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Abstract

The bidirectional texture function (BTF) describes tex-

ture appearance variations due to varying illumination and

viewing conditions. This function is acquired by large num-

ber of measurements for all possible combinations of illumi-

nation and viewing positions hence some compressed rep-

resentation of these huge BTF texture data spaces is ob-

viously inevitable. In this paper we present a novel ef-

ficient probabilistic model-based method for multispectral

BTF texture compression which simultaneously allows its

efficient modelling. This representation model is capable

of seamless BTF space enlargement and direct implemen-

tation inside the graphical card processing unit. The ana-

lytical step of the algorithm starts with BTF texture surface

estimation followed by the spatial factorization of an input

multispectral texture image. Single band-limited factors are

independently modelled by their dedicated 3D causal au-

toregressive models (CAR). We estimate an optimal contex-

tual neighbourhood and parameters for each CAR. Finally

the synthesized multiresolution multispectral texture pyra-

mid is collapsed into the required size fine resolution syn-

thetic smooth texture. Resulting BTF is combined in a dis-

placement map filter of the rendering hardware using both

multispectral and range information, respectively. The pre-

sented model offers immense BTF texture compression ratio

which cannot be achieved by any other sampling-based BTF

texture synthesis method.

1. Introduction

A physically correct virtual models visualization cannot

be accomplished without nature-like colour textures cover-

ing virtual or augmented reality scene objects. These tex-

tures can be either smooth or rough (also referred as the

bidirectional texture function - BTF). The rough textures

which have rugged surfaces do not obey the Lambert law

and their reflectance is illumination and view angle depen-

dent. Both types of textures occur in virtual scenes models

can be either digitised natural textures or textures synthe-

sised from an appropriate mathematical model. The for-

mer simplistic option suffers among others with extreme

memory requirements for storage of a large number of digi-

tised cross-sectioned slices through different material sam-

ples. Sampling solution become unmanageable for rough

textures which require to store thousands of different illu-

mination and view angle samples for every texture. Such a

simple VR scene requires to store tera bytes of texture data

which is far out of limits for any current real time hardware.

Several intelligent sampling methods [3], [4], [10], were

proposed with the aim to diminish these huge memory re-

quirements. All these methods are based on some sort of

original small texture sampling and the best of them pro-

duce very realistic synthetic textures. However these meth-

ods require to store thousands images for every combina-

tion of viewing and illumination angle of the original target

texture sample, they often produce visible seams, some of

them are computationally demanding and they cannot gen-

erate textures unseen (unstored) by the algorithm.

Synthetic textures based on adaptive spatial models are

far more flexible, extremely compressed (few tens of pa-

rameters to be stored only), they may be evaluated directly

in procedural form, can be designed to meet certain con-

straints or properties, and can be used to seamlessly fill an

infinite texture space. Mathematical models can only ap-

proximate real measurements which results in visual qual-

ity compromise of some methods. Several smooth texture

modelling approaches, mostly monospectral but some also

multispectral, were published, e.g., [2], [8], [1] and some

survey articles are available [6] as well.

CAR type of random fields are appropriate for texture

modelling not only because they do not suffer with some

problems of alternative options (see [?], for details) but they

are also easy to synthesise and still flexible enough to im-

itate a large set of natural and artificial textures. While

the random field based models quite successfully represent

high frequencies present in natural textures low frequencies

are much more difficult for them. One possibility how to

overcome this drawback is to use a multiscale random field



model. Unfortunately CAR random fields, similarly as the

majority of other Markovian types of random field mod-

els, are not invariant to multiple resolution decomposition

(MRD) even for simple MRD like subsampling (they gener-

ally lose their Markovianity property) and become ARMA

random fields instead. Fortunately for the representation

and modelling applications we can avoid computationally

demanding approximations of an ARMA multigrid random

field by an infinite order (i.e., high order in practice) CAR

random fields because there is no need to transfer informa-

tion between single spatial factors hence it is sufficient to

analyse and synthesise each resolution component indepen-

dently.

2. BTF Model

We propose a novel BTF representation Fig.1 which

combines an estimated range map parameters with param-

eters of a set of mutually coupled simultaneous causal au-

toregressive random (CAR) models. The multiscale CAR

random field based models represent the smooth texture part

of the data. This BTF representation allows BTF space en-

largement to any required size and efficient easy simulation

even inside a graphical processing unit.

Figure 1. The overall BTF algorithm scheme.

The texture visual appearance during changes of view-

ing and illumination conditions is simulated using the dis-

placement mapping technique (or approximated through the

bump map filter). The obvious advantage of this solution

is the possibility to use hardware support of displacement

(bump) map technique in contemporary visualisation hard-

ware.

The overall roughness of a textured surface significantly

influences a BTF texture appearance. Such a surface can

be specified using its range map, which can be estimated

by several existing approaches, e.g., direct measurement,

photometric stereo, shape from shading. The range map

estimation within this paper was performed by shape from

shading algorithm [5]. This method exploits the fact that

image intensity Yr of each pixel observed in texture image

is given according to Lambertian (in our implementation)

reflectance map Yr = R(zr1
, zr2

, θ,C, ρ) :
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where zr1
and zr2

are surface slopes in directions r1 and r2,

θ is vector from surface to illumination source, C is vector

from surface to the camera and ρ is albedo of observed ma-

terial. The algorithm ignores multiple reflections, assumes

known vectors C, θ, spatially invariant reflectance map and

includes constrain which enforces integrability of surface

slopes:
∂2Zr

∂r1∂r2
=

∂2Zr

∂r2∂r1

where Zr is the unknown surface height in the location

r = (r1, r2). This integrability condition is performed in

the Fourier coefficient representation. The Lambertian re-

flectance assumption may deteriorate the range map esti-

mation for some non-Lambertian texture surfaces, although

results in [5] demonstrate still acceptable estimates even in

these cases. Estimated range map is finally modelled us-

ing the simplified (i.e. 2D) CAR model analogously to the

spectral information.

Input multispectral image is decomposed into a multi-

resolution grid and each resolution data factor is indepen-

dently modelled by its dedicated CAR model. Each one

generates a single spatial frequency band of the texture.

An analysed texture is decomposed into multiple resolu-

tions factors using Laplacian pyramid and the intermediary

Gaussian pyramid Ÿ
(k)
•,i which is a sequence of images in

which each one is a low-pass down-sampled version of its

predecessor where the weighting function (FIR generating

kernel) w is chosen subject to execute separability, normal-

ization, symmetry and equal contribution constrains. The

Gaussian pyramid for a reduction factor n is

Ÿ
(k)
r,i =↓n

r (Ÿ
(k−1)
•,i ⊗ w) k = 1, 2, . . . ,

where Ÿ
(0)
•,i = Ȳ•,i , ↓n denotes down-sampling with

reduction factor n and ⊗ is the convolution operation.

Ÿ (k)
r =

l
∑

i,j=−l

ŵiŵj Ÿ
(k−1)
2r+(i,j) .

The Laplacian pyramid Ẏ
(k)
r,i contains band-pass compo-

nents and provides a good approximation to the Laplacian

of the Gaussian kernel. It can be constructed by differenc-

ing single Gaussian pyramid layers:

Ẏ
(k)
r,i = Ÿ

(k)
r,i − ↑

n
r (Ÿ

(k+1)
•,i ) k = 0, 1, . . . ,

where ↑n is the up-sampling with an expanding factor n.



2.1. CAR Factor Model

Modelling general multispectral (e.g. colour) textures

require three dimensional models to allow unrestricted

spatial-spectral correlation representation. The advantage

of 3D CAR models is that they can be solved, under several

additional and acceptable assumptions, analytically. Mul-

tispectral textures are decomposed into a multi-resolution

grid and each resolution data are independently modeled

by their dedicated independent Gaussian noise driven CAR

random field model. Let the digitized colour texture Y is

indexed on a finite rectangular three-dimensional N×M×
d underlying lattice I , where N × M is the image size

and d is the number of spectral bands (i.e., d = 3 for usual

colour textures). Let us denote a simplified multiindex r to

have two components r = [r1, r2]. The first component is

row and and the second one is column index, respectively.

The (CAR) random field is a family of random variables

with a joint probability density on the set of all possible re-

alisations Y of the M × N × d lattice I , subject to the

following condition:

p(Y | γ,Σ−1) = (2π)−
d(MN−1)
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, (1)

Ṽr−1 =

(

Ṽyy(r−1) Ṽ T
xy(r−1)
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)

, (2)

where the used notion is: Ṽδω(r−1) =
∑r−1

k=1∆kΩ
T
k . The

3D CAR model can be expressed as a stationary causal un-

correlated noise driven 3D autoregressive process:

Yr = γXr + er , (3)

where γ is the d× dη parameter matrix

γ = [A1, . . . , Aη] , (4)

η = card(Ic
r) , Ic

r is a causal neighbourhood, er is a

Gaussian white noise vector with zero mean and a constant

but unknown covariance matrix Σ and Xr is a corre-

sponding vector of Yr−s (design vector).

The selection of an appropriate CAR model support is

important to obtain good modelling results. Too small con-

textual neighbourhood can not capture all details while in-

clusion of surplus neighbours add to the computational bur-

den and can potentially degrade the performance of the

model as an additional source of noise. The optimal neigh-

bourhood can be found using the Bayesian decision rule

for minimizing the average probability of decision error.

The most probable CAR model given past data, the normal-

Wishart parameter prior and the uniform model prior is the

model which maximise the statistics:

Dj(r−1) =
−d

2
ln |Vxx(r−1)| −

β(r)− dη + d+ 1

2
ln |λ(r−1)|

+
d2η

2
lnπ
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2
)

− ln Γ(
β(0)− dη + d+ 2− i

2
)

]

where β(r) = β(0) + r − 1 , β(0) > 1 , and

λ(r) = Vyy(r) − V T
xy(r)V

−1
xx(r)Vxy(r) . (5)

Parameter estimations (6),(7) of the CAR model using the

Bayesian method and the normal-Wishart parameter prior

can be found analytically.

γ̂T
r−1 = V −1

xx(r−1)Vxy(r−1) (6)

and

Σ̂r−1 =
λ(r−1)

β(r)
, (7)

where Vuz(r−1) = Ṽuz(r−1) + Vuz(0) and matrices Vuz(0)

are the corresponding matrices from the normal-Wishart pa-

rameter prior. The estimates (5), (6),(7) can be also evalu-

ated recursively if necessary.

The CAR model synthesis is very simple and the CAR ran-

dom field can be directly generated from the model equa-

tion (3) using a multivariate Gaussian generator. The fine-

resolution synthetic texture is obtained from the pyramid

collapse procedure.

measurement range-map ← φi = 0o

↓ φi = 90o → φi = 180o ↑ φi = 270o

Figure 2. White leather examples and their

BTF synthetic results for illumination angles

0o, 90o, 180o and 270o.



measurement range-map smooth synthesis

← φi = 0o ↓ φi = 90o → φi = 180o

measurement range-map smooth synthesis

← φi = 0o ↓ φi = 90o → φi = 180o

Figure 3. Brown calf and snake leather exam-

ples and their BTF synthetic results for illu-

mination angles 0o, 90o, 180o

3. Results

We have tested the algorithm on several BTF colour tex-

ture databases - the University of Bonn [13] database, the

Yale University [12]database and several our BTF mea-

surements, such as corduroy, upholstery, carpet, knitwear

or leather textures. The textures were modelled for sev-

eral illumination directions and visually compared with

their corresponding measurements. Three presented natu-

ral colour examples (Fig.2,Fig.3) illustrate the presented al-

gorithm performance. Even if the leather textures (Fig.2)

violates the CAR model stationarity assumption, the algo-

rithm demonstrates its ability to model such BTF textures

with very good visual realism. The displacement mapping

technique algorithm option provides better results than the

bump mapping alternative (not shown here). The multi-

scale models demonstrate [8] their clear superiority over

their single-scale counterparts while the colour quality is

comparable between single-scale and multi-scale alterna-

tive models.

4. Summary and Conclusions

Our test results prove extreme BTF data compression ra-

tio of the proposed representation simultaneously with very

realistic visual modelling quality. Some synthetic BTF tex-

tures reproduce given measured images so that both natu-

ral and synthetic texture are almost visually indiscernible

and even the worst results can be used for preattentive BTF

textures applications at least. The multi-scale approach is

more robust and allows far better results than the single-

scale one if the synthesis model is inadequate (lower order

model, non stationary texture, etc.). Hence the CAR model

is better suited for real time (e.g. using a graphical card pro-

cessing unit) or web applications than most other published

alternatives.

The presented method is based on the estimated model in

contrast to prevailing intelligent sampling type of methods,

and as such it can only approximate realism of the original

measurement. However it offers unbeatable data compres-

sion ratio (tens of parameters per texture only), easy simu-

lation of even non existing (previously not measured) BTF

textures and fast seamless synthesis of any texture size.
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