Signed integral functionals with linear growth: Weak* lower semicontinuity in BV without prescribed boundary values

Stefan Krömer

Universität zu Köln

joint work:
Barbora Benešová (Aachen), Martin Kružík (Prague)
Introduction
 Setting
 Aim and problems
 Known results

Weak* lower semicontinuity without prescribed boundary values
 A new characterization
 Quasi-sublinear growth from below

Elements of the proof
 Pure concentrations at the boundary
 Localizing decomposition
Outline

Introduction
 Setting
 Aim and problems
 Known results

Weak* lower semicontinuity without prescribed boundary values
 A new characterization
 Quasi-sublinear growth from below

Elements of the proof
 Pure concentrations at the boundary
 Localizing decomposition
Consider an integral functional of the following form:

\[
F(u) := \int_{\Omega} f(x, \nabla u(x)) \, dx \quad \text{for } u \in W^{1,1}(\Omega; \mathbb{R}^M),
\]

with
- \(\Omega \subset \mathbb{R}^N \) a bounded domain with \(C^1 \) boundary;
- \(f : \bar{\Omega} \times \mathbb{R}^{M \times N} \rightarrow \mathbb{R} \) a given continuous function;
- linear growth condition: \(|f(x, \xi)| \leq C(1 + |\xi|) \).
Consider an integral functional of the following form:

\[F(u) := \int_{\Omega} f(x, \nabla u(x)) \, dx \quad \text{for} \ u \in W^{1,1}(\Omega; \mathbb{R}^M), \]

with

- \(\Omega \subset \mathbb{R}^N \) a bounded domain with \(C^1 \) boundary;
- \(f : \bar{\Omega} \times \mathbb{R}^{M \times N} \rightarrow \mathbb{R} \) a given continuous function;
- linear growth condition: \(|f(x, \xi)| \leq C(1 + |\xi|)\).

Note

“signed”: No additional restrictions on the growth of \(f^- \).
Consider an integral functional of the following form:

$$F(u) := \int_{\Omega} f(x, \nabla u(x)) \, dx \quad \text{for } u \in W^{1,1}(\Omega; \mathbb{R}^M),$$

with

- $\Omega \subset \mathbb{R}^N$ a bounded domain with C^1 boundary;
- $f : \bar{\Omega} \times \mathbb{R}^{M \times N} \to \mathbb{R}$ a given continuous function;
- linear growth condition: $|f(x, \xi)| \leq C(1 + |\xi|)$.

Note

“signed”: No additional restrictions on the growth of f^-. The setting in $W^{1,1}$ is bad for direct methods: **Extend F to BV.**
Setting: The functional on BV

Assume that f has a recession function

$$f^\infty(x, \xi) = \lim_{s \to +\infty, \eta \to \xi, y \to x} \frac{f(y, s\eta)}{s}, \quad \xi \in \mathbb{R}^{M \times N} \setminus \{0\}, \ x \in \tilde{\Omega}.$$

In particular, f^∞ is continuous and 1-homogeneous in ξ.
Setting: The functional on BV

Assume that f has a *recession function*

\[
f^{\infty}(x, \xi) = \lim_{s \to +\infty, \eta \to \xi, y \to x} \frac{f(y, s\eta)}{s}, \quad \xi \in \mathbb{R}^{M \times N} \setminus \{0\}, \ x \in \bar{\Omega}.
\]

In particular, f^{∞} is continuous and 1-homogeneous in ξ. Now:

\[
F(u) := \int_{\Omega} df(x, Du) \text{ for } u \in BV(\Omega; \mathbb{R}^M), \text{ where}
\]

\[
df(x, Du) := f(x, \nabla u(x)) \, dx + f^{\infty}(x, \frac{dDu^s}{d |Du^s|}) \, d |Du^s|(x).
\]

- $Du \in \mathcal{M}(\Omega; \mathbb{R}^{M \times N})$: weak derivative of $u \in BV$;
- Du^s: singular part of Du w.r.t. \mathcal{L}^N; $|Du^s|$ is its total variation
- $\nabla u = \frac{dDu^a}{dx}$: density of the abs. cont. part of Du w.r.t. \mathcal{L}^N;
- $\frac{dDu^s}{d |Du^s|}$: density of Du^s w.r.t. $|Du^s|$.
W*ls in BV

Definition (w*ls)

F is called (sequentially) weakly* lower semicontinuous (w*ls) in BV, if

\[Du_n \rightharpoonup^* Du \text{ in } M, u_n \rightarrow u \text{ in } L^1_{\text{loc}} \implies \lim \inf F(u_n) \geq F(u) \]

Aim

Characterize weak* lower semicontinuity of F in terms of f.

▶ Quasiconvexity of f(x, ·) is clearly necessary, but not sufficient.
▶ There are many quasiconvex functions with linear growth (Kristensen 1999)

▶ Nontrivial examples for signed quasiconvex functions?
W*ls in BV

Definition (w*ls)

F is called (sequentially) **weakly* lower semicontinuous (w*ls)** in BV, if

\[Du_n \rightharpoonup^* Du \text{ in } M, u_n \rightarrow u \text{ in } L^1_{\text{loc}} \implies \lim \inf F(u_n) \geq F(u) \]

Aim

Characterize weak* lower semicontinuity of F in terms of f.

Problem

Quasiconvexity of f(x, ·) is clearly necessary, but not sufficient.
Definition (w*lsclsc)

F is called (sequentially) weakly* lower semicontinuous (w*lsclsc) in BV, if

\[Du_n \rightharpoonup^* Du \text{ in } \mathcal{M}, u_n \to u \text{ in } L^1_{\text{loc}} \implies \lim \inf F(u_n) \geq F(u) \]

Aim

Characterize weak* lower semicontinuity of F in terms of f.

Problem

Quasiconvexity of \(f(x, \cdot) \) is clearly necessary, but not sufficient.

▷ There are many quasiconvex functions with linear growth (Kristensen 1999)
Definition (w*lsc)

F is called (sequentially) \textit{weakly* lower semicontinuous} (w*lsc) in BV, if

$$Du_n \rightharpoonup^* Du \text{ in } M, \ u_n \rightarrow u \text{ in } L^1_{loc} \implies \liminf F(u_n) \geq F(u)$$

Aim

Characterize weak* lower semicontinuity of F in terms of f.

Problem

Quasiconvexity of $f(x, \cdot)$ is clearly necessary, but not sufficient.

- There are many quasiconvex functions with linear growth (Kristensen 1999)
- Nontrivial examples for signed quasiconvex functions?
A simple linear counterexample

Example

The linear functional for $f(x, \xi) = f^\infty(x, \xi) = \xi$,

$$F(u) := \int_0^1 dDu(x), \quad u \in BV((0,1); \mathbb{R})$$

is not $w^*\operatorname{lsc}$ in BV, in particular along the sequence

$$u_n(x) := \begin{cases} 1 & \text{if } x < \frac{1}{n}, \\ 0 & \text{if } x \geq \frac{1}{n}, \end{cases} \quad \text{whence } Du_n = -\delta_{\frac{1}{n}}.$$

We have

$$F(u_n) = -1 \quad \text{for all } n, \quad u_n \rightharpoonup^* 0, \quad F(0) = 0 > -1.$$
In our setting, the following is known (see also Ambrosio & Dal Maso 1992):

Theorem (Fonseca & Müller 1993, special case)

If $f \geq 0$, then

$$F \text{ is } \text{w}^*\text{lsc} \iff f(x, \cdot) \text{ is quasiconvex for every } x \in \Omega.$$

If f attains negative values, the theorem still holds as long as f^- has sublinear growth,

i.e.,

$$\forall \varepsilon > 0 \exists h_\varepsilon \in L^1 : f(x, \xi) \geq -\varepsilon |\xi| - |h_\varepsilon(x)|. \quad (*)$$

At fixed x, if $|h_\varepsilon(x)| < \infty$, this is equivalent to

$$\lim \inf_{|\xi| \to \infty} |\xi|^{-1} f(x, \xi) \geq 0.$$
In our setting, the following is known (see also Ambrosio & Dal Maso 1992):

Theorem (Fonseca & Müller 1993, special case)

If \(f \geq 0 \), then

\[
F \text{ is } w^*\text{lsc} \iff f(x, \cdot) \text{ is quasiconvex for every } x \in \Omega.
\]

If \(f \) attains negative values, the theorem still holds as long as

\[
f^- \text{ has sublinear growth},
\]

i.e.,

\[
\forall \varepsilon > 0 \, \exists h_\varepsilon \in L^1 : \quad f(x, \xi) \geq -\varepsilon |\xi| - |h_\varepsilon(x)|. \quad (*)
\]

At fixed \(x \), if \(|h_\varepsilon(x)| < \infty \), this is equivalent to

\[
\liminf_{|\xi| \to \infty} |\xi|^{-1} f(x, \xi) \geq 0
\]
Theorem (Kristensen&Rindler 2010)

The following two conditions are equivalent:

(i) F is w*lsclong sequences with fixed boundary values, i.e.,
\[\liminf F(u_n) \geq F(u) \] along all sequences $u_n \rightharpoonup^* u \in BV$
such that $u_n = u$ on $\partial \Omega$ (in the sense of trace in BV)

(ii) $f(x, \cdot)$ is quasiconvex for every $x \in \bar{\Omega}$

- linear growth of f^- is allowed
- $\partial \Omega$ may be Lipschitz instead of C^1
- f may be Carathéodory instead of continuous (but still continuous in (x, ξ) “as $|\xi| \to \infty$” due to the definition of f^∞)
- if $f = f(\xi)$, a weaker notion of recession function suffices:
\[f^\infty(\xi) = \limsup_{s \to +\infty, \eta \to \xi} \frac{f(s\eta)}{s} \]
Theorem (Kristensen&Rindler 2010)

The following two conditions are equivalent:

(i) \(F \) is w*lscc along sequences with fixed boundary values, i.e.,
\[
\liminf F(u_n) \geq F(u) \text{ along all sequences } u_n \rightharpoonup^* u \in BV \\
\text{such that } u_n = u \text{ on } \partial \Omega \text{ (in the sense of trace in } BV)\
\]

(ii) \(f(x, \cdot) \) is quasiconvex for every \(x \in \bar{\Omega} \)

- linear growth of \(f^- \) is allowed
- \(\partial \Omega \) may be Lipschitz instead of \(C^1 \)
- \(f \) may be Carathéodory instead of continuous (but still continuous in \((x, \xi) \) “as \(|\xi| \to \infty \)” due to the definition of \(f^\infty \))
- if \(f = f(\xi) \), a weaker notion of recession function suffices:
\[
f^\infty(\xi) = \limsup_{s \to +\infty, \eta \to \xi} \frac{f(s\eta)}{s}
\]
Theorem (Kristensen&Rindler 2010)

The following two conditions are equivalent:

(i) F is w^*-lsc along sequences with fixed boundary values, i.e.,

$$\liminf F(u_n) \geq F(u)$$

along all sequences $u_n \rightharpoonup^* u \in BV$ such that $u_n = u$ on $\partial \Omega$ (in the sense of trace in BV)

(ii) $f(x, \cdot)$ is quasiconvex for every $x \in \bar{\Omega}$

- linear growth of f^- is allowed
- $\partial \Omega$ may be Lipschitz instead of C^1
- f may be Carathéodory instead of continuous (but still continuous in (x, ξ) “as $|\xi| \to \infty$” due to the definition of f^∞)
- if $f = f(\xi)$, a weaker notion of recession function suffices:
 $$f^\infty(\xi) = \limsup_{s \to +\infty, \eta \to \xi} \frac{f(s\eta)}{s}$$
Outline

Introduction
 Setting
 Aim and problems
 Known results

Weak* lower semicontinuity without prescribed boundary values
 A new characterization
 Quasi-sublinear growth from below

Elements of the proof
 Pure concentrations at the boundary
 Localizing decomposition
A new characterization: The main theorem

Theorem (Benešová, K. & Kružík 2014)

$F : BV(\Omega; \mathbb{R}^M) \rightarrow \mathbb{R}$ is w*lsc if and only if

(i) $f(x_0, \cdot)$ is quasiconvex for every $x_0 \in \bar{\Omega}$, and

(ii) f is qslb at x_0, for every $x_0 \in \partial \Omega$.

- qslb abbreviates "quasi-sublinear from below":
 a sublinear growth condition from below tested by gradients of functions with suitable boundary values

- qslb coincides with p-qscb for $p = 1$, the condition appearing in the corresponding result in $W^{1,p}$ for $p > 1$ (K. 2010; see also K. & Kružík 2013)

- f can be replaced by f^∞ in (ii)
A new characterization: The main theorem

Theorem (Benešová, K. & Kružík 2014)

\[F : BV(\Omega; \mathbb{R}^M) \rightarrow \mathbb{R} \text{ is } w^*\text{lsc if and only if} \]

(i) \(f(x_0, \cdot) \) is quasiconvex for every \(x_0 \in \bar{\Omega} \), and

(ii) \(f \) is qslb at \(x_0 \), for every \(x_0 \in \partial \Omega \).

- qslb abbreviates “quasi-sublinear from below”: a sublinear growth condition from below tested by gradients of functions with suitable boundary values

- qslb coincides with \(p\)-qscb for \(p = 1 \), the condition appearing in the corresponding result in \(W^{1,p} \) for \(p > 1 \) (K. 2010; see also K.&Kružík 2013)

- \(f \) can be replaced by \(f^{\infty} \) in (ii)
A new characterization: The main theorem

Theorem (Benešová, K. & Kružík 2014)

$F : BV(\Omega; \mathbb{R}^M) \to \mathbb{R}$ is w*lsc if and only if

(i) $f(x_0, \cdot)$ is quasiconvex for every $x_0 \in \bar{\Omega}$, and

(ii) f is qslb at x_0, for every $x_0 \in \partial \Omega$.

- qslb abbreviates “quasi-sublinear from below”: a sublinear growth condition from below tested by gradients of functions with suitable boundary values.

- qslb coincides with p-qscb for $p = 1$, the condition appearing in the corresponding result in $W^{1,p}$ for $p > 1$ (K. 2010; see also K. & Kružík 2013).

- f can be replaced by f^∞ in (ii)
Quasi-sublinear growth from below

Definition (qslb)

We say that \(f \) is *quasi-sublinear from below (qslb) at \(x_0 \in \bar{\Omega} \)*, if

\[
\forall \varepsilon > 0 \ \exists \delta > 0, \ C \geq 0:\n\int_{\Omega \cap B_\delta(x_0)} f(x, \nabla \varphi(x)) \, dx \geq -\varepsilon \int_{\Omega \cap B_\delta(x_0)} |\nabla \varphi| \, dx - C
\]

for every \(\varphi \in W^{1,1}(B_\delta(x_0) \cap \Omega; \mathbb{R}^M) \) with \(\varphi = 0 \) on \(\partial B_\delta(x_0) \).
Quasi-sublinear growth from below

Definition (qslb)

We say that \(f \) is **quasi-sublinear from below (qslb)** at \(x_0 \in \bar{\Omega} \), if

\[
\forall \varepsilon > 0 \ \exists \delta > 0, \ C \geq 0 : \\
\int_{\Omega \cap B_\delta(x_0)} f(x, \nabla \varphi(x)) \, dx \geq -\varepsilon \int_{\Omega \cap B_\delta(x_0)} \|
abla \varphi\| \, dx - C
\]

for every \(\varphi \in W^{1,1}(B_\delta(x_0) \cap \Omega; \mathbb{R}^M) \) with \(\varphi = 0 \) on \(\partial B_\delta(x_0) \).

Equivalent variant with test functions in BV:

\[
\forall \varepsilon > 0 \ \exists \delta > 0, \ C \geq 0 : \\
\int_{\Omega \cap B_\delta(x_0)} df(x, D\varphi) \geq -\varepsilon |D\varphi| (\Omega \cap B_\delta(x_0)) - C
\]

for every \(\varphi \in BV(B_\delta(x_0) \cap \Omega; \mathbb{R}^M) \) with \(\varphi = 0 \) on \(\partial B_\delta(x_0) \).

Density argument: \(F \) is continuous w.r.t. **area-strict convergence**

(generalized Reshetnyak Thm., KRISTENSEN&RINDLER’10)
Quasi-sublinear growth from below

Definition (qslb)
We say that \(f \) is \textit{quasi-sublinear from below (qslb)} at \(x_0 \in \bar{\Omega} \), if
\[
\forall \varepsilon > 0 \ \exists \delta > 0, \ C \geq 0 : \\
\int_{\Omega \cap B_\delta(x_0)} f(x, \nabla \varphi(x)) \, dx \geq -\varepsilon \int_{\Omega \cap B_\delta(x_0)} |\nabla \varphi| \, dx - C
\]
for every \(\varphi \in W^{1,1}(B_\delta(x_0) \cap \Omega; \mathbb{R}^M) \) with \(\varphi = 0 \) on \(\partial B_\delta(x_0) \).

Equivalent variants for \(x_0 \in \partial \Omega \), with outer normal \(\nu_{x_0} \) and
\[
D(x_0) := \{ y \in B_1(0) \subset \mathbb{R}^N \mid y \cdot \nu_{x_0} < 0 \}:
\]
\[
\forall \varepsilon > 0 \ \exists C \geq 0 : \\
\int_{D(x_0)} f(x_0, \nabla \eta(y)) \, dy \geq -\varepsilon \int_{D(x_0)} |\nabla \eta(y)| \, dy - C
\]
for every \(\eta \in W^{1,1}_0(B_1(0); \mathbb{R}^M) \).

\((**\))
Quasi-sublinear growth from below

Definition (qslb)

We say that f is *quasi-sublinear from below (qslb)* at $x_0 \in \overline{\Omega}$, if

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ C \geq 0 :$$

$$\int_{\Omega \cap B_\delta(x_0)} f(x, \nabla \varphi(x)) \, dx \geq -\varepsilon \int_{\Omega \cap B_\delta(x_0)} |\nabla \varphi| \, dx - C$$

for every $\varphi \in W^{1,1}(B_\delta(x_0) \cap \Omega; \mathbb{R}^M)$ with $\varphi = 0$ on $\partial B_\delta(x_0)$.

Equivalent variants for $x_0 \in \partial \Omega$, **with outer normal** ν_{x_0} **and**

$$D(x_0) := \{ y \in B_1(0) \subset \mathbb{R}^N \mid y \cdot \nu_{x_0} < 0 \} :$$

$$\int_{D(x_0)} f^\infty(x_0, \nabla \eta(y)) \, dy \geq 0$$

(***)

for every $\eta \in W^{1,1}_0(B_1(0); \mathbb{R}^M)$.
Remarks on the theorem

- **Continuity of f^∞ in x is crucial:** As in the linear example shown before,

\[
F : BV((-1,1); \mathbb{R}) \to \mathbb{R}, \quad F(u) := \int_{-1}^{1} \chi_{(0,1)}(x) dDu(x)
\]

is not w^\astlsc.
Remarks on the theorem

- **Continuity of f^∞ in x is crucial:** As in the linear example shown before,

 $$F : BV([-1, 1]; \mathbb{R}) \rightarrow \mathbb{R}, \quad F(u) := \int_{-1}^{1} \chi_{(0,1)}(x)dDu(x)$$

 is not $w^*\text{lsc}$.

- **Possible generalizations without continuity in x:** The boundary and jump discontinuities of f^∞ in x across a smooth hypersurface are similar; a variant of qslb is then needed also at the jump surfaces inside Ω.
Remarks on the theorem

- **Continuity of \(f^\infty \) in \(x \) is crucial:** As in the linear example shown before,

\[
F : BV((−1, 1); \mathbb{R}) \to \mathbb{R}, \quad F(u) := \int_{−1}^{1} \chi_{(0,1)}(x)dDu(x)
\]

is not w* lsc.

- **Possible generalizations without continuity in \(x \):** The boundary and jump discontinuities of \(f^\infty \) in \(x \) across a smooth hypersurface are similar; a variant of qslb is then needed also at the jump surfaces inside \(\Omega \).

- **Relaxation of non-qslb integrands is not possible:** If \(f \) is not qslb at some \(x \in \overline{\Omega} \), then the w* lsc envelope of \(F \) is \(-\infty\).
Remarks on qslb

Example: \(f(x, \xi) := a(x)^T \xi t(x) \) is qslb, for continuous functions
\[
a : \bar{\Omega} \to \mathbb{R}^M, \quad t : \bar{\Omega} \to \mathbb{R}^N
\]
such that \(t(x) \cdot \nu_x = 0 \) on \(\partial \Omega \).
Remarks on qslb

▶ Example: \(f(x, \xi) := a(x)^T \xi t(x) \) is qslb, for continuous functions \(a : \bar{\Omega} \to \mathbb{R}^M, \hspace{1cm} t : \bar{\Omega} \to \mathbb{R}^N \) such that \(t(x) \cdot \nu_x = 0 \) on \(\partial \Omega \).

▶ qslb and quasiconvexity at the boundary: If \(f^\infty \) is qslb at \(x_0 \) \((A = \xi = 0 \) below\), then \(f^\infty(x_0, \cdot) \) is qcb at the zero matrix w.r.t. the normal \(\nu_{x_0} \) \((\text{some } A, \xi = 0)\), but not vice versa (linear \(f \)).

Definition (qcb: Ball&Marsden 1984; Sprenger 1996)

\(f^\infty(x_0, \cdot) \) is quasiconvex at the boundary (qcb) at the matrix \(\xi \in \mathbb{R}^{M \times N} \) w.r.t. the normal \(\nu_{x_0} \), if

\[
\int_{D(x_0)} f^\infty(x_0, \nabla \eta(y) + \xi) \, dy \geq \int_{D(x_0)} \left(f^\infty(x_0, \xi) + A : \nabla \eta(y) \right) \, dy
\]

for a suitable \(A \in \mathbb{R}^{M \times N} \) and every \(\eta \in W^{1,\infty}_0(B_1(0); \mathbb{R}^M) \).
Introduction

Setting
Aim and problems
Known results

Weak* lower semicontinuity without prescribed boundary values
A new characterization
Quasi-sublinear growth from below

Elements of the proof
Pure concentrations at the boundary
Localizing decomposition
Strategy of the proof

To show: qc and $qslb$ \implies w^*lsc along some $u_n \rightharpoonup^* u$:

- Split $u_n - u = v_n + w_n$, with Dv_n “purely concentrating at the boundary” and $w_n = 0$ near $\partial \Omega$, such that Dv_n and Dw_n do not interact in F (localizing decomposition in BV).
Strategy of the proof

To show: qc and $qslb \implies w^*lsc$ along some $u_n \rightharpoonup u$:

- Split $u_n - u = v_n + w_n$, with Dv_n “purely concentrating at the boundary” and $w_n = 0$ near $\partial \Omega$, such that Dv_n and Dw_n do not interact in F (localizing decomposition in BV).
- Use the theorem of KRISTENSEN & RINDLER along $w_n + u$.
Strategy of the proof

To show: qc and $qslb \implies w^*lsc$ along some $u_n \rightharpoonup^* u$:

- Split $u_n - u = v_n + w_n$, with Dv_n “purely concentrating at the boundary” and $w_n = 0$ near $\partial \Omega$, such that Dv_n and Dw_n do not interact in F (localizing decomposition in BV).
- Use the theorem of Kristensen & Rindler along $w_n + u$
- Further split v_n into components living on ε-balls centered on $\partial \Omega$ (localizing decomposition again).
Strategy of the proof

To show: qc and $qslb \implies w^\ast lsc$ along some $u_n \rightharpoonup^* u$:

- Split $u_n - u = v_n + w_n$, with Dv_n “purely concentrating at the boundary” and $w_n = 0$ near $\partial \Omega$, such that Dv_n and Dw_n do not interact in F (localizing decomposition in BV).

- Use the theorem of Kristensen & Rindler along $w_n + u$

- Further split v_n into components living on ε-balls centered on $\partial \Omega$ (localizing decomposition again).

- Each piece p_n of v_n is an admissible test function for $qslb$, and $qslb$ implies that

$$G_\varepsilon(p) := \int_\Omega df(x, Dp) + \varepsilon |Dp| - df(x, 0) \, dx$$

is bounded from below on the admissible test functions.
Strategy of the proof

To show: qc and $qslb \implies w^\star lsc$ along some $u_n \rightharpoonup^* u$:

- Split $u_n - u = v_n + w_n$, with Dv_n “purely concentrating at the boundary” and $w_n = 0$ near $\partial \Omega$, such that Dv_n and $ Dw_n$ do not interact in F (localizing decomposition in BV).
- Use the theorem of Kristensen & Rindler along $w_n + u$
- Further split v_n into components living on ε-balls centered on $\partial \Omega$ (localizing decomposition again).
- Each piece p_n of v_n is an admissible test function for $qslb$, and $qslb$ implies that

$$G_\varepsilon(p) := \int_\Omega df(x, Dp) + \varepsilon |Dp| - df(x, 0) \, dx$$

is bounded from below on the admissible test functions.

- Functionals bounded from below are $w^\star lsc$ along pure concentrations at the boundary.
Strategy of the proof

Note

The strategy is similar to the one used in $W^{1,p}$ (K. 2010), but we **cannot use the decomposition lemma** to separate concentrations from oscillations!
Lemma

Suppose that F is bounded from below, $f(x, \cdot)$ is Lipschitz (qc suffices), $u_n \rightharpoonup^* u$ in BV. If

$$\text{supp} |Du_n - Du| \subset (\partial \Omega)_{r_n} := \bigcup_{x \in \partial \Omega} B_{r_n}(x) \text{ for some } r_n \downarrow 0$$

(purely concentrating at the boundary), then $\liminf F(u_n) \geq F(u)$.

Proof. Let $\varepsilon > 0$.

- Choose $u^* \in BV$ such that $F(u + u^*) \leq \varepsilon + \inf F$.

- Observe that

$$F(u_n) - F(u) - F(u_n + u^*) + F(u + u^*) \to 0,$$

essentially because $|Du^*| (\text{supp} |Du_n - Du|) \leq |Du^*| ((\partial \Omega)_{r_n}) \to 0$.

- Since $F(u_n + u^*) - F(u + u^*) \geq (\inf F) - F(u + u^*) \geq -\varepsilon$, we get that

$$\liminf F(u_k + u) - F(u) \geq -\varepsilon.$$
Lemma

Suppose that F is bounded from below, $f(x, \cdot)$ is Lipschitz (qc suffices), $u_n \rightharpoonup^* u$ in BV. If

$$\text{supp} |Du_n - Du| \subset (\partial \Omega)_{r_n} := \bigcup_{x \in \partial \Omega} B_{r_n}(x)$$

for some $r_n \downarrow 0$ (purely concentrating at the boundary), then $\lim \inf F(u_n) \geq F(u)$.

Proof. Let $\varepsilon > 0$.

- Choose $u^* \in BV$ such that $F(u + u^*) \leq \varepsilon + \inf F$.

- Observe that

$$F(u_n) - F(u) - F(u_n + u^*) + F(u + u^*) \to 0,$$

essentially because $|Du^*| (\text{supp} |Du_n - Du|) \leq |Du^*| ((\partial \Omega)_{r_n}) \to 0$.

- Since $F(u_n + u^*) - F(u + u^*) \geq (\inf F) - F(u + u^*) \geq -\varepsilon$, we get

$$\lim \inf F(u_k + u) - F(u) \geq -\varepsilon.$$
Lemma

Suppose that F is bounded from below, $f(x, \cdot)$ is Lipschitz (qc suffices), $u_n \rightharpoonup^* u$ in BV. If

$$\text{supp } |Du_n - Du| \subset (\partial \Omega)_{r_n} := \bigcup_{x \in \partial \Omega} B_{r_n}(x) \text{ for some } r_n \downarrow 0$$

(purely concentrating at the boundary), then $\liminf F(u_n) \geq F(u)$.

Proof. Let $\varepsilon > 0$.

- Choose $u^* \in BV$ such that $F(u + u^*) \leq \varepsilon + \inf F$.

- Observe that

$$F(u_n) - F(u) - F(u_n + u^*) + F(u + u^*) \to 0,$$

essentially because $|Du^*|(\text{supp } |Du_n - Du|) \leq |Du^*|((\partial \Omega)_{r_n}) \to 0$.

- Since $F(u_n + u^*) - F(u + u^*) \geq (\inf F) - F(u + u^*) \geq -\varepsilon$, we get that

$$\liminf F(u_k + u) - F(u) \geq -\varepsilon.$$
W*Isco along pure concentrations

Lemma

Suppose that F is bounded from below, $f(x, \cdot)$ is Lipschitz (qc suffices), $u_n \rightharpoonup^* u$ in BV. If

$$\text{supp } |Du_n - Du| \subset (\partial \Omega)_{r_n} := \bigcup_{x \in \partial \Omega} B_{r_n}(x) \quad \text{for some } r_n \downarrow 0$$

(purely concentrating at the boundary), then $\lim \inf F(u_n) \geq F(u)$.

Proof. Let $\varepsilon > 0$.

- Choose $u^* \in BV$ such that $F(u + u^*) \leq \varepsilon + \inf F$.

- Observe that

$$F(u_n) - F(u) - F(u_n + u^*) + F(u + u^*) \to 0,$$

essentially because $|Du^*| (\text{supp } |Du_n - Du|) \leq |Du^*| ((\partial \Omega)_{r_n}) \to 0$.

- Since $F(u_n + u^*) - F(u + u^*) \geq (\inf F) - F(u + u^*) \geq -\varepsilon$, we get that

$$\lim \inf F(u_k + u) - F(u) \geq -\varepsilon.$$
Localizing decomposition

Definition (does not charge)

Let $(u_n) \subset BV$, $K \subset \mathbb{R}^N$ closed. (Du_n) does not charge K, if

$$\sup_{n \in \mathbb{N}} |Du_n| ((K)_\delta \cap \Omega) \xrightarrow{\delta \to 0^+} 0,$$

where $(K)_\delta := \bigcup_{x \in K} B_\delta(x)$.

Lemma (localizing decomposition in BV)

Let

- $K_1, K_2 \subset \bar{\Omega}$ compact with $\bar{\Omega} \subset K_1 \cup K_2$;
 (e.g.: $K_1 = \partial \Omega$, $K_2 = \bar{\Omega}$)
- $(u_n) \subset BV$ bounded with $u_n \to 0$ in L^1

Then a subsequence decomposes as

$$u_{k(n)} = u_{1,n} + u_{2,n},$$

with $(u_{j,n})_n \subset BV$ bounded s.t. $u_{j,n} \to 0$ in L^1 ($j = 1, 2$), and:

(i) $\{u_{1,n} \neq 0\} \subset (K_1)_{\frac{1}{n}}$, $\{u_{2,n} \neq 0\} \subset (K_2)_{\frac{1}{n}} \setminus K_1$,

$\{u_{j,n} \neq 0\} \subset \{u_n \neq 0\}$, $|Du_{j,n}| \leq |Du_{k(n)}| + \frac{1}{n} \mathcal{L}^N$;

(ii) $(Du_{2,n})$ does not charge K_1.
Localizing decomposition

Definition (does not charge)

Let \((u_n) \subset BV, K \subset \mathbb{R}^N\) closed. \((Du_n)\) does not charge \(K\), if

\[
\sup_{n \in \mathbb{N}} |Du_n| \left((K)_\delta \cap \Omega \right) \xrightarrow{\delta \to 0^+} 0,
\]

where \((K)_\delta := \bigcup_{x \in K} B_\delta(x)\).

Lemma (localizing decomposition in \(BV\))

Let

- \(K_1, K_2 \subset \bar{\Omega}\) compact with \(\bar{\Omega} \subset K_1 \cup K_2\);
 (e.g.: \(K_1 = \partial \Omega, K_2 = \bar{\Omega}\))

- \((u_n) \subset BV\) bounded with \(u_n \to 0\) in \(L^1\)

Then a subsequence decomposes as

\[
u_{k(n)} = u_{1,n} + u_{2,n},
\]

with \((u_{j,n})_n \subset BV\) bounded s.t. \(u_{j,n} \to 0\) in \(L^1\) \((j = 1, 2)\), and:

(i) \(\{u_{1,n} \neq 0\} \subset (K_1)_{1/n}, \{u_{2,n} \neq 0\} \subset (K_2)_{1/n} \setminus K_1\),

(ii) \((Du_{2,n})\) does not charge \(K_1\).
Localizing decomposition

Definition (does not charge)

Let \((u_n) \subset BV, K \subset \mathbb{R}^N\) closed. \((Du_n)\) does not charge \(K\), if

\[
\sup_{n \in \mathbb{N}} |Du_n| ((K)_\delta \cap \Omega) \xrightarrow{\delta \to 0^+} 0, \quad \text{where} \ (K)_\delta := \bigcup_{x \in K} B_\delta(x).
\]

Lemma (localizing decomposition in \(BV\))

Let

- \(K_1, K_2 \subset \bar{\Omega}\) compact with \(\bar{\Omega} \subset K_1 \cup K_2\); (e.g.: \(K_1 = \partial \Omega, K_2 = \bar{\Omega}\))

- \((u_n) \subset BV\) bounded with \(u_n \to 0\) in \(L^1\)

Then a subsequence decomposes as

\[u_{k(n)} = u_{1,n} + u_{2,n},\]

with \((u_{j,n})_n \subset BV\) bounded s.t. \(u_{j,n} \to 0\) in \(L^1\) \((j = 1, 2)\), and:

(i) \(\overline{\{u_{1,n} \neq 0\}} \subset (K_1)_{\frac{1}{n}}, \ \overline{\{u_{2,n} \neq 0\}} \subset (K_2)_{\frac{1}{n}} \setminus K_1,\)

\(\{u_{j,n} \neq 0\} \subset \{u_n \neq 0\}, \ |Du_{j,n}| \leq |Du_{k(n)}| + \frac{1}{n} \mathcal{L}^N;\)

(ii) \((Du_{2,n})\) does not charge \(K_1\).
Definition (does not charge)

Let \((u_n) \subset BV, K \subset \mathbb{R}^N\) closed. \((Du_n)\) does not charge \(K\), if

\[
\sup_{n \in \mathbb{N}} |Du_n| \left((K)_\delta \cap \Omega\right) \rightarrow 0, \quad \text{where} \quad (K)_\delta := \bigcup_{x \in K} B_\delta(x).
\]

Lemma (localizing decomposition in \(BV\))

Let

\[K_1, K_2 \subset \bar{\Omega} \text{ compact with } \bar{\Omega} \subset K_1 \cup K_2; \]
(e.g.: \(K_1 = \partial \Omega, K_2 = \bar{\Omega}\))

\[(u_n) \subset BV \text{ bounded with } u_n \rightarrow 0 \text{ in } L^1 \]

Then a subsequence decomposes as

\[u_{k(n)} = u_{1,n} + u_{2,n}, \]

with \((u_{j,n})_n \subset BV\) bounded s.t. \(u_{j,n} \rightarrow 0\) in \(L^1\) \((j = 1, 2)\), and:

(i) \(\{u_{1,n} \neq 0\} \subset (K_1)_{\frac{1}{n}}, \{u_{2,n} \neq 0\} \subset (K_2)_{\frac{1}{n}} \setminus K_1,\)

\(\{u_{j,n} \neq 0\} \subset \{u_n \neq 0\}, \ |Du_{j,n}| \leq |Du_{k(n)}| + \frac{1}{n} L^N;\)

(ii) \((Du_{2,n})\) does not charge \(K_1\).
Localizing decomposition: sketch of proof

Given:

- $K_1, K_2 \subset \bar{\Omega}$ compact with $\bar{\Omega} \subset K_1 \cup K_2$;
- $(u_n) \subset BV$ bounded with $u_n \to 0$ in L^1

The proof is analogous to the corresponding result in $W^{1,p}$ (K. 2010):

Choose cutoff-functions:

- $\varphi_n \in C^\infty(\mathbb{R}^N; [0, 1])$, $\varphi_n = 1$ on $(K_1)_{\frac{1}{2n}}$, $\varphi_n = 0$ outside $(K_1)_{\frac{1}{n}}$

Observe: Since $u_k \to 0$ in L^1,

$$D(\varphi_n u_k) - \varphi_n Du_k = (\nabla \varphi_n) \otimes u_k \to 0 \quad \text{for fixed } n,$$

strongly as measures.

$u_{1,n} := \varphi_n u_{k(n)}$, with $k(n)$ (sufficiently fast) subsequence of n such that

$$\lim_{n} |Du_{k(n)}|((K_1)_{\frac{1}{n}}) = \lim_{n} \lim_{m} |Du_{m}|((K_1)_{\frac{1}{n}})$$

Hence, $(K_1)_{\frac{1}{n}}$ captures everything in $Du_{k(n)}$ charging K_1.
Localizing decomposition: sketch of proof

Given:

- $K_1, K_2 \subset \bar{\Omega}$ compact with $\bar{\Omega} \subset K_1 \cup K_2$;
- $(u_n) \subset BV$ bounded with $u_n \to 0$ in L^1

The proof is analogous to the corresponding result in $W^{1,p}$ (K. 2010):

- Choose cutoff-functions:
 \[\varphi_n \in C^\infty(\mathbb{R}^N; [0, 1]), \quad \varphi_n = 1 \text{ on } (K_1)_{\frac{1}{2n}}, \quad \varphi_n = 0 \text{ outside } (K_1)_{\frac{1}{n}} \]

- Observe: Since $u_k \to 0$ in L^1,
 \[D(\varphi_n u_k) - \varphi_n Du_k = (\nabla \varphi_n) \otimes u_k \to 0 \text{ for fixed } n, \]
 strongly as measures.

- $u_{1,n} := \varphi_n u_{k(n)}$, with $k(n)$ (sufficiently fast) subsequence of n such that
 \[\lim_{n} |Du_{k(n)}|((K_1)_{\frac{1}{n}}) = \lim_{n} \lim_{m} |Du_m|((K_1)_{\frac{1}{n}}) \]

Hence, $(K_1)_{\frac{1}{n}}$ captures everything in $Du_{k(n)}$ charging K_1.
Localizing decomposition: sketch of proof

Given:

- \(K_1, K_2 \subset \bar{\Omega} \) compact with \(\bar{\Omega} \subset K_1 \cup K_2 \);
- \((u_n) \subset BV \) bounded with \(u_n \to 0 \) in \(L^1 \)

The proof is analogous to the corresponding result in \(W^{1,p} \) (K. 2010):

- Choose cutoff-functions:
 \(\varphi_n \in C_\infty(\mathbb{R}^N; [0,1]) \), \(\varphi_n = 1 \) on \((K_1)_{\frac{1}{2n}} \), \(\varphi_n = 0 \) outside \((K_1)_{\frac{1}{n}} \)

- Observe: Since \(u_k \to 0 \) in \(L^1 \),

\[
D(\varphi_n u_k) - \varphi_n Du_k = (\nabla \varphi_n) \otimes u_k \quad \longrightarrow \quad 0 \quad \text{for fixed} \quad n,
\]

strongly as measures.

- \(u_{1,n} := \varphi_n u_{k(n)} \), with \(k(n) \) (sufficiently fast) subsequence of \(n \) such that

\[
\lim_{n} |Du_{k(n)}| ((K_1)_{\frac{1}{n}}) = \lim_{n} \lim_{m} |Du_{m}| ((K_1)_{\frac{1}{n}})
\]

Hence, \((K_1)_{\frac{1}{n}} \) captures everything in \(Du_{k(n)} \) charging \(K_1 \).
Given:

- $K_1, K_2 \subset \tilde{\Omega}$ compact with $\tilde{\Omega} \subset K_1 \cup K_2$;
- $(u_n) \subset BV$ bounded with $u_n \to 0$ in L^1

The proof is analogous to the corresponding result in $W^{1,p}$ (K. 2010):

- Choose cutoff-functions:

 $\varphi_n \in C^\infty(\mathbb{R}^N; [0, 1])$, $\varphi_n = 1$ on $(K_1)_{\frac{1}{2n}}$, $\varphi_n = 0$ outside $(K_1)_{\frac{1}{n}}$

- Observe: Since $u_k \to 0$ in L^1,

 $$D(\varphi_n u_k) - \varphi_n Du_k = (\nabla \varphi_n) \otimes u_k \longrightarrow 0 \text{ for fixed } n,$$

 strongly as measures.

- $u_{1,n} := \varphi_n u_{k(n)}$, with $k(n)$ (sufficiently fast) subsequence of n such that

 $$\lim_n |Du_{k(n)}|((K_1)_{\frac{1}{n}}) = \lim_n \lim_m |Du_m|((K_1)_{\frac{1}{n}})$$

 Hence, $(K_1)_{\frac{1}{n}}$ captures everything in $Du_{k(n)}$ charging K_1.

- $K_1, K_2 \subset \tilde{\Omega}$ compact with $\tilde{\Omega} \subset K_1 \cup K_2$;
- $(u_n) \subset BV$ bounded with $u_n \to 0$ in L^1
Localizing decomposition: non-interaction

Proposition (asymptotical additivity)

Suppose that \(f \) is Lipschitz in the second variable, i.e.,

\[
|f(x, \xi) - f(x, \eta)| \leq C |\xi - \eta|,
\]

\(\nu \in BV \), \((u_{k(n)}) \subset BV \) and

\[
uk(n) = u_{1,n} + u_{2,n}
\]

is decomposed into component sequences with the properties listed in the localizing decomposition. Then

\[
f(x, Du_{k(n)} + D\nu) - f(x, D\nu) - \sum_{j=1}^{2} [f(x, Du_{j,n} + D\nu) - f(x, D\nu)] \to 0
\]

strongly as measures.
Proposition (asymptotical additivity)

Suppose that \(f \) is Lipschitz in the second variable, i.e.,

\[
|f(x, \xi) - f(x, \eta)| \leq C |\xi - \eta|,
\]

\(\nu \in BV \), \((u_{k(n)}) \subset BV \) and

\[
u_{k(n)} = u_{1,n} + u_{2,n}
\]

is decomposed into component sequences with the properties listed in the localizing decomposition. Then

\[
f(x, Du_{k(n)} + D\nu) - f(x, D\nu) - \sum_{j=1}^{2} [f(x, Du_{j,n} + D\nu) - f(x, D\nu)] \to 0
\]

strongly as measures.
Thank you for your attention!