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Extreme-Value Theorem - B. Bolzano (≈ 1830)

Let f : [a, b]→ IR be continuous for some −∞ < a < b < +∞. Then
there is x0 ∈ [a, b] such that f (x) ≥ f (x0) for all x ∈ [a, b]. In other
words, f (x0) = min[a,b] f .
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Proof is simple (for us, now)

and is based on the Bolzano-Weierstrass theorem: A bounded sequence
in IR has a convergent subsequence.

Find {xk} ⊂ [a, b] such that limk→∞ f (xk) = inf [a,b] f . (i.e. find a
“minimizing” sequence).
xkm → x0 for m→∞ (Bolzano-Weierstrass)
Use continuity to infer inf [a,b] f = limm→∞ f (xkm ) = f (x0).

It is enough if f is only lower semicontinuous, i.e., if

lim inf
m→∞

f (xkm ) ≥ f (x0) .
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Pros and Cons

© f can be quite general (nonsmooth, nonconvex,. . . ).
© The proof allows for generalizations to infinite dimensional spaces,
various topologies,. . .

§ The proof does not tell us how to find x0, i.e. it is
non-constructive.
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Why is minimization important?

“Nothing takes place in the world whose meaning is not that of some
maximum or minimum.”

Leonhard Euler
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Applications

Mathematical Programming/Optimization/Variational Analysis
Calculus of Variations (Mechanics, Physics,. . . )
PDEs, Variational Methods
Optimal Control (Engineering,. . . )
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The direct method

is a far more advanced setting of the proof of the Extreme-Value
Theorem. It was designed by D. Hilbert and S. Zaremba around 1900.

If we replace IR by some Hilbert space H (for instance by L2) then
bounded sequences in H contain subsequences converging only in the
weak topology. This is “convergence of weighted averages”. We say that
uk → u weakly if

∀h ∈ H : 〈uk , h〉 → 〈u, h〉 if k →∞ .

For example, if H := L2(0, 1) and uk(x) := sin kx then uk → 0
weakly as k →∞.
norm (strong) convergence implies the weak one.
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The direct method (of the calculus of variations)

H is a Hilbert space (Think again about L2)
I : H → IR is coercive (i.e. I(u)→∞ if ‖u‖ → ∞)
I is weakly lower semicontinuous (i.e. lim infk→∞ I(uk) ≥ I(u)
whenever uk → u weakly).

Then there is u ∈ H such that I(u) = infH I.

Coercivity means that I(u) ≥ I(0) if ‖u‖ > C for some C > 0, so

inf
H

I = inf
‖u‖≤C

I .

Weak lower semicontinuity implies lower semicontinuity.
Later on, this program was extended to a “nice” Banach space B
(e.g. Lp, 1 < p ≤ +∞).
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Convexity of I
If I : B → IR is continuous and convex then I is weakly lower
semicontinuous (wlsc).

Convex analysis arguments (Hahn-Banach theorem)
In particular, Mazur’s lemma ( it “upgrades” weak convergence to
strong one).
If L = limk→∞ I(uk), then for every ε > 0 there is k0 such that for
all k ≥ k0 we have I(uk) ≤ L + ε. By Mazur’s lemma, there are
n(ε) ∈ N, 0 ≤ λk(ε),

∑n
k=k0

λk = 1 such that

‖u −
n∑

k=k0

λkuk‖ ≤ ε .

Hence,

I(
∑

n
k=k0

λkuk) ≤
n∑

k=k0

λk I(uk) ≤ L + ε .

This converges to I(u)
because of continuity.
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Nonconvexity could be fatal....(at least in 1D)

I(u) :=
∫ 1

0
(1− |u′|)2 + u2 dx .

Consider {uk} a sequence of zig-zag functions driving I to its infimum.

uk → 0 in L2(0, 1)

u′k → 0 weakly in L2(0, 1)

0 = inf I = lim
k→∞

I(uk) < I(0) = 1

No weak lower semicontinuity and no minimizer because I(u) > 0.
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Weakly continuous I (Reshetnyak, 1968)

Let n ≥ 2, Ω ⊂ IRn a bounded domain with smooth boundary,
u : Ω→ IRn belongs for p > n to the Sobolev space

W 1,p(Ω; IRn) := {y ∈ Lp(Ω; IRn); ∇y ∈ Lp(Ω; IRn×n)} .

Set
I(u) :=

∫
Ω

det∇u dx .

If
uk → u weakly in W 1,p(Ω; IRn) .

Then

lim
k→∞

I(uk) = I(u) .

uk → u in Lp &∫
Ω ψ : (∇uk −∇u) dx → 0
∀ψ ∈ Lp/(p−1)
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Why is it so?

....because determinant is the divergence.
If ϕ ∈ C∞0 (Ω) the strong convergence of uk → u and the weak
convergence of partial derivatives of uk allows us to write (n = 2):∫

Ω
ϕdet∇uk dx =

∫
Ω

∂

∂x1

(
u1

k
∂u2

k
∂x2

)
ϕ+ ∂

∂x2

(
−u1

k
∂u2

k
∂x1

)
ϕdx

= −
∫

Ω

(
u1

k
∂u2

k
∂x2

)
∂ϕ

∂x1
+
(

u1
k
∂u2

k
∂x1

)
∂ϕ

∂x2
dx

→ −
∫

Ω

(
u1 ∂u2

∂x2

)
∂ϕ

∂x1
+
(

u1 ∂u2

∂x1

)
∂ϕ

∂x2
dx

=
∫

Ω

∂

∂x1

(
u1 ∂u2

∂x2

)
ϕ+ ∂

∂x2

(
−u1 ∂u2

∂x1

)
ϕdx =

∫
Ω
ϕdet∇u dx .

Density of C∞0 (Ω) in Lp/(p−n)(Ω) finishes the argument.

We can replicate the above calculation for all other
subdeterminants/minors of the gradient matrix.
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Convexity and weak convergence of minors together
J.M. Ball’s notion of polyconvexity (1977) with important applications
to mathematical elasticity

W (F ) :=
{

h(F , cof F ,det F ) if det F > 0
+∞ otherwise.

cof F := (det F )F−>

h : IR19 → IR is convex

Example (for det F > 0):

W (F ) := |F |p + |cof F |p/2 + 1
det F .
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Weak lower semicontinuity

I(u) :=
∫

Ω
W (∇u(x)) dx

is weakly lower semicontinuous in W 1,p(Ω; IR3), if p > 3.

The proof is based on convexity of h and special properties of
determinants and cofactors, namely if uk ⇀ u in W 1,p for p > 3 then

det∇uk ⇀ det∇u in Lp/3

cof∇uk ⇀ cof∇u in Lp/2 ,

and

∇uk ⇀ ∇u in Lp .

Generalization to arbitrary dimensions possible (compensated
compactness).
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Polyconvexity

It is relatively easy to construct polyconvex functions.
Examples for various crystallographic structures.
It allows us to ensure injectivity of deformations and their
orientation preservation (det > 0).
Included in commercial numerical (FE) software.
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Existence of minimizers in elasticity

(i) W polyconvex, W (F ) = +∞ if det F ≤ 0

(ii) W (F ) = W (RF ) for all R ∈ SO(3) and all F ∈ IR3×3

(iii) W (F )→ +∞ if det F → 0+

(iv) |F |p ≤W (F )

Minimizers of I exist in W 1,p(Ω; IR3).
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Necessary conditions

Polyconvexity shows that convexity does not have to be necessary
for wlsc if I depends on gradients.
Indeed, the reason is that gradients are not arbitrary functions.
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Quasiconvexity (Morrey, 1952)

W : IRm×n → IR is (Morrey’s) quasiconvex if for all F ∈ IRm×n and all
ϕ ∈ C∞0 ((0, 1)n; IRm) (or ϕ ∈ C∞(0,1)n−per(IRn; IRm))

W (F ) ≤
∫

(0,1)n
W (F +∇ϕ(x)) dx .

If 1 < p < +∞ and 0 ≤W (F ) ≤ C(1 + |F |p) then
I(u) :=

∫
Ω W (∇u(x)) dx is wlsc on W 1,p(Ω; IRm) if and only if W is

quasiconvex.

The trouble is that quasiconvexity is very difficult to verify.
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Do we have a necessary condition?

....yes, we do.
Quasiconvex functions are rank-one convex, i.e.,

W (λA + (1− λB)) ≤ λW (A) + (1− λ)W (B)

whenever 0 ≤ λ ≤ 1 and rank(A− B) = 1.
g(t) := W (A + t(a ⊗ b)) is convex for all a ∈ IRm, b ∈ IRn, and all
A ∈ IRm×n, i.e., if smooth then g ′′ ≥ 0.
Quasiconvex functions are continuous and locally Lipschitz.
If m = 1 or n = 1 rank-one convex means convex as well as
quasiconvex.
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Example (Alibert & Dacorogna, 1992)

Let m = n = 2, |F |2 :=
∑

ij F 2
ij and

Wγ(F ) := |F |4 − 2γ|F |2det F .

Then
Wγ is convex iff |γ| ≤ 2

√
2/3

Wγ is polyconvex iff |γ| ≤ 1
there is ε > 0 such that Wγ is quasiconvex iff |γ| ≤ 1 + ε

Wγ is rank-one convex iff |γ| ≤ 2/
√

3

It is an open problem if ε = 2/
√

3− 1, i.e., if rank-one convexity and
quasiconvexity of Wγ coincide.
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Ordering of convexity notions

In general dimensions,

convexity =⇒ polyconvexity =⇒ quasiconvexity =⇒ rank-1 convexity

and no implication can be reversed.
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Quasiconvexity vs. rank-one convexity

It has been open for about 40 years if rank-one convexity implies
quasiconvexity.
The answer is no if m ≥ 3 and n ≥ 2 due to V. Šverák’s
counterexample from 1992.
The case m = 2 and n ≥ 2 is still open, in particular, we do not
know what happens on 2× 2 matrices; cf. the Alibert & Dacorogna
example.
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Counterexample
Then take m = 3 and n = 2

ϕ(x) := (2π)−1(sin 2πx1, sin 2πx2, sin 2π(x1 + x2)) . (1)

We see that ∇ϕ ⊂ L where

L :=
{(

r 0
0 s
t t

)
; r , s, t ∈ IR

}
.

Moreover, the only rank-one matrices in L are multiples of the following
three ones: (

1 0
0 0
0 0

)
,

(
0 0
0 1
0 0

)
, and

(
0 0
0 0
1 1

)
.

Define a rank-one convex f : L→ IR,

f
((

r 0
0 s
t t

))
= −rst .
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Counterexample

By simple calculation ∫
(0,1)2

f (∇ϕ(x)) dx < 0 .

Then f can be slightly modified and extended from L to the whole space
to a rank-one convex function which fails to be quasiconvex.
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Other counterexamples?

Essentially no! There exist (to the BOMK) only variants of the
previous example.
Different examples desperately needed to understand the problem
better.
Does rank-one convexity and frame invariance (W (F ) = W (RF ) for
any R ∈ SO(n)) imply quasiconvexity? This would be important for
elasticity.
If m = n = 2 is it true that

∫
(0,1)2 W (F +∇ϕ>) dx ≥W (F )? for all

ϕ ∈ C∞0 ((0, 1)2; IR2) and all F ∈ IR2×2? The negative answer
means we have a counterexample for m = n = 2 (and, I guess,
interesting job offers ©), the affirmative answer shows a special
property for 2× 2.
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Non-positive integrands and quasiconvexity

Quasiconvexity is always necessary and still sufficient for wlsc of I on
W 1,p (1 < p < +∞) if

−|F |q ≤W (F ) ≤ C(1 + |F |p)

and q < p.

However, if p = q then it is not the case.
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Counterexample
Take B(0, 1) a unit ball in IRn, centered at zero, u ∈ C∞0 (B(0, 1); IRn)
and extend u by zero to the whole IRn. Then

∫
B(0,1) det∇u(x) dx = 0.

Take % ∈ IRn a unit vector ρ such that D% := {x ∈ B(0, 1); x · % < 0}
and ∫

D%

det∇u(x) dx < 0 .

Denote uk(x) := u(kx) for all k ∈ N; then, uk → 0 weakly in
W 1,n(B(0, 1); IRn) (even in measure) but for all k ∈ N∫

D%

det∇uk(x) dx →
∫

D%

det∇u(x) dx <
∫

D%

det∇0 dx = 0

by our construction §.
On the other hand, for the other half-ball ©,

∫
D−%

det∇uk(x) dx →
∫

D−%

det∇u(x) dx >
∫

D−%

det∇0 dx = 0 ,
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What has happened?

{uk} is such that ‖∇uk‖Ln = ‖∇u‖Ln but support of uk shrinks to zero as
k →∞.
In other words, gradients concentrate at the origin (boundary of D%).
This can destroy/help wlsc.
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Conditions at the boundary?

This problem addressed by N. Meyers in 1965 who gave a necessary
and sufficient condition in terms of sequences, not in terms of
integrands.
If W is positively p-homogeneous then it is (besides quasiconvexity)
sufficient and necessary if∫

D%

W (∇ϕ(x)) dx ≥ 0

for all ϕ ∈ C∞0 (B(0, 1); IRn) and any % which coincides with the
outer unit normal to ∂Ω.
This shows that the domain enters the game.
More general situations can be treated S. Krömer (2010), S. Krömer
& MK (2013) but many questions remain (higher-order gradients)
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Other kinds of problems – nonreflexivity

minimize J(u) :=
∫ 1

0
((x − 1)2 + ε)|u′(x)|dx + (u(1)− 1)2 ,

u ∈W 1,1(0, 1) & u(0) = 0 .

J(u) ≥ ε
∫ 1

0
|u′(x)|dx + (u(1)− 1)2 = ε(u(1)− u(0)) + (u(1)− 1)2

= εu(1) + (u(1)− 1)2 ≥ (4ε− ε2)/4 .
On the other hand, taking

uk(x) :=
{

0 if 0 ≤ x ≤ 1− 1/k
k 2−ε

2 x − (k − 1) 2−ε
2 otherwise

we see that J(uk)→ (4ε− ε2)/4 as k →∞, so it is a minimizing
sequence. Notice that if 0 ≤ ε < 2 uk → 0 in L1(0, 1) and (u′k)
concentrates at x = 1. Consequently, no minimizer exists in the
admissible class of competitors. However, if ε ≥ 2 then u = 0 is the
minimizer.
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Other functionals

I(u) :=
∫

Ω
W (u(x)) dx ,

if Au = 0 where A is a first-order partial differential operator. (The case
A =curl is included.)
You can think about A = div, i.e., solenoidal fields.

A notion of A-quasiconvexity. If W ≥ 0 necessary and sufficient
conditions given by Fonseca & Müller (1999).
Negative integrands S. Krömer & MK & G. (2014).
Subtle conditions show up depending on extension properties of A.
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Conclusions

Lower semicontinuity is an important issue in many areas of
mathematics.
Many open problems (characterization of quasiconvexity, relation to
rank-one convexity), New ideas are missing.
Algebraic constraints on the fields (det∇u > 0) (talk by
B. Benešová).
Growth conditions suitable for mechanics......
Description of limit behavior by means of parametrized measures
(Young measures). Need to characterize them!
Perhaps look at B. Benešová, MK: Weak lower semicontinuity of
integral functionals and applications. Preprint arXiv:1601.00390.
Applications of Calculus of Variations to mechanics in your vicinity:
A. Schlömerkemper, B. Benešová,. . .
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