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Figure 1: Examples of BTF visual equivalence for two samples, different objects and illuminations.

Abstract

Bidirectional Texture Functions (BTF) are commonly thought to
provide the most realistic perceptual experience of materials from
rendered images. The key to providing efficient compression of
BTFs is the decision as to how much of the data should be pre-
served. We use psychophysical experiments to show that this deci-
sion depends critically upon the material concerned. Furthermore,
we develop a BTF derived metric that enables us to automatically
set a material’s compression parameters in such a way as to provide
users with a predefined perceptual quality. We investigate the corre-
lation of three different BTF metrics with psychophysically derived
data. Eight materials were presented to eleven naive observers who
were asked to judge the perceived quality of BTF renderings as the
amount of preserved data was varied. The metric showing the high-
est correlation with the thresholds set by the observers was the mean
variance of individual BTF images. This metric was then used to
automatically determine the material-specific compression param-
eters used in a vector quantisation scheme. The results were suc-
cessfully validated in an experiment with six additional materials
and eighteen observers. We show that using the psychophysically
reduced BTF data significantly improves performance of a PCA-
based compression method. On average, we were able to increase
the compression ratios, and decrease processing times, by a factor
of four without any differences being perceived.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture— [J.4]: Social and Behav-
ioral Sciences—Psychology

Keywords: Surface texture, BTF, texture perception, phychophys-
ical experiment, texture compression, perceptual metric

1 Introduction

In many industrial sectors, demand is currently increasing for accu-
rate virtual representations of real-world materials. Important ap-
plication areas include safety simulations and computer-aided de-
sign. In the first area, the main concern is choosing the right ma-
terial to fulfill given safety limits of reflectance, while in the sec-
ond the aim is to avoid costly and time consuming design cycles
of material selection, solid model production and visual evaluation.
These tasks, among others, require accurate photo-realistic repre-
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sentation of real material samples dependent on different illumina-
tion and viewing conditions.

The first real illumination and view dependent surface texture
representation was the Bidirectional Texture Function (BTF), in-
troduced by Dana et al. [1999]. A BTF is a six-dimensional
function representing the appearance of a material sample sur-
face for variable illumination ωi(θi, ϕi) and view ωv(θv, ϕv)
directions, resulting in a six-dimensional monospectral function
BTF (x, y, θi, ϕi, θv, ϕv), where θ are elevation and ϕ azimuthal
angles. Compared to the four-dimensional BRDF, a BTF depends
on two additional parameters, a planar position (x, y) over a ma-
terial surface. The BTF preserves such effects as masking, shad-
owing, inter-reflections and sub-surface scattering. In recent years,
various BTF measurement systems have appeared as well as meth-
ods of interactive BTF editing [Kautz et al. 2007]. Although mate-
rial visualization using BTFs provides superb visual quality, even a
relatively small sample (e.g., 256x256) occupies several gigabytes
of data in its raw form and is not suitable for real-time rendering.
There has been much research aimed at developing efficient com-
pression techniques that also allow computationally cheap recon-
struction and visualization of BTFs (see [Müller et al. 2005] for
a recent summary). However, all of these approaches have fixed or
predefined compression parameters regardless of the sample’s prop-
erties, and do not exploit the fact that each sample requires different
amounts of data to provide the same level of perceptual fidelity.

Our contribution. This paper makes two main contributions.
First we show explicitly, using a psychophysical experiment, that
the amount of data required to represent a material to a given de-
gree of perceived fidelity is dependent upon that material’s char-
acteristics. Second, we exploit this fact to develop a BTF metric
that allows us to automatically set the appropriate compression pa-
rameters. Our technique makes it possible to significantly increase
the compression ratio of many standard BTF compression methods
while maintaining the same visual quality as the full dataset (see
Figure 1).
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Paper organisation. In the next section we survey related work
(Section 2) while Section 3 provides an overview of our approach.
Section 4 describes the BTF datasets that were used, their statis-
tical analysis, and more importantly proposes the three variance-
based metrics to be investigated. Section 5 proposes the core BTF
vector quantization model. Section 6 describes the psychophys-
ical experiment that was used to investigate the relationship be-
tween quantisation parameters and perceived rendering quality of
different materials. Section 7 analyses the correlation between the
three metrics and the material-dependent quantisation parameters
required for given perceptual fidelity. The method’s performance
is validated and its limitations are discussed in Section 8, while
its applications for BTF compression and optimal sampling are de-
scribed in Section 9. Section 10 concludes the paper and proposes
directions for further research.

2 Prior Work

The method proposed in this paper has several distinct and impor-
tant aspects. These are dimensionality surface estimation, compres-
sion, and psychophysical aspects of bidirectional texture functions.

Dimensionality estimation. The dimensionality surface of ma-
terials represented by means of BTF was first analysed by Suen
and Healey [2000], where a correlation analysis showed that BTF
dimensionality increases almost linearly with elevation angles of il-
lumination and view. However, this study did not investigate any
correlation between BTF dimensionality and human perception. In
this paper, we focus on description of BTF dimensionality and vari-
ability by means of a perceptually related metric.

Compression. A number of works have been published on methods
for compression of BTF samples, in order to overcome the disad-
vantages of their massive size. A recent overview of this field can be
found in [Müller et al. 2005]. The methods are based mainly on lin-
ear basis decomposition (PCA, wavelets) or on fitting BRDF mod-
els to pixel-wise BTF data. Another branch of efficient methods is
based on probabilistic modelling [Haindl and Filip 2007]. Unfortu-
nately, none of the compression approaches attempt to perform any
perceptual analysis, and they use fixed or predefined parameters
regardless of compressed BTF samples. Instead of compressing all
BTF images, as is common in this field [Müller et al. 2005], we pro-
pose to compress just the perceptually relevant subset of them. Our
work is most closely related to clustering-based techniques such as
[Leung and Malik 2001] that decompose BTFs into individual tex-
tons that are further compressed. Unlike this top-down clustering
method performed in a pixel-wise domain, we suggest a bottom-
up vector quantization approach in the domain of illumination and
view direction angles. This allows us not only to reduce the size of
datasets, but also to obtain information about the sampling that is
most appropriate for specific materials.

Psychophysical aspects. Applications of psychophysical methods
have so far been restricted to investigations of how surface prop-
erties and the shape of real-world materials are perceived. Padilla
et al. [2008] developed a model of perceived roughness in fractal
surfaces. Ho et al. [2008] found that roughness perception is corre-
lated with texture contrast. Lawson et al. [2003] showed that human
performance in matching 3D shapes is lower for varying view direc-
tions. Ostrovsky [2005] pointed out that illumination inconsistency
is hard to detect in geometrically irregular scenes. Ramanarayanan
et al. [2007] developed metrics that predict the visual equivalence
of rendered objects under warping and blurring of illumination and
warping of object surfaces. Daly [1993] presented a metric that
predicts the perceived similarity of images on the basis of known
low-level processes in human vision. A psychophysically-based
model of light reflection with two perceptually meaningful uniform
dimensions was developed by Pellacini et al. [2000]. Fleming et

al. [2003] pointed out the importance of real-world illumination for
correct matching of surface roughness and specularity.

Limited work has been carried out on the perceptual aspects of real
BRDF/BTF measurements. te Pas and Pont [2005a] showed that
changes in surface BRDF and illumination are often confounded,
but that adding complex illumination or 3D texture improves the
matching. Dependency of the perception of a light source direc-
tion on surface BRDF and its 3D shape was shown in [te Pas and
Pont 2005b; Khang et al. 2006]. Matusik et al. [2003] psychophys-
ically evaluated large sets of BRDF samples, and showed that there
are consistent transitions in perceived properties between different
samples. Vangorp et al. [2007] found that object shape consider-
ably influences perception of BRDF samples. Meseth et al. [2006]
showed that real-world scenes represented using BTFs were per-
ceived as almost identical while those using flat textures modulated
by BRDFs scored much lower. Filip et al. [2008] psychophysically
analysed several BTF samples and suggested several general rules
for their appropriate uniform resampling.

Although this research yielded interesting results, most of the meth-
ods discussed above focus on the perception or compression of ma-
terials represented by BRDF or BTF depending on the position or
type of illumination. However, we are not aware of any work that
applied psychophysical methods to systematically assess the sam-
ple dependent perceptual effects of BTF compression. Unlike other
research dealing with the perceptual classification of images ren-
dered using BRDF or BTF, our aim was to find the relationship
between the perceptual features of a BTF sample and the appropri-
ate settings of its compression parameters. These parameters can
then be used for reducing the number of BTF images, without any
effects of the reduction being perceptible by an average human ob-
server.

3 Overview of the Method

A general overview of the proposed method is given in Figure 2.
First, a set of statistical features of each sample is computed. Then
a vector quantization model is proposed that removes BTF images
selectively, depending on a predefined set of quantization thresh-
olds. The rendered images are used as stimuli in the psychophysi-
cal experiment, which establishes the largest degree of degradation
at which rendered images are not distinguishable from those gener-
ated from the original full BTF set. This process is repeated for a
number of different materials, object shapes, and illuminations. The
correlation of three precomputed statistical features with the psy-
chophysically measured data is analysed and the one with the high-
est correlation is chosen and psychophysically scaled. This scal-
ing can, for any novel BTF sample, automatically establish sample
variance-based quantization thresholds based on the sample vari-
ability, yielding the perceptually important subset of BTF images.

Figure 2: Scheme of the proposed method of BTF analysis.

4 BTF Samples Statistical Analysis

We have used measurements from the BTF Database Bonn 1 as data
samples. These data have planar resolution N ×M = 256 × 256

1http://btf.cs.uni-bonn.de/
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pixels and illumination and viewing directions (ni×nv = 81×81)
producing uniform sampling of a hemisphere above a material sam-
ple (see Figure 3). The following BTF samples were used in our
experiments (see Figure 10): aluminum profile (alu), corduroy fab-
ric (corduroy), dark cushion fabric (fabric d.), artificial dark leather
(leather d.), artificial light leather (leather l.), glazed tile with white
pointing (impalla), dark lacquered wood (wood d.), and knitted
wool (wool). To avoid high resource requirements during process-
ing of complete BTF samples, and visible seams when mapping
these data onto test 3D objects, we applied the image tiling ap-
proach [Somol and Haindl 2005]. We cut one to five seamless BTF
tiles for each tested sample. The size and number of tiles (sec-
ond column of Tab 1) was chosen depending on the regularity and
spatial frequency of the surface pattern of the sample, and on the
memory resources available.

First of all we analysed the importance of colour information in the
tested samples. We did so by calculating the variance of the sam-
ples in individual channels of the perceptually uniform CIE LAB
color-space. The overall variance in individual channels for all
tested samples is shown in columns 3-5 of Table 1. From these
values we concluded that data from the luminance channel vary the
most. This difference between channels is least clear for the wood
sample, followed by the wool and corduroy samples, which exhibit
strong subsurface scattering and / or translucency effects. To re-
duce the processing times of our method we decided to use only the
luminance values, however, some BTF samples having large color
variations may require the use of full spectral information.

BTF # of BTF σ1 tested BTF variances
sample tiles L a b σ1 σ2 σ3

alu 5 26.1 1.7 2.6 26.1 26.4 8.6
corduroy 5 22.7 4.7 13.0 22.7 18.4 11.5
fabric d. 5 16.1 2.1 2.4 16.1 14.0 6.8
leather d. 2 18.5 2.0 1.9 18.5 18.6 3.6
leather l. 2 25.6 2.8 7.9 25.6 15.1 4.2
impalla 1 29.5 2.3 3.3 29.5 19.4 17.5
wood d. 1 13.9 12.8 15.2 13.9 13.8 4.5
wool 5 22.2 3.7 17.9 22.2 14.8 7.9

Table 1: Variance values of tested samples in individual channels
of CIE LAB color-space, and values of the proposed metrics.

Different materials, and therefore their representation by means of
BTF samples, exhibit different degrees of variability in their ap-
pearance. This variability depends on illumination and view di-
rection, and consequently on optical properties of the underlying
micro-structure of the sample, on its roughness or on its tendency to
complex inter-reflection and sub-surface scattering effects. We be-
lieve that understanding the variability of the sample is the key for
development of optimal compression algorithms of BTFs represent-
ing the real materials. For this reason we tested several measures of
BTF sample variance with the goal of finding the one that correlates
best with human perception; in other words, to find a computation-
ally efficient and perceptually plausible measure of the sensitivity
of a sample to perceptual degradation explained in the following
section. For this reason we tested the following three metrics:

σ1 = V arx,y,i,v(BTFL(x, y, i, v)) ,

σ2 =
1

MN

∑

∀x,y

V ari,v(BTFL(x, y, i, v)) ,

σ3 =
1

ninv

∑

∀i,v

V arx,y(BTFL(x, y, i, v)) , (1)

where σ1 computes the total variance of a BTF luminance, σ2 com-
putes the mean variance over individual pixel-wise BRDF images
of size ni×nv , and σ3 gives the mean variance over BTF images of
size M ×N . All of the variances were computed in the CIE LAB

luminance channel only. Values of all these variances for all tested
samples are shown in the least three columns of Table 1.

Later in the paper, we will compare how each of these variances
correlate with a perceptually estimated degradation threshold of the
vector quantization model proposed in the following section.

5 Vector Quantization of BTF Images

Choosing a subset of perceptually important BTF images from each
BTF sample is the core of the proposed method. As the first step
in such a BTF subset selection we need to evaluate similarity of all
pairs of images in the sample. As there are 6561 images represent-
ing each sample, one can imagine that such a similarity measure
has to be relatively simple to evaluate. We did so by computation
of the symmetric similarity matrix A(ninv × ninv) where each
value represents the average pixel-wise luminance difference for a
corresponding pair of BTF images. The next step is to choose the
perceptually important BTF subset. This is achieved by substitu-
tion of redundant / similar images by an index of the most simi-
lar image. This information is stored in a positive index of array
I(ni × nv). The substitution algorithm, outlined in Table 2, has as
inputs the precomputed similarity matrix A, predefined luminance
difference threshold ε, and maximum allowed view direction eu-
clidean difference over hemisphere hemiDist(.) (we use a default
threshold η = 0.8 that corresponds to maximum view angles distor-
tion∼ 45o). The algorithm starts with initialization of the substitu-
tion index I (lines 1,2). A corresponding BTF image is substituted
when the difference between both images m(i1, v1) and n(i2, v2)
(lines 4,6) is less than ε and their view direction difference is less
than η (line 7). Parameters i ∈ 0 . . . ni−1 and v ∈ 0 . . . nv−1 are
indices of individual measurements points circling the hemisphere
above the sample starting at its pole. If the image was substituted
previously the substitution is overridden if differences in the pos-
sible substitution are lower than those of the previous one (lines
8-10). The output of the algorithm is the index array I(i, v), which
has either a negative value at positions where the original image
was preserved, or positive indices in range (0 . . . ninv − 1), spec-
ifying the index of one of the preserved images, at positions where
the image was substituted. The reconstruction of an arbitrary BTF

1 for k(0 . . . ni − 1), l(0 . . . nv − 1)
2 I(k, l) = −1
3 for i1(0 . . . ni − 1), v1(0 . . . nv − 1)
4 m = v1ni + i1, if(m=n) break
5 for i2(0 . . . ni − 1), v2(0 . . . nv − 1)
6 n = v2ni + i2
7 if A(m,n) < ε and hemiDist(v1, v2) < η
8 if I(i2, v2) = −1 or A(m,n) < A(I(i2, v2), n)
9 if m 6= n and I(i1, v1) = −1

10 I(i2, v2) = m

Table 2: Algorithm of BTF subset selection.

image from its subset, for a given combination of the measured il-
lumination ia ∈ (0 . . . ni) and view va ∈ (0 . . . nv) indices, can
be written as follows

BTFi,v

{

i = ia, v = va if I(ia, va) < 0

i = I(ia,va)
ni

, v = I(ia, va)− i otherwise
.

(2)
Figure 4 shows the relationship between the luminance difference
threshold ε and the number of preserved BTF images. From this
figure we can see that, for all tested samples, the number of images
decreases dramatically as ε increases from 1.0 to 9.0, and then only
slightly as ε increases beyond 12.0.

An example of a sample degradation introduced by the proposed
BTF images vector quantization scheme is shown in Figure 5. Here,
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Figure 3: 81 sam-
pling directions.

Figure 4: Number of preserved BTF images
dependent on the luminance threshold ε.

original ε=3.0 ε=6.0 ε=9.0 ε=12.0 ε=15.0
6561 5226 1526 429 160 83 img.

Figure 5: Renderings of a sphere covered with the corduroy BTF
sample, under point-light and environment illumination (first and
second rows), with increasing values of the luminance difference
threshold ε (third row). Fourth row – number of preserved images.
Fifth row – substitution maps with removed samples as green (rows
– illumination direction, columns – viewing direction, top left cor-
ner – pole of the sampled hemisphere) – see Figure 3).

a sphere is covered by a corduroy BTF sample illuminated by ei-
ther point-light or environmental illumination. The sample is grad-
ually degraded from the original set by increasing the luminance
difference threshold ε to 15.0. The figure also shows substitution
maps, which indicate which of the 6561 (81× 81 = ni × nv) BTF
images have been substituted at five values of ε from 3.0 to 15.0.
In these maps, green indicates substituted and black indicates pre-
served BTF images. The reference BRDF image (spatially averaged
original BTF) is also shown on the left.

From these results, we can see that the proposed vector quantiza-
tion model allows efficient control of the rendered BTF quality by
means of the luminance difference threshold ε. The greater the
threshold is, the fewer BTF images are preserved and used at the
rendering stage, and the greater is the perceptual error between orig-
inal and degraded BTF samples. Note that the model is based on
pixel-wise differences in CIE LAB color space, so any imperfec-
tions in the perceptual uniformity of this space, or in spatial regis-
tration of individual BTF images, can affect the results that it yields.
Additionally, different underlying materials have completely differ-
ent structural properties, and these differences lead to variable view
occlusion errors. For these reasons, we expect that each sample
will require a unique degradation threshold for optimal perceptual
results. In the following section we will exploit a way to use psy-
chophysical data to set these thresholds.

6 Psychophysical Experiment

The goal of the experiment was to identify thresholds for the
proposed vector quantization model for different combinations of
tested material BTF, illumination environment and 3D object. At
these thresholds, we aim to achieve the minimum size of the BTF

image set consistent with there being no perceptible difference from
a rendering using the entire image set.

Experimental Stimuli. As experimental stimuli we have used pairs
of static images of size 800×800, representing a material BTF ren-
dered on a 3D object. Each pair consisted of a rendering using the
full original dataset and one using a degraded set, with ε values 3,
6, 9, 12, 15 or 18. Pairs of images were displayed simultaneously,
side-by-side. Three different 3D objects were used; sphere, table-
cloth and bunny 2, and the sphere was rendered with three different
illuminations; point-light, and two environments, grace 3 and grass-
plain (see Figure 6). The point-light was positioned slightly above

Figure 6: Four examples of experimental stimuli showing the three
test objects, and illumination environments for ε = 9.0.

the viewing direction corresponding to illumination of the room in
which testing took place, and avoiding extensive hard shadows on
object surfaces. We chose to test the sphere under different types
of illumination because its geometry provides a wide range of illu-
mination and viewing combinations without introducing unwanted
effects of higher curvatures. The environment maps were approxi-
mated by a set of 144 discrete point-lights [Havran et al. 2005]. The
remaining two objects were illuminated by the grassplain environ-
ment only, as we considered that this natural environment would be
most familiar to the participants. The background of the point-light
illuminated stimuli, and the remaining space on the screen, was set
to dark gray. Given eight material BTFs, six degradation levels and
five object/illumination combinations, the total number of stimuli
was 240.

Participants. Eleven paid observers (six males, five females) par-
ticipated in the experiments. All were students or University em-
ployees working in different fields, were less than 35 years of age,
and had normal or corrected to normal vision. All were naive with
respect to the purpose and design of the experiment.

Experimental Procedure. The participants were shown the 240
stimuli in a random order and asked a yes-no question: ’Can you
spot any differences in the material covering the two objects?’ Note
that this question is a strict test of the ability to detect a difference
and allows participants to make a ’yes’ response on the basis of only
a minor local difference. Participants were given as much time as
they wanted to make their decision, up to a maximum of 10 sec-
onds; after this time, the response was always recorded as ’no’.
This procedure was followed to prevent participants from adopt-
ing a strategy of making an exhaustive pixel-wise comparison of
the images, however, it turned out that more than 90% of the re-
sponses were made in less than 10 seconds. There was a pause of
two seconds between stimului presentations, and participants took
on average less than 40 minutes to perform the whole experiment,
which was split into two sessions. All stimuli were presented on
a calibrated 20.1” NEC2090UXi LCD display (60 Hz, resolution

2http://graphics.stanford.edu/data/3Dscanrep/
3http://www.debevec.org
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1600 × 1200, brightness 120cd/m2, 6500K, gamma 2.2). The
experiment was performed under dim room lighting. Participants
viewed the screen at a distance of 0.9m, so that each object in a
pair subtended approximately 9o of visual angle.

Analysis and Discussion of Experimental Results. When partic-
ipants reported a difference between the rendered images their re-
sponse was assigned a value of 1, and otherwise 0. By averaging the
responses of all participants, we obtained psychometric data relat-
ing average response to the luminance difference threshold ε of the
vector quantization model (Section 5). There are five such datasets
for each BTF sample; three for the sphere under different illumi-
nations, and two additional for the different objects illuminated by
the grassplain environment. We have computed standard variances
of the psychometric data for all tested samples with average value
σ2 = 0.14 and have not found any significant trends except in-
creased values for the alu sample as we will explain later. The psy-
chophysical data obtained can be represented by the psychometric
function ψ(x) [Wichmann and Hill 2001], which specifies the rela-
tionship between the underlying probability ψ of positive response
and the stimulus intensity x

ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F (x;α, β) , (3)

where F is data fitting function with parameters α and β, γ speci-
fies guess rate (i.e., response to zero stimulus), and λmiss rate (i.e.,
incorrect response for large stimulus). The functions were fitted to
the measured data using the psignifit 4 tool. We have tested several
distributions to fit our data (Weibull, Gumbel, sigmoid) and finally
have obtained the best fitting using the Weibull cumulative distribu-
tion, which is most commonly used in life data analysis due to its
flexibility. It is described as

F (x, α, β) = 1− exp

[

−

(

x

α

)β
]

(4)

for x ≥ 0, where β > 0 is the shape parameter and α > 0 is
the scale parameter of the distribution. The resulting psychomet-
ric functions averaged for all eight tested BTF samples are shown
in Figure 7. The left graph shows functions corresponding to the
same object (sphere) with different illuminations while the right
graph shows functions for different objects lit by the same environ-
ment (grassplain). Goodness of the fit was evaluated and shown
as confidence intervals for individual functions at response levels
(0.25, 0.5, and 0.75). If the data distribution were Gaussian, these
intervals would correspond to a standard deviation from the mean
values in the range ±1.

Figure 7: Averaged psychometric functions for all tested BTF sam-
ples (left) for three different BTF illuminations (point-light and
environments grace, grassplain), (right) for three different objects
(sphere, tablecloth, and bunny).

From these graphs we can conclude the following:

• Varying illumination: The degradation is easier to spot for
point-light than for environment illumination, where its ef-

4http://www.bootstrap-software.org/psignifit/

fects are hidden in sample structure due to interpolation be-
tween discrete sets of point lights. The performance for both
environments was almost identical.

• Varying object: The more complex the object, the more diffi-
cult it is to spot the degradation. The effects of degradation are
harder to detect in the bunny than in the sphere and the table-
cloth. This is consistent with the fact that the latter objects
contain large surfaces with low curvature (compare objects in
Figure 6), where the degradation can be detected more easily
without distortion by surface curvature. We therefore believe
that the conclusion given in [Vangorp et al. 2007] stating that
‘the sphere is not very-well suited object for material (BRDF)
discrimination tasks’ cannot be generalized to BTF data.

These results suggest that, the less uniform the illumination envi-
ronment or the curvature of the scene object is, the more sensitive
the participants were to degradation of the BTF data.

Individual psychometric functions for all BTF samples (mapped on
a sphere) for varying illumination are shown in Figure 8, together
with confidence intervals for their fitting at the response level 0.25.
Observing the solid black psychometric curves fitted to data aver-
aged for all environments, we can compare sensitivity of partic-
ipants’ responses to the same levels of degradation for different
materials. The results suggest that the samples most sensitive to
degradation are the leathers (leather d., leather l.) while those least
sensitive are the alu and impalla samples. The appearance of alu
and impalla samples seems to be preserved regardless of degrada-
tion level apart from subtle differences in holes or pointing in the
material structure. The samples most sensitive to a change of the
illumination environment (see Figure 8) were alu, fabric d., and
leather l.. For changes in the object the most sensitive were leather
d., leather l., and wood d..

The following section outlines a way of using these experimental
data to determine which of the statistical measures introduced in
Section 4 is optimal for setting a compression threshold, and how it
can be scaled perceptually.

7 Psychophysical Scaling

To exploit the psychophysical results, presented in the previous sec-
tion, we need to determine the greatest level of degradation of in-
dividual BTF samples that is not detectable by the average human
observer. To do this, we use the values of the threshold ε at which a
difference between rendered images is detected by only 25% of par-
ticipants. Note that due to the applied context of our work we use
a more stringent value than 50%, which is standard in psychophys-
ical research. These thresholds are computed from the fitted psy-
chophysical functions [Wichmann and Hill 2001] for different illu-
minations (see Figure 8) and objects using equation

ε̂p=0.25 = α β

√

ln
(

1− γ − λ

1− 0.25− λ

)

, (5)

where α, β are estimated parameters of the Weibull distribution and
γ and λ are guess and miss rates estimated during the fitting of
(4). The perceptual thresholds ε̂ estimated using equation (5) for
all psychometric functions are shown in Table 3. The perceptual
thresholds for different illuminations of object sphere are shown in
the columns 2-4 of this table followed by their average in the fifth
column. Thresholds for different objects illuminated by the grass-
plain environment, shown in the last three columns of Table 3, are
generally higher. This is caused by the type of illumination and by
finer BTF resolution and higher shape variability of the tablecloth
and bunny objects (see Figure 6). Examples of renderings com-
paring the original data with the perceptually reduced subsets for
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Figure 8: Psychometric functions for all tested BTF samples (alu, corduroy, fabric d., leather l., leather d., impalla, wood d., wool) for
three different BTF illuminations (point-light and environments grace, grassplain) and for their averaged values. All the BTF samples were
enlarged to 1024× 1024 pixels and shown mapped on a sphere.

BTF ε̂ – different illuminations ε̂ – different objects
sample point grace grass AVG sphere table bunny

alu 5.5 17.9 16.0 13.1 16.0 10.6 25.4
corduroy 6.0 9.8 9.0 7.6 9.0 8.6 12.7
fabric d. 8.6 4.7 5.4 5.9 5.4 6.3 6.0
leather d. 2.5 5.6 2.9 3.2 2.9 3.3 8.4
leather l. 0.0 5.3 5.5 2.5 5.5 4.4 3.4
impalla 4.0 11.2 9.8 8.2 9.8 11.5 14.2
wood d. 1.7 4.8 7.2 4.2 7.2 6.4 7.9
wool 5.5 6.1 7.1 6.0 7.1 7.9 9.0

Table 3: Summary of the perceptual thresholds ε̂ estimated by the
experiment for all tested samples, illuminations, and objects.

wood (ε̂ = 4.0) and for corduroy (ε̂ = 6.0) samples are shown in
Figure 1.

The psychophysically estimated degradation thresholds provide us
with information about the sensitivity of the perceptual appearance
of individual BTF samples to introduced degradation. In the next
step we attempt to match the estimated psychophysical thresholds
ε̂ with the most similar statistical feature, i.e., one of variances σ1,
σ2, and σ3 precomputed in the last three columns of Table 1. To
do so we used average measured ε̂ values for object sphere from
the fourth column of Table 3 and compared their correlation with
values of the individual variances. Using the averaged values is jus-
tified by their overall best confidence intervals (see Figure 8). The

correlation coefficient RX,Y = E[(X−µX )(Y−µY )]
σXσY

was used for

comparison of vectors X,Y , where µ and σ are their means and
variances. The computed coefficients for the tested variances are
Rσ1

= 0.48, Rσ2
= 0.67, and Rσ3

= 0.76. The mean variance
computed over BTF images, i.e., σ3, exhibits the highest correla-
tion with the averaged psychophysical thresholds ε̂. The correlation
with σ3 is even greater (R = 0.90) when the thresholds for sample
alu are not taken into account. This can be justified on the basis of
the wide confidence intervals in fitting the psychometric functions
for this sample (see Figure 8 top-left).

We have found that variance σ3 is the best predictor of the extent to
which a sample can be degraded before an observer can detect the
effects on the rendered image. However, values of σ3 are only pro-
portional to psychophysically estimated thresholds ε̂, and have to
be scaled to be useful as an absolute estimate of threshold values.

Due to the fact that psychophysical thresholds vary considerably,
depending on the illumination scheme, the scaling of σ3 was done
for individual lighting models separately. For each illumination a
different scaling coefficient s was computed, by means of solving

a set of linear equations Σ3s = Ê, where Σ3 and Ê are vectors of
values σ3 and ε̂. Finally, the threshold εσ for any new BTF sample
is estimated by means of simple scaling εσ = sσ3. In Figure 9 it is
shown that the estimated and scaled values εσ (even group of bars)
reliably follow the psychophysically measured ones ε̂ (odd group
of bars) for most of the tested samples and illumination conditions,
represented by the individual bars. The exception is the sample
alu, where the difference in the two thresholds is probably caused
by inconsistent psychometric data (see the wide confidence inter-
vals for fitting the function in Figure 8 top-left). The errorbars on
ε̂ values represent confidence intervals of psychometric functions
fitting. The estimated εσ values are conservative, i.e., lower than
measured thresholds ε̂, in all cases but the sample impalla where
the computed variance σ3, and εσ are increased due to the distinct
reflectance properties of the tiles and the pointing material. From
Figure 9 it is also apparent that thresholds for both environment
illuminations are very similar and often considerably higher than
for point light. Values averaged for all lighting models are shown
in the yellow bars. These average estimated εσ values generally
correspond to the lower elbow of samples’ degradation graphs in
Figure 4 as depicted by the rectangular area. To assure reliable
threshold estimation for samples with high variance σ3 and to pre-
serve correct shadowing effects in their rough structure we limit εσ

values to 6.0. Using the higher εσ thresholds would require deeper
analysis of the sample’s visual properties to identify the particular
reasons for the increased variance. This will be a subject of our
future research.

Additionally, the bottom of Figure 9 shows original σ3 for individ-
ual samples and numbers of preserved BTF images kA correspond-
ing to the average threshold (yellow bar of εσ). Since the original
samples comprise 6561 images, we conclude that only 10−35% of
the original BTF images are needed to maintain the same visual ap-
pearance as the original samples. Figure 10 compares the original
renderings of all the tested samples under point-light and grace illu-
mination with rendering of their perceptual subsets obtained using
the estimated thresholds εσ shown in Figure 9.
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alu corduroy fabric d. leather d. leather l. impalla wood d. wool

Figure 10: Original samples renderings compared with their perceptually equivalent renderings from the subset of the sample, for point-light
from left (the first two rows) and grace environment (the last two rows). The estimated thresholds εσ are shown in Figure 9.

point (s=0.48) grace (s=0.68) grassplain (s=0.77) average

ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ

kA: 625 1526 2322 2005 1244 1887 852 1137

σ3: 8.6 11.5 6.8 3.6 4.2 17.5 4.5 7.9

Figure 9: Comparison of the measured perceptual thresholds ε̂
with the εσ values estimated by scaling of sample variance for all
illumination types and tested samples; average number of the pre-
served BTF images kA and original values of σ3 variance.

8 Validation and Discussion of the Method

In this section, we validate the method for automatically setting
thresholds that was described in the previous section. We used six
new BTF samples (see Figure 12): light fabric (fabric l.), real light
leather (leather r.), cushion fabric (proposte), knitted wool (pulli),
wallpaper, and light lacquered wood (wood l.).

We performed an additional experiment to validate the thresholds
εσ obtained by scaling of the variance σ3. The experimental pro-
cedure and setup were the same as in the main experiment. Only
the sphere object was used for the six tested samples, and so, with
the three illumination types used previously, we obtained 108 stim-
uli. Eighteen participants took part, only three of whom had been
participants in the main experiment. We fitted psychometric func-
tions to the data in the same way as in the main experiment and
determined perceptual degradation thresholds at the 25% level. Fig-
ure 11 shows the perceptually measured thresholds ε̂ compared with
estimated and scaled thresholds εσ , for different samples and illu-
mination types. Original σ3 values and numbers of preserved BTF

point (s=0.48) grace (s=0.68) grassplain (s=0.77) average

ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ ε̂ εσ

kA: 2221 1514 1564 2095 971 293

σ3: 5.1 3.8 10.1 11.4 7.6 4.5

Figure 11: Comparison of the measured perceptual thresholds ε̂
with the εσ values estimated by scaling of the sample variance for
all illumination types and validation samples; average number of
the preserved BTF images kA and original values of σ3 variance.

images kA corresponding to the average threshold (yellow bar of
εσ) are shown at the bottom of the figure. This time, the thresh-
olds εσ were obtained by means of scaling the σ3 values using the
scaling constants s for each illumination type (top of Figure 11)
estimated in the previous section. We can see that the estimated
values εσ follow the perceptual ones ε̂ for most of the samples and
illumination types, and that the estimated values εσ are conserva-
tive, i.e., lower, with respect to the psychophysically measured val-
ues ε̂. The only exception is the sample pulli, with a very rough
translucent structure, where the estimated thresholds for environ-
ment illumination suggest higher degradation than the values ob-
tained by experiment. On the other hand, for sample wallpaper,
the estimated values are quite low when compared to the measured
ones. This is probably caused by the colorful pattern on the material
sample increasing the variance σ3, without an increase in the struc-
tural complexity of the sample. The performance of the method on
the validation samples for point-light illumination is shown in Fig-
ure 12. The first row shows renderings of original samples while
the second row shows renderings obtained by their subsets using
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estimated threshold εσ for point-light. There are no obvious differ-
ences, as would be expected in most cases due to the conservative
nature of the εσ values.

We conclude from the results that the proposed variance-based
threshold estimation method is more reliable for samples of low
color variation, and that it provides conservative, but perhaps not
optimal thresholds for the majority of BTF samples. To sum up, we
believe that reliable degradation thresholds can be estimated auto-
matically and scaled by experimental data obtained for completely
different samples as shown in the validation experiment. Thus the
psychophysical experiment only needs to be run once with a rep-
resentative set of samples, and then we can use the results to scale
any new measured BTF sample. However, to achieve the highest
scaling accuracy such a pilot experiment should comprise represen-
tative types of the samples being scaled. Our results also show, that
the estimated thresholds for grace and grassplain environment illu-
minations are very similar, so we believe that many different envi-
ronments can be represented by the same threshold without signifi-
cant loss of accuracy. Note, that the texture resolution on the sphere
during the experiments was 1024 × 1024 pixels and thus some of
the faint degradation artifacts might become even less apparent for
higher resolutions. Additionally, the sphere is a very simple ob-
ject, and the perceptual thresholds for shapes with higher curvature
variability are considerably higher (see the last three columns in Ta-
ble 3). Due to these facts, we believe that in real applications the
thresholds may be higher than those estimated in this paper, result-
ing in even greater reduction in sample size.

9 Applications of the Method

This section illustrates possible applications of the proposed psy-
chophysically driven reduction of BTF samples for their optimal
compression and sampling. In this section, for degradation of sam-
ples, we have used the average measured thresholds ε̂ that were
rounded and limited as shown in Table 4. Note, that the estimated
and scaled values εσ can be used in the same way.

9.1 BTF Compression

The compression attained by the proposed BTF sample reduction
method, can be significantly improved by application of published
image-based BTF compression algorithms summarized in [Müller
et al. 2005].

The Compression Algorithm. We have chosen the algorithm
from [Müller et al. 2003] due to its robustness, relatively high com-
pression ratio, reconstruction quality, and feasible hardware imple-
mentation. The method is based on iterative clustering of BTF data
with their further refinement in each cluster by a dedicated local
PCA model. The squared PCA reconstruction error is used as a
distance measure in the clustering process. The described BTF fac-
torization can be stated as

BTF(x, y, i, v) ≈

c
∑

j=1

αl(j, [x, y])El(I(i, v), j) + µl(I(i, v)),

(6)
where i, v are illumination and view direction indices, l is a cluster
index from a look-up table of size (M ×N ) for required planar co-
ordinates (x, y), c is the number of preserved principal components
for each cluster, α are PCA weights, E are either eigen-images or
eigen-BRDFs, and µ is the mean vector of the cluster. We have
applied the method in eigen-BRDF representation as suggested by
Müller et al. Howewer, instead of PCA compression of full appar-
ent BRDF sets (LPCA) (i.e., BTF(x, y; ∀ωi; ∀ωv) of size ni × nv ,
in each cluster), we compressed only the k psychophysically impor-
tant combinations of illumination and viewing directions (LPCA+)

(i.e., sparse BRDF sets only). By row-wise scanning we rearranged
these sparse eigen-images into eigen-vectorsE(k×c). During ren-
dering we restore preserved k BRDF values (6) and the missing
values are filled in using the information stored in the substitution
index I(i, v) (Section 5, (2)).

Results. The parameters of the algorithm were set to 5 clusters
r and 10 PCA eigen-images c representing the data in each cluster.
With this configuration, the LPCA method achieves compression of
the full BTF set of 1:48 (parameter sizeMN+3rk(1+4c), where
M × N = 100 × 100 pixels and k = 6561). When it is applied
not to the full set, but to the perceptually important subset obtained
by the proposed method (LPCA+), the results shown in the fourth
column of Table 4 are obtained (typically k ≤ 2000). Although
the compression ratio is variable, according to the estimated thresh-
old and therefore the number of preserved BTF images for each
sample is variable, it is always higher than for the LPCA method.
Pixel-wise comparisons, computed in CIE LAB color space, of the
results of using the full BTF data set with the results obtained from
sets compressed by each of the two methods are shown in the fifth
column of Table 4. These indicate that the LPCA+ method yields
only a slightly greater error than does the LPCA method. Addition-
ally, the BTF sample analysis using the proposed modification was
on average 4× faster and required 3× lower memory resources dur-
ing processing. Our CPU rendering implementation achieves ∼3
frames/second for both variants and a BTF resolution of 512× 512
pixels. We believe that a GPU implementation can benefit from
considerably less values k to be interpolated.

BTF sample est. images. LPCA+ ∆E in CIE LAB
name ε̂ k C.R. LPCA LPCA+
alu 6 544 1:261 3.2 6.8
corduroy 6 1562 1:144 29.8 30.2
fabric d. 5 1669 1:136 4.2 7.3
leather d. 3 1565 1:142 19.6 20.0
leather l. 3 1129 1:177 22.6 22.9
impalla 6 1887 1:125 6.9 8.2
wood d. 4 319 1:319 30.1 32.9
wool 6 707 1:230 2.6 5.2

Table 4: Comparison of the tested BTF samples in terms of es-
timated thresholds ε̂ and corresponding number of preserved im-
ages. Comparison of BTF compression ratio using the entire BTF
data (LPCA) and using only their perceptually important BTF sub-
set (LPCA+), in terms of compression ratios and pixel-wise error.

Psychophysical Test of the Effects of Compression. We carried
out a further psychophysical experiment to determine whether any
difference in quality of rendered images could be detected when the
proposed compression method (LPCA+) was used, compared to the
use of LPCA alone. The stimuli were pairs of rendered spheres, us-
ing the same eight materials as in the main experiment, and three il-
luminations (point-light and grace, used before, and st.peters). One
of the spheres was rendered after applying the LPCA algorithm to
the whole BTF sample, and the other after applying it to the subset
yielded by the proposed degradation method (LPCA+). Otherwise,
the experimental procedure and setup were as in the main experi-
ment. Eleven paid participants took part, only three of whom had
been participants in the main experiment. Average responses with
twice the standard error are shown in Figure 13. Using the 25%
criterion for detecting differences between images, which was used
in obtaining thresholds ε̂ from psychometric functions (Section 6),
the results for environment illuminations (grace, st.peters) indicate
that differences between the images could not be detected. This
is also the case for point-light illumination of five of the samples,
the exceptions being alu, leather l., and impalla. Therefore, only
in the case of these three samples, rendered under point-light illu-
mination, is there evidence that the greater degree of compression
achieved by the proposed method causes any reduction of image
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fabric l. leather r. proposte pulli wallpaper wood l.

Figure 12: Original renderings of validation samples (the top row) compared with their perceptually equivalent renderings from the subset
of the sample (the bottom row), for point-light from left. The estimated thresholds εσ are shown in Figure 11.

Figure 13: Results of BTF compression verification study - average
perceived difference for individual materials for point-light, grace,
and st.peters illumination environments.

quality. These results are illustrated in Figure 14. Here, renderings
of these three materials over the tablecloth object, under point light
illumination, are displayed. For each one, the results of using the
full original BTF sample are compared with the results from the two
levels of compression achieved with the LPCA and LPCA+ meth-
ods. The images indicate that, even in these worst cases, the effects
of LPCA+ compression on image quality are slight.

original BTF LPCA LPCA+
alu c.r. 1:48 c.r. 1:261

leather l. c.r. 1:48 c.r. 1:177

impalla c.r. 1:48 c.r. 1:125

(a) (b) (c) (d)
Figure 14: Comparison of original BTF rendering (a),(b) with
compression of full BTF sample (LPCA) (c) and its perceptually
important subset only (LPCA+) (d).

9.2 BTF Sampling

By examining the preserved combinations of illumination and
viewing directions in the perceptually reduced BTF subsets, we can
obtain interesting information about the perceptually optimal sam-
pling of different types of materials when BTF data are acquired.
Figure 15 shows the distribution of illumination and view directions
of the preserved BTF subset as black dots in substitution maps for
all tested samples. It is clear from the figure that, to obtain optimal
results, different BTF samples require different sampling strategies,
depending on the structural and reflectance properties of the under-
lying material. For most of the materials we can see a characteris-
tic increase of sampling density in illumination directions opposite
to the viewing direction (diagonal stripes). This suggests that the
specular highlight is the main visual feature of such samples, par-
ticularly for leather d. and leather l.. In contrast, the sampling
for wood d., corduroy, and impalla is more uniform. In the case
of wood d., the material has a smooth surface and exhibits signif-
icant anisotropic reflectance, producing strong subsurface scatter-
ing effects. The other two samples (corduroy and impalla) have
rough surface structure, (i.e, very variable surface height), and more
uniform sampling is therefore required to preserve occlusions and
shadows reliably. This would be the case for any samples having
distinct wrinkles, holes or pointing in the surface. Some materials
(fabric d., wool) exhibit combinations of both uniform and specular
sampling, where the latter prevails for higher elevations of illumi-
nation and viewing angles.

alu corduroy fabric d. leather d.

leather l. impalla wood d. wool

Figure 15: Substitution maps for all tested samples, showing pre-
served combinations of illumination and viewing directions (in
black) of the estimated perceptually important subset. Please re-
fer to Figure 5 for map description.
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10 Conclusions and Future Work

In this paper, we have presented a novel application of psychophys-
ical methods to the problems of analysis and optimal reduction of
view and illumination dependent texture data (BTF). An analysis
of eight different BTF samples shows that the average variance of
BTF sample images is strongly correlated with the way that human
observers judge the sample’s degradation introduced by the pro-
posed vector quantization of BTF images. Furthermore, we have
proposed a general method for optimal, sample dependent setting
of quantization thresholds. Although general application of the
method requires an initial psychophysical experiment to estimate
scaling values, these can then be used for automatically setting the
thresholds of any new BTF sample. The method provides us with
reliable and mostly conservative thresholds, as was validated using
eighteen observers and six new samples. We believe that this is
the first time that rigorous psychophysical investigation has shown
that uniform sampling introduces significant perceptual redundancy
into BTF data, and furthermore that this redundancy can be detected
and efficiently removed using a simple statistical analysis of a BTF
sample. Additionally, we have shown that by using reduced BTF
data that provides a predefined level of perceived quality, a signif-
icant improvement in the performance of a PCA-based compres-
sion method can be obtained. We have increased the compression
more than 4× while reducing processing time also approximately
4× compared to that required to compress the entire BTF dataset,
without a difference in visual appearance being perceptible.

In future we intend to investigate the underlying physical proper-
ties of BTF samples to determine both the causes of their specific
variances, and how our perception interacts with these properties.
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