On the Modeling and Control of the Delamination Problem

Michal Kočvara

Academy of Sciences, Prague

with contributions of Jiří Outrata Jaroslav Haslinger Alexander Mielke Tomáš Roubíček

Outline

- What is delamination?
- Modeling delamination by HVI

- Energetic approach
- Examples
- Control first approach

Vehicle crash resistance (cars, helicopters) Design of structural elements with

HIGH ENERGY ABSORPTION

Classic design: buckling & plasticity

Modern design: use of composite materials energy absorbed by DELAMINATION

WHAT IS DELAMINATION

Modeling: Unilateral contact conditions + adhesive Typical load-displacement diagram

VI in MECHANICS (discretized)

Equilibrium: Find $u \in \mathbb{R}^n, T \in \mathbb{R}^m$, so that

$\langle Au,v angle = \langle L,v angle + \langle T,v angle$	$\forall v \in V$
$- T \in eta(u)$	componentwise

VI in MECHANICS (discretized)

Equilibrium: Find $u \in \mathbb{R}^n, T \in \mathbb{R}^m$, so that

VI in MECHANICS (discretized)

Equilibrium: Find $u \in \mathbb{R}^n, T \in \mathbb{R}^m$, so that

$$\langle Au, v \rangle = \langle L, v \rangle + \langle T, v \rangle$$
 $\forall v \in V$
- $T \in \beta(u)$ componentwise

 $\begin{array}{ll} \beta: \mathbb{R} \to \mathbb{R} & \text{maximal monotone multivalued map} \\ \beta = \partial j & (:= \{ z | \langle z, v - u \rangle \leq j(v) - j(u) \}) & j \text{ convex} \\ \Rightarrow & - \langle T, (v - u) \rangle = - \sum T_i(v_i - u_i) \leq \sum (j(v_i) - j(u_i)) \end{array}$

\Rightarrow OUR SYSTEM BECOMES

$$\langle Au, (v-u)
angle + \sum (j(v_i) - j(u_i)) \geq \langle L, (v-u)
angle \qquad orall v \in V$$

equivalent to

$$egin{aligned} \langle Au,v
angle &= \langle L,v
angle + \langle T,v
angle & & orall v\in V\ & -T\in\partial j(u) & & ext{componentwise} \end{aligned}$$

HEMIVARIATIONAL INEQUALITIES

$$egin{aligned} \langle Au,v
angle &= \langle L,u
angle + \langle T,u
angle & orall v\in V\ -T\in\partial j(u) & ext{componentwise} \end{aligned}$$

WHAT IF j IS NOT CONVEX ?

Panagiotopoulos (1985 \rightarrow): take $\overline{\partial} j$... Clarke subdifferential

 $\overline{\partial} j = \{w| j^o(u;v) \geq \langle w,v
angle \ orall v\}$

where $j^o(u; v) \dots$ Clarke generalized directional derivative $-T \in \beta(u) = \overline{\partial} j(u) \text{ (C-w) } \Rightarrow \langle T, v - u \rangle \leq \sum j^o(u; v - u)$

HVI:
$$\langle Au, v - u
angle + \sum j^o(u; v - u) \geq \langle L, (v - u)
angle \quad \forall v \in V$$

$$egin{aligned} \langle Au,v
angle &= \langle L,u
angle + \langle T,u
angle & orall v\in V\ & -T\in \overline{\partial}j(u) & ext{componentwise} \end{aligned}$$

EQUIVALENCE TO OPTIMIZATION PROBLEMS

$$\langle Au, v - u \rangle + \sum j(v_i) - j(u_i) \ge \langle L, (v - u) \rangle \quad \forall v \in V$$
 (VI)
 $\sum j^o(u; v - u)$ (HVI)

For A symmetric, VI equivalent to $\Pi(v) := rac{1}{2} \langle Av, v
angle + J(v) - \langle L, v
angle o ext{inf}$ $\sum j(v_i)$

 $\begin{array}{ll} \forall \mathsf{I} \Rightarrow & \Pi(v) \text{ convex} \\ \mathbf{0} \in \partial \Pi(u) & \texttt{1st order condition, necessary \& sufficient} \end{array} \\ \end{array}$

 $\begin{array}{ll} \mathsf{HVI} \Rightarrow & J(v) \text{ (and thus } \Pi(v)) \text{ (nonconvex)} \\ 0 \in \overline{\partial} \Pi(u) & \text{only (necessary) condition} \end{array}$

Clarke vs. limitting subfifferential

Discretized HVI:

$$egin{aligned} \langle Au,v
angle &= \langle L,u
angle + \langle T,u
angle & orall v\in V,\ -T\in\overline{\partial}j(u) \end{aligned}$$

Nature:minimizes potential energy ΠHVI just necessary optimality conditionClarke subdiff. too largeMordukhovich's limitting subdifferential smaller,
corresponds better to this kind of problems

Why Clarke ?

Simple model of delamination

Two parallel elastic strings, one breakable

HVI approach (1D system, 1 time step)

- E_1 elasticity of string 1
- E_2 elasticity of string 2

Energetic approach (1D system, time step k)

- E_1 elasticity of string 1
- E_2 elasticity of string 2
- Energy: 1st stage (unbroken): $u(E_1 + E_2)u$ 2nd stage (broken): uE_1u
- $\begin{array}{ll} \text{Stored energy:} & \frac{1}{2}u(E_1+\zeta E_2)u, & \zeta \in \{0,1\} \\ \text{Free energy:} & \frac{1}{2}u(E_1+\zeta E_2)+f_ku \\ \text{Dissipated energy:} & (\zeta_{\text{old}}-\zeta)D \end{array}$

Problem:

$$\begin{split} \min_{u,\boldsymbol{\zeta}} \frac{1}{2} u(E_1 + \boldsymbol{\zeta} E_2) u + f_k u + (\boldsymbol{\zeta}_{\mathsf{Old}} - \boldsymbol{\zeta}) D\\ \text{s.t.} \quad \boldsymbol{\zeta} \in \{0,1\}\\ \boldsymbol{\zeta}_{\mathsf{Old}} \geq \boldsymbol{\zeta} \end{split}$$

Theorem: The HVI problem

$$\min_u [\min\{u(E_1+E_2)u, uE_1u+\gamma\}+fu]$$

is equivalent to the 'energetic problem'

$$\min_{u,\zeta} \frac{1}{2} u(E_1 + \zeta E_2) u + f_k u + (\alpha_{k-1} - \zeta) D$$

s.t. $\zeta \in \{0,1\}$

(also in general multidimensional case).

Relaxation: $\zeta \in \{0,1\}$ \rightarrow $\zeta \in [0,1]$

Energetic approach, general formulation

Minimize
$$V(u, \zeta) + R(\zeta - \zeta^{\kappa-1})$$

subject to $Lu \ge w^{\kappa}$,
 $(u_{\alpha,i} - u_{\beta,j}) \cdot \nu_{ij} \ge 0$, $(i, j) \in I_{\alpha\beta}, \ \alpha, \beta = 1, \dots, m$,
 $\zeta^{\kappa-1} \ge \zeta \ge 0$ componentwise.

with

$$V(u,\zeta) = \sum_{\alpha=1}^{2} \left(u_{\alpha}^{T} A_{\alpha} \mathbf{u}_{\alpha} \right) + \sum_{(i,j,k) \in I} \omega_{k} \zeta_{k} \left(\mathbf{u}_{1,i} - u_{2,j} \right)^{\top} b(n_{i}) \left(u_{1,i} - u_{2,j} \right)$$

and

$$R(\zeta) = \sum_{(i,j,k)\in I} -\omega_k d(n_i) \zeta_k.$$

.

On the Modeling and Control of the Delamination Problem – p.19/28

Control of the delamination problem

The aim: find such parameters that an objective function depending on the terminal state is minimized.

"Conceptual" MPEC:

 $\begin{array}{ll} \text{minimize} & \varphi(x,y) \\ \text{subject to} & x \in U_{ad}, \\ & y \text{ is the terminal state of the delamination process} \\ & \text{depending on parameter } x, \end{array}$

two + two parallel elastic strings, red breakable

two + two parallel elastic strings, red breakable

Goal: find stiffness parameters of the green strings such that, at the terminal time, as much energy is dissipated as possible.

•

•

Delamination problem at time *i*:

$$\min_{u_1^i, u_2^i, \zeta_1^i, \zeta_2^i} \sum_{j=1}^2 \left(e_j (u_j^i - u_{j-1}^i)^2 + \zeta_j^i e(u_j^i - u_{j-1}^i)^2 + (\zeta_j^{i-1} - \zeta_j^i) ed \right)$$

subject to

$$egin{aligned} u_2^i \geq \overline{u}^i \ u_j^i - u_{j-1}^i \geq 0, & j=1,2 \ \zeta^{i-1} \geq \zeta^i \geq 0 \end{aligned}$$

MPEC:

$$egin{aligned} &\min_{e_1,e_2,u_1^i,u_2^i,\zeta_1^i,\zeta_2^i} \zeta_1^k + \zeta_2^k \ & ext{subject to} \ &e_1+e_2=2 \ &(u_1,u_2,\zeta_1,\zeta_2) ext{ solves (*) at time }k. \end{aligned}$$

Solving the MPECs as NLPs

Idea: replace the equilibrium problem by KKT system. Convert MPEC:

 $\begin{array}{ll} \text{minimize} & \varphi(x,\widetilde{y}) \\ \\ \text{subject to} & \widetilde{y} \text{ solves} \left\{ \begin{array}{l} \min_y f(x;y) \\ y \\ \text{s.t. } g(x;y) \leq 0 \end{array} \right\} \end{array}$

into NLP

minimize
$$arphi(x,y)$$

subject to $abla_y f(x;y) + \lambda
abla_y g(x;y) = 0$
 $g(x;y) \leq 0, \quad \lambda \geq 0$
 $g(x;y)\lambda \geq 0$

NLP doesn't satisfy MFCQ but can be solved by (some) current NLP software.

Idea: replace the equilibrium problem (*) by KKT system *for every time step*.

Convert MPEC into NLP:

where N is the number of time steps.

Main trouble: the delamination problem (*) is nonconvex and has several isolated local minima (stationary points).

Only one corresponds to a "physical solution" (but not the global minimum).

MPEC's upper level objectives may force the system toward "non-physical" solutions \rightarrow (very) fine time discretization may be needed \rightarrow (very) large system

Four-string example: 2 "upper-level" variables, 4 "lower-level" variables, 32 time steps \rightarrow 354 NLP variables

