTF database1 and one from Volumetric Surface335

Texture Database2) were used (aluminum profile, corduroy, dark336

and light fabrics, dark and light leatherettes, lacquered wood,337

knitted wool, upholstery fabric Proposte, and Lego). These ma-338

terials, due to their rough structure and often non-opaque prop-339

erties, exhibit anisotropic effects of occlusions, masking, sub-340

surface scattering and therefore represent a challenging dataset341

to test the proposed method. All BTF pixels were averaged to342

obtain the average ABRDF of the material (first row of Fig. 12).343

The results of the complete reconstruction of original ABRDFs344

from 168 sparse samples are shown in Fig. 12. Together with345

difference images (10× scaled) and reconstruction errors in terms346

of CIE ∆E, RMSE, PSNR, these results show that even a very347

sparse set of measured values can provide promising recon-348

struction of such challenging anisotropic datasets. Although on349

average both interpolation approaches performed similarly, the350

difference images in Fig. 12 show that the global interpolation351

Method (A) estimated incorrect values for elevations between352

the two sampled elevation values (30o and 75o). On the other353

hand, Method (B) gives, due to a lack of global knowledge, the354

worst estimation for extrapolated elevations. That is, elevations355

smaller than 30o as represented by the first few rows/columns356

in the images. Finally, the displacement interpolation – Method357

BD scored similarly to Method A. The reconstruction and inter-358

polation of a single ABRDF from 168 samples take ≈1 second359

using interpolation Method A, ≈0.3 second using Method B,360

and ≈1 second using Method BD on Intel Xeon 2.7GHz (using361

3 cores).362

To validate the contribution of our method, we compared363

its reconstruction performance using 168 samples with the uni-364

form sampling of a similar samples count. For this purpose,365

hemispheres of illumination and viewing directions were sam-366

pled by means of 13×13 samples, producing a total of 169 sam-367

ples. Then the missing values in the ABRDF space were inter-368

polated from these sparse samples by means of four-dimensional369

radial basis functions [26] (Method A). The interpolation was370

computed separately in each color channel, and 0 ≈ 2π discon-371

tinuity has been avoided using the onion parameterization of372

illumination and view directions [11]. Comparison of ten inter-373

polated ABRDFs (see Fig. 13) has shown that the proposed re-374

construction method has a better performance than the interpo-375

lation from uniform samples, mainly near specular highlights,376

as confirmed by the objective criterion values shown below the377

reconstructions. On average, the proposed reconstruction pro-378

vides 1.4 and 3.2 lower ∆E /RMSE values and 1.8 higher PSNR379

value across ten tested ABRDFs. Moreover, the data acquisi-380

tion process using our method is considerably faster and less381

demanding on hardware as shown in Section 6.382

1http://btf.cs.uni-bonn.de/
2http://vision.ucsd.edu/kriegman-grp/research/vst/

5. Limitations383

The limitations of the proposed method are threefold. First,384

since the method restores reflectance at given elevations only385

from two orthogonal slices, it cannot reliably capture features386

that are not orthogonal to the slices (see second example of387

corduroy in Fig. 7). It must also be noted that the proposed388

slices represent a very sparse sampling of the azimuthal sub-389

space and as such, can omit some reflectance features, resulting390

in a slightly different color/brightness appearance of the recon-391

structed data. To avoid this problem, the azimuthal subspace392

can be sampled by additional slices at the cost of slightly longer393

acquisition times. Second, the interpolation step of the algo-394

rithm expects monotonicity of reflectance values across differ-395

ent illumination and view elevations. However, this condition396

is rarely invalid and no such behavior was experienced with any397

of the tested materials. The method’s accuracy can be further398

improved in this respect by taking more slices at different eleva-399

tions. Finally, highlights of extremely specular samples are not400

always represented accurately enough (see Fig. 19) mainly due401

to an insufficient angular sampling of azimuthal angles (step402

15o) in original datasets used in the experiments. Note that the403

sampling density along specular highlights in diagonal slices404

can be arbitrarily increased to provide a better match of specu-405

lar highlights of a high-dynamic-range within the model with-406

out increasing the measurement time.407

Note that the proposed method does not fit any analytical408

model to the measured data and as such it is sensitive to noise409

in the measurement process. However, since the measurement410

procedure is fast and simple, this noise can be effectively sup-411

pressed by measuring the slices several times and computing412

the measurements’ median values.413

6. Sparse ABRDF Data Measurement414

This section describes a practical experiment of capturing415

sparse ABRDF samples using a consumer camera and a LED416

point-light source and is followed by a complete ABRDF re-417

construction from such measurements.418

Mutual movement of arms with camera and light with re-419

spect to the sample being measured is controlled manually as420

is shown in Fig. 14. The axial slice sA data (left) are measured

Axial slice Diagonal slice

Figure 14: The proposed ABRDF measurement setup at fixed elevation angles

θi/θv.
421

using rotation of the fixed light and sensor around the sample,422
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Figure 12: Comparison of the material’s BRDF (the first row), and interpolation of missing values by means of method A (the second row), method B (the third

row), and its modification method BD (the fourth row) respectively. Below are 10× difference images and global difference values in CIE ∆E / RMSE / PSNR[dB].
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Figure 13: The performance of interpolation from 169 sparse uniform samples (13 samples per hemisphere). Below are the difference values in: CIE

∆E / RMSE / PSNR[dB].

while the diagonal slice sD data (right) are obtained by mutu-423

ally opposite movements of the light and sensor in respect to424

the sample. Both the camera and light travel full circle around425

the sample and return to the initial position.426

Our acquisition setup consisted of the Panasonic camera427

Lumix DMC-FT3 and light using high-power LED Cree XLamp428

XM-L with 20o frosted optics (Fig. 15-a). To achieve the re-429

quired synchronous movement of light and camera, we con-430

structed a frame with two arms using a Merkur toy3 construc-431

tion set shown in Fig. 15-b. During its movement, the camera432

records the material sample appearance as a video sequence at433

a resolution of 1280×720 pixels, and the elevation angles of434

the camera and light are kept constant using the setup Fig. 15-435

b. Both sA and sD slices are recorded for two different ele-436

3http://www.merkur.cz/
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(a) (b) (c)

Figure 15: Data acquisition equipment (a) with its fixating frame (b), and mea-

sured sample with registration borders for calibration (c).

vations of the camera (C1, C2) and light (L1, L2); therefore,437

eight slices are measured approximately at elevations θi/θv =438

[30o/30o, 30o/75o, 75o/30o, 75o/75o] as shown in Fig. 3-b. Record-439

ing of the slices took less than 10 minutes. From each of the440

eight video sequences, 24 frames were extracted corresponding441

to sampling of azimuthal angles ϕi/ϕv every 15o. This resulted442

in a total of 192 samples being obtained. The number differs443

from 168 samples used in the reconstructions in Section 4, be-444

cause this time all elevations were covered by the same num-445

ber of samples. The effective number of samples is always446

slightly lower than 192, as some of the frames are removed447

due to occlusion of the material by the arm with light. Note448

that the method’s principle allows adaptive density of the sam-449

ples (frames) along the slices to also record extremely narrow450

specular highlights.451

Three anisotropic fabric materials (30×30 mm) were used452

as test samples, as shown in Fig. 16. A white border was at-453

tached around the sample to help detect camera orientation in454

respect to the sample coordinate space and for sample registra-455

tion Fig. 15-c). Because of this, we first calibrated the camera456

[31]. Unfortunately, the used low-end camera adapts its expo-457

sure depending on the amount of light coming from the scene.458

On the other hand, this feature enables us to capture as much459

information as possible, even using a limited dynamic range of460

the camera’s sensor (8bits/color). Since the information about461

exposure throughout the video sequence could not be retrieved462

from an EXIF header as is possible for still photos, we used the463

reference BRDF data of dark material surrounding the sample464

to compensate for exposure of each image. That is, we com-465

pensated color values of the sample using the black part of the466

sample holder (near the white borders as shown in Fig. 15-c)467

and its reference measurements.468

Subsequent processing was then performed for each image.469

Camera viewing angles θv/ϕv were obtained from camera ex-470

trinsic parameters, given the known camera calibration and cor-471

ner points of the white borders. Coordinates of these points472

were obtained from the image registration based on the camera473

calibration. When the viewing angles were known, the illumi-474

nation azimuth angle was computed as: ϕi = ϕv−α for the axial475

slice sA, and ϕi = 2π−ϕv for the diagonal slice sD. The elevation476

angles θi were estimated from the slant of the light during mea-477

surement. Finally, the slice’s ABRDF value from each image478

was obtained as the average of RGB values near the sample’s479

center, and colorimetrically calibrated. The non-optimized data480

processing described above took approximately 10 minutes to481

perform over all selected images. The reference ABRDF mea-482

surements of the black target and materials are obtained from483

the UTIA BTF database4 and have the same angular resolution484

as BTF Database Bonn [29].485

When all of the selected images were processed in this way486

and data for all eight slices were obtained, the ABRDF space re-487

construction described in Sections 3.2 and 3.3 was performed.488

Figure 17 compares reference ABRDF measurements of the489

material (a) with their reconstruction from the 192 sparse ref-490

erence samples using Method B (b), and with a reconstruction491

using 192 sparse measurements obtained by the proposed setup492

and interpolation Method B (c). The last column (d) of Fig-493

ure 17 compares our method with a uniform sampling using 196494

samples (142), while the remaining samples are interpolated us-495

ing Method A (compare with column (b)). Note that, while the496

visual performance of the uniform sampling might look simi-497

lar, the complexity of its measurement is considerably higher in498

comparison with the proposed measurement approach.499

fabric01 fabric02 fabric03

Figure 16: Three anisotropic fabric samples whose ABRDFs were measured

using the proposed setup.

Finally we took photographs of the fabric02 and fabric03500

materials attached on a cylinder (a) and compared them with501

renderings on a cylinder using their reference BRDFs (b) and502

BRDFs captured by the proposed setup (c). The results for dif-503

ferent illumination conditions are shown in Fig. 18 and con-504

firm that even the proposed approximate measurement setup505

can record BRDFs with reasonable accuracy, in comparison to506

the reference measurements.507

The reconstruction results from our preliminary measure-508

ments (Figure 17-c) are encouraging and we believe that they509

convey the idea of ABRDF capturing speed and simplicity with-510

out the need for dedicated and thus costly devices.511

A notable advantage of our setup and the proposed sampling512

pattern is its ability to quickly measure any flat samples without513

needing to extract them from their environment, and thus it can514

be used for fast and inexpensive measurements of such samples515

as human skin and precious cultural heritage objects.516

7. Experimental BTF Reconstruction517

As the acquisition and reconstruction of spatially-varying518

datasets is a straightforward extension of the proposed sparse519

sampling and reconstruction method, we tested the method’s520

performance on ten BTF samples of angular resolution 81 ×521

81 = 6561 images as described in Section 4. Only 168 im-522

ages (corresponding to the eight data slices) were selected from523

the BTF samples and used for pixel-wise reconstruction of the524

remaining images using the proposed method.525

4http://btf.utia.cas.cz
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6.7 / 8.4 / 29.7 9.9 / 11.6 / 26.9 5.1 / 7.2 / 31.0

16.8 / 17.5 / 23.3 21.5 / 23.0 / 20.9 12.5 / 14.3 / 25.1

6.6 / 8.7 / 29.4 11.8 / 15.0 / 24.7 7.1 / 12.6 / 26.1

(a) (b) (c) (d)

Figure 17: ABRDF reference measurement (a), compared to reconstruction

from 168 sparse reference measurements only using Method B (b), and recon-

struction from the proposed measurement procedure using 192 samples and in-

terpolation Method B (c), uniform interpolation using 196 samples (d). Below

are the difference values in: CIE ∆E / RMSE / PSNR[dB].

7.1. Results526

Renderings of the original data with results of the proposed527

reconstruction methods for point-light and environment illu-528

mination is shown side-by-side in Figures 19 and 20, respec-529

tively. All differences are objectively compared using CIE ∆E,530

PSNR[dB], SSIM [30], and VDP2 [18] metrics. From the re-531

sults it is apparent that for samples with lower height variations,532

there is a close match to the original data. The apparent devia-533

tions from the original data for materials having higher surface534

height variations are caused mainly by the incorrect geometry535

preservation of structural elements.536

7.2. Limitations537

Although there are not any restrictions imposed on view and538

illumination dependent datasets, the results have shown that539

the BTF reconstruction is incorrect for those materials which540

a)

b)

c)

a)

b)

c)

↓ ↑ → ←

Figure 18: Photographs of the fabric01 and fabric02 samples on a cylinder

illuminated from top, bottom, left, and right (a) compared with renderings using

reference ABRDF (b), and sparsely measured and reconstructed ABRDF (c).

have a wide range of surface height variation, e.g., corduroy541

and Lego samples shown in Fig. 21. This is caused partly by542

very sparse sampling of the azimuthal space, as well as by in-543

terpolation of the data at missing elevations. While the former544

produces geometrical deformation of the structure’s features,545

the latter causes their blur as well as improper highlights ex-546

trapolation for low elevation angles. Even though the recon-547

struction from sparse samples for such materials is not accurate548

in terms of correct shading of structure elements, the method549

correctly captures the look-and-feel of the material’s spatially-550

varying appearance for nearly-flat samples, e.g., for fabric dark,551

fabric light, and leather light samples. However, in compar-552

ison with the SVBRDF measurement and representation ap-553

proaches, the proposed method is not limited to restrictions im-554

posed by BRDF itself. Therefore, it may be found useful for555

quick, low-cost, and fairly accurate acquisition and BTF recon-556

struction of many materials having a limited height variation,557

e.g., fabric and leather.558

The time of BTF data reconstruction depends only on its559

spatial resolution, since individual pixels are regarded as inde-560

pendent ABRDFs. Due to huge sizes of datasets, only repetitive561

BTF tiles were used. While reconstruction of a single pixel took562

≈ 1 second, the non-optimized reconstruction of a BTF tile of563

size 1282 took 4.5 hours using the 3 cores of the Intel Xeon564

2.7 GHz. Therefore, using optimized multi-core CPU’s imple-565

mentation processing times of less than one hour can be easily566

achieved.567

Note that the proposed sparse acquisition and reconstruc-568

tion method is complementary to BTF compression methods.569

In always processing an entire BTF dataset, any of these meth-570

ods can be applied to compress the reconstructed data. By its571

sparse measurement, our method can achieve a compression ra-572

tio 1:39; however, in terms of reconstruction quality and com-573

pression ratio, it cannot compete with BTF compression ap-574

proaches, as seen in the local PCA method [21] (using 5 clus-575
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alu fabric dark fabric light knitted wool

7.7 / 25.8 / 0.85 / 83.6 8.9 / 26.6 / 0.74 / 69.1 7.0 / 27.4 / 0.80 / 83.8 11.7 / 23.3 / 0.73 / 71.4
leather dark leather light lacquered wood Proposte

8.1 / 28.1 / 0.88 / 83.7 7.4 / 26.9 / 0.84 / 83.5 11.6 / 22.0 / 0.85 / 81.9 10.4 / 23.4 / 0.69 / 79.5
Figure 19: A comparison of BTF rendering from the full dataset of 6561 images (the first row), with its reconstruction from only 168 images (the second row) in

single point-light illumination. Below are the CIE ∆E / PSNR[dB] / SSIM / VDP2 difference values.

ters, 5 components) in Tab. 1 (compare with our reconstruction576

errors in Fig. 19). The variable compression ratio of the local577

PCA method is due to the variable size of the BTF tile used.578

8. Conclusions579

A novel method of sparse measurement and reconstruction580

of view and illumination dependent datasets has been proposed.581

The proposed sparse sampling of illumination and viewing di-582

rections allows for intuitive continuous measurement by a con-583

sumer camera and LED light. The reconstruction from such584

sparse data does not impose any restrictions on input data and585

allows reliable approximation of anisotropic non-reciprocal view586

and illumination dependent datasets. Additionally, this method587

can provide arbitrarily dense data reconstruction of both incom-588

ing and outgoing directions. The method’s performance was589

tested on isotropic BRDFs and anisotropic apparent BRDFs590

Table 1: A reconstruction error and compression ratio of LPCA compression

method.

material ∆E / PSNR[dB] / SSIM / VDP2 C.R. (tile)

alu 3.5 34.6 0.99 93.8 18.2 (21×26)

corduroy 2.7 37.5 0.97 93.6 55.0 (36×46)

fabric d. 4.6 32.2 0.94 86.2 16.1 (21×23)

fabric l. 8.6 26.3 0.95 89.4 10.4 (19×23)

leather d. 4.3 33.3 0.97 91.0 263.0 (93×86)

leather l. 10.8 24.3 0.95 87.7 193.0 (74×79)

l. wood 11.3 23.5 0.92 81.0 627.8 (137×142)

k. wool 4.3 32.1 0.96 93.0 20.8 (25×25)
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alu fabric dark fabric light knitted wool

6.2 / 30.2 / 0.94 / 91.6 4.0 / 34.0 / 0.90 / 86.5 2.7 / 36.3 / 0.94 / 90.8 5.9 / 29.7 / 0.91 / 88.0
leather dark leather light lacquered wood Proposte

5.1 / 33.2 / 0.96 / 90.0 3.4 / 34.6 / 0.96 / 91.1 8.9 / 26.6 / 0.91 / 84.3 4.6 / 30.7 / 0.88 / 86.5
Figure 20: A comparison of BTF rendering from the full dataset of 6561 images (the first row), with its reconstruction from only 168 images (the second row) in

grace environment illumination [5]. Below are the CIE ∆E / PSNR[dB] / SSIM / VDP2 difference values.

with encouraging results. Our pilot ABRDF measurement ex-591

periments have shown that retrieval of sparse samples and the592

consequent reconstruction of the complete dataset take less than593

half an hour. Experimental sparse reconstruction of BTF datasets594

has shown that the method can be a reasonably accurate alter-595

native to lengthy measurement, especially for samples having a596

smaller height variation. The ease of data acquisition and visual597

quality of the reconstruction using this method makes it supe-598

rior to alternative approaches such as bump/displacement map-599

ping or parametric BRDF modeling. Because of the simplicity600

of data acquisition and reconstruction, this approximate method601

can be utilized in less accuracy-demanding applications. Since602

digital reproduction of a material’s appearance look-and-feel603

can be created inexpensively, it could be particularly useful in604

the fields of computer gaming, film and digital presentations of605

e-commerce.606

In summation, we believe this research will contribute to607

future development of simple, inexpensive, and portable acqui-608

sition setups of illumination and view dependent data.609
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[17] H. P.A. Lensch, J. Lang, A. M. Sá, and H.-P. Seidel. Planned sampling666

of spatially varying BRDFs. Computer Graphics Forum, 22(3):473–482,667

2003.668

[18] Rafat Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich.669

Hdr-vdp-2: a calibrated visual metric for visibility and quality predictions670

in all luminance conditions. ACM Transactions on Graphics, 30(4):40:1–671

40:14, 2011.672

[19] W. Matusik, H. Pfister, M. Brand, and L. McMillan. A data-driven re-673

flectance model. ACM Transactions on Graphics, 22(3):759–769, 2003.674

[20] G. Müller, G.H. Bendels, and R. Klein. Rapid synchronous acquisition675

of geometry and BTF for cultural heritage artefacts. In The 6th Interna-676

tional Symposium on Virtual Reality, Archaeology and Cultural Heritage677

(VAST), pages 13–20, 2005.678

[21] G. Müller, J. Meseth, and R. Klein. Compression and real-time rendering679

of measured BTFs using local PCA. In Vision, Modeling and Visualisa-680

tion, pages 271–280, 2003.681

[22] A. Ngan and F. Durand. Statistical acquisition of texture appearance. 17th682

Eurographics Symposium on Rendering, pages 31–40, August 2006.683

[23] A. Ngan, F. Durand, and W. Matusik. Experimental analysis of BRDF684

models. Eurographics Symposium on Rendering 2005, 2:117–126, 2005.685

[24] A. Ngan, F. Durand, and W. Matusik. Image-driven navigation of ana-686

lytical BRDF models. Proceedings of the Eurographics Symposium on687

Rendering, pages 399–407, 2006.688

[25] F.E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsburg, and689

T. Limperis. Geometrical considerations and nomenclature for re-690

flectance. NBS Monograph 160, National Bureau of Standards, U.S. De-691

partment of Commerce, pages 1–52, 1977.692

[26] W. H. Press, S. A. Teukolsky, William T. Vetterling, and Brian P. Flannery.693

Numerical Recipes in C: The Art of Scientific Computing. Cambridge694

University Press, 1992.695

[27] Peiran Ren, Jiaping Wang, John Snyder, Xin Tong, and Baining Guo.696

Pocket reflectometry. ACM Transactions on Graphics, 30(4):45:1–45:10,697

2011.698

[28] S.M. Rusinkiewicz. A new change of variables for efficient BRDF repre-699

sentation. In Rendering techniques’ 98, pages 11–22, 1998.700

[29] M. Sattler, R. Sarlette, and R. Klein. Efficient and realistic visualization701

of cloth. In Eurographics Symposium on Rendering 2003, pages 167–178,702

2003.703

[30] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality704

assessment: From error visibility to structural similarity. IEEE Transac-705

tions on Image Processing, 13(4):600–612, 2004.706

[31] Z. Zhengyou. Flexible camera calibration by viewing a plane from un-707

known orientations. In In proceedings of ICCV, pages 666–673, 1999.708

[32] T. Zickler, R. Ramamoorthi, S. Enrique, and P. N. Belhumeur. Reflectance709

sharing: Predicting appearance from a sparse set of images of a known710

shape. IEEE PAMI, 28(8):1287–1302, 2006.711

12


