Lower semicontinuity of integral functionals

Martin Kružík Institute of Information Theory and Automation, CAS (Praha)

based on joint works with B. Benešová (Würzburg), A. Kałamajska (Warsaw), S. Krömer (Köln), G. Pathó (Praha)

September 7, 2016

∢ ⊒ ▶

Martin Kružík Institute of Information Theory and Automation, CAS (Prah Lower semicontinuity of integral functionals

Let $f : [a, b] \to \mathbb{R}$ be continuous for some $-\infty < a < b < +\infty$. Then there is $x_0 \in [a, b]$ such that $f(x) \ge f(x_0)$ for all $x \in [a, b]$. In other words, $f(x_0) = \min_{[a,b]} f$.

and is based on the Bolzano-Weierstrass theorem: A bounded sequence in ${\rm I\!R}$ has a convergent subsequence.

- Find $\{x_k\} \subset [a, b]$ such that $\lim_{k\to\infty} f(x_k) = \inf_{[a,b]} f$. (i.e. find a "minimizing" sequence).
- $x_{k_m} \rightarrow x_0$ for $m \rightarrow \infty$ (Bolzano-Weierstrass)
- Use continuity to infer $\inf_{[a,b]} f = \lim_{m \to \infty} f(x_{k_m}) = f(x_0)$.
- It is enough if f is only lower semicontinuous, i.e., if

$\liminf_{m} \inf_{x_{k_m}} f(x_{k_m}) \geq f(x_0) \; .$

医下 不良下

and is based on the Bolzano-Weierstrass theorem: A bounded sequence in ${\rm I\!R}$ has a convergent subsequence.

- Find $\{x_k\} \subset [a, b]$ such that $\lim_{k\to\infty} f(x_k) = \inf_{[a,b]} f$. (i.e. find a "minimizing" sequence).
- $x_{k_m} \rightarrow x_0$ for $m \rightarrow \infty$ (Bolzano-Weierstrass)
- Use continuity to infer $\inf_{[a,b]} f = \lim_{m \to \infty} f(x_{k_m}) = f(x_0)$.
- It is enough if f is only lower semicontinuous, i.e., if

 $\liminf_{m\to\infty}f(x_{k_m})\geq f(x_0) \ .$

▶ ∢ ⊒ ▶

and is based on the Bolzano-Weierstrass theorem: A bounded sequence in ${\rm I\!R}$ has a convergent subsequence.

- Find $\{x_k\} \subset [a, b]$ such that $\lim_{k\to\infty} f(x_k) = \inf_{[a,b]} f$. (i.e. find a "minimizing" sequence).
- $x_{k_m} \rightarrow x_0$ for $m \rightarrow \infty$ (Bolzano-Weierstrass)
- Use continuity to infer $\inf_{[a,b]} f = \lim_{m\to\infty} f(x_{k_m}) = f(x_0)$.

It is enough if f is only lower semicontinuous, i.e., if

 $\liminf_{m\to\infty}f(x_{k_m})\geq f(x_0)\;.$

▶ < Ξ ▶</p>

and is based on the Bolzano-Weierstrass theorem: A bounded sequence in ${\rm I\!R}$ has a convergent subsequence.

- Find $\{x_k\} \subset [a, b]$ such that $\lim_{k\to\infty} f(x_k) = \inf_{[a,b]} f$. (i.e. find a "minimizing" sequence).
- $x_{k_m} \rightarrow x_0$ for $m \rightarrow \infty$ (Bolzano-Weierstrass)
- Use continuity to infer $\inf_{[a,b]} f = \lim_{m\to\infty} f(x_{k_m}) = f(x_0)$.

It is enough if f is only lower semicontinuous, i.e., if

 $\liminf_{m\to\infty}f(x_{k_m})\geq f(x_0)\;.$

▶ ∢ ⊒ ▶

and is based on the Bolzano-Weierstrass theorem: A bounded sequence in ${\rm I\!R}$ has a convergent subsequence.

- Find $\{x_k\} \subset [a, b]$ such that $\lim_{k\to\infty} f(x_k) = \inf_{[a,b]} f$. (i.e. find a "minimizing" sequence).
- $x_{k_m} \rightarrow x_0$ for $m \rightarrow \infty$ (Bolzano-Weierstrass)
- Use continuity to infer $\inf_{[a,b]} f = \lim_{m\to\infty} f(x_{k_m}) = f(x_0)$.

It is enough if f is only lower semicontinuous, i.e., if

$$\liminf_{m\to\infty}f(x_{k_m})\geq f(x_0) \ .$$

< ∃ →

- \bigcirc f can be quite general (nonsmooth, nonconvex,...).
- [©] The proof allows for generalizations to infinite dimensional spaces, various topologies,...
- ^(C) The proof does not tell us how to find x₀, i.e. it is non-constructive.

"Nothing takes place in the world whose meaning is not that of some maximum or minimum."

Leonhard Euler

< ∃→

Mathematical Programming/Optimization/Variational Analysis

• Calculus of Variations (Mechanics, Physics,...)

PDEs, Variational Methods

Optimal Control (Engineering,...)

- Mathematical Programming/Optimization/Variational Analysis
- Calculus of Variations (Mechanics, Physics,...)
- PDEs, Variational Methods
- Optimal Control (Engineering,...)

- Mathematical Programming/Optimization/Variational Analysis
- Calculus of Variations (Mechanics, Physics,...)
- PDEs, Variational Methods
- Optimal Control (Engineering,...)

is a far more advanced setting of the proof of the Extreme-Value Theorem. It was designed by D. Hilbert and S. Zaremba around 1900.

If we replace IR by some Hilbert space H (for instance by L^2) then bounded sequences in H contain subsequences converging **only** in the weak topology. This is "convergence of weighted averages". We say that $u_k \rightarrow u$ weakly if

$$orall h \in H : \langle u_k, h
angle o \langle u, h
angle ext{ if } k o \infty ext{ .}$$

< ∃ >

- For example, if $H := L^2(0,1)$ and $u_k(x) := \sin kx$ then $u_k \to 0$ weakly as $k \to \infty$.
- norm (strong) convergence implies the weak one.

The direct method (of the calculus of variations)

- *H* is a Hilbert space (Think again about L^2)
- $I: H \to {\rm I\!R}$ is coercive (i.e. $I(u) \to \infty$ if $\|u\| \to \infty$)
- *I* is weakly lower semicontinuous (i.e. $\liminf_{k\to\infty} I(u_k) \ge I(u)$ whenever $u_k \to u$ weakly).

Then there is $u \in H$ such that $I(u) = \inf_{H} I$.

• Coercivity means that $I(u) \ge I(0)$ if ||u|| > C for some C > 0, so

$$\inf_{H} I = \inf_{\|u\| \le C} I .$$

→ < ∃→

- Weak lower semicontinuity implies lower semicontinuity.
- Later on, this program was extended to a "nice" Banach space B (e.g. L^p, 1

The direct method (of the calculus of variations)

- *H* is a Hilbert space (Think again about L^2)
- $I: H \to {\rm I\!R}$ is coercive (i.e. $I(u) \to \infty$ if $\|u\| \to \infty$)
- *I* is weakly lower semicontinuous (i.e. $\liminf_{k\to\infty} I(u_k) \ge I(u)$ whenever $u_k \to u$ weakly).

Then there is $u \in H$ such that $I(u) = \inf_{H} I$.

• Coercivity means that $I(u) \ge I(0)$ if ||u|| > C for some C > 0, so

$$\inf_{H} I = \inf_{\|u\| \le C} I .$$

- Weak lower semicontinuity implies lower semicontinuity.
- Later on, this program was extended to a "nice" Banach space B (e.g. L^p, 1

Convexity of I

If $I: B \to \mathrm{I\!R}$ is continuous and **convex** then I is weakly lower semicontinuous (wlsc).

- Convex analysis arguments (Hahn-Banach theorem)
- In particular, Mazur's lemma (it "upgrades" weak convergence to strong one).

If $L = \lim_{k \to \infty} l(u_k)$, then for every $\varepsilon > 0$ there is k_0 such that for all $k \ge k_0$ we have $l(u_k) \le L + \varepsilon$. By Mazur's lemma, there are $n(\varepsilon) \in \mathbb{N}, \ 0 \le \lambda_k(\varepsilon), \ \sum_{k=k_0}^n \lambda_k = 1$ such that

$$\|u-\sum_{k=k_0}^n\lambda_k u_k\|\leq \varepsilon$$
.

Hence,

$$I(\sum_{k=k_0}^n \lambda_k u_k) \leq \sum_{k=k_0}^n \lambda_k I(u_k) \leq L + \varepsilon .$$

< ∃ →

Convexity of *I*

If $I : B \to \mathbb{R}$ is continuous and **convex** then I is weakly lower semicontinuous (wlsc).

- Convex analysis arguments (Hahn-Banach theorem)
- In particular, Mazur's lemma (it "upgrades" weak convergence to strong one).
 If L = lim_{k→∞} I(u_k), then for every ε > 0 there is k₀ such that for all k ≥ k₀ we have I(u_k) ≤ L + ε. By Mazur's lemma, there are

 $n(\varepsilon) \in \mathbb{N}$, $0 \leq \lambda_k(\varepsilon)$, $\sum_{k=k_0}^n \lambda_k = 1$ such that

$$\|u-\sum_{k=k_0}^n\lambda_k u_k\|\leq \varepsilon$$
.

Hence,

$$I(\sum_{k=k_0}^n \lambda_k u_k) \leq \sum_{k=k_0}^n \lambda_k I(u_k) \leq L + \varepsilon .$$

Nonconvexity could be fatal....(at least in 1D)

$$I(u) := \int_0^1 (1 - |u'|)^2 + u^2 \, \mathrm{d}x \; .$$

Consider $\{u_k\}$ a sequence of zig-zag functions driving I to its infimum.

 $u_k \rightarrow 0$ in $L^2(0,1)$

 $u'_k
ightarrow 0$ weakly in $L^2(0,1)$

$$0 = \inf I = \lim_{k \to \infty} I(u_k) < I(0) = 1$$

No weak lower semicontinuity and no minimizer because I(u) > 0

< ∃ >

Nonconvexity could be fatal....(at least in 1D)

$$I(u) := \int_0^1 (1 - |u'|)^2 + u^2 \, \mathrm{d}x \; .$$

Consider $\{u_k\}$ a sequence of zig-zag functions driving I to its infimum.

 $u_k \rightarrow 0$ in $L^2(0,1)$

 $u'_k
ightarrow 0$ weakly in $L^2(0,1)$

$$0 = \inf I = \lim_{k \to \infty} I(u_k) < I(0) = 1$$

No weak lower semicontinuity and no minimizer because I(u) > 0.

- ∢ ⊒ →

Weakly continuous *I* (Reshetnyak, 1968)

Let $n \ge 2$, $\Omega \subset \mathbb{R}^n$ a bounded domain with smooth boundary, $u: \Omega \to \mathbb{R}^n$ belongs for p > n to the Sobolev space

$$\mathcal{N}^{1,p}(\Omega; {\rm I\!R}^n) := \{ y \in L^p(\Omega; {\rm I\!R}^n); \ \nabla y \in L^p(\Omega; {\rm I\!R}^{n imes n}) \} \; .$$

Set

$$I(u) := \int_{\Omega} \det \nabla u \, \mathrm{d}x \; .$$

lf

$$u_k \to u$$
 weakly in $W^{1,p}(\Omega; \mathbb{R}^n)$.

Then

$$\lim_{k\to\infty}I(u_k)=I(u)\;.$$

< ∃→

....because determinant is the divergence.

If $\varphi \in C_0^{\infty}(\Omega)$ the **strong** convergence of $u_k \to u$ and the **weak** convergence of partial derivatives of u_k allows us to write (n = 2):

$$\begin{split} &\int_{\Omega} \varphi \det \nabla u_k \, \mathrm{d}x = \int_{\Omega} \frac{\partial}{\partial x_1} \left(u_k^1 \frac{\partial u_k^2}{\partial x_2} \right) \varphi + \frac{\partial}{\partial x_2} \left(-u_k^1 \frac{\partial u_k^2}{\partial x_1} \right) \varphi \, \mathrm{d}x \\ &= -\int_{\Omega} \left(u_k^1 \frac{\partial u_k^2}{\partial x_2} \right) \frac{\partial \varphi}{\partial x_1} + \left(u_k^1 \frac{\partial u_k^2}{\partial x_1} \right) \frac{\partial \varphi}{\partial x_2} \, \mathrm{d}x \\ &\to -\int_{\Omega} \left(u^1 \frac{\partial u^2}{\partial x_2} \right) \frac{\partial \varphi}{\partial x_1} + \left(u^1 \frac{\partial u^2}{\partial x_1} \right) \frac{\partial \varphi}{\partial x_2} \, \mathrm{d}x \\ &= \int_{\Omega} \frac{\partial}{\partial x_1} \left(u^1 \frac{\partial u^2}{\partial x_2} \right) \varphi + \frac{\partial}{\partial x_2} \left(-u^1 \frac{\partial u^2}{\partial x_1} \right) \varphi \, \mathrm{d}x = \int_{\Omega} \varphi \det \nabla u \, \mathrm{d}x \end{split}$$

Density of $C_0^{\infty}(\Omega)$ in $L^{p/(p-n)}(\Omega)$ finishes the argument.

We can replicate the above calculation for all other subdeterminants/minors of the gradient matrix.

< ∃ >

Why is it so?

....because determinant is the divergence.

If $\varphi \in C_0^{\infty}(\Omega)$ the **strong** convergence of $u_k \to u$ and the **weak** convergence of partial derivatives of u_k allows us to write (n = 2):

$$\begin{split} &\int_{\Omega} \varphi \det \nabla u_k \, \mathrm{d}x = \int_{\Omega} \frac{\partial}{\partial x_1} \left(u_k^1 \frac{\partial u_k^2}{\partial x_2} \right) \varphi + \frac{\partial}{\partial x_2} \left(-u_k^1 \frac{\partial u_k^2}{\partial x_1} \right) \varphi \, \mathrm{d}x \\ &= -\int_{\Omega} \left(u_k^1 \frac{\partial u_k^2}{\partial x_2} \right) \frac{\partial \varphi}{\partial x_1} + \left(u_k^1 \frac{\partial u_k^2}{\partial x_1} \right) \frac{\partial \varphi}{\partial x_2} \, \mathrm{d}x \\ &\to -\int_{\Omega} \left(u^1 \frac{\partial u^2}{\partial x_2} \right) \frac{\partial \varphi}{\partial x_1} + \left(u^1 \frac{\partial u^2}{\partial x_1} \right) \frac{\partial \varphi}{\partial x_2} \, \mathrm{d}x \\ &= \int_{\Omega} \frac{\partial}{\partial x_1} \left(u^1 \frac{\partial u^2}{\partial x_2} \right) \varphi + \frac{\partial}{\partial x_2} \left(-u^1 \frac{\partial u^2}{\partial x_1} \right) \varphi \, \mathrm{d}x = \int_{\Omega} \varphi \det \nabla u \, \mathrm{d}x \end{split}$$

Density of $C_0^{\infty}(\Omega)$ in $L^{p/(p-n)}(\Omega)$ finishes the argument.

We can replicate the above calculation for all other subdeterminants/minors of the gradient matrix.

Why is it so?

....because determinant is the divergence.

If $\varphi \in C_0^{\infty}(\Omega)$ the **strong** convergence of $u_k \to u$ and the **weak** convergence of partial derivatives of u_k allows us to write (n = 2):

$$\begin{split} &\int_{\Omega} \varphi \det \nabla u_k \, \mathrm{d}x = \int_{\Omega} \frac{\partial}{\partial x_1} \left(u_k^1 \frac{\partial u_k^2}{\partial x_2} \right) \varphi + \frac{\partial}{\partial x_2} \left(-u_k^1 \frac{\partial u_k^2}{\partial x_1} \right) \varphi \, \mathrm{d}x \\ &= -\int_{\Omega} \left(u_k^1 \frac{\partial u_k^2}{\partial x_2} \right) \frac{\partial \varphi}{\partial x_1} + \left(u_k^1 \frac{\partial u_k^2}{\partial x_1} \right) \frac{\partial \varphi}{\partial x_2} \, \mathrm{d}x \\ &\to -\int_{\Omega} \left(u^1 \frac{\partial u^2}{\partial x_2} \right) \frac{\partial \varphi}{\partial x_1} + \left(u^1 \frac{\partial u^2}{\partial x_1} \right) \frac{\partial \varphi}{\partial x_2} \, \mathrm{d}x \\ &= \int_{\Omega} \frac{\partial}{\partial x_1} \left(u^1 \frac{\partial u^2}{\partial x_2} \right) \varphi + \frac{\partial}{\partial x_2} \left(-u^1 \frac{\partial u^2}{\partial x_1} \right) \varphi \, \mathrm{d}x = \int_{\Omega} \varphi \det \nabla u \, \mathrm{d}x \end{split}$$

Density of $C_0^{\infty}(\Omega)$ in $L^{p/(p-n)}(\Omega)$ finishes the argument.

We can replicate the above calculation for all other subdeterminants/minors of the gradient matrix.

Convexity and weak convergence of minors together

J.M. Ball's notion of **polyconvexity** (1977) with important applications to mathematical elasticity

$$W(F) := \begin{cases} h(F, \operatorname{cof} F, \det F) & \text{if } \det F > 0 \\ +\infty & \text{otherwise.} \end{cases}$$

$$\operatorname{cof} F := (\det F)F^{-\top}$$

$$h: {\rm I\!R}^{19} \to {\rm I\!R}$$
 is convex

Example (for det F > 0):

$$W(F) := |F|^{p} + |\operatorname{cof} F|^{p/2} + \frac{1}{\det F}$$

Convexity and weak convergence of minors together

J.M. Ball's notion of **polyconvexity** (1977) with important applications to mathematical elasticity

$$W(F) := \begin{cases} h(F, \operatorname{cof} F, \det F) & \text{if } \det F > 0 \\ +\infty & \text{otherwise.} \end{cases}$$

$$\operatorname{cof} F := (\det F)F^{-\top}$$

$$h: {\rm I\!R}^{19} \to {\rm I\!R}$$
 is convex

Example (for det F > 0):

$$W(F) := |F|^p + |\operatorname{cof} F|^{p/2} + \frac{1}{\det F}$$

Weak lower semicontinuity

$$I(u) := \int_{\Omega} W(\nabla u(x)) \, \mathrm{d}x$$

is weakly lower semicontinuous in $W^{1,p}(\Omega; \mathbb{R}^3)$, if p > 3.

The proof is based on convexity of h and special properties of determinants and cofactors, namely if $u_k \rightarrow u$ in $W^{1,p}$ for p > 3 then

 $\det \nabla u_k \rightharpoonup \det \nabla u$ in $L^{p/3}$

 $\operatorname{cof} \nabla u_k \rightharpoonup \operatorname{cof} \nabla u$ in $L^{p/2}$,

and

 $\nabla u_k \rightharpoonup \nabla u$ in L^p .

Generalization to arbitrary dimensions possible (compensated compactness).

Martin Kružík Institute of Information Theory and Automation, CAS (Prah Lower semicontinuity of integral functionals

Weak lower semicontinuity

$$I(u) := \int_{\Omega} W(\nabla u(x)) \, \mathrm{d}x$$

is weakly lower semicontinuous in $W^{1,p}(\Omega; \mathbb{R}^3)$, if p > 3.

The proof is based on convexity of *h* and special properties of determinants and cofactors, namely if $u_k \rightharpoonup u$ in $W^{1,p}$ for p > 3 then

 $\det \nabla u_k \rightharpoonup \det \nabla u$ in $L^{p/3}$

$$\operatorname{cof} \nabla u_k \rightharpoonup \operatorname{cof} \nabla u$$
 in $L^{p/2}$,

and

$$\nabla u_k
ightarrow \nabla u$$
 in L^p .

Generalization to arbitrary dimensions possible (compensated compactness).

< ∃ >

Weak lower semicontinuity

$$I(u) := \int_{\Omega} W(\nabla u(x)) \, \mathrm{d}x$$

is weakly lower semicontinuous in $W^{1,p}(\Omega; \mathbb{R}^3)$, if p > 3.

The proof is based on convexity of *h* and special properties of determinants and cofactors, namely if $u_k \rightharpoonup u$ in $W^{1,p}$ for p > 3 then

 $\det \nabla u_k \rightharpoonup \det \nabla u$ in $L^{p/3}$

$$\operatorname{cof} \nabla u_k \rightharpoonup \operatorname{cof} \nabla u$$
 in $L^{p/2}$,

and

$$\nabla u_k \rightharpoonup \nabla u$$
 in L^p .

Generalization to arbitrary dimensions possible (compensated compactness).

Martin Kružík Institute of Information Theory and Automation, CAS (Prah Lower semicontinuity of integral functionals

۲

- It is relatively easy to construct polyconvex functions.
- Examples for various crystallographic structures.
- It allows us to ensure injectivity of deformations and their orientation preservation (det > 0).
- Included in commercial numerical (FE) software.

< ∃ >

(i) W polyconvex,
$$W(F) = +\infty$$
 if det $F \leq 0$

(ii) W(F) = W(RF) for all $R \in SO(3)$ and all $F \in {\rm I\!R}^{3 \times 3}$

(iii)
$$W(F) \to +\infty$$
 if det $F \to 0_+$

(iv) $|F|^p \leq W(F)$

Minimizers of *I* exist in $W^{1,p}(\Omega; \mathbb{R}^3)$.

- Polyconvexity shows that convexity does not have to be necessary for wlsc if *I* depends on gradients.
- Indeed, the reason is that gradients are not arbitrary functions.

 $W: \mathbb{R}^{m \times n} \to \mathbb{R}$ is (Morrey's) **quasiconvex** if for all $F \in \mathbb{R}^{m \times n}$ and all $\varphi \in C_0^{\infty}((0,1)^n; \mathbb{R}^m)$ (or $\varphi \in C_{(0,1)^n-\mathrm{per}}^{\infty}(\mathbb{R}^n; \mathbb{R}^m)$)

$$W(F) \leq \int_{(0,1)^n} W(F + \nabla \varphi(x)) \,\mathrm{d}x \;.$$

If $1 and <math>0 \le W(F) \le C(1 + |F|^p)$ then $I(u) := \int_{\Omega} W(\nabla u(x)) dx$ is wlsc on $W^{1,p}(\Omega; \mathbb{R}^m)$ if and only if W is quasiconvex.

The trouble is that quasiconvexity is very difficult to verify.

医下 不良下

 $W: \mathbb{R}^{m \times n} \to \mathbb{R}$ is (Morrey's) **quasiconvex** if for all $F \in \mathbb{R}^{m \times n}$ and all $\varphi \in C_0^{\infty}((0,1)^n; \mathbb{R}^m)$ (or $\varphi \in C_{(0,1)^n-\mathrm{per}}^{\infty}(\mathbb{R}^n; \mathbb{R}^m)$)

$$W(F) \leq \int_{(0,1)^n} W(F + \nabla \varphi(x)) \,\mathrm{d}x \;.$$

If $1 and <math>0 \le W(F) \le C(1 + |F|^p)$ then $I(u) := \int_{\Omega} W(\nabla u(x)) dx$ is wlsc on $W^{1,p}(\Omega; \mathbb{R}^m)$ if and only if W is quasiconvex.

The trouble is that quasiconvexity is very difficult to verify.

医下颌 医下颌

 $W: \mathbb{R}^{m \times n} \to \mathbb{R}$ is (Morrey's) **quasiconvex** if for all $F \in \mathbb{R}^{m \times n}$ and all $\varphi \in C_0^{\infty}((0,1)^n; \mathbb{R}^m)$ (or $\varphi \in C_{(0,1)^n-\mathrm{per}}^{\infty}(\mathbb{R}^n; \mathbb{R}^m)$)

$$W(F) \leq \int_{(0,1)^n} W(F + \nabla \varphi(x)) \,\mathrm{d}x \;.$$

If $1 and <math>0 \le W(F) \le C(1 + |F|^p)$ then $I(u) := \int_{\Omega} W(\nabla u(x)) dx$ is wlsc on $W^{1,p}(\Omega; \mathbb{R}^m)$ if and only if W is quasiconvex.

The trouble is that quasiconvexity is very difficult to verify.

....yes, we do.

• Quasiconvex functions are rank-one convex, i.e.,

$$W(\lambda A + (1 - \lambda B)) \leq \lambda W(A) + (1 - \lambda) W(B)$$

whenever $0 \le \lambda \le 1$ and rank(A - B) = 1.

- $g(t) := W(A + t(a \otimes b))$ is convex for all $a \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and all $A \in \mathbb{R}^{m \times n}$, i.e., if smooth then $g'' \ge 0$.
- Quasiconvex functions are continuous and locally Lipschitz.
- If m = 1 or n = 1 rank-one convex means convex as well as quasiconvex.

< ∃ →

Let
$$m = n = 2$$
, $|F|^2 := \sum_{ij} F_{ij}^2$ and

$$W_{\gamma}(F) := |F|^4 - 2\gamma |F|^2 \det F$$
 .

Then

- W_γ is convex iff $|\gamma| \leq 2\sqrt{2}/3$
- W_γ is polyconvex iff $|\gamma| \leq 1$
- there is arepsilon > 0 such that W_γ is quasiconvex iff $|\gamma| \leq 1 + arepsilon$
- W_γ is rank-one convex iff $|\gamma| \leq 2/\sqrt{3}$

It is an open problem if $\varepsilon = 2/\sqrt{3} - 1$, i.e., if rank-one convexity and quasiconvexity of W_{γ} coincide.

< ∃ >

Let
$$m = n = 2$$
, $|F|^2 := \sum_{ij} F_{ij}^2$ and

$$W_\gamma(F):=|F|^4-2\gamma|F|^2{
m det}\,F$$
 .

Then

- W_γ is convex iff $|\gamma| \leq 2\sqrt{2}/3$
- W_γ is polyconvex iff $|\gamma| \leq 1$
- there is arepsilon > 0 such that W_γ is quasiconvex iff $|\gamma| \leq 1 + arepsilon$
- W_{γ} is rank-one convex iff $|\gamma| \leq 2/\sqrt{3}$

It is an open problem if $\varepsilon = 2/\sqrt{3} - 1$, i.e., if rank-one convexity and quasiconvexity of W_{γ} coincide.

< ∃⇒

In general dimensions,

convexity \implies polyconvexity \implies quasiconvexity \implies rank-1 convexity

and no implication can be reversed.

- It has been open for about 40 years if rank-one convexity implies quasiconvexity.
- The answer is no if m ≥ 3 and n ≥ 2 due to V. Šverák's counterexample from 1992.
- The case m = 2 and n ≥ 2 is still open, in particular, we do not know what happens on 2 × 2 matrices; cf. the Alibert & Dacorogna example.

< ∃ >

- It has been open for about 40 years if rank-one convexity implies quasiconvexity.
- The answer is no if m ≥ 3 and n ≥ 2 due to V. Šverák's counterexample from 1992.
- The case m = 2 and n ≥ 2 is still open, in particular, we do not know what happens on 2 × 2 matrices; cf. the Alibert & Dacorogna example.

< ∃→

- It has been open for about 40 years if rank-one convexity implies quasiconvexity.
- The answer is no if m ≥ 3 and n ≥ 2 due to V. Šverák's counterexample from 1992.
- The case m = 2 and n ≥ 2 is still open, in particular, we do not know what happens on 2 × 2 matrices; cf. the Alibert & Dacorogna example.

Counterexample

Then take m = 3 and n = 2

$$\varphi(x) := (2\pi)^{-1} (\sin 2\pi x_1, \sin 2\pi x_2, \sin 2\pi (x_1 + x_2)) . \tag{1}$$

We see that $\nabla \varphi \subset L$ where

$$L:=\left\{egin{pmatrix}r&0\0&s\t&t\end{pmatrix}$$
; $r,s,t\in{
m I}{
m R}
ight\}$.

Moreover, the only rank-one matrices in L are multiples of the following three ones:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} , \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} , \text{ and } \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Define a rank-one convex $f: L \to \mathbb{R}$,

$$f\left(\begin{pmatrix} r & 0\\ 0 & s\\ t & t \end{pmatrix}\right) = -rst \; .$$

< ≣ →

By simple calculation

$$\int_{(0,1)^2} f(\nabla \varphi(x)) \,\mathrm{d} x < 0 \ .$$

Then f can be slightly modified and extended from L to the whole space to a rank-one convex function which fails to be quasiconvex.

_∃⇒

- Essentially **no**! There exist (to the BOMK) only variants of the previous example.
- Different examples desperately needed to understand the problem better.
- Does rank-one convexity and frame invariance (W(F) = W(RF) for any R ∈ SO(n)) imply quasiconvexity? This would be important for elasticity.
- If m = n = 2 is it true that ∫_{(0,1)²} W(F + ∇φ^T) dx ≥ W(F)? for all φ ∈ C₀[∞]((0,1)²; ℝ²) and all F ∈ ℝ^{2×2}? The negative answer means we have a counterexample for m = n = 2 (and, I guess, interesting job offers ©), the affirmative answer shows a special property for 2 × 2.

ヨト・モヨト

Quasiconvexity is always necessary and still sufficient for wlsc of I on $W^{1,p}$ (1 if

$$-|F|^q \leq W(F) \leq C(1+|F|^p)$$

and q < p.

However, if p = q then it is not the case.

Counterexample

Take B(0,1) a unit ball in \mathbb{R}^n , centered at zero, $u \in C_0^{\infty}(B(0,1); \mathbb{R}^n)$ and extend u by zero to the whole \mathbb{R}^n . Then $\int_{B(0,1)} \det \nabla u(x) dx = 0$. Take $\varrho \in \mathbb{R}^n$ a unit vector ρ such that $D_{\varrho} := \{x \in B(0,1); x \cdot \varrho < 0\}$ and

$$\int_{D_{\varrho}} \det \nabla u(x) \, \mathrm{d} x < 0 \ .$$

Denote $u_k(x) := u(kx)$ for all $k \in \mathbb{N}$; then, $u_k \to 0$ weakly in $W^{1,n}(B(0,1); \mathbb{R}^n)$ (even in measure) but for all $k \in \mathbb{N}$

$$\int_{D_{\varrho}} \det \nabla u_k(x) \, \mathrm{d} x \to \int_{D_{\varrho}} \det \nabla u(x) \, \mathrm{d} x < \int_{D_{\varrho}} \det \nabla 0 \, \mathrm{d} x = 0$$

by our construction \bigcirc . On the other hand, for the other half-ball \bigcirc ,

$$\int_{D_{-\varrho}} \det \nabla u_k(x) \, \mathrm{d} x \to \int_{D_{-\varrho}} \det \nabla u(x) \, \mathrm{d} x > \int_{D_{-\varrho}} \det \nabla 0 \, \mathrm{d} x = 0 \ ,$$

< ∃ >

 $\{u_k\}$ is such that $\|\nabla u_k\|_{L^n} = \|\nabla u\|_{L^n}$ but support of u_k shrinks to zero as $k \to \infty$.

In other words, gradients concentrate at the origin (boundary of D_{ϱ}). This can destroy/help wlsc.

Conditions at the boundary?

- This problem addressed by N. Meyers in 1965 who gave a necessary and sufficient condition in terms of sequences, not in terms of integrands.
- If W is positively p-homogeneous then it is (besides quasiconvexity) sufficient and necessary if

$$\int_{D_{\varrho}} W(\nabla \varphi(x)) \, \mathrm{d} x \ge 0$$

for all $\varphi \in C_0^{\infty}(B(0,1); \mathbb{R}^n)$ and any ϱ which coincides with the outer unit normal to $\partial \Omega$.

- This shows that the domain enters the game.
- More general situations can be treated S. Krömer (2010), S. Krömer & MK (2013) but many questions remain (higher-order gradients)

- ∢ ⊒ ▶

- This problem addressed by N. Meyers in 1965 who gave a necessary and sufficient condition in terms of sequences, not in terms of integrands.
- If W is positively p-homogeneous then it is (besides quasiconvexity) sufficient and necessary if

$$\int_{D_{\varrho}} W(\nabla \varphi(x)) \, \mathrm{d} x \ge 0$$

for all $\varphi \in C_0^{\infty}(B(0,1); \mathbb{R}^n)$ and any ϱ which coincides with the outer unit normal to $\partial \Omega$.

- This shows that the domain enters the game.
- More general situations can be treated S. Krömer (2010), S. Krömer & MK (2013) but many questions remain (higher-order gradients)

< ∃→

- This problem addressed by N. Meyers in 1965 who gave a necessary and sufficient condition in terms of sequences, not in terms of integrands.
- If W is positively p-homogeneous then it is (besides quasiconvexity) sufficient and necessary if

$$\int_{D_{\varrho}} W(\nabla \varphi(x)) \, \mathrm{d} x \geq 0$$

for all $\varphi \in C_0^{\infty}(B(0,1); \mathbb{R}^n)$ and any ϱ which coincides with the outer unit normal to $\partial \Omega$.

- This shows that the domain enters the game.
- More general situations can be treated S. Krömer (2010), S. Krömer & MK (2013) but many questions remain (higher-order gradients)

< ∃→

- This problem addressed by N. Meyers in 1965 who gave a necessary and sufficient condition in terms of sequences, not in terms of integrands.
- If W is positively p-homogeneous then it is (besides quasiconvexity) sufficient and necessary if

$$\int_{D_{\varrho}} W(\nabla \varphi(x)) \, \mathrm{d} x \geq 0$$

for all $\varphi \in C_0^{\infty}(B(0,1); \mathbb{R}^n)$ and any ϱ which coincides with the outer unit normal to $\partial \Omega$.

- This shows that the domain enters the game.
- More general situations can be treated S. Krömer (2010), S. Krömer & MK (2013) but many questions remain (higher-order gradients)

Other kinds of problems - nonreflexivity

minimize
$$J(u) := \int_0^1 ((x-1)^2 + \varepsilon) |u'(x)| \, dx + (u(1)-1)^2 ,$$

 $u \in W^{1,1}(0,1) \& u(0) = 0 .$

$$\begin{aligned} J(u) &\geq \varepsilon \int_0^1 |u'(x)| \, \mathrm{d}x + (u(1) - 1)^2 &= \varepsilon (u(1) - u(0)) + (u(1) - 1)^2 \\ &= \varepsilon u(1) + (u(1) - 1)^2 \geq (4\varepsilon - \varepsilon^2)/4 . \end{aligned}$$

On the other hand, taking

$$u_k(x) := egin{cases} 0 & ext{if } 0 \leq x \leq 1 - 1/k \ k rac{2-arepsilon}{2} x - (k-1)rac{2-arepsilon}{2} & ext{otherwise} \end{cases}$$

we see that $J(u_k) \to (4\varepsilon - \varepsilon^2)/4$ as $k \to \infty$, so it is a minimizing sequence. Notice that if $0 \le \varepsilon < 2$ $u_k \to 0$ in $L^1(0,1)$ and (u'_k) concentrates at x = 1. Consequently, no minimizer exists in the admissible class of competitors. However, if $\varepsilon \ge 2$ then u = 0 is the minimizer.

$$I(u) := \int_{\Omega} W(u(x)) \,\mathrm{d}x$$
,

if Au = 0 where A is a first-order partial differential operator. (The case A =curl is included.) You can think about A = div, i.e., solenoidal fields.

- A notion of A-quasiconvexity. If $W \ge 0$ necessary and sufficient conditions given by Fonseca & Müller (1999).
- Negative integrands S. Krömer & MK & G. (2014).
- Subtle conditions show up depending on extension properties of \mathcal{A} .

< ∃ >

$$I(u) := \int_{\Omega} W(u(x)) \,\mathrm{d}x$$
,

if Au = 0 where A is a first-order partial differential operator. (The case A =curl is included.) You can think about A = div, i.e., solenoidal fields.

- A notion of A-quasiconvexity. If $W \ge 0$ necessary and sufficient conditions given by Fonseca & Müller (1999).
- Negative integrands S. Krömer & MK & G. (2014).
- Subtle conditions show up depending on extension properties of \mathcal{A} .

Conclusions

• Lower semicontinuity is an important issue in many areas of mathematics.

- Many open problems (characterization of quasiconvexity, relation to rank-one convexity), New ideas are missing.
- Algebraic constraints on the fields (det ∇u > 0) (talk by B. Benešová).
- Growth conditions suitable for mechanics.....
- Description of limit behavior by means of parametrized measures (Young measures). Need to characterize them!
- Perhaps look at B. Benešová, MK: Weak lower semicontinuity of integral functionals and applications. Preprint arXiv:1601.00390.
- Applications of Calculus of Variations to mechanics in your vicinity: A. Schlömerkemper, B. Benešová,...

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Lower semicontinuity is an important issue in many areas of mathematics.
- Many open problems (characterization of quasiconvexity, relation to rank-one convexity), New ideas are missing.
- Algebraic constraints on the fields (det ∇u > 0) (talk by B. Benešová).
- Growth conditions suitable for mechanics.....
- Description of limit behavior by means of parametrized measures (Young measures). Need to characterize them!
- Perhaps look at B. Benešová, MK: Weak lower semicontinuity of integral functionals and applications. Preprint arXiv:1601.00390.
- Applications of Calculus of Variations to mechanics in your vicinity: A. Schlömerkemper, B. Benešová,...

- Lower semicontinuity is an important issue in many areas of mathematics.
- Many open problems (characterization of quasiconvexity, relation to rank-one convexity), New ideas are missing.
- Algebraic constraints on the fields (det ∇u > 0) (talk by B. Benešová).
- Growth conditions suitable for mechanics.....
- Description of limit behavior by means of parametrized measures (Young measures). Need to characterize them!
- Perhaps look at B. Benešová, MK: Weak lower semicontinuity of integral functionals and applications. Preprint arXiv:1601.00390.
- Applications of Calculus of Variations to mechanics in your vicinity: A. Schlömerkemper, B. Benešová,...

医下 不良下

- Lower semicontinuity is an important issue in many areas of mathematics.
- Many open problems (characterization of quasiconvexity, relation to rank-one convexity), New ideas are missing.
- Algebraic constraints on the fields (det ∇u > 0) (talk by B. Benešová).
- Growth conditions suitable for mechanics.....
- Description of limit behavior by means of parametrized measures (Young measures). Need to characterize them!
- Perhaps look at B. Benešová, MK: Weak lower semicontinuity of integral functionals and applications. Preprint arXiv:1601.00390.
- Applications of Calculus of Variations to mechanics in your vicinity: A. Schlömerkemper, B. Benešová,...

∃ ► < ∃ ►</p>

- Lower semicontinuity is an important issue in many areas of mathematics.
- Many open problems (characterization of quasiconvexity, relation to rank-one convexity), New ideas are missing.
- Algebraic constraints on the fields (det ∇u > 0) (talk by B. Benešová).
- Growth conditions suitable for mechanics.....
- Description of limit behavior by means of parametrized measures (Young measures). Need to characterize them!
- Perhaps look at B. Benešová, MK: *Weak lower semicontinuity of integral functionals and applications*. Preprint arXiv:1601.00390.
- Applications of Calculus of Variations to mechanics in your vicinity: A. Schlömerkemper, B. Benešová,...

∃ ► < ∃ ►</p>

- Lower semicontinuity is an important issue in many areas of mathematics.
- Many open problems (characterization of quasiconvexity, relation to rank-one convexity), New ideas are missing.
- Algebraic constraints on the fields (det ∇u > 0) (talk by B. Benešová).
- Growth conditions suitable for mechanics.....
- Description of limit behavior by means of parametrized measures (Young measures). Need to characterize them!
- Perhaps look at B. Benešová, MK: Weak lower semicontinuity of integral functionals and applications. Preprint arXiv:1601.00390.
- Applications of Calculus of Variations to mechanics in your vicinity: A. Schlömerkemper, B. Benešová,...

三下 人王下。

- Lower semicontinuity is an important issue in many areas of mathematics.
- Many open problems (characterization of quasiconvexity, relation to rank-one convexity), New ideas are missing.
- Algebraic constraints on the fields (det ∇u > 0) (talk by B. Benešová).
- Growth conditions suitable for mechanics.....
- Description of limit behavior by means of parametrized measures (Young measures). Need to characterize them!
- Perhaps look at B. Benešová, MK: Weak lower semicontinuity of integral functionals and applications. Preprint arXiv:1601.00390.
- Applications of Calculus of Variations to mechanics in your vicinity: A. Schlömerkemper, B. Benešová,...

≣ ► < ≣ ►