
PENNON

A Generalized Augmented Lagrangian Method for
Semidefinite Programming

Michal Kočvara∗

Institute of Applied Mathematics, University of Erlangen

Martensstr. 3, 91058 Erlangen, Germany

kocvara@am.uni-erlangen.de

Michael Stingl
Institute of Applied Mathematics, University of Erlangen

Martensstr. 3, 91058 Erlangen, Germany

stingl@am.uni-erlangen.de

Abstract This article describes a generalization of the PBM method by Ben-Tal
and Zibulevsky to convex semidefinite programming problems. The
algorithm used is a generalized version of the Augmented Lagrangian
method. We present details of this algorithm as implemented in a new
code PENNON. The code can also solve second-order conic program-
ming (SOCP) problems, as well as problems with a mixture of SDP,
SOCP and NLP constraints. Results of extensive numerical tests and
comparison with other SDP codes are presented.

Keywords: semidefinite programming; cone programming; method of augmented
Lagrangians

Introduction

A class of iterative methods for convex nonlinear programming prob-
lems, introduced by Ben-Tal and Zibulevsky [3] and named PBM, proved
to be very efficient for solving large-scale nonlinear programming (NLP)
problems, in particular those arising from optimization of mechanical
structures. The framework of the algorithm is given by the augmented
Lagrangian method; the difference to the classic algorithm is in the def-

∗On leave from the Academy of Sciences of the Czech Republic

1



2

inition of the augmented Lagrangian function. This is defined using a
special penalty/barrier function satisfying certain properties; this defini-
tion guarantees good behavior of the Newton method when minimizing
the augmented Lagrangian function.

Our aim in this paper is to generalize the PBM approach to con-
vex semidefinite programming problems. The idea is to use the PBM
penalty function to construct another function that penalizes matrix in-
equality constraints. We will show that a direct generalization of the
method may lead to an inefficient algorithm and present an idea how to
make the method efficient again. The idea is based on a special choice
of the penalty function for matrix inequalities. We explain how this
special choice affects the complexity of the algorithm, in particular the
complexity of Hessian assembling, which is the bottleneck of all SDP
codes working with second-order information. We introduce a new code
PENNON, based on the generalized PBM algorithm, and give details
of its implementation. The code is not only aimed at SDP problems
but at general convex problems with a mixture of NLP, SOCP and SDP
constraints. A generalization to nonconvex situation has been success-
fully tested for NLP problems. In the last section we present results of
extensive numerical tests and comparison with other SDP codes. We
will demonstrate that PENNON is particularly efficient when solving
problems with sparse data structure and sparse Hessian.

We use the following notation: S
m is a space of all real symmetric

matrices of order m, A < 0 (A 4 0) means that A ∈ S
m is positive

(negative) semidefinite, A ◦B denotes the Hadamard (component-wise)
product of matrices A, B ∈ R

n×m. The space S
m is equipped with the

inner product 〈A, B〉Sm = tr(AB). Let A : R
n → S

m and Φ : S
m → S

m

be two matrix operators; for B ∈ S
m we denote by DAΦ(A(x); B) the

directional derivative of Φ at A(x) (for a fixed x) in the direction B.

1. The problem and the method

Our goal is to solve problems of convex semidefinite programming,
that is problems of the type

min
x∈Rn

{
bT x : A(x) 4 0

}
(SDP)

where b ∈ R
n and A : R

n → S
m is a convex operator. The basic idea

of our approach is to generalize the PBM method, developed originally
by Ben-Tal and Zibulevsky for convex NLPs, to problem (SDP). The
method is based on a special choice of a one-dimensional penalty/barrier
function ϕ that penalizes inequality constraints. Below we show how to



PENNON—An Augmented Lagrangian Method for SDP 3

use this function to construct another function Φ that penalizes the
matrix inequality constraint in (SDP).

Let ϕ : R → R have the following properties:

(ϕ0) ϕ strictly convex, strictly monotone increasing and C2

(ϕ1) domϕ = (−∞, b) with 0 < b ≤ ∞ ,

(ϕ2) ϕ(0) = 0 ,

(ϕ3) ϕ′(0) = 1 ,

(ϕ4) lim
t→b

ϕ′(t) = ∞ ,

(ϕ5) lim
t→−∞

ϕ′(t) = 0 ,

Let further A = ST ΛS, where Λ = diag (λ1, λ2, . . . , λd)
T , be an eigen-

value decomposition of a matrix A. Using ϕ, we define a penalty function
Φp : S

m → S
m as follows:

Φp : A 7−→ ST




pϕ
(

λ1

p

)
0 . . . 0

0 pϕ
(

λ2

p

) ...

...
. . . 0

0 . . . 0 pϕ
(

λd

p

)




S , (1)

where p > 0 is a given number.
From the definition of ϕ it follows that for any p > 0 we have

A(x) 4 0 ⇐⇒ Φp(A(x)) 4 0

that means that, for any p > 0, problem (SDP) has the same solution
as the following “augmented” problem

min
x∈Rn

{
bT x : Φp(A(x)) 4 0

}
. (SDP)Φ

The Lagrangian of (SDP)Φ can be viewed as a (generalized) aug-
mented Lagrangian of (SDP):

F (x, U, p) = bT x + 〈U, Φp (A(x))〉Sm
; (2)

here U ∈ S
m is the Lagrangian multiplier associated with the inequality

constraint.
We can now define the basic algorithm that combines ideas of the

(exterior) penalty and (interior) barrier methods with the Augmented
Lagrangian method.



4

Algorithm 1.1. Let x1 and U1 be given. Let p1 > 0. For k = 1, 2, . . .
repeat till a stopping criterium is reached:

(i) xk+1 = argmin
x∈Rn

F (x, Uk, pk)

(ii) Uk+1 = DAΦp(A(x); Uk)

(iii) pk+1 < pk .

Details of the algorithm, the choice of initial values of x, U and p, the
approximate minimization in step (i) and the update formulas, will be
discussed in detail in subsequent sections. The next section concerns the
choice of the penalty function Φp.

2. The choice of the penalty function Φp

As mentioned in the Introduction, Algorithm 1.1 is a generalization of
the PBM method by Ben-Tal and Zibulevsky [3] (introduced for convex
NLPs) to convex SDP problems. In [3], several choices of function ϕ

satisfying (ϕ1)–(ϕ5) are presented. The most efficient one (for convex
NLP) is the quadratic-logarithmic function defined as

ϕql(t) =

{
c1

1
2 t2 + c2t + c3 t ≥ r

c4 log(t− c5) + c6 t < r
(3)

where r ∈ (−1, 1) and ci, i = 1, . . . , 6, is chosen so that (ϕ1)–(ϕ5) hold.
It turns out that function which work well in the NLP case may not

be the best choice for SDP problems. The reason is twofold.
First, it may happen that, even if the function ϕ and the opera-

tor A are convex, the penalty function Φp may be nonconvex. For in-
stance, function Φp defined through the right, quadratic branch of the
quadratic-logarithmic function ϕql is nonmonotone and its composition
with a convex nonlinear operator A may result in a nonconvex function
Φp(A(x)). Even for linear operator A, Φp(A(x)) corresponding to ϕql

may be nonconvex. This nonconvexity may obviously bring difficulties
to Algorithm 1.1 and requires special treatment.

Second, the general definition (1) of the penalty function Φp may
lead to a very inefficient algorithm. The (approximate) minimization in
step (i) of Algorithm 1.1 is performed be the Newton method. Hence we
need to compute the gradient and Hessian of the augmented Lagrangian
(2) at each step of the Newton method. This computation may be
extremely time consuming. Moreover, even if the data of the problem
and the Hessian of the (original) Lagrangian are sparse matrices, the
computation of the Hessian to the augmented Lagrangian involves many
operations with full matrices, when using the general formula (1). The



PENNON—An Augmented Lagrangian Method for SDP 5

detail analysis of the algorithmic complexity will be given in Section 3. It
is based on formulas for the first and second derivatives of Φp presented
below.

Denote by 4i the divided difference of i-th order, i = 1, 2, defined by

41ϕ(ti, tj) :=





ϕ(ti)− ϕ(tj)

ti − tj
for ti 6= tj

ϕ′(ti) for ti = tj

and

42ϕ(ti, tj , tk) :=





41ϕ(ti, tj)−4
1ϕ(ti, tk)

tj − tk
for tj 6= tk

41ϕ(ti, tk)−4
1ϕ(tj , tk)

ti − tj
for ti 6= tj , tj = tk

ϕ′′(ti) for ti = tj = tk .

Theorem 2.1. Let A : R
n → S

m be a convex operator. Let further Φp

be a function defined by (1). Then for any x ∈ R
n the first and second

partial derivatives of Φp(A(x)) are given by

∂

∂xi
Φp(A(x))

= S

([
41ϕ(λr(x), λs(x))

]m

r,s=1
◦ [S(x)T ∂A(x)

∂xi
S(x)]

)
ST

(4)

∂2

∂xi∂xj
Φp(A(x))

= 2S
( m∑

k=1

[42ϕ(λr(x), λs(x), λk(x))]mr,s=1

◦ [S(x)T ∂A(x)

∂xi
S(x)EkkS(x)T ∂A(x)

∂xj
S(x)]

)
ST .

(5)

We can avoid the above mentioned drawbacks by a choice of the func-
tion ϕ. In particular, we search a function that allows for a “direct”
computation of Φp and its first and second derivatives. The function of
our choice is the reciprocal barrier function

ϕrec(t) =
1

t− 1
− 1 . (6)

Theorem 2.2. Let A : R
n → S

m be a convex operator. Let further Φrec
p

be a function defined by (1) using ϕrec. Then for any x ∈ R
n there exists



6

p > 0 such that

Φrec
p (A(x)) = p2Z(x)− pI (7)

∂

∂xi
Φrec

p (A(x)) = p2Z(x)
∂A(x)

∂xi
Z(x) (8)

∂2

∂xi∂xj
Φrec

p (A(x)) = p2Z(x)

(
∂A(x)

∂xi
Z(x)

∂A(x)

∂xj
−

∂2A(x)

∂xi∂xj

+
∂A(x)

∂xj
Z(x)

∂A(x)

∂xi

)
Z(x) (9)

where
Z(x) = (A(x)− pI)−1 .

Furthermore, Φrec
p (A(x)) is monotone and convex in x.

Proof. Let Im denote the identity matrix of order m. Since Z(x) is
differentiable and nonsingular at x we have

0 =
∂

∂xi
Im =

∂

∂xi

[
Z(x)Z−1(x)

]

=

[
∂

∂xi
Z(x)

]
Z−1(x) + Z(x)

[
∂

∂xi
Z−1(x)

]
, (10)

so the formula

∂

∂xi
Z(x) = −Z(x)

[
∂

∂xi
Z−1(x)

]
Z(x) = −Z(x)

[
∂A(x)

∂xi

]
Z(x) (11)

follows directly after multiplication of (10) by Z(x) and (8) holds. For
the proof of (9) we differentiate the right hand side of (11)

∂2

∂xi∂xj
Z = −

∂

∂xi

(
Z(x)

[
∂A(x)

∂xj

]
Z(x)

)

= −

[
∂

∂xi
Z(x)

]
∂A(x)

∂xj
Z(x)−Z(x)

[
∂

∂xi

(
∂A(x)

∂xj
Z(x)

)]

= Z(x)
∂A(x)

∂xi
Z(x)

∂A(x)

∂xj
Z(x)−Z(x)

∂2A(x)

∂xi∂xj
Z(x)

−Z(x)
∂A(x)

∂xj

[
∂

∂xi
Z(x)

]

= Z(x)
∂A(x)

∂xi
Z(x)

∂A(x)

∂xj
Z(x)−Z(x)

∂2A(x)

∂xi∂xj
Z(x)

+Z(x)
∂A(x)

∂xj
Z(x)

∂A(x)

∂xi
Z(x)



PENNON—An Augmented Lagrangian Method for SDP 7

and (9) follows. For the proof of convexity and monotonicity of Φrec
p we

refer to [13].

Using Theorem 2.2 we can compute the value of Φrec
p and its deriva-

tives directly, without the need of eigenvalue decomposition of A(x).
The “direct” formulas (8)–(9) are particularly simple for affine operator

A(x) = A0 +
n∑

i=1

xiAi with Ai ∈ S
m, i = 0, 1, . . . , n ,

when
∂A(x)

∂xi
= Ai and

∂2A(x)

∂xi∂xj
= 0.

3. Complexity

Computational complexity of Algorithm 1.1 is dominated by construc-
tion of the Hessian of the augmented Lagrangian (2). Our complexity
analysis is therefore limited to this issue.

3.1. The general approach

As we can easily see from Theorem 2.1, the part of the Hessian cor-
responding to the inner product in formula (2) is given by

[
m∑

k=1

sT
k

∂A(x)

∂xi

[
S(x)

(
Qk ◦ [S(x)T US(x)]

)
S(x)T

] ∂A(x)

∂xj
sk

]n

i,j=1

(12)

where Qk denotes the matrix [∆2ϕ(λr(x), λs(x), λk(x))]mr,s=1 and sk is
the k-th row of the matrix S(x). Essentially, the construction is done in
three steps, shown below together with their complexity:

For all k compute matrices S(x)
(
Qk ◦ [S(x)T US(x)]

)
S(x)T −→

O(m4).

For all k, i compute vectors sT
k

∂A(x)

∂xi
−→ O(nm3).

Multiply and sum up expressions above −→ O(m3n + m2n2).

Consequently the Hessian assembling takes O(m4 + m3n + m2n2) time.

Unfortunately, if the constraint matrices ∂A(x)
∂xi

are sparse, the complexity
formula remains the same. This is due to the fact, that the matrices Qk

and S(x) are generally dense, even if the matrix A(x) is very sparse.



8

3.2. Function Φ
rec

p

If we replace the general penalty function by the reciprocal function
Φrec

p then, according to Theorem 2.2, the part of the Hessian correspond-
ing to the inner product in formula (2) can be written as

[〈
Z(x)UZ(x)

∂A(x)

∂xi
Z(x),

∂A(x)

∂xj

〉]n

i,j=1

+

[〈
Z(x)UZ(x),

∂2A(x)

∂xi∂xj

〉]n

i,j=1

+

[〈
Z(x)UZ(x)

∂A(x)

∂xj
Z(x),

∂A(x)

∂xi

〉]n

i,j=1

. (13)

It is straightforward to see that the complexity of assembling of (13) is
given by O(m3n+m2n2). In contrast to the general approach, for sparse
constraint matrices with O(1) entries, the complexity formula reduces
to O(m2n + n2).

4. The code PENNON

Algorithm 1.1 was implemented (mainly) in the C programming lan-
guage and this implementation gave rise to a computer program called
PENNON1. In this section we describe implementation details of this
code.

4.1. Block diagonal structure

Many semidefinite constraints can be written in block diagonal form

A(x) =




A1(x)
A2(x)

. . .

Aks
(x)

Al(x)




4 0,

where Al(x) is a diagonal matrix of order kl, each entry of which has
the form aT

i x− ci. Using this, we can reformulate the original problem

1http://www2.am.uni-erlangen.de/∼kocvara/pennon/



PENNON—An Augmented Lagrangian Method for SDP 9

(SDP) as

min
x∈Rn

bT x

s.t. Aj(x) 4 0, j = 1, . . . , ks,

gi(x) ≤ 0, i = 1, . . . , kl,

where gi, i = 1, . . . , k, are real valued affine linear functions. This is
the formulation solved by our algorithm. The corresponding augmented
Lagrangian can be written as follows:

F (x, U, u, p) = bT x +

ks∑

j=1

〈Uj , Φp (Aj(x))〉Smj +

kl∑

i=1

〈ui, ϕp(gi(x))〉R,

where U = (U1, . . . , Uk) ∈ S
m1 × . . .× S

mks and u = (u1, . . . , ukl
) ∈ R

kl

are the Lagrangian multipliers and p ∈ R
ks×R

kl is the vector of penalty
parameters associated with the inequality constraints .

4.2. Initialization

As we have seen in Theorem 2.2, our algorithm can start with an
arbitrary primal variable x ∈ R

n. Therefore we simply choose x0 = 0.
The initial values of the multipliers are set to

U0
j = µs

jImj
, j = 1, . . . , ks,

u0
i = µl

i, i = 1, . . . , kl,

where Imj
are identity matrices of order mj and

µs
j = mj max

1≤`≤n

1 + |bj |

1 +
∥∥∥∂A(x)

∂x`

∥∥∥
, (14)

µl
i = max

1≤`≤n

1 + |bi|

1 +
∥∥∥∂g(x)

∂x`

∥∥∥
. (15)

Furthermore, we calculate π > 0 so that

λmax(Aj(x)) < π, j = 1, . . . , k

and set p0 = πe where e ∈ R
ks+kl is the vector with ones in all compo-

nents.



10

4.3. Unconstrained minimization

The tool used in step (i) of Algorithm 1.1 (approximate unconstrained
minimization) is the modified Newton method combined with a cubic
linesearch. In each step we calculate the search direction d by solving
the Newton equation and find αmax so that the conditions

λmax(Aj(x
k + αd)) < pk

j , j = 1, . . . , k

hold for all 0 < α < αmax.

4.4. Update of multipliers

First we would like to motivate the multiplier update formula in Al-
gorithm 1.1.

Proposition 4.1. Let xk+1 be the minimizer of the augmented Lagrangian
F with respect to x in the k-th iteration. If we choose U k+1 as in Algo-
rithm 1.1 we have

L(xk+1, Uk+1, pk) = 0,

where L denotes the standard Lagrangian of our initial problem (SDP).

An outline of the proof is given next. The gradient of F with respect
to x reads as

∇xF (x, U, p) = b +




〈
U, DAΦp

(
A(x); ∂A(x)

∂x1

)〉

...〈
U, DAΦp

(
A(x); ∂A(x)

∂xn

)〉


 . (16)

It can be shown that (16) can be written as

b +A∗DAΦp (A(x); U) ,

where A∗ denotes the conjugate operator to A. Now, if we define
Uk+1 := DAΦp

(
A(xk); Uk

)
, we immediately see that

∇xF (xk+1, Uk, pk) = ∇xL(xk+1, Uk+1, pk)

and so we get L(xk+1, Uk+1, pk) = 0.
For our special choice of the penalty function Φrec

p , the multiplier
update can be written as

Uk+1 = (pk)2Z(x)UkZ(x) , (17)

where Z was defined in Theorem 2.2.



PENNON—An Augmented Lagrangian Method for SDP 11

Numerical test indicated that big changes in the multipliers should
be avoided for two reasons. First, they may lead to a large number of
Newton steps in the subsequent iteration. Second, it may happen that
already after a few steps, the multipliers become ill-conditioned and the
algorithm suffers from numerical troubles. To overcome these difficulties,
we do the following:

1. Calculate Uk+1 using the update formula in Algorithm 1.1.

2. Choose some positive λ ≤ 1, typically 0.7.

3. If the eigenvalues λmin(Uk), λmax(Uk), λmin(Uk+1) and λmax(Uk+1)
can be calculated in a reasonable amount of time, check the in-
equalities

λmax(Uk+1)

λmax(Uk)
>

1

1− λ
,

λmin(Uk+1)

λmin(Uk)
< 1− λ .

4. If both inequalities hold, use the initial update formula. If at least
one of the inequalities is violated or if calculation of the eigenvalues
is too complex, update the current multiplier by

Unew = Uk + λ(Uk+1 − Uk). (18)

4.5. Stopping criteria and penalty update

When testing our algorithm we observed that Newton method needs
many steps during the first global iterations. To improve this, we adopted
the following strategy: During the first three iterations we do not update
the penalty vector p at all. Furthermore, we stop the unconstrained min-
imization if ‖∇xF (x, U, p)‖ is smaller than some α0 > 0, which is not too
small, typically 1.0. After this kind of “warm start”, we change the stop-
ping criterion for the unconstrained minimization to ‖∇xF (x, U, p)‖ ≤ α,
where in most cases α = 0.01 is a good choice. Algorithm 1.1 is stopped
if one of the inequalities holds:

|bT xk − F (xk, Uk, p)|

|bT xk|
< ε ,

|bT xk − bT xk−1|

|bT x|
< ε ,

where ε is typically 10−7.



12

4.6. Sparse linear algebra

Many semidefinite programs have very sparse data structure and there-
fore have to be treated by sparse linear algebra routines. In our imple-
mentation, we use sparse linear algebra routines to perform the following
two tasks:

Construction of the Hessian. In each Newton step, the Hessian
of the augmented Lagrangian has to be calculated. As we have seen in
Section 3, the complexity of this task can be drastically reduced if we
make use of sparse structures of the constraint matrices Aj(x) and the

corresponding partial derivatives
∂Aj(x)

∂xi
. Since there is a great variety of

different sparsity types, we refer to the paper by Fujisawa, Kojima and
Nakata on exploiting sparsity in semidefinite programming [6], where
one can find the ideas we follow in our implementation.

Cholesky factorization. The second task is the factorization of the
Hessian. In the initial iteration, we check the sparsity structure of the
Hessian and do the following:

If the fill-in of the Hessian is below 20% , we make use of the fact
that the sparsity structure will be the same in each Newton step
in all iterations. Therefore we create a symbolic pattern of the
Hessian and store it. Then we factorize the Hessian by the sparse
Cholesky solver of Ng and Peyton [11], which is very efficient for
sparse problems with constant sparsity structure.

Otherwise, if the Hessian is dense, we use the Cholesky solver from
lapack which, in its newest version, is very robust even for small
pivots.

5. Remarks

5.1. SOCP problems

Let us recall that the PBM method was originally developed for large-
scale NLP problems. Our generalized method can therefore naturally
handle problems with both NLP and SDP constraints, whereas the NLP
constraints are penalized by the quadratic–logarithmic function ϕql from
(3) and the augmented Lagrangian contains terms from both kind of con-
straints. The main change in Algorithm 1.1 is in step (ii), the multiplier
update, that is now done separately for different kind of constraints.

The method can be thus used, for instance, for solution of Second
Order Conic Programming (SOCP) problems combined with SDP con-



PENNON—An Augmented Lagrangian Method for SDP 13

straints, i.e., problems of the type

min
x∈Rn

bT x

s.t. A(x) 4 0

Aqx− cq ≤q 0

Alx− cl ≤ 0

where b ∈ R
n, A : R

n → S
m is, as before, a convex operator, Aq are

kq ×n matrices and Al is an kl×n matrix. The inequality symbol “≤q”
means that the corresponding vector should be in the second-order cone
defined by Kq = {z ∈ R

q | z1 ≥ ‖z2:q‖}. The SOCP constraints cannot
be handled directly by PENNON; written as NLP constraints, they are
nondifferentiable at the origin. We can, however, perturb them by a
small parameter ε > 0 to avoid the nondifferentiability. So, for instance,
instead of constraint

a1x1 ≤
√

a2x
2
2 + . . . + amx2

m,

we work with a (smooth and convex) constraint

a1x1 ≤
√

a2x
2
2 + . . . + amx2

m + ε.

The value of ε can be decreased during the iterations of Algorithm 1.1.
In PENNON we set ε = p · 10−6, where p is the penalty parameter in
Algorithm 1.1. In this way, we obtain solutions of SOCP problems of
high accuracy. This is demosntrated in Section 6.

5.2. Convex and nonconvex problems

We would like to emphasize that, although used only for linear SDP
so far, Algorithm 1.1 is proposed for general convex problems. This
should be kept in mind when comparing PENNON (on test sets of linear
problems) with other codes that are based on genuine linear algorithms.

We can go even a step further and try to generalize Algorithm 1.1 to
nonlinear nonconvex problems, whereas the nonconvexity can be both
in the NLP and in the SDP constraint. Examples of nonconvex SDP
problems can be found in [1, 8, 9]. How to proceed in this case? The idea
is quite simple: we apply Algorithm 1.1 and whenever we hit a nonconvex
point in Step (i), we switch from the Newton method to the Levenberg-
Marquardt method. More precisely, one step of the minimization method
in step (i) is defined as follows:

Given a current iterate (x, U, p), compute the gradient g and
Hessian H of F at x.



14

Compute the minimal eigenvalue λmin of H. If λmin < 10−3,
set

Ĥ(α) = H + (λmin + α)I.

Compute the search direction

d(α) = −Ĥ(α)−1g.

Perform line-search in direction d(α). Denote the step-length
by s.

Set
xnew = x + sd(α).

Obviously, for a convex F , this is just a Newton step with line-search.
For nonconvex functions, we can use a shift of the spectrum of H with
a fixed parameter α = 10−3. This approach proved to work well on
several nonconvex NLP problems and we have reasons to believe that it
will work for nonconvex SDPs, too. Obviously, the fixed shift is just the
simplest approach and one can use more sophisticated ones like a plane-
search (w.r.t. α and s), as proposed in [8], or an approximate version of
the trust-region algorithm.

5.3. Program MOPED

Program PENNON, both the NLP and SDP versions, was actually
developed as a part of a software package MOPED for material opti-
mization. The goal of this package is to design optimal structures con-
sidered as two- or three-dimensional continuum elastic bodies where the
design variables are the material properties which may vary from point
to point. Our aim is to optimize not only the distribution of material
but also the material properties themselves. We are thus looking for
the ultimately best structure among all possible elastic continua, in a
framework of what is now usually referred to as “free material design”
(see [16] for details). After analytic reformulation and discretization by
the finite element method, the problem reduces to a large-scale NLP

min
α∈R,x∈RN

{
α− cT x |α ≥ xTAix for i = 1, . . . , M

}
,

where M is the number of finite elements and N the number of degrees of
freedom of the displacement vector. For real world problems one should
work with discretizations of size N, M ≈ 20 000.

From practical application point of view ([7]), the multiple-load formu-
lation of the free material optimization problem is much more important



PENNON—An Augmented Lagrangian Method for SDP 15

than the above one. Here we look for a structure that is stable with re-
spect to a whole scenario of independent loads and which is the stiffest
one in the worst-case sense. In this case, the original “min-max-max”
formulation can be rewritten as a linear SDP of the following type (for
details, see [2]):

min
α∈R,x∈(RN )L

{
α−

L∑

`=1

(c`)T x` | Ai(α, x) � 0 for i = 1, . . . , M

}
;

here L is the number of independent load cases (usually 2–4) and Ai :
R

NL+1 → S
d are linear matrix operators (where d is small). Written

in a standard form (SDP), we get a problem with one linear matrix
inequality

min
x∈(Rn)L

{
aT x |

nL∑

i=1

xiBi � 0

}
,

where Bi are block diagonal matrices with many (∼5 000) small (11×11–
20 × 20) blocks. Moreover, only few (6–12) of these blocks are nonzero
in any Bi, as schematically shown in the figure below.

2x  + x  + ...1

As a result, the Hessian of the augmented Lagrangian associated with
this problem is a large and sparse matrix. PENNON proved to be par-
ticularly efficient for this kind of problems, as shown in the next section.

6. Computational results

Here we describe the results of our testing of PENNON and two other
SDP codes, namely CSDP by Borchers [4] and SDPT3 by Toh, Todd and
Tütüncü [15]. We have chosen these two codes as they were, in average,
the fastest ones in the independent tests performed by Mittelmann [10].
We have used three sets of test problem: the SDPLIB collection of linear
SDPs by Borchers [5]; the set of mater examples from multiple-load free
material optimization (see Section 5.3); and selected problems from the
DIMACS library [12] that combine SOCP and SDP constraints. We used
the default setting of parameters for CSDP and SDPT3. PENNON, too,
was tested with one setting of parameters for all the problems.



16

6.1. SDPLIB

Due to space (and memory) limitations, we do not present here the full
SDPLIB results and select just several representative problems. Table 1
lists the selected SDPLIB problems, along with their dimensions.

We will present two tables with results obtained on two different com-
puters. The reason for that is that CSDP implementation under LINUX
seems to be relatively much faster than under Sun Solaris. On the other
hand, we did not have a LINUX computer running matlab, hence the
comparison with SDPT3 was done on a Sun workstation. Table 1 shows
the results of CSDP and PENNON on a 650 MHz Pentium III with
512 KB memory running SuSE LINUX 7.3. PENNON was linked with
the ATLAS library, while CSDP binary was taken from Borchers’ home-
page [4].

Table 1. Selected SDPLIB problems and computational results using CSDP and
PENNON, performed on a Pentium III PC (650 MHz) with 512 KB memory running
SuSE LINUX 7.3.

CSDP PENNON
problem n m CPU digits CPU digits

arch8 174 335 25 7 79 6
control7 666 105 401 7 327 7
control10 1326 150 1981 6 3400 6
control11 1596 165 3514 6 6230 6
gpp250-4 250 250 33 7 25 7
gpp500-4 501 500 245 7 156 7
hinf15 91 37 1 5 5 3

mcp250-1 250 250 19 7 21 7
mcp500-1 500 500 117 7 175 7

qap9 748 82 21 7 35 5
qap10 1021 101 45 7 107 5
ss30 132 426 167 7 111 7

theta3 1106 150 47 7 97 7
theta4 1949 200 216 7 431 7
theta5 3028 250 686 7 1295 7
theta6 4375 300 1940 7 4346 7
truss7 86 301 1 7 1 7
truss8 496 628 19 7 130 7

equalG11 801 801 749 7 768 6
equalG51 1001 1001 1498 7 3173 7
maxG11 800 800 404 7 611 6
maxG32 2000 2000 5540 7 10924 7
maxG51 1001 1001 875 7 1461 7
qpG11 800 1600 2773 7 3886 7
qpG51 1000 2000 5780 7 7867 7



PENNON—An Augmented Lagrangian Method for SDP 17

Table 2 gives results of SDPT3 and PENNON, obtained on Sun Ultra
10 with 384 MB of memory running Solaris 8. SDPT3 was used within
Matlab 6 and PENNON was linked with the ATLAS library.

Table 2. Selected SDPLIB problems and computational results using SDPT3 and
PENNON, performed on a Sun Ultra 10 with 384MB of memory running Solaris 8.

SDPT3 PENNON
problem CPU digits CPU digits

arch8 52 7 203 6
control7 263 6 652 7
control10 1194 6 7082 6
control11 1814 6 13130 6
gpp250-4 46 7 42 6
gpp500-4 266 7 252 7
hinf15 16 5 6 3

mcp250-1 24 7 38 7
mcp500-1 109 7 290 7

qap9 31 4 64 5
qap10 55 4 176 5
ss30 141 7 246 7

theta3 64 7 176 7
theta4 212 7 755 7
theta5 657 7 2070 7
truss7 10 6 2 7
truss8 62 7 186 7

equalG11 1136 7 1252 7
equalG51 2450 7 3645 7
maxG11 500 7 1004 7
maxG51 1269 7 2015 7
qpG11 3341 7 7520 7
qpG51 7525 7 13479 7

In most of the SDPLIB problems, SDPT3 and CSDP are faster than
PENNON. This is, basically, due to the number of Newton steps used by
the particular algorithms. Since the complexity of Hessian assembling
is about the same for all three codes, and the data sparsity is handled
in a similar way, the main time difference is given by the number of
Newton steps. While CSDP and SDPT3 need, in average, 15–30 steps,
PENNON needs about 2–3 times more steps. Recall that this is due to
the fact that PENNON is based on an algorithm for general nonlinear
convex problems and allows to solve larger class of problems. This is the
price we pay for the generality. We believe that, in this light, the code
is competitive.



18

6.2. mater problems

Next we present results of the mater examples. These results are
overtaken from Mittelmann [10] and were obtained2 on Sun Ultra 60,
450 MHz with 2 GB memory, running Solaris 8. Table 4 shows the di-
mensions of the problems, together with the optimal objective value.
Table 5 presents the test results for CSDP, SDPT3 and PENNON. It
turned out that for this kind of problems, the code SeDuMi by Sturm
[14] was rather competitive, so we included also this code in the table.

Table 3. mater problems

problem n m Optimal value

mater-3 1439 3588 -1.339163e+02
mater-4 4807 12498 -1.342627e+02
mater-5 10143 26820 -1.338016e+02
mater-6 20463 56311 -1.335387e+02

Table 4. Computational results for mater problems using SDPT3, CSDP, SeDuMi,
and PENNON, performed on a Sun Ultra 60 (450 MHz) with 2GB of memory running
Solaris 8.

SDPT3 CSDP SeDuMi PENNON
problem CPU digits CPU digits CPU digits CPU digits

mater-3 718 7 129 8 59 11 50 10
mater-4 9544 5 2555 8 323 11 222 9
mater-5 51229 5 258391 8 738 10 630 8
mater-6 memory memory 2532 8 1602 8

6.3. DIMACS

Finally, in Table 5 we present results of selected problems from the
DIMACS collection. These are mainly SOCP problems, apart from
filter48-socp that combines SOCP and SDP constraints. The results
demonstrate that we can reach high accuracy even when working with
the smooth reformulation of the SOCP constraints (see Section 5.1).
The results also show the influence of linear constraints on the efficiency
of the algorithm; cf. problems nb and nb-L1. This is due to the fact
that, in our algorithm, the part of the Hessian corresponding to every

2Except of mater-5 solved by CSDP and mater-6 solved by CSDP and SDPT3. These were
obtained using Sun E6500, 400 MHz with 24 GB memory



REFERENCES 19

(penalized) linear constraint is a dyadic, i.e., possibly full matrix. We
are working on an approach that treats linear constraints separately.

Table 5. Computational results on DIMACS problems using PENNON, performed
on a Pentium III PC (650 MHz) with 512KB memory running SuSE LINUX 7.3.
Notation like [793x3] indicates that there were 793 (semidefinite, second-order, linear)
blocks, each a symetric matrix of order 3.

PENNON
problem n SDP blocks SO blocks lin. blocks CPU digits

nb 123 – [793x3] 4 60 7
nb-L1 915 – [793x3] 797 141 7
nb-L2 123 – [1677,838x3] 4 100 8
nb-L2-bessel 123 – [123,838x3] 4 90 8
qssp30 3691 – [1891x4] 2 10 6
qssp60 14581 – [7381x4] 2 55 5
nql30 3680 – [900x3] 3602 17 4
filter48-socp 969 48 49 931 283 6

Acknowledgment

The authors would like to thank Hans Mittelmann for his help when
testing the code and for implementing PENNON on the NEOS server.
This research was supported by BMBF project 03ZOM3ER. The first
author was partly supported by grant No. 201/00/0080 of the Grant
Agency of the Czech Republic.

References

[1] A. Ben-Tal, F. Jarre, M. Kočvara, A. Nemirovski, and J. Zowe. Optimal de-
sign of trusses under a nonconvex global buckling constraint. Optimization and

Engineering, 1:189–213, 2000.

[2] A. Ben-Tal, M. Kočvara, A. Nemirovski, and J. Zowe. Free material design via
semidefinite programming. The multi-load case with contact conditions. SIAM

J. Optimization, 9:813–832, 1997.

[3] A. Ben-Tal and M. Zibulevsky. Penalty/barrier multiplier methods for convex
programming problems. SIAM J. Optimization, 7:347–366, 1997.

[4] B. Borchers. CSDP, a C library for semidefinite programming. Optimization

Methods and Software, 11:613–623, 1999. Available at
http://www.nmt.edu/~borchers/.

[5] B. Borchers. SDPLIB 1.2, a library of semidefinite programming test prob-
lems. Optimization Methods and Software, 11 & 12:683–690, 1999. Available at
http://www.nmt.edu/~borchers/.

[6] K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual
interior-point method for semidefinite programming. Mathematical Program-

ming, 79:235–253, 1997.



20

[7] H.R.E.M. Hörnlein, M. Kočvara, and R. Werner. Material optimization: Bridg-
ing the gap between conceptual and preliminary design. Aerospace Science and

Technology, 2001. In print.

[8] F. Jarre. An interior method for nonconvex semidefinite programs. Optimization

and Engineering, 1:347–372, 2000.

[9] M. Kočvara. On the modelling and solving of the truss design problem with
global stability constraints. Struct. Multidisc. Optimization, 2001. In print.

[10] H. Mittelmann. Benchmarks for optimization software. Available at
http://plato.la.asu.edu/bench.html.

[11] E. Ng and B. W. Peyton. Block sparse cholesky algorithms on advanced unipro-
cessor computers. SIAM J. Scientific Computing, 14:1034–1056, 1993.

[12] G. Pataki and S. Schieta. The DIMACS library of mixed semidefinite-quadratic-
linear problems. Available at
http://dimacs.rutgers.edu/challenges/seventh/instances.

[13] M. Stingl. Konvexe semidefinite programmierung. Diploma Thesis, Institute of
Applied Mathematics, University of Erlangen, 1999.

[14] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11 & 12:625–653, 1999. Avail-
able at http://fewcal.kub.nl/sturm/.

[15] R.H. Tütütcü, K.C. Toh, and M.J. Todd. SDPT3 — A MATLAB software
package for semidefinite-quadratic-linear programming, Version 3.0. Available
at http://www.orie.cornell.edu/~miketodd/todd.html, School of Operations
Research and Industrial Engineering, Cornell University, 2001.

[16] J. Zowe, M. Kočvara, and M. Bendsøe. Free material optimization via mathe-
matical programming. Mathematical Programming, Series B, 79:445–466, 1997.


