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Abstract Many representations and rendering tech-
niques have been proposed for presenting material ap-
pearance in computer graphics. One outstanding prob-

lem is evaluating their accuracy. In this paper, we pro-
pose assessing accuracy by comparing human judge-
ments of material attributes made when viewing a com-
puter graphics rendering to those made when viewing a
physical sample of the same material. We demonstrate

this approach using 16 diverse physical material sam-
ples distributed to researchers at the MAM 2014 work-

shop. We performed two psychophysical experiments.
In the first experiment we examined how consistently
subjects rate a set of twelve visual, tactile and sub-
jective attributes of individual physical material speci-
mens. In the second experiment, we asked subjects to
assess the same attributes for identical materials ren-
dered as BTFs under point-light and environment il-

luminations. By analyzing obtained data, we identified

which material attributes and material types are judged
consistently and to what extent the computer graph-

ics representation conveyed the experience of viewing
physical material appearance.

Keywords material appearance · rendering · BTF ·
perception · psychophysics · MAM2014

1 Introduction

An efficient transfer of realistic appearance of real-world

materials to virtual reality has been one of the ultimate

challenges of computer graphics. In entertainment and
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01- 02- 03- 04-
mica sand-fine sand-coarse burlap

05- 06- 07- 08-
cork towel green-cloth green-felt

09- 10-flocked- 11- 012-
basketball paper silver-gold brown-tile

13- 14-black- 15-crinkle- 16-basket-
glass-tile gold-tile paper weave

Fig. 1 Photos of 16 materials from MAM 2014 dataset.

storytelling, a particular material appearance may be

selected to evoke a viewer response. For industrial de-

sign, material appearance may be rendered to preview
a physical design. In either scenario, there is no reli-
able measure of the visual fidelity of the virtual mate-

rial’s appearance. Moreover, the appearance needs to be
faithful with changing view and illumination conditions.

In other words, we are looking for visual equivalence but

not in a sense of comparison of two virtual representa-
tions as introduced in [23], but rather between physical

materials and their virtual representations.

In this paper, we propose using human judgements
of material attributes to assess the fidelity of virtual

material appearance. To explore this idea we use phys-
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ical specimens of 16 materials presented at the Work-
shop on Material Appearance Modelling (MAM) 2014
[25] (sample set No.26) as shown in Fig. 1. The collec-

tion includes one natural material mica and the rest

are man-made utility materials such as sandpaper, fab-

ric, tile, burlap, plastic-weave, etc. This set represents
a diverse selection of materials the subjects are famil-
iar with from daily life. They vary in many physical

aspects, e.g., natural or man-made origin, opacity or
translucency, height, texture, structure, etc.

First, we perform a psychophysical study to iden-
tify the main perceptual attributes of these physical
material specimens. We selected twelve visual, tactile
and subjective attributes to be analyzed. The outcome
of this study is an understanding of the consistency of
judging these attributes for the range of materials. For a

second study we acquired all these materials as bidirec-

tional texture functions (BTFs) [3]. We selected BTFs

since they capture samples with height and opacity vari-
ations, and include non-local effects such as occlusions,
masking, subsurface scattering and inter-reflections. We

conducted the second study to find how well renderings
using BTF preserve appearance of the physical samples.

The results of the studies show the consistency of hu-

man judgement of material appearance attributes, and
how these observations can be used to assess the effec-

tiveness of computer graphics presentations of material

appearance.

Contributions of this paper are:

– An openly accessible database of BTF measurements
from the MAM dataset.

– A proposal for evaluating the accuracy of material
appearance rendering.

– A psychophysical study of how consistently people

judge appearance attributes of material samples.
– A study of how judgements of material attributes

from standard BTF sample renderings compare to
judgements of real material samples.

The paper contents are as follows: Section 2 sum-
marizes related work. Section 3 overviews the proposed

approach and Section 4 introduces selected perceptual
attributes. Section 5 describes the perceptual assess-

ment of real samples, while Section 6 evaluates their

renderings. Section 7 compares the results of both stud-
ies and Section 8 summarizes the paper.

2 Prior Work

Understanding human perception of materials is one
of primary challenges of research fields ranging from
psychology to computer graphics applications [1,8].

A large body of research has been devoted to iden-

tify links between material perceptual attributes and

physical properties [9] and to establish a link between
texture perceptional and computational spaces [24,15,
20].

Although, originally researchers used textural im-
ages [2] to represent materials, this changed with ad-
vent of illumination- and view-dependent scanning fa-
cilities capturing bidirectional reflectance distribution

functions BRDF [22], spatially-varying bidirectional re-

flectance distribution functions SVBRDF or BTF [3]
representations. Various perceptual studies related to

these representations have been performed. For exam-
ple, the impact of object shape on the perception of
material appearance represented by an isotropic BRDF

model was studied in [30]. In other work [5], a psy-

chophysical study demonstrated that a reduction of BTF

data without compromising visual quality, is directly
related to BTF data variance and to the complexity of

illumination and object geometry. BTF data were also

used in [6] to investigate the effect of shape and texture
on subjects’ visual attention. The authors concluded

that a flat textured surface receives only half of the

fixations in comparison with shaped surface, and that
average local variance of a curved surface texture can
predict observers’ gaze attention to both texture and

its underlying geometry, i.e., the more higher frequen-
cies and regularities are present in the material texture,

the easier it is to identify possible differences, requir-

ing a lower number of shorter fixations. The perceptual

effects of BTF filtering were analyzed in spatial and
angular domains in [13]. It was shown that preserving
contrast is more important in static than in dynamic

images and indicates that greater levels of spatial fil-
tering are possible for animations. Filtering can be per-

formed more aggressively in the angular domain than in

the spatial domain. Mylo et al. [21] exploited a link be-
tween certain perceived visual properties of a material
and specific bands in its spectrum of spatial frequen-

cies. They applied the results for editing of BTFs that

produces plausible results.

Researchers have derived a number of attributes in

psychophysical studies to evaluate as to what extent

they are possessed by a virtual material in a form of
texture [19], BRDF [17,27] or by a real specimen [16].

Several different techniques have been proposed to

assess the quality of renderings. Meseth et al. [18] used
virtual stimuli to psychophysically compare performance

of material photographs, BTF renderings, and flat tex-
tures modulated by BRDFs under identical illumina-
tion conditions. Ramanarayanan et al. [23] developed

metrics that predict the visual equivalence of rendered
objects under warping and blurring of illumination and
warping of object surfaces. Havran et al. [10] developed

a surface, optimized to a high coverage of illumination
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Fig. 2 An overview of the proposed material appearance accuracy assessment approach.

and viewing angles, that can be used for a single image

comparison of various material representations.

Although many studies were done analyzing mate-

rial appearance either of real materials or their digital
representations, we are not aware of any study system-
atically comparing the perception of physical and vir-
tual materials from a set of widely available samples.
This is important as it allows researchers to follow up
and compare or complement our results with their fu-

ture findings.

3 Proposed Appearance Evaluation Method

When it comes to the evaluation of material appearance
accuracy, standard computational assessment methods

are often unreliable, even when they use photographs

of the material. Many materials, especially in the con-
sumer market, are carefully designed to deliver a spe-
cific user experience that often cannot be reproduced

using a single photograph. Therefore, industrial design-

ers have started to use virtual light booths, allowing the
direct comparison of a real product and its digital rep-

resentation rendered under strictly controlled lighting

and viewing conditions. In this paper, we continue in
this direction and assume that material appearance is
accurately rendered if people would draw the same con-

clusions of material attributes based on renderings that
they would make looking at the real, physical materi-

als. A basic scheme of the approach is shown in Fig. 2.

Therefore, we suggest two psychophysical visual stud-

ies. The first assesses subjects’ experience from real ma-
terial specimens, while the second does the same with
virtual representation, in our case BTF, of the same ma-

terials. To obtain information of user experience from
the material, we asked subjects to rate a preselected

group of perceptual attributes described in the follow-

ing section.

4 Selected Material Attributes

Our goal is to analyze as many aspects of the tested ma-
terials as possible; however, as the number of assessed

materials is relatively high, we chose a lower number of

attributes to make the study more workable for human
subjects. We intentionally avoided using high-level class

predictors, e.g., plastic-like, as used in [17] and [27] and

focused on important low-level attributes identified in
prior work.

Our goal was a comprehensive multi-modal analy-
sis of the materials. For the visual characteristics we

focused on general textural attributes [29,24,19] and
selected six of them spanning reflectance, color, and
structural properties of materials: glossiness, colorful-

ness, directionality, diversity, graininess, and regular-

ity. As our study uses a physical material specimens,
we extended our attributes also to the tactile and sub-

jective domain similar to [16]. Tactile attributes are in-
cluded for other researchers who are interested in eval-

uating tactile interfaces and they are not used in the
second experiment. In the tactile domain we focus on

attributes having clear physical interpretation: hard-

ness, roughness and height. In the subjective domain we
found it interesting to assess the authenticity and qual-

ity of materials and selected: genuineness, quality, and
attractiveness. Thus our final list of attributes includes
six visual, three tactile, and three subjective attributes

as shown in Tab. 1.

Table 1 The twelve material attributes evaluated within the
experiment.

id attribute ranges [1–9]
Visual

L glossiness matte glossy
B colorfulness single-color multiple-colours
S directionality no-directionality directional
R diversity simple complex
H graininess smooth rough
P regularity random regular
Tactile

T hardness soft stiff
D roughness smooth rough
V height flat deep
Subjective

O genuineness man-made natural
K quality ordinary luxurious
A attractiveness usual attractive



4 Jǐŕı Filip et al.

5 A psychophysical assessment of physical

specimens

In our study, we asked subjects to rate individual pres-

elected attributes of physical specimens of 16 materials
as shown in Fig. 1. For this experiment we paid partic-

ular attention on analysis how consistently the subjects
rate individual perceptual attributes across the set of

materials.

5.1 Participants and Experimental Procedure

Twenty two paid subjects performed the experiment.
There were 12 male and 10 female participants aged
from 20 to 60. All subjects had normal or corrected to
normal vision and all were uninformed with respect to

the purpose and design of the experiment.
All samples of a typical size of 6×6 cm were laid

down on the table as shown in Fig. 3. The table was

Fig. 3 Analysed materials as seen in the psychophysical ex-
periment.

positioned near a window to avoid direct sunlight. Sub-

jects also had available a LED point-light with a turntable
that they could use freely for a more detailed exami-
nation of material properties. At the beginning of the
session the meaning of individual attributes were ex-
plained to the subject and she/he could freely review

all samples. Then the subject assessed individual at-
tributes for all materials using a score ranging from 1

to 9 (representing the lowest and the highest intensity
of the attribute, see Tab. 1), while the range should
represent only the samples within the study.

Subjects always started with assessment of visual
attributes. To avoid confusion between visual and tac-

tile attributes, subjects were not allowed to touch the
sample when assessing visual attributes. Also subjects

were prohibited from turning samples over so as to pre-

vent identifying the authenticity of materials. There
were no strict time limits, and subjects finished their
evaluation of all materials in between 10 and 30 min-

utes.

5.2 Results

First of all, we analyzed the reliability of subjects’ re-
sponses by means of the Krippensdorff’s alpha [11] αK

– a statistical measure of the agreement generalizing
several known statistics. The key requirement is agree-
ment observed among independent observers. Output
αK = 1 represent unambiguous indicator of reliability,

while 0 not. Results given in Fig. 4 demonstrate subject
agreements for individual attributes (a) and tested ma-
terials (b). The highest agreement (αK = 0.55 − 0.65)

was achieved for attributes L–glossiness, T–hardness,

D–roughness, while the other attributes had similar val-
ues (αK = 0.3−0.4). The lowest agreement (αK = 0.25)

was obtained for H–graininess.

Materials with the highest agreement (αK over 0.5)
are 04–burlap, 11–silver-gold, 13–glass-tile, 14–blue-black-
gold-tile. Surprisingly low agreement (αK = 0.006) was
recorded for material 09–basketball.

(a)

(b)

Fig. 4 Statistical analysis of the agreement across subjects
in the real-samples experiment for individual attributes using
Krippensdorff’s alpha across: (a) attributes and (b) materials.

The data were also analyzed using a single factor
repeated measures ANOVA demonstrating that all p-

values are below confidence level 0.05 and favoring an
alternative hypothesis that means for individual mate-
rials are draw from statistically different populations

at significance level 95%. We also successfully verified
that data normality, the basic ANOVA assumption, us-

ing the Shapiro-Wilk parametric test.
For aggregation of the subjects’ values, we applied

the mean opinion score (MOS) obtained as an average

rating across all subjects. This is a standard methodol-
ogy for subjective quality assessment used especially in
the audio and video industries, and recommended by

standard international organizations such as the ITU
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Fig. 5 Perceptual attributes for all materials obtained as mean values across tested subjects. Errorbars represent standard
deviation across subjects. The green and red subbars represent positive and negative deviations, respectively, from the original
values when the attributes were assessed from materials’ rendering using BTFs. Note that tactile attributes (T,D,V ) were not
assessed this way.

[12] or ISO [14]. We also performed outliers rejection
by removing values differing more than 60% of score
range from MOS (a total 29 values out of 4224). MOS
in range 1-9 for individual perceptual attributes and
tested materials are shown as blue bars in Fig.5. Er-
rorbars in the graphs represent the standard deviation

across subjects. On the left are graphs representing vi-

sual attributes, while on the right are graphs for tactile
and subjective attributes.

Next, to analyze attributes relationship, we com-
puted Pearson and Spearman correlation coefficients
between mean opinion scores of all attributes across all

tested materials. The results were similar (mean and
maximum differences 0.014 and 0.237 respectively) and

thus we report only the Pearson correlation values ρ in
Fig. 6. Each cell contains both color-coded and numer-

ical correlation value and p-value.

Colors toward red represent a positive correlation
while those towards blue represent negative ones. Each

pair of attributes in the figure show correlation coef-

Fig. 6 A Pearson correlation matrix between the tested
attributes. Colors toward red represent positive correlation
while those towards blue represent negative ones. In each cell
the top number specifies correlation value and the bottom
one specifies corresponding p-value.

ficient (-1,1) at the top of the cell and correspond-

ing p-values at its bottom. One can find strong sta-



6 Jǐŕı Filip et al.

Fig. 7 Multivariate analysis of material attributes showing their separation of the first three canonical components.

tistically significant positive correlations (ρ > 0.7, p-
value< 0.01) between:

– glossiness and attractiveness (ρ = 0.81),

– glossiness and quality (ρ = 0.90),
– quality and attractiveness (ρ = 0.91),
– graininess and roughness (ρ = 0.78),

– graininess and height (ρ = 0.76),
– directionality and diversity (ρ = 0.84).

The strongest negative correlation was found ρ = −0.64
between regularity and genuineness.

To further investigate relationships of attributes, we
performed a one-way Multivariate Analysis of Variance
(MANOVA) for comparing the multivariate means of

subjects’ responses grouped by attributes. This analy-
sis tests the null hypothesis that the means of attributes
are the same n-dimensional multivariate vector, and

that any difference observed in the data is due to ran-

dom chance. We estimated dimensionality is d = 8 at a

significance level 5% and can reject the null hypothesis,
and thus expect the data means lie in 8-dimensional
manifold. As a product of the multivariate analysis we

also obtain a dendrogram depicting attributes proxim-
ity as shown in Fig. 8. The clusters are computed by

applying the single linkage method to the matrix of
Mahalanobis distances between the groups means.

Fig. 8 Multivariate analysis – dendrogram illustrating prox-
imity of attributes.

These results support the findings of the correlation

analysis in Fig. 6. The dimensionality d = 8 and den-

drogram suggest that the most distinct attributes in
order of difference are P–regularity, O–genuineness, T–

hardness, B–colorfulness, D–roughness, while the rest

attributes are due to their proximity grouped three
groups: (1) K–quality, A–attractiveness, L–glossiness,
(2) S–directionality and R—diversity, (3) H–graininess

and V—height.

Further, multivariate analysis provides us with so
called canonical vectors, which are linear combinations

of original variables, chosen to maximize separation be-
tween groups. Fig. 7 depicts dependencies of the first

three canonical vectors, providing an insight on vari-
ability and overlap of subjects’ responses to individual

attributes (each attribute marker in the graphs corre-
sponds to one of the subjects).

Finally, in Fig. 9 we show pairs of materials hav-

ing the highest and the lowest perceived response to
individual attributes.

Discussion – The study has revealed that although

none of the attributes or materials was judged consis-
tently, we learned which of the attributes are the most
reliable as well as how they are mutually related. The

most consistent data were obtained for L–glossiness,
T–hardness and D–roughness. We assume that this is

due to the fact that the meaning of these attributes is

easy to understand, and they are even commonly in-
strumentally measured as physical properties of mate-

rials. Another important finding is that attributes K–

quality and A–attractiveness have almost identical per-

ceptual responses. The same can be said about pairs S–
directionality, R–diversity and H–graininess, V–height.
However, here we should note that while for S,R the

response is possibly due to missing materials with ran-
dom diverse structure and the perception of diversity
comes mainly from regular patterns, for H,V it is due
to that subjects judged height as span of height vari-

ability within structure grains, e.g., relatively thick tiles

samples (materials 12,13,14) received lower judgement
of this attribute than thin crinkle paper (material 15).
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glossiness directionality graininess hardness height quality
colorfulness diversity regularity roughness genuineness attractiveness

L B S R H P T D V O K A

Fig. 9 Each attribute with materials having the highest (the top row) and lowest (the bottom row) average attribute values.

6 A Psychophysical assessment of renderings

In the second experiment, we evaluated the selected ma-

terial attributes on rendered images which reproduced

the appearance of physical material samples by means
of a bidirectional texture function (BTF).

6.1 BTF Data Acquisition and Processing

For BTF data acquisition, we used a gonioreflectome-

ter [7] to capture the appearance of tested specimens.

This setup consists of the measured sample on a ro-
tating stage, and two independently controlled arms
with a camera (one axis) and a light source (two axes).

This allows for flexible measurements of nearly arbi-
trary combinations of illumination and viewing direc-

tions. Although camera view occlusion by the arm with
the light source may occur, it can be analytically de-
tected, and in most cases, alternative positioning is pos-

sible. The angular repeatability of light and camera po-

sitioning is 0.03 degrees across all axes. The inner arm

holds the LED light source 1.1 m from the sample and
produces a narrow and uniform beam of light. The outer

arm holds an industrial, full-frame 16Mpix RGB camera

AVT Pike 1600C. The sensor’s distance from the sam-
ple is 2 m. In our experiments, we used a lens achieving
maximum resolution of 353 dpi (i.e., 72µm/pixel). The

hemispheres of incoming and outgoing directions were
uniformly sampled by means of 81 directions [26] giving

a total of 81×81 = 6 561 HDR images, where each im-

age was taken for a unique bidirectional pair of camera
and light positions.

Once the BTF data are captured, we seek a minimal

spatial sample whose repetition conveys an original ma-
terial’s appearance. To achieve this, the image stitching

algorithm [28] is applied, resulting in a seamless spa-

tially repeatable tile. Note that this technique cannot

in principle produce seamless repetition for materials
with a non-regular structure or low frequency features,
e.g., mica or blue-black-gold-tile.

Each captured BTF generates thousands of HDR
images. As the handling of such a large number of files
is inconvenient due to time-demanding IO operations,

we introduce a new straightforward format encapsulat-

Table 2 Sizes of image tiles and data files.

material tile size [pix.] data size [GB]

01-mica 160x160 1.88

02-sand-fine 112x106 0.89

03-sand-coarse 130x116 1.11

04-burlap 154x126 1.42

05-cork 112x110 0.93

06-towel 197x 87 1.26

07-green-cloth 110x155 1.25

08-green-felt 110x108 0.89

09-basketball 103x 98 0.76

10-flocked-paper 395x389 11.27

11-silver-gold 236x253 4.38

12-brown-tile 169x160 1.98

13-glass-tile 100x107 0.80

14-blue-black-gold-tile 224x225 3.70

15-crinkle-paper 224x190 3.12

16-basket-weave 190x224 3.12

ing all images into one binary file together with meta-
information (e.g., image size, color-space, spatial res-

olution, etc.). The format is called BIG - Big Image
Group and the recommended file extension is .big. The

data are stored in a uncompressed form so as they can
be quickly accessed using several application-dependent
query functions. We implemented the IO functions in
C++ as publicly available software (http://btf.utia.cas.cz).

The format allows significantly faster and more conve-
nient manipulation of the measured data. We use this

format for storing and sharing captured data with the
greater research community. More details on data for-
mat are given in the Appendix of this paper.

Due to the variable size of structural patterns of
materials, the size of a stored BTF tile varies between
100×100 and 400×400 pixels. Thus the captured and

tiled BTF data stored in the BIG format range in size
between 0.8 and 11.3 giga-bytes for each material from
the MAM2014 dataset as shown in Tab. 2.

Materials visualized from captured BTFs are shown
for point-light illumination in Fig. 10. Note that ren-
dering is obtained from the raw data and no data com-
pression is applied.
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01-mica 02-sand-fine 03-sand-coarse 04-burlap

05-cork 06-towel 07-green-cloth 08-green-felt

09-basketball 10-flocked-paper 11-silver-gold 12-brown-tile

13-glass-tile 14-blue-black-gold-tile 15-crinkle-paper 16-basket-weave

Fig. 10 Materials from MAM 2014 dataset (set 26) captured as BTFs rendered for a point-light.

6.2 Participants and Experimental Procedure

Once the BTFs of materials were captured, we moved to
the assessment of their perceptual attributes. To obtain

a sufficient number of anonymous volunteers, we per-
formed a web-based study, i.e., run in an uncontrolled
environment and at various screens, while subjects were
advised to run it in a dim room environment. The ma-
terials are not rendered in the same way as the materi-

als were presented physically, since a flat surface would

provide low angular variations and becomes unattrac-

tive for observers [6]. Instead, we mapped materials on
a spherical shape as has become standard for present-

ing BTF data. We render appearance on spheres di-

rectly from the raw BTF data and used a single point
light source, best exposing high frequency features [4],

as well as environment illumination (fixed orientation
of grace environment). We combine this information in
stimuli images as shown in example in Fig. 11. To al-
low subjects anchoring perceptual scales, each stimuli
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image features on its top an overview of thumbnails of
all assessed materials for point-light illumination. As
subjects could assess the materials only visually, we re-

moved the three tactile attributes from the study. In-

dividual attributes were evaluated by between 30 and

43 participants (the number of finished sessions varies
across attributes). Subjects were advised to perform the
study in full-screen mode and in a dark environment.

Fig. 11 An example of material rendering stimulus image
showing material rendering for point-light and environment
illumination side-by-side with thumbnails of all materials un-
der point-light illumination.

6.3 Results

First, we again assessed data reliability using Krippens-

dorff’s alpha as shown in Fig. 12. In contrast to the

values in the first experiment, better agreement was
achieved for individual materials rather than for in-

dividual attributes. Attributes having αK > 0.5 were
only L–glossiness and H–graininess. Low agreement,
i.e. αK < 0.2, was recorded for S–directionality, P–

regularity and all subjective attributes. In contrast, the
agreement for individual materials was relatively high

for all of them, i.e. αK between 0.45 and 0.75.

The obtained mean opinion scores for individual at-
tributes and materials are compared to results from the

first experiment in Fig. 5. Differences from the first ex-
periment are shown as green and red subbars indicating
higher and lower values respectively. The standard de-
viations across subjects are not shown, but the values
resembled those in the first experiment.

Discussion – The second experiment has shown

that assessment of any representation is influenced by
several aspects. Users in our experiment could not move

with the material and relied only on a span of viewing
and illumination angles as defined by the illumination

environment and surface geometry. This might be in-

sufficient as the appearance of some materials changes
substantially with regards to their orientation as shown
in Fig. 13. Also the sphere used as test geometry could

look unnatural for some materials that are typically

(a)

(b)

Fig. 12 Statistical analysis of the agreement across subjects
in web-based experiment for individual materials using Krip-
pensdorff’s alpha across: (a) attributes and (b) materials.

available as flat, e.g., mica or tiles. Moreover, agreement
between subjects across different materials is more bal-

anced for rendered representations (see Fig. 12-b); whereas,

it is more scattered for the experiment with real sam-

ples (see Fig. 4-b). This might suggest that rendered
images in some sense ”filtered” some unique material
properties.

Fig. 13 Two examples of material appearance change for
different orientations of a material.

7 Comparison of Physical and Rendered

Material Appearance

This section combines data obtained from subjects ob-
serving real samples and their digital representations
using a BTF. We computed a correlation between mean
opinion scores from both experiments as shown in Fig. 14.
While the bar’s height corresponds to the correlation
between the perception of physical samples and cor-
responding rendered images, their darkness is propor-
tional to data agreement across subjects as obtained by
the multiplication of αK from both experiments. There
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are separate results for individual attributes and mate-
rials, and individual bars include p-values.

(a)

(b)

Fig. 14 Peason’s correlation coefficients computed between
values obtained from assessment of physical samples and their
renderings for individual: (a) attributes, (b) materials. Each
bar includes correlation p-value and its darkness is propor-
tional to data agreement across subjects.

For attributes (a) we observe comparably high val-
ues (ρ > 0.75) for most of the attributes with L–glossiness

having by far best subjects responses agreement. The

only exceptions were P–regularity and O–genuineness

where ρ dropped below 0.5. This indicates that a real

experience of these attributes was not delivered by means

of BTF.

For materials (b) the results are more challenging to
interpret. We observe high correlations (ρ > 0.75) for

man-made materials having an obvious regular struc-
ture. In contrast, natural material or materials with

random structure have generally lower correlations. As

mentioned earlier, the material with a familiar struc-
ture 09–basketball (see Fig. 11) was one of the three

materials having ρ < 0.3. We hypothesize that sub-
jects were able to identify properties of materials with

a clearly regular structure due to their familiarity from
everyday-life; therefore, they evaluated their perceptual

attributes more consistently than for materials with

random structures.

Although we consider these results as one of first
steps towards analyzing the perceptual quality of ma-

terial appearance representations, there are still open
questions. For instance, how the perception improves

when HDR or stereo displays are used? Or how a user’s

experience changes when animation is used instead of
static images? An important aspect is also an interac-

tion of material appearance with shape and illumina-
tion. It is clear that all these aspects should be covered

in future research to obtain unequivocal conclusions on

the quality of rendered material appearance.

8 Conclusions

This paper assessed the perceptual accuracy of mate-
rial appearance reproduction by directly comparing it
with subject judgement of real physical samples. We

analyzed sixteen materials of MAM 2014 dataset and
captured their appearance using a bidirectional texture

function (BTF) and assessed differences in perception

of real material samples and their rendered counter-
parts. The results suggest that BTF representations
conveyed the majority of observed visual attributes;

however, there are differences in perception of different

material types. The perception of man-made materials
with regular structure was better delivered in virtual
reproduction than that of natural materials with ran-

dom structure. To stimulate further work on the mea-
surement and understanding of material appearance,
we publicly provide captured and uncompressed BTFs

of the MAM 2014 dataset for research purposes.
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Appendix – BIG Data Format Description

The format stores image data by providing a list of im-

age files to be included (so far PNG and EXR (half/float)

image files are supported) together with optional meta
data such as list of corresponding incoming and outgo-
ing directions, color-space, spatial resolution, measured
material name and descriptions. The stored binary data

can be either loaded to the RAM or alternatively, for
large datasets one can open a datafile and seek the re-
quested data from a hard drive. The latter option is

considerably slower but still acceptable for many off-
line rendering scenarios. Once the file is loaded/opened
one can use a standard ”get-pixel” query function re-
turning RGB triplet for specific spatial UV coordinate
and image index. A transformation between image in-

dex and incoming/outgoing angles is up to the user and
depends on an initial ordering of files during the saving

process. Also we do not attempt to provide any com-

pression of data as this could potentially impact visual
quality and rendering speed. The compression can be

easily added by extension of the format.
Since the proposed format is universal (it can in-

clude any LDR/HDR data), it allows an unified repre-
sentation of any image-based information, e.g., movies,
dynamic textures. The format also enables manage-
ment of numerous scattered files that are difficult to
handle without any metadata. The source codes for
saving/loading of data to/from the format are made
publicly available (http://btf.utia.cas.cz) to promote its
wide usage and allowing easy adoption by various users
for visualization and data analysis software packages.
The format is composed of data chunks consisting of
chunk ID, its size and data, as shown in a list of cur-
rent data chunks and their brief description in Fig. 15.

Fig. 15 A list of data chunks available in the BIG format.
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