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Abstract. Integral functionals based on convex normal integrands are
minimized subject to finitely many moment constraints. The effective
domain of the value function is described by a modification of the concept
of convex core. The minimization is viewed as a primal problem and
studied together with a dual one in the framework of convex duality. The
minimizers and generalized minimizers are explicitly described whenever
the primal value is finite, assuming a dual constraint qualification but not
the primal constraint qualification. A generalized Pythagorean identity
is presented using Bregman distance and a correction term.

1 The problem
This contribution addresses minimization of integral functionals

He(g) 2 [, B(z,9(2)) u(dz) (1)

of real functions g on a o-finite measure space (Z, Z, u), subject to the
constraint that the moment vector fZ g du of g is prescribed. Here, ¢
is a given R%valued Z-measurable moment mapping.

It is assumed throughout that § is any mapping Z X R — (—00,+o0]
such that g(-,t) is Z-measurable for ¢t € R, and ((z,-), z € Z, is in the
class I' of functions v on R that are finite and strictly convex for ¢t > 0,
equal to +oo for ¢ < 0, and satisfy v(0) = lims o y(¢). In particular, 3
is a normal integrand whence z — [(z,g(z)) is Z-measurable if g is. If
neither the positive nor the negative part of 3(z,g(z)) is p-integrable,
the integral in (1) is +00 by convention. The integrand is autonomous if
B(z,+) =, z € Z, for some v € I'. More details on integrands can be
found in [18, Chapter 14].

Given a € Rd7 let G, denote the class of those nonnegative Z-measurable
functions g whose moment vector exists and equals a. By the assumptions
on f, the minimization of Hg over g with the moment vector equal to a
gives rise to the value function

Js(a) £ infycq, Halg), aeR. (2)



Following [2, 3], that restrict however to autonomous integrands, let

Ks () 2 [ B (2, (0, 0(2))) u(dz), 0 €R,

where (-, -) denotes the scalar product and 8*(z,r) = sup,cgp[tr—pF(z, t)]
for r € R. The convex conjugate of the function Kz is given by

Kj(a) = supyepa [(9,a) — Ks(9))],  a€R?. (3)

The minimization/maximization in (2)/(3) is primal/dual problem, the
infimum/supremum is primal/dual value, and a minimizer/maximizer,
if exists, is a primal/dual solution. Since S is strictly convex the primal
solution, denoted by g, is p-a.e. unique. When all minimizing sequences
in (2) with the finite primal value Jg(a) converge to a common limit
locally in measure then the limit function is called generalized primal
solution and is denoted by gg.

2 Main ingredients

The set of the moment vectors [ » #gdu of all nonnegative functions g
with g integrable is a convex cone, referred to as the -cone cn,(u)
of p. It contains the effective domain dom(Jg) of Js. A new insight into
the structure of this cone and its faces from [11, 12], building on [7], helps
to recognize when the primal value is finite.

Theorem 1. If Js # +oo then dom(Jg) equals union of relative interi-
ors ri(F') over the faces F of cny, (1) with f{(p&cl(F)} B(-,0) dp < 4o0.

The primal/dual problems are studied together because of their close
relationship stemming from the following equality.

Theorem 2. If Jg # 400 then J; = Kp.

This implication is based on [18, Theorem 14.60] but modifications in
the proof are necessary. As a consequence, J;* = Kj where the bicon-
jugate J5* coincides with the value function on the relative interior of
dom(Jg) [17]. Correspondingly, when a € R? enjoys the primal constraint
qualification

a € ri(dom(Jg)) and Jg(a) > —oo (PCQ)
interplay between the primal/dual problems have been well understood.
Under pcq, the primal and dual values coincide and a dual solution
exists, reducing the primal problem to the dual one which is finite di-
mensional and unconstrained.

Further conclusions depend on the dual constraint qualification
there exists ¥ € dom(Kg) s.t. for p-a.a. z € Z

. (N i (bcQ)
the function r — (2, ) is finite around (9, p(z)).

Under pcQ and DCQ, each dual solution ¥ is a witness for DCQ and the
function g} given by z — 8*(z, (9, »(2))) does not depend on its choice.
The primal solution exists if and only if g; € G,, in which case g, = g,.



The generalized primal solution §, exists and equals g,. In addition,
generalized Pythagorean identity holds in the form

Hs(g) = Js(a) + Bs(g,92) + Cslg), g€ Ga. (Pyth)

This involves the Bregman distance based on

Bs(g,h) 2 [, As(z,9(2), h(z)) u(dz)

where g, h are nonnegative Z-measurable functions and Ag is a nonneg-
ative integrand such that Ag(z,s,t) for z € Z and s,t > 0 equals

V(8) = () = Vigns—ny (V)]s — 1] if 74 () is finite,

and s-(+00) otherwise. In the expression above, v € I" abbreviates 3(z, -)
and sgn(r) denotes + if r > 0 and — if r < 0. The identity (Pyth) contains
also a new nonnegative correction functional Cg that admits explicit
formula. It vanishes when ( is essentially smooth in second coordinate.

If pcQ holds but DCQ fails then no sequence g, € G, with Hz(gn) — Js(a)
converges locally in measure, thus the generalized primal solution cannot
exist [12, Theorem 4.17].

3 Main results

The primal problem can be attacked by the techniques presented in Sec-
tion 2 also when the value Jg(a) is finite but the PCQ is not assumed,
a & ri(dom(Jg)). In such cases, the primal and dual values can differ and
the dual problem bears often no information on the primal one.

To dispense with PCcQ, the dual problem is modified, depending on the
geometric position of a in the @-cone of y. The idea is to replace the
measure g by its restriction to the set {¢ € c/(F)} where F is the unique
face of the p-cone cn,(u) that contains a in its relative interior. To
indicate this change of measure p, the letter F' is added to indices and
labels, like in Kr,g, g5 o, F-dual, DCQF, etc. The modified DCQf is not
stronger than the original one.

Theorem 3. Let a € R? such that Js(a) is finite, and F be the face of
cny () such that a € ri(F).

(i) The F-dual value Kz g(a) = supycga [(¥, a) — Kr g()] is attained and
the primal value Jg(a) equals f{wecl(b‘)} B(-,0)dp+ Kr g(a).

(i) The primal solution g, exists if and only if DCQr holds and the
moment vector of g, erists and equals a, in which case go = gFq -
(#ii) The generalized primal solution g, exists if and only if DCQp holds,
in which case o = gf,q -

(w) If DCQp holds then



This result can be applied to study Bregman projections, thus to the min-
imization problems inf,cg, Bs(g, h), a € R?, where h is a given function.
This works well when h is nonnegative, Z-measurable and h(z) > 0 if the
right derivative 3 (z,-) at 0 is —oo. Pythagorean identities in this case
are worked out in [12, Section 8]. When 1 € R? satisfies the implication
in DCQ the mapping

2 (B7) (2, (0,0(2), 2€Z,

defines a function fy on Z, up to a p-negligible set. Similarly to [10],
the family Fj3 of such functions plays the role of generalized exponential
families. The Bregman projections of h = fy can be related to the original
primal and dual problems.

Additionally to (Pyth), Bregman distances emerge naturally also in the
dual problem (3), via the following existence result.

Theorem 4. Assuming the DCQ, for every a € R? with K3(a) finite
there exists a unique Z-measurable function he such that for all ¥ wit-
nessing DCQ

Ki(a) — [(0,a) — K ()] = Bg(ha, fs)

The above inequality implies that whenever ¥J,, is a maximizing sequence
in the dual problem, the Bregman distances Bg(ha, fs,,) tend to zero, and
thus fy, converges to h, locally in measure. The function h, is regarded
as generalized dual solution for a, extending the concept of generalized
mazimum likelihood estimate introduced in [8] and explicitly constructed
in [9]. Our current proof of Theorem 4 is non-constructive, except for the
case of equal primal and dual values, when h, is equal to the generalized
primal solution g,

Space limitations do not admit a more detailed presentation of related
results, discussion of assumptions, embedding to the existing literature
and examples. For all these the reader is referred to the full paper [12]
or an abridged version suitable for first reading [11].

4 Discussion

Minimization problems as in (2) emerge across various scientific disci-
plines, notably in inference. When g is an unknown probability density,
or any nonnegative function, whose moment vector is determined by mea-
surements and a specific choice of § is justified, often the primal solution
as above is adopted as the ‘best guess’ of g. Among autonomous inte-
grands, typical choices of 8 are tInt or —Int or t* giving Hs(g) equal
to the negative Shannon or Burg entropy or the squared L2-norm of
nonnegative g. When a ‘prior guess’ h for g is available, that would be
adopted before the measurement, it is common to use a non-autonomous
integrand 3 depending on h for which Hg(g) represents a non-metric dis-
tance of g from h. Two cases are prominent: y-divergence [, h~(g/h)du
with v € I' [5,20] and Bregman distance [4,13,16]. Then the correspond-
ing primal solution is often referred to as a projection of h to G,. The



most familiar projections correspond to the information (I-) divergence
that belongs to both families of distances.

This work was preceded by [8,10] studying the I-projections. As there,
the pcQ is dispensed with, and in the case when no primal/dual solutions
exist, generalized solutions in the sense of [19,6] are studied. In [10],
as in most of the previous literature, it is assumed that the integrand
is autonomous, differentiable, and that the moment mapping has one
coordinate function identically equal to 1. The latter implies DCQ. In this
contribution, these assumptions are avoided, saving as many conclusions
as possible. For previous works not making these assumptions see [14,
15], using advanced tools of functional analysis. No such tools are used
here, and neither is differential geometry, see [1], which is powerful but
requires strong regularity assumptions.

Non-autonomous integrands do not entail substantial conceptual difficul-
ties since problems with measurability can be handled via the machinery
of normal integrands [18]. Non-differentiability of 8 causes few results to
fail.
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