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Abstract—An urn containing colored balls is sampled sequen-
tially without replacement. New lower and upper bounds on the
conditional and unconditional mutual information, and multi-
information are presented. They estimate dependence between
drawings in terms of the colored ball configuration. Asymptotics
are worked out when the number of balls increases and the pro-
portion of the balls of each color stabilizes. Inequalities by Stam
and by Diaconis and Freedman are compared and improved.
Distances between the sampling with and without replacement,
and between the multinomial and multivariate hypergeometric
distributions are discussed.

I. INTRODUCTION

An urn contains n balls. Each ball has a color c from a set C
of the cardinality r > 1. Let kc> 0 denote the number of balls
of the color c in the urn and k=(kc)c∈C be the ball config-
uration. Thus, n=

∑
c∈C kc.

The balls are drawn out randomly without replacement until
the urn is empty. There are

(
n
k

)
,n!/

∏
c∈C kc! possible out-

comes, sequences from Cn. They are assumed to occur with
the same probability. This work estimates entropic quantities
that characterize dependence in the sampling and asymptotic
when the number of balls grows.

Let Rk denote the probability measure (pm) on Cn that sits
and is uniform on the set of

(
n
k

)
outcomes. The drawing of

m6n balls from the urn without replacement is described by
the marginal pm of Rk on Cm which is denoted by Rk,m. If
y=(y1, . . . , ym)∈Cm then Rk,m(y) is positive if and only if
y can be extended to (y1, . . . , ym, . . . , yn) from the support
of Rk. This is equivalent to `c(y)6 kc, c∈C, where `c(y)
denotes the number of coordinates of y that are equal to c.
These inequalities are abbreviated to `(y) 4 k, writing `(y)
for (`c(y))c∈C . If valid, y has

(
n−m
k−`(y)

)
extensions whence

Rk,m(y) =
(
n−m
k−`(y)

)/(
n
k

)
.

In particular, Rk,1(c) = kc
n and Rk,2(c, c) = kc

n
kc−1
n−1 , c ∈ C.

Let Hk
m denote the entropy −

∑
y∈Cm Rk,m(y) lnRk,m(y)

of Rk,m. This work presents estimates and asymptotics for the
quantities

2Hk
m+1 −Hk

m −Hk
m+2 ,

Hk
m −Hk

1 −Hk
m+1 ,

mHk
1 −Hk

m .

The first one is the conditional mutual information between
the drawings in the times m+1 and m+2 given the previous

history. The second one is the mutual information between the
(m+1)-th drawing and the previous ones. The last one equals
the multiinformation in Rk,m.

The sampling of m balls from the urn with replacement is
described by the product pm Rm

k,1. The relative entropy

D(Rk,m ||Rm
k,1) =

∑
y∈Cm

Rk,m(y) ln
Rk,m(y)

Rm
k,1(y)

of the sampling without replacement to that with replacement
equals the multiinformation mHk

1 −Hk
m in Rk,m. Both Rk,m

and Rm
k,1 are exchangeable [7], thus their values at y ∈Cm

do not change when the coordinates of y are permuted. The
image of Rk,m under y 7→ `(y) is the multivariate hypergeo-
metric distribution Mhg(k,m) while the image of Rm

k,1 is the
multinomial distribution Mult( 1nk,m). The relative entropy
between the two distributions is also equal to mHk

1 − Hk
m

because ` is sufficient for {Rk,m, Rm
k,1}.

II. MAIN RESULTS

This section presents bounds on 2Hk
m+1−Hk

m−Hk
m+2 and

asymptotics for the three quantities.

Theorem 1. For 06m6n−2 and k=(kc)c∈C with non-
negative coordinates such that

∑
c∈C kc = n, the conditional

mutual information 2Hk
m+1 −Hk

m −Hk
m+2 is at most

L +
∑

c∈C : kc>1

kc
n

kc−1
n−1

ln
[
1− n−1

(n−m)(n−m−1)
kc(n−m)−n
kc(kc−1)

]
and at least

L −
∑

c∈C : kc>1

kc
n

kc−1
n−1

ln
[
1 + n−1

n−m−1
1

kc−1

]
where L = ln n−m

n−m−1
.

Proof: By exchangeability of Rk,m+2, the mutual infor-
mation has the form∑

Rk,m+2(y, b, c) ln
Rk,m+2(y,b,c)Rk,m(y)

Rk,m+1(y,b)Rk,m+1(y,c)

where the sum runs over y ∈ Cm such that `(y) 4 k and over
b, c ∈ C such that `b(y) < kb and `c(y) < kc when b 6= c,
and `c(y) < kc − 1 otherwise. Since

Rk,m+1(y, c) = Rk,m(y)
kc−`c(y)
n−m

, y ∈ Cm, c ∈ C ,
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Fig. 1. The values of 2Hk
m+1−Hk

m−Hk
m+2 and the bounds of Theorem 1 for n = 80, r = 2, m = 16 /m = 60, and k = (1, n−1), . . . , (n−1, 1).

the ratio under logarithm is equal to n−m
n−m−1 = eL when b 6= c,

and to

Rk,m(y) kc−`c(y)n−m
kc−`c(y)−1
n−m−1 ·Rk,m(y)[

Rk,m(y) kc−`c(y)n−m
]2 = eL · kc−`c(y)−1

kc−`c(y)

otherwise. Therefore, 2Hk
m+1 −Hk

m −Hk
m+2 is equal to

L +
∑

Rk,m+2(y, c, c) ln
(
1− 1

kc−`c(y)
)

summing over y ∈Cm such that `(y) 4 k and over c∈C such
that `c(y)<kc−1. Since Rk,m+2 is exchangeable

Rk,m+2(y, c, c) = Rk,m+2(c, c, y) =
kc
n

kc−1
n−1

Rk̃,m(y)

where the vector k̃ = (k̃c)c∈C has the same coordinates as k
up to k̃c= kc−2. By concavity of t 7→ ln t, the above sum is
upper bounded by∑

c∈C : kc>1

kc
n

kc−1
n−1

ln
[
1−

∑
Rk̃,m(y) 1

kc−`c(y)

]
.

summing under the logarithm over y ∈Cm such that `(y) 4 k
and `c(y) < kc − 1. This sum rewrites to

n
kc

n−1
kc−1

∑
Rk,m(y)

kc−`c(y)
n−m

kc−`c(y)−1
n−m−1

1
kc−`c(y)

and, cancelling kc− `c(y), it cannot increase when extended
to y ∈ Cm. Since∑

y∈Cm

Rk,m(y) `c(y) = kc
m
n , c ∈ C ,

the sum is at least
n
kc

n−1
kc−1

1
(n−m)(n−m−1)

(kc − kc mn − 1)

and the upper bound follows.
To prove the lower bound, 2Hk

m+1−Hk
m−Hk

m+2 rewrites to

L−
∑

Rk,m+2(y, c, c) ln
(
1 + 1

kc−`c(y)−1
)

summing over y ∈Cm such that `(y) 4 k and over c∈C such
that `c(y)<kc−1. This sum is at least∑

c∈C : kc>1

kc
n

kc−1
n−1

ln
[
1 +

∑
Rk̃,m(y) 1

kc−`c(y)−1

]
,

by concavity of t 7→ ln t. The remaining argumentation is ana-
logous to that for the upper bound.

It is not apparent that the expression under the logarithm in
the upper bound of Theorem 1 is at least 1

2 but this follows
from the above proof. It seems that there is no short direct
argument for that.

Theorem 2. For ε> 0 there exists K> 0 such that whenever
the urn is given by k = (kc)c∈C and n =

∑
c∈C kc such that

kc 6=1 and kc> 1 implies kc
n > ε, c∈C, then for 06m6n−2∣∣∣2Hk

m+1 −Hk
m −Hk

m+2 −
1
2

r̃−1
(n−m)(n−m−1)

∣∣∣ 6 K r
(n−m)3

where r̃ is the number of colors c ∈ C with kc > 1.

Proof: Let s = n−m−1 > 1. Since

ln(1 + t) 6 t− 1
2 t

2 + 1
3 t

3 , t > −1 ,

the upper bound of Theorem 1 is majorized by

1
s
− 1

2s2
+ 1

3s3
+
∑

kc
n

kc−1
n−1

ln
[
1− n−1

s(n−m)
kc(n−m)−n
kc(kc−1)

]
.

All sums in this proof run over c ∈ C with kc > 1. This one is
at most

−
∑ [

kc(n−m)−n
ns(n−m)

+ 1
2

n−1
ns2(n−m)2

[kc(n−m)−n]2

kc(kc−1)

+ 1
3

(n−1)2

ns3(n−m)3
[−n]3

k2c (kc−1)2

]
.

Denoting by r1 the number of c ∈ C with kc=1,∑
[kc(n−m)−n] = (n−m)(n−r1)−nr̃ .

Neglecting n2 in a numerator,∑ [kc(n−m)−n]2

(n−m)kc(kc−1)
>
∑ kc(n−m)−2n

kc−1
> sr̃ −

∑
2n

kc−1
.

Since kc
n > ε > 0 and kc > 2 in the sums,

1
3

(n−1)2

ns3(n−m)3
n3

k2c (kc−1)2
6 1

3
k4c
ε4s6

1
k2c (kc−1)2

6 4
3

1
ε4s6

.

It follows that the upper bound of Theorem 1 is at most

1
s
− 1

2s2
+ 1

3s3
−n−r1

ns
+ r̃

s(n−m)
−1

2
n−1

ns2(n−m)

[
sr̃−4r̃

ε

]
+4

3
r

ε4s6
.



In turn, this is majorized by

− 1
2s(n−m)

+ r1
ns

+ r̃
s(n−m)

− 1
2

(n−1)r̃
ns(n−m)

+ 1
3s3

+ 2r
εs3

+ 4
3

r
ε4s6

.

Hence, 2Hk
m+1−Hk

m−Hk
m+2 is at most

1
2

r̃−1
s(n−m)

+ r1
ns

+ 1
2

r
ns2

+ 1
3s3

+ 2r
εs3

+ 4
3

r
ε4s6

where r1 =0 by assumption and the last four terms can be
upper bounded by K r

(n−m)3 .
As ln(1+t)> t− 1

2 t
2, t> 0, the lower bound of Theorem 1

is minorized by

1
s
− 1

2s2
−
∑

kc
n

kc−1
n−1

ln
[
1 + n−1

s(kc−1)

]
.

This is at least
1
s
− 1

2s2
−
∑ [

kc
ns
− kc

n
n−1

2s2(kc−1)
+ kc

n
(n−1)2

3s3(kc−1)2

]
which is minorized by

− 1
2s2

+ r1
ns

+ n−1
2ns2

∑
kc

kc−1
− 1

3s3

∑
kc n

(kc−1)2
.

Hence, using that the second sum is lover bounded by r̃,

2Hk
m+1−Hk

m−Hk
m+2 > 1

2
r̃−1
s2

+ r1
ns
− r

2ns2
− 4

3
r
εs3

and the assertion follows.
The argumentation in the above proof shows that the as-

sumption kc > 1 can be removed when the term r1
ns is added

to 1
2

r̃−1
s(n−m) . Also the dependence of K on ε can be worked

out. This is not needed in the sequel.

Corollary 1. For 06m6n−1∣∣∣Hk
m +Hk

1 −Hk
m+1 −

1
2

(r−1)m
n(n−m)

∣∣∣ 6 K r
2(n−m)2

.

Proof: It suffices to combine∑m−1
j=0 [2Hk

j+1 −Hk
j −Hk

j+2] = Hk
m +Hk

1 −Hk
m+1

and ∑m−1
j=0

1
(n−j)(n−j−1)

= m
n(n−m)∑m−1

j=0
1

(n−j)3
6
∫ +∞
n−m

dt
t3

= 1
2(n−m)2

with Theorem 2.

Corollary 2. For 06m6n∣∣∣mHk
1 −Hk

m + r−1
2

[
m
n
+ ln

(
1− m−1

n

)]∣∣∣ 6 (K+1)r
n−m+1

.

Proof: The case m=1 is trivial. Combining∑m−1
j=1 [Hk

j +Hk
1 −Hk

j+1] = mHk
1 −Hk

m

with Corollary 1∣∣∣mHk
1 −Hk

m −
r−1
2n

∑m−1
j=0

j
n−j

∣∣∣ 6 K r
2

∑m−1
j=0

1
(n−j)2

.

Here,∑m−1
j=0

1
(n−j)2

6 1
n−m+1

+
∫ +∞
n−m+1

dt
t2

= 2
n−m+1

.

Since ∑m−1
j=0

j
n−j

= −m+ n
∑n
j=n−m+1

1
j

and

0 6
∑n
j=n−m+1

1
j
−
∫ n
n−m+1

dt
t
6 1

n−m+1

it follows that∣∣∣ 1n∑m−1
j=0

j
n−j

+ m
n
− ln n

n−m+1

∣∣∣ 6 1
n−m+1

.

It remains to combine this inequality multiplied by 1
2 (r−1)

with previous ones.
In the following consequences of the above results the ball

configuration k is assumed to depend on n→∞ such that 1
n k

converges to a stochastic vector p with positive coordinates.

Corollary 3. For m depending on n such that m
n → q < 1

n2[2Hk
m+1 −Hk

m −Hk
m+2]→ 1

2
r−1

(1−q)2

n[Hk
m −Hk

1 −Hk
m+1]→ 1

2
r−1
1−q q

mHk
1 −Hk

m → 1
2 (r−1)[−q − ln(1− q)] .

The last convergence implies 1
nH

k
m → qH(p).

Corollary 4. For m > 0 constant

n2[2Hk
m+1 −Hk

m −Hk
m+2]→ 1

2 (r−1)
n2[Hk

m −Hk
1 −Hk

m+1]→ 1
2 (r−1)m

n2[mHk
1 −Hk

m]→ 1
4 (r−1)m(m−1) .

The last convergence follows from the previous one. As a con-
sequence, Hk

m → mH(p).

III. REFINED STAM’S INEQUALITY

This section presents upper bounds on Hk
m +Hk

1 −Hk
m+1

and mHk
1−Hk

m. They are compared with inequalities by Stam
and by Diaconis and Freedman, see Remark 3.

Theorem 3. For n> 2 and 06m<n

Hk
m +Hk

1 −Hk
m+1 6

∑
c∈C : kc>0

kc
n

ln
[
1 +

m(n−kc)
kc(n−1)(n−m)

]
.

Proof: The quantity κ = Hk
m +Hk

1 −Hk
m+1 is equal to

∑
Rk,m+1(y, c) ln

Rk,m(y) kc−`c(y)n−m
kc
n Rk,m(y)

summing over y ∈ Cm such that `(y) 4 k and over c ∈ C that
satisfy `c(y)<kc . Let kc− equal k up to the c-th coordinate
which be kc−1. Since

Rk,m+1(y, c) = Rkc−,m(y) kcn , c ∈ C, kc > 0 ,

and the function t 7→ ln t is concave

κ 6
∑

c : kc>0

kc
n

ln
∑

Rkc−,m(y)
kc−`c(y)

kc
n

n−m
.

The second sum is over y ∈Cm with `(y)4 k and `c(y)<kc,
but it does not change when the two conditions are omitted.
Knowing that∑

y∈Cm

Rkc−,m(y) `c(y) = (kc−1) m
n−1



it follows that

κ 6
∑

c : kc>0

kc
n

ln
kcn(n−m−1)+nm
kc(n−1)(n−m)

.

This rewrites to the desired inequality.
Remark 1. The bound of Theorem 3 can be rewritten as

ln
[
1 + (r−1)m

(n−1)(n−m)

]
−D(Rk,1 || (1−α)Rk,1 + αU)

where α = mr
n(n−m−1)+mr and U is the uniform pm on C. In

fact, the expression under logarithm in Theorem 3 recasts to
n(n−m−1)
(n−1)(n−m) ·

kc
n + m

(n−1)(n−m)

kc
n

=

n(n−m−1)+mr
(n−1)(n−m)

n(n−m−1)
n(n−m−1)+mr ·

kc
n + mr

n(n−m−1)+mr ·
1
r

kc
n

where the numerator on the right is the convex combination
(1− α) kcn + α 1

r .
As a consequence of Theorem 3 and Remark 1,

Hk
m +Hk

1 −Hk
m+1 6 (r−1)m

(n−1)(n−m) .

Theorem 4. For n> 2 and 16m6n,

mHk
1−Hk

m 6 (m−1)
∑

c∈C : kc>0

kc
n

ln
[
1+

m(n−kc)
2kc(n−1)(n−m+1)

]
.

Proof: Summing m−1> 0 inequalities of Theorem 3, the
quantity mHk

1 −Hk
m is at most

(m−1)
∑

c∈C : kc>0

kc
n

ln

m−1∏
j=1

[
1 + j(n−kc)

kc(n−1)(n−j)

] 1
m−1

.

To estimate the product from above, j is replaced by m−1 in
the denominator, and the geometric mean under the logarithm
is majorized by the arithmetic one.

1.0
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2.5

3.0

3.5

4.0

Fig. 2. The values of mHk
1 − Hk

m, the bound of Theorem 4 and Stam’s
bound, for n = 60, r = 2, m = 55 and k = (1, n−1), . . . , (n−1, 1).

Remark 2. The bound of Theorem 4 can be rewritten as

mHk
1 −Hk

m 6 (m−1) ln
[
1 + (r−1)m

2(n−1)(n−m+1)

]
− (m−1)D(Rk,1 || (1−β)Rk,1 + β U)

where
β = mr

2(n−1)(n−m+1)+(r−1)m
.

This, or Theorem 4 directly, implies

mHk
1 −Hk

m 6 r−1
2(n−1)

m(m−1)
(n−m+1)

proved in Stam [8, Theorem 2.3]. The relative entropy matters
when m is close to n and 1

nk far from U , see Fig. 2.
Remark 3. It has not been likely recognized that Stam’s upper
bound on the relative entropy of Rk,m and Rm

k,1, or Mhg(k,m)

and Mult( 1nk,m), implies the upper bound 2 rmn on the total
variation between them found in Diaconis and Freedman [1,
(3) Theorem]. In fact, the latter is trivial if rm > n. Otherwise,
r(m−1) 6 n implies

r−1
2

m(m−1)
(n−1)(n−m+1)

6 r
2

m(m−1)
n(n−1)

6 r
2

m2

n2 .

By Pinsker inequality, the total variation is at most
√
r m
n

which is less than 2 rmn . Under the assumptions of Corollary 4,

lim supn→∞ [nVk,m]2 6 1
2 (r−1)m(m−1)

where Vk,m denotes the total variation. The results of this
section do not imply this bound, only twice a bigger one.

The bounds of this paper apply directly to the study of finite
exchangeability, as in [1], [2].

A lower bound on mHk
1 − Hk

m is presented in Stam [8,
p. 89, (4.7)]. For alternative approaches, methods of [6], [5]
are promising.

In [4], the convergence n2D(Bin(n, λn ) ||Poi(λ)) →
λ
4 is

established. It is analogous to consequences of Theorem 2.
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