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Classes of matroids closed under minors

and principal extensions∗

Frantǐsek Matúš †

Abstract. This work studies the classes of matroids that are closed under
minors, addition of coloops and principal extensions. To any matroid M in
such a class a matroid M◦ is constructed such that it contains M as a minor,
has all proper minors in the class and violates Zhang-Yeung inequality. When
the class enjoys the inequality the matroid M◦ becomes an excluded minor. An
analogous assertion was known before for the linear matroids over any infinite
field in connection with Ingleton inequality. The result is applied to the classes
of multilinear, algebraic and almost entropic matroids. In particular, the class
of almost entropic matroids has infinitely many excluded minors.

1. Introduction

In matroid representation theory, configurations of vectors in linear spaces or points
in projective geometries have been intensively investigated for decades. Classes of lin-
ear matroids over fields are traditional. Configurations of subspaces of a linear space
occasionally give rise to integer multiples of the matroidal rank functions, and thus to
multilinear matroids. In the transcendental field extension theory, the algebraic depen-
dence exhibits the matroidal structure as well, inducing algebraic matroids.

It is likely less known that a matroid can be represented by a random vector indexed by
the ground set. The collection of Shannon entropies of all subvectors sometimes provides
a multiple of a matroidal rank function. This forces the distribution of the vector to
obey a highly regular form. In an equivalent approach, perhaps the most straightforward
to start with, configurations in the lattices of partitions are examined, see Remark 2.
The resulting matroids are called here partition representable [27]. The matroidal rank
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functions can also become limits of the collections of the Shannon entropies of random
subvectors in which case almost entropic matroids arise [28].

Rigorous definitions of the above notions, known relations between them, discussion
and references are presented in Section 2. Figure 1 may provide initial insight.

The present work unfolds from [31, Theorem 1.1] asserting that over an infinite field any
linear matroid is a minor of a non-linear matroid whose proper minors are linear. The
latter matroid violates the Ingleton inequality [31, p. 688], a classical necessary condition
for linear representability. As a corollary there exist infinitely many excluded minors for
the class of linear matroids over any infinite field.

The first result of this work opens a unified viewpoint of the structure of some classes
of matroids and their excluded minors. It features, for the first time in this context,
Zhang-Yeung inequality (6), originally proved for Shannon entropies in [42, Theorems 3
and 5]. The inequality is weaker than Ingleton one.

Theorem 1. Let M be a class of matroids that is closed under minors, addition of
coloops and principal extensions. Given any M ∈M, a matroid M◦ exists such that

(i) M is a proper minor of M◦,
(ii) each proper minor of M◦ belongs to the class M,
(iii) M◦ violates Zhang-Yeung inequality.

The presented proof is based on six lemmas. Section 3 reviews the principal exten-
sions, presents three lemmas and recalls Zhang-Yeung inequality. An encompassing ma-
troid Menc ∈ M is constructed to contain M as a minor in Section 4. It serves for the
majority of computations and argumentations. In Section 5, the matroid M◦ is obtained
from a restriction of Menc by relaxation, and Theorem 1 is proved. The construction
mimics that of the Vámos matroid.

Theorem 1 is applied to above classes of matroids in Section 2 where several new results
are summarized in Theorem 2. The proof is presented in Section 6 and is preceded by
lemmas on principal extensions of representable matroids.

2. Excluded minors for classes of matroids

A matroid M = (N, r) consists of a finite ground set N and rank function r [33].

Over a field F, the matroid M is multilinear of degree δ > 1 if there exist subspaces Ei,
i ∈ N , of a linear space over F such that δ · r(I) = dimEI , I ⊆ N . Here, EI denotes the
inner sum

⊕
i∈I Ei. In the special case δ = 1, the linear matroids over F arise.

The matroid M is algebraic over a field F if there exist not necessarily different elements
ei, i ∈ N , of an extension field of F such that r(I) = dimtr F(I) for I ⊆ N . Here,
dimtr denotes the transcendence dimension over F and F(I) the smallest subfield of the
extension field that contains F and {ei : i ∈ I}.
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The matroid M is partition representable of the degree d > 2 if a d r(N)-element set Ω
admits partitions πi, i ∈ N , such that the meet-partition πI =

∧
i∈I πi has d r(I) blocks of

the same size, I ⊆ N [27].

A polymatroid M = (N, h) has a real-valued rank function h [24, 32].

For random variables ξi, i ∈ N , that take only finitely many values, the mapping that
sends I ⊆ N to the Shannon entropy of (ξi : i ∈ I) is a polymatroidal rank function [9].
The polymatroids constructed in this way are called entropic. Their rank functions
exhaust the entropy region [30].

A polymatroid (N, g) is called almost entropic if there exists a sequence of entropic
polymatroids (N, hn) such that hn → g, pointwise, thus if g belongs to the closure of the
entropy region. This defines in particular the almost entropic matroids, represented by
infinite sequences of the distributions of random vectors. The class of these matroids has
an appeal because it provides a description of the entropy regions [28, Theorem 5].

The classes of matroids defined above are denoted by Mmlin
F,δ , Malg

F , Mpare

d and Maent,
respectively. Let further

Mlin
F ,Mmlin

F,1 , Mlin ,
⋃

FMlin
F ,

Mmlin
δ ,

⋃
FMmlin

F,δ , Mmlin ,
⋃

δ>1Mmlin
δ ,

Malg ,
⋃

FM
alg

F , Mpare ,
⋃
d>2M

pare

d .

The unions over F in the definitions Mlin and Mmlin
δ can equivalently run over the finite

fields, by [33, Proposition 6.8.2 and 6.8.11]. Also the union inMalg does not change when
restricted to the fields with the nonzero characteristic, by [33, Propositions 6.7.11, 6.8.2
and 6.7.10].

The following assertions summarize selected applications of Theorem 1.

Theorem 2. Let M be any of the following classes of matroids: Mmlin
F,δ for any infinite

field F and δ > 1, Mmlin
δ for δ > 1, Mmlin, Malg

F for any F, Malg and Maent. Every
matroid in M is a minor of a matroid that is an excluded minor for M.

The assertions of Theorem 2 are new up to the classMlin
F over any infinite field F which

is [31, Theorem 1.1], conjectured earlier in [10].

Corollary 1. Each of the classes in Theorem 2 has infinitely many excluded minors.
They can have an arbitrarily large rank.

The case Mlin
F over the field of real numbers goes back to [18]. For the classes Malg

F and
Malg the assertions of Corollary 1 appeared in [21]. Otherwise, it is new.

As a consequence of Corollary 1, the classes have infinitely many excluded minors
which has been partially known, even much earlier. A sequence of matroids Ln that have
rank three and the ground set of cardinality 2n+ 3 was introduced in [7, p. 108], see also
the figures in [11, p. 67] and [33, p. 218]. For n non-prime, Ln is an excluded minor for
the linear representability and algebraic representability over any field by [11, Theorem 2]



4

and [20], respectively. The consequence for the three multilinear classes seems to be new.
The matroid Ln with n non-prime is also an excluded minor for partition representability
of any degree, by [27, Proposition 4.3], that classifies the partition representations of Ln
up to isotopies. The existence of infinitely many excluded minors for Maent was open.

The classes Mmlin
F,δ with F finite and δ > 1, and Mpare

d , d > 2, do not feature in
Theorem 2 because they are not closed under principal extensions. Actually, Rota’s
conjecture [35] states thatMlin

F has finitely many excluded minors for F finite; for recent
progress see [12].

Conjecture 1. The class Mpare

d , d > 2, has finitely many excluded minors.

The cases d = 2, 3 reduce to the binary and ternary matroids [4, 26], respectively.

Figure 1 depicts inclusions among the classesMlin,Mmlin,Malg,Mpare andMaent. For
Mlin

F ⊆M
alg

F see [33, Proposition 6.7.10].
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[5] Rem. 4

Vámos matroid

Figure 1. Classes of matroids.

Remark 1. The class of partition representable matroids contains the multilinear ma-
troids. In fact, let M have a multilinear representation of the degree δ by subspaces Ei,
i ∈ N , of a space of the dimension δ · r(N) over a finite field F. The dual of the space can
play the role of Ω. The annihilator of EI in Ω has the dimension δ[r(N)−r(I)] and F δ·r(I)

cosets, I ⊆ N . They are the blocks of a meet-partition πI of Ω. Then, M is partition
representable by πi, i ∈ N , with d = |F|δ. Thus, Mmlin

F,δ ⊆M
pare

d and Mmlin ⊆Mpare.

Remark 2. In a partition representation πi, i ∈ N , of M , if Ω is endowed with the uniform
probability measure and πi are interpreted as factor mappings then they turn into random
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variables ξi. The variables give rise to the entropic polymatroid (N, r·ln d). For a converse
see [26, Theorem]. The inclusion Mpare ⊆Maent follows from the fact that the closure of
the entropic region is a convex cone [41, Theorem 1].

Figure 1 shows also references to examples of matroids that have or do not have some
representations simultaneously, and indicates two open problems.

Remark 3. The non-Pappus matroid is not linear but it is multilinear of the degree δ = 2
over the field F whose cardinality is a power of 3 [37, 27]. It is algebraic over any field [19].

Remark 4. The direct sum of Fano and non-Fano matroids is algebraic, [14], [33, p. 216].
It is not partition representable by [27, Proposition 4.1] but it is almost entropic because
the entropy region is closed under sums. The direct sum can be truncated to a connected
matroid with the same properties. In fact, the truncation is expressible as a principal
extension followed by a contraction [30, Lemma 4], so the class Malg

F is closed under
truncations by Lemma 13. The class Maent admits the truncations by [28, Theorem 2].

Remark 5. A nontrivial multilinear matroid that is not algebraic was constructed recently
in [5], answering a question from [27, 5.5]. The direct sum of Fano matroid, non-Fano
matroid and the matroid from [5] is almost entropic but neither partition representable
nor algebraic. Truncations apply.

Since the appearance of [37] it has been an open problem, especially in a cryptographic
disguise, whether the inclusion Mmlin ⊆ Mpare is strict. This is indicated in Figure 1 by
the question mark on the left. The question mark on the right expresses the following.

Conjecture 2. The algebraic matroids are almost entropic.

Vámos matroid is not linear [14], violating Ingleton inequality. It is not algebraic [15].
It was proved independently in [36] and [26, Section 7] that it is not partition repre-
sentable. The most natural argument that Vámos matroid belongs to none of the classes
considered here is that it violates even the Zhang-Yeung inequality. In fact, this inequal-
ity is valid for the entropic polymatroids, and therefore in Maent by limiting. It holds in
Malg by Corollary 2.

Finally, a miscellany of the related literature is presented below.

For the linear representability see the chapters in [39, 7, 33]. Recent developments
extend to the spaces over division or skew partial fields [34, 38]. Multilinear matroids
feature in network coding [8] and cryptography [25, 2, 3].

Though the notion of algebraic matroids dates back to the very beginnings of the
matroid theory it has been less studied for periods. Older reviews are in [22, 23]. Recent
activities are related to algebraic geometry [16].

Partition representability can be defined equivalently via generalized quasigroup equa-
tions [27, Proposition 2.4]. The distribution of the random variables ξi, i ∈ N , repre-
senting a matroid is uniform on a set that corresponds to the almost affine code and
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the matroid is then also called almost affine [37]. Partition representable matroids ad-
mit interpretation as the ideal secret sharing schemes which motivated the cryptographic
community to call them secret-sharing [6]. The strict inclusion in Mmlin ⊆ Mpare would
imply existence of an ideal secret sharing scheme which is not multilinear. These equiv-
alent approaches are discussed in [28, Discussion B,D]‡.

The rank functions of the entropic polymatroids need not satisfy the Ingleton inequal-
ity [13, 14], a well-known necessary condition for the multilinear representability, but
they enjoy a weaker Zhang-Yeung inequality [42, Theorems 3 and 5], and a profusion of
others [30]. The classMaent induces dense subsets of the entropy regions [28, Theorem 5].

The above notions have turned out to have motivation and relevance in many problems
of the information theory, statistics, network coding, cryptography, game theory, group
theory and elsewhere.

3. Preliminaries

This section reviews the principal extensions of polymatroids and Zhang-Yeung in-
equality. Three auxilliary lemmas are worked out for later purposes.

The principal extension [24, p. 245] of a polymatroid (N, f) by a single element 0 6∈ N
is constructed by a convolution and parallel extension. The convolution f ∗ g of f
with a polymatroidal rank function g is defined by

f ∗ g (I) = min
J⊆I

[
f(J) + g(I \ J)

]
, I ⊆ N .

For L ⊆ N the polymatroid (N ∪ 0, h) given by

h(J) = f(J) and h(J ∪ 0) = f(J ∪ L) , J ⊆ N ,

is called the extension of (N, f) by 0 parallel to L.

For a matroid M = (N, r), the principal extension (N ∪0, r̄) of M by 0 at L is obtained
by convolving the extension of M by 0 parallel to L and the free matroid (N ∪ 0, | · |).
Thus, the rank function r̄ is given by r̄(I) = r(I) and

r̄(I ∪ 0) = min
J⊆I

min
{
r(J ∪ L) + |(I ∪ 0) \ (J ∪ 0)|, r(J) + |I ∪ 0 \ J |

}
, I ⊆ N .

This extension is a matroid [24, Theorem 2.5]. By submodularity, the minimum over J
is attained at J = I whence

(1) r̄(I ∪ 0) = min
{
r(I ∪ L), r(I) + 1

}
, I ⊆ N .

When L is a singleton the principal extension coincides with the parallel one. The rank
r̄(I∪0) depends on I only through the closure of L in M and equals r(I∪L) if and only if
L is contained in the closure of I in M . Thus, the principal extension at L coincides with
that at the closure of L. If L is a flat of M the element 0 is interpreted as being freely

‡We decided to coin the term partition representable because of the succinct definition that seems to
be amenable to broadest mathematical audience.
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added to L, see [33, p. 270]. Principal extensions for polymatroids can be introduced
analogously. Convolving with modular polymatroids, even an individual value at 0 can
be adjusted but that generality does not occur here.

Extending a matroid principally two or more times is commutative [24, Proposition 2.8].
In the sequel, an explicit formula for the rank functions of multiple extensions is needed.

Let M = (N, r) be a matroid to be extended by elements of a finite set M that is disjoint
with N . For m ∈M let Lm ⊆ N be a set specifying parallelism. The principal extension
of M adding each m ∈M at Lm is the matroid (N∪M, r̄) whose rank function is given by

(2) r̄(I ∪K) = min
D⊆K

[
r
(
I ∪

⋃
d∈D Ld

)
+ |K \D|

]
, I ⊆ N , K ⊆M .

The formula is obtained by convolving the extension of M by each m ∈ M in parallel
at Lm and (N ∪M, | · |). If all Lm equal a single set L ⊆ N then (2) reduces to

(3) r̄(I ∪K) = min
{
r
(
I ∪ L), r(I) + |K|

}
, I ⊆ N , K ⊆M .

Given a set N and disjoint copy N ′, let i′ be the copy of i ∈ N and J ′ = {j′ : j ∈ J},
J ⊆ N . A second copy N ′′ is disjoint with N ∪N ′, copying i to i′′ and J to J ′′.

Any matroid M = (N, r) can be extended to N ∪N ′ so that the elements of N ′ become
coloops of the extension. This is referred to as addition of coloops. This extension is

further principally extended to
∼

M = (N∪N ′∪N ′′, r̃) by adding i′′ at i∪i′ for every i ∈ N .

Lemma 6. The mappings i 7→ i′′ and i 7→ i′ are isomorphisms of the matroid M onto

the minors
∼

M \N/N ′ and
∼

M \N/N ′′, respectively.

Proof. The assertions are consequences of

(4) r̃(I ∪ J ′ ∪K ′′) = r(I ∪ (J ∩K)) + |J ∪K| , I, J,K ⊆ N .

In fact, r̃(N ′ ∪K ′′) = r(K) + |N |, K ⊆ N , and r̃(J ′ ∪N ′′) = r(J) + |N |, J ⊆ N .

Eqs. (4) follow from (2) with M = N ′′

r̃(I ∪ J ′ ∪K ′′) = min
D⊆K

[
r(I ∪D) + |J ′ ∪D′|+ |K ′′ \D′′|

]
where the two cardinalities sum to |(J ∩K) \D|+ |J ∪K|. Then

r̃(I ∪ J ′ ∪K ′′) = min
D⊆J∩K

[
r(I ∪D) + |(J ∩K) \D|

]
+ |J ∪K| .

The minimization can be further restricted to the sets D containing I ∩ J ∩K. By sub-
modularity, the minimum is then attained at D = J ∩K whence eqs. (4) hold. �

Having a base B of M let B′ ⊆ N ′ and B′′ ⊆ N ′′ be the copies of B, and D′ and D′′

be another disjoint copies not intersecting N ′ ∪ N ′′. The matroid obtained from
∼

M \ N
by extending each element of B′ ∪B′′ by a parallel one in D′ ∪D′′ is denoted by

≈
M .

Lemma 7. The matroid
≈

M has a minor isomorphic to M and the ground set partitioned
into the bases N ′ ∪D′′ and N ′′ ∪D′.
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Proof. The first assertion follows from Lemma 6. By (4), r̃(N ′∪B′′) and r̃(B′∪N ′′) equal
r(B) + |N |. It suffices to replace here B′ by D′ and B′′ by D′′, and recall that r(N) + |N |
is the rank of

≈
M . �

By [31, Lemma 2.2], a matroid that is linear over an infinite field is a minor of a linear
matroid whose ground set partitions into two bases. This follows from Lemma 7 and the

observation that the constructions used to arrive at
≈

M preserve linearity.

Lemma 8. The direct sum of a matroid with a uniform one can be constructed by adding
coloops and by principal extensions.

Proof. Let a uniform matroid sit on L∪M where L is a base and M the complement of L.
A given matroid with a disjoint ground set J is extended to (J ∪ L, r) such that L
becomes a set of its coloops. Then, the principal extensions adding each m ∈M at L are
performed. By (3) with N = J ∪ L, the resulting matroid (J ∪ L ∪M, r̄) has

r̄(I ∪K) = min
{
r(I ∩ J) + |L|, r(I ∩ J) + |I ∩ L|+ |K|

}
, I ⊆ J ∪ L , K ⊆M .

It follows that its restriction to L ∪M is the uniform matroid, its restriction to J is the
given matroid and r̄(J ∪ L ∪M) = r(J) + |L|, giving the direct sum. �

The Zhang-Yeung inequality [42, Theorem 3][
I (ξ3 ; ξ4 |ξ1 ) + I (ξ3 ; ξ4 |ξ2 ) + I (ξ1 ; ξ2 )− I (ξ3 ; ξ4 )

]
+I (ξ1 ; ξ3 |ξ4 ) + I (ξ1 ; ξ4 |ξ3 ) + I (ξ3 ; ξ4 |ξ1 ) > 0

(5)

holds for four random variables ξ1 , ξ2 , ξ3 , ξ4 taking finite number of values. Every term
of (5) is a conditional mutual information [40]. For example, I (ξ3 ; ξ4 |ξ1 ) rewrites via
Shannon entropies to H(ξ1 , ξ3 ) + H(ξ1 , ξ4 )− H(ξ1 , ξ3 , ξ4 )− H(ξ1 ).

Having a polymatroid (N, h) and I, J,K, L ⊆ N , the mutual information I (ξ3 ; ξ4 |ξ1 )
corresponds to h(I ∪K) + h(I ∪ L)− h(I ∪K ∪ L)− h(I) and the bracket in (5) to

[h(I ∪K) + h(I ∪ L) + h(J ∪K) + h(J ∪ L) + h(K ∪ L)
]

−
[
h(I ∪ J) + h(K) + h(L) + h(I ∪K ∪ L) + h(J ∪K ∪ L)

]
.

Ingleton inequality [13, 14] claims nonnegativity of the above difference for the linear
(poly)matroids. The Zhang-Yeung inequality is used later in the form

3
[
h(I ∪K) + h(I ∪ L) + h(K ∪ L)

]
+ h(J ∪K) + h(J ∪ L)

> h(I) + 2
[
h(K) + h(L)

]
+ h(I ∪ J) + 4h(I ∪K ∪ L) + h(J ∪K ∪ L) .

(6)

This is valid for the almost entropic polymatroids by limiting, but fails for Vámos matroid.
The Zhang-Yeung inequality is weaker than Ingleton one, by submodularity.
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4. Encompassing matroid

Let M = (N, r) be a matroid of the rank r(N) = s > 1. In this section it is assumed
that N is a disjoint union of two bases A and B. Let {1 , 2 , 3 , 4} support the uniform
matroid U3,4, N

′ = A′ ∪ B′ be a copy of N , I be a set with s + 1 elements and J with
two elements. All the sets in the union

Nenc = A ∪B ∪ {1 , 2 , 3 , 4} ∪ A′ ∪B′ ∪ I ∪ J
are assumed to be pairwise disjoint. Let K = 3 ∪ A′ and L = 4 ∪B′.

r r3 4��
��

��
��

��
��
��
��

A B
N

A′ B′

��
��

��
��

r r
I J

1 2

�
�

�
�

�
�

�
�

�
�

�
�K L

Figure 2. The encompassing matroid Menc = (Nenc, ρ).

The encompassing matroid Menc is constructed on the ground set Nenc from the direct
sum M ⊕ U3,4 by principal extensions in the following four steps:

1. if a ∈ A then a′ ∈ A′ is added by the extension at 3 ∪ a,
2. if b ∈ B then b′ ∈ B′ is added by the extension at 4 ∪ b,
3. each element of I is added by extending at 1 ∪N ,
4. each element of J is added by extending at 2 ∪N .

The rank function of Menc is denoted by ρ. The rank is s+ 3.

The following three lemmas rely on eqs. (2) and their variants.

Lemma 9. The matroid M is isomorphic to Menc \ (N ∪ {1 , 2} ∪ I ∪ J)/{3, 4}.

Proof. The minor sits on N ′ and the isomorphism is i 7→ i′. The latter is a consequence of

(7) ρ(C ′ ∪ {3 , 4}) = ρ(C ∪ C ′ ∪ {3 , 4}) = ρ(C ∪ {3 , 4}) = r(C) + 2 , C ⊆ N ,

using that the restrictions of Menc to 3 ∪ a ∪ a′, a ∈ A, and to 4 ∪ b ∪ b′, b ∈ B, are
isomorphic to U2,3, see Steps 1, 2 and (1). �

Eqs. (2) for the matroid Menc \ (I ∪ J) extended to Menc in Steps 3 and 4 imply

ρ(M1 ∪M2) = min
{
ρ(M1 ∪N ∪ {1 , 2}) , ρ(M1 ∪N) + 1 + |M2 ∩ I| ,
ρ(M1 ∪N) + 1 + |M2 ∩ J | , ρ(M1) + |M2|

}
,

M1 ⊆ K ∪ L ∪N and M2 ⊆ I ∪ J .

(8)
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In fact, the sets I and K in (2) correspond to M1 and M2 in (8), respectively. The
minimization over D in (2) reduces in (8) to the cases M2, M2 ∩ J , M2 ∩ I and ∅,
providing the four terms in the minimum.

Lemma 10. In Menc, I ∪J is a circuit of rank s+ 2 and N ∪{1 , 2}∪ I ∪J a hyperplane.

Proof. The first part follows from (8) with M1 = ∅, giving

(9) ρ(M2) = min
{
s+ 2 , s+ 1 + |M2 ∩ I| , s+ 1 + |M2 ∩ J | , |M2|

}
, M2 ⊆ I ∪ J .

Thus, ρ(M2) = min {s+ 2 , |M2|} using the assumption s > 1.

By Steps 3 and 4, ρ(N ∪ {1 , 2} ∪ I ∪ J) = s + 2. Further, ρ(N ∪ {1 , 2 , 3}) and
ρ(N ∪ {1 , 2 , 4}) equal s+ 3. By Steps 1 or 2, ρ(N ∪ {1 , 2 , i′}) = s+ 3, i ∈ N . �

Lemma 11. In Menc, the instance of Zhang-Yeung inequality with I, J , K and L is tight.

Proof. The tightness in (6) is summarized, correspondingly to the involved ranks, as

11(s+ 2) = (s+ 1) + 2[(s+ 1) + (s+ 1)] + (s+ 2) + 4(s+ 3) + (s+ 3) .

In fact, ρ(K ∪ L) = s + 2 by (7) and the remaining terms on the left-hand side of (6)
equal s+2 by (8). On the right-hand side of (6), ρ(I) = s+1 by (3), ρ(K) = ρ(L) = s+1
since 3 ∪ a ∪ a′, a ∈ A, and 4 ∪ b ∪ b′, b ∈ B, are isomorphic to U2,3, ρ(I ∪ J) = s+ 2 by
Lemma 10, and ρ(I ∪K ∪ L) = ρ(J ∪K ∪ L) = s+ 3 by (8). �

The above argumentation implies also that the corresponding instance of Ingleton in-
equality is tight as well.
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Figure 3. The encompassing matroid for M = U1,2.

Example 1. Let M = U1,2 have the ground set partitioned into singletons a and b. Then
Menc has twelve points in Nenc and the rank four. It is linear. A geometric representation
is depicted in Figure 3 where the four segments meet in one point.



11

5. The construction of M◦ and proof of Theorem 1

In the previous section, the encompassing matroid Menc = (Nenc, ρ) is constructed from
any matroid M of the rank s > 1 whose ground set is a disjoint union of two bases. Let
Mres denote the restriction of Menc to I ∪ J ∪K ∪ L. By Lemma 10, I ∪ J is a circuit-
hyperplane of Mres. Let M◦ = (I ∪ J ∪K ∪ L, ρ◦) be the matroid obtained from Mres by
the relaxation at I ∪ J [33, p. 39]. The only difference between the two matroids is that
ρ◦(I ∪ J) = s + 3 while ρ(I ∪ J) = s + 2. If the construction starts with M = U1,2 then
M◦ is Vámos matroid, see Example 1 and Figure 3.

Proof of Theorem 1. Let M = (N, r) be a matroid inM of the rank s > 0. By Lemma 7,

M is a minor of
≈

M whose ground set is partitioned into two bases. The latter matroid is
constructed from the former by adding coloops, principal extensions, deletion and parallel

extensions. Hence,
≈

M ∈M. It can happen that the rank of
≈

M is zero but only if N = ∅.
In this case, M is a minor of U1,2 which belongs to M by Lemma 8. If the assertion of

Theorem 1 holds for
≈

M , or for U1,2 in the special case, then it does for M .

It follows that there is no loss of generality in assuming that M itself has the ground
set N partitioned into two bases A and B and s > 1. By Lemma 8, M ⊕ U3,4 ∈ M.
The encompassing matroid Menc is constructed from M and its two distinguished bases
by principal extensions. Therefore, Menc and the restriction Mres belong to the class M.

It remains to verify (i), (ii) and (iii) for the relaxation M◦ constructed above.

(i) By Lemma 9, the minor Mres \ (I ∪ J)/{3, 4} is isomorphic to M . The deletions of
I ∪ J from M◦ and Mres coincide. Hence, M is isomorphic to a proper minor of M◦.

(ii) The goal here is to prove that the contraction by and deletion of any element from
M◦ belong to the class M. Four cases are distinguished.

Case 1. “If i ∈ I ∪ J then M◦ \ i ∈M.” This follows from M◦ \ i = Mres \ i ∈M.

Case 2. “If i ∈ I ∪ J then M◦/ i ∈M.” For a demonstration, only i ∈ I is considered

since otherwise symmetry applies. On Nenc \ i a modified encompassing matroid M̂enc is
constructed from M ⊕ U3,4 by the same extensions as in Steps 1 and 2, and

3̂. each element of I \ i is added by extending at N ,
4̂. each element of J is added by extending at N ∪ {3 , 4}.

Let ρ̂ denote the rank function of M̂enc and M̂ res its restriction to (I \ i)∪J ∪K ∪L. It

suffices to prove that M◦/ i coincides with M̂ res, belonging to the classM by construction.
This is equivalent to

(10) ρ◦(M1 ∪M2 ∪ i)− ρ◦(i) = ρ̂(M1 ∪M2) , M1 ⊆ K ∪ L and M2 ⊆ (I \ i) ∪ J.

Eqs. (2) for M̂enc \ (K ∪ L ∪N) extended to M̂enc in Steps 3̂ and 4̂ imply

ρ̂(M1 ∪M2) = min
{
ρ(M1 ∪N ∪ {3 , 4}) , ρ(M1 ∪N) + |M2 ∩ J | , ρ(M1) + |M2|

}
.



12

In minimization, only M2, M2 ∩ I and ∅ were relevant, giving the three terms on the
right, respectively. In particular,

ρ̂(M2) = min
{
s+ 2 , s+ |M2 ∩ J | , |M2|

}
= |M2| , M2 ⊆ (I \ i) ∪ J.

By the relaxation, I ∪ J is a base of M◦. It follows that (10) holds if M1 = ∅.
If M1 6= ∅ the left-hand side of (10) is ρ(M1 ∪M2 ∪ i)− 1 where

ρ(M1 ∪M2 ∪ i) = min
{
ρ(M1 ∪N ∪ {1 , 2}) , ρ(M1 ∪N) + 1 + |M2 ∩ I|+ 1 ,

ρ(M1 ∪N) + 1 + |M2 ∩ J | , ρ(M1) + |M2|+ 1
}

= min
{
s+ 3 , ρ(M1 ∪N) + |M2 ∩ J |+ 1 , ρ(M1) + |M2|+ 1

}
= ρ̂(M1 ∪M2) + 1 ,

using (8). Hence, (10) holds.

Case 3. “If k ∈ K ∪ L then M◦/ k ∈M”. This follows from M◦/ k = Mres/ k ∈M.

Case 4. “If k ∈ K ∪ L then M◦ \ k ∈M”. The proof is presented for k ∈ K because
arguments are symmetric for k ∈ L. Another modification M̌enc of the encompassing
matroid constructed as follows. First, M ⊕ U3,4 is extended as in Steps 1 and 2. Second,
disjoint sets U and V of the cardinality s are chosen to be disjoint from the ground set
of Menc, and

3̌. each element of U is added by extending at (K \ k) ∪N ,
4̌. each element of V is added by extending at L ∪N .

Finally,

5̌. each element of I is added by extending at 1 ∪ U ,
6̌. each element of J is added by extending at 2 ∪ V .

The ground set of M̌enc is I ∪ J ∪K ∪L∪N ∪ {1 , 2} ∪U ∪ V and the rank function is
denoted by ρ̌. By construction,M contains the restriction of M̌enc to I ∪J ∪ (K \ k)∪L,
denoted by M̌ res. It suffices to prove that M◦ \ k = M̌ res, thus

(11) ρ◦(M1 ∪M2) = ρ̌(M1 ∪M2) , M1 ⊆ (K \ k) ∪ L and M2 ⊆ I ∪ J.

Eqs.(2) are applied to the extensions in Steps 3̌ and 4̌, giving for M3 ⊆ (K\k)∪L∪{1 , 2}
and M4 ⊆ U ∪ V

ρ̌(M3 ∪M4) = min
{
ρ(M3 ∪ (K \ k) ∪ L ∪N) ,

ρ(M3 ∪ (K \ k) ∪N) + |M4 ∩ V | , ρ(M3 ∪ L ∪N) + |M4 ∩ U | , ρ(M3) + |M4|
}

In particular,

ρ̌(M1 ∪ {1 , 2} ∪ U ∪ V ) = min
{
s+ 3, s+ 3 + |V |, s+ 3 + |U |, ρ(M1 ∪ {1 , 2}) + 2s

}
,

ρ̌(M1 ∪ 1 ∪ U) = min
{
s+ 3 , ρ(M1 ∪ (K \ k) ∪N) + 1 , ρ(M1) + 1 + |U |

}
,

ρ̌(M1 ∪ 2 ∪ V ) = min
{
s+ 3 , ρ(M1 ∪ L ∪N) + 1 , ρ(M1) + 1 + |V |

}
.
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Thus, ρ̌(M1 ∪ {1 , 2} ∪U ∪ V ) = s+ 3 and in the last two lines s+ 3 in the minimization
can be omitted. By (2) applied to the extensions in Steps 5̌ and 6̌,

ρ̌(M3 ∪M4 ∪M2) = min
{
ρ̌(M3 ∪M4 ∪ {1 , 2} ∪ U ∪ V ) ,

ρ̌(M3 ∪M4 ∪ 1 ∪ U) + |M2 ∩ J |) ,
ρ̌(M3 ∪M4 ∪ 2 ∪ V ) + |M2 ∩ I| , ρ̌(M3 ∪M4) + |M2|

}
.

(12)

When M2 = I ∪ J and M3 = M4 = ∅ it follows that

ρ̌(I ∪ J) = min
{
ρ̌({1 , 2} ∪ U ∪ V ) , ρ̌(1 ∪ U) + 2 , ρ̌(2 ∪ V ) + s+ 1 , s+ 3

}
= s+ 3 .

Hence, I ∪ J is a base of M̌ res. It is also a base of M◦ by relaxation. Thus, eqs. (11) hold
for M1 = ∅.

Eq. (12), takes for M1 6= ∅ in the role of M3 and M4 = ∅ the form

ρ̌(M1 ∪M2) = min
{
s+ 3 , ρ̌(M1 ∪ 1 ∪ U) + |M2 ∩ J |) ,
ρ̌(M1 ∪ 2 ∪ V ) + |M2 ∩ I| , ρ(M1) + |M2|

}
while (8) reduces to

ρ(M1 ∪M2) = min
{
s+ 3 , ρ(M1 ∪N) + 1 + |M2 ∩ J |) ,
ρ(M1 ∪N) + 1 + |M2 ∩ I| , ρ(M1) + |M2|

}
.

Hence, when M1 intersects both K \ k and L then

ρ̌(M1 ∪M2) = ρ(M1 ∪M2) = min
{
s+ 3 , ρ(M1) + |M2|

}
and when M1 intersects only one of K \ k and L then

ρ̌(M1∪M2) = ρ(M1∪M2) = min
{
s+3 , s+2+|M2∩J | , s+2+|M2∩I| , ρ(M1)+|M2|

}
.

It follows that eqs. (11) hold.

(iii) By Lemma 11, Zhang-Yeung inequality is tight in Mres for the sets I, J , K, L.
This instance of the inequality fails in M◦ because its right-hand side is greater by one
due to the relaxation. �

The presented proof of Theorem 1 is partially inspired by that of [31, Theorem 1.1].
Both are constructive and mimic the construction of Vámos matroid to violate Ingleton
or Zhang-Yeung inequalities. Several subtle arguments based previously on reasoning in
projective geometries had to be avoided and replaced here. This necessitated to maintain
the encompassing matroid during the whole proof and to introduce its variants. The
approach via rank functions was preferred because it bypasses intuitive arguments on
freeness in projective spaces and leads to mere computations with minima. The most
difficult Case 4 needed new arguments since modularity was not available, as in projective
geometries.
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6. Proof of Theorem 2

This section contains the proof of Theorem 2. First, three lemmas are worked out.

It is assumed throughout that M = (N, r) is a matroid and M = (N ∪0, r̄) its principal
extension by 0 at L ⊆ N .

Lemma 12. If M is multilinear of the degree δ > 1 over a finite field F then M is
multilinear of the same degree δ over a finite field extending F.

Proof. Let M be multilinear of the degree δ over F and be represented by subspaces Ei,
i ∈ N , of a linear space over F. Thus, δ · r(I) = dim EI , I ⊆ N , where EI abbreviates
the sum

⊕
i∈I Ei. Then, the above holds in a linear space over any field extension E of F.

An extension E is chosen to have the cardinality q that is greater than the number `
of hyperplanes of M . Let HL denote the family of the hyperplanes that do not contain
cl(L). Thus, H ∈ HL if and only if r(H ∪L) = r(N). Then, δ+ dimEH ∩EL 6 dimEL.
The union of EH ∩ EL over H ∈ HL contains at most ` · q δ·r(L)−δ vectors. This is less
than q δ·r(L), the number of vectors in EL. Therefore, there exists v1 ∈ EL outside of each
hyperplane from HL. If δ = 1 then let E0 be the span of v1. Otherwise, the argument
is repeated with (EH ∩ EL)⊕ v1 in the role of EH ∩ EL. By finite induction, there exist
independent vectors v1, . . . , vδ in EL whose span intersects each EH ∩ EL, H ∈ HL, in
the zero vector. Let E0 be the span of these vectors. By construction, dimE0 = δ, and
EH and E0 sum directly to EN once H ∈ HL.

The remaining part of the proof shows that Ei, i ∈ N , and E0 represent M multilinearly
with the degree δ over E. To this end, it suffices to prove

(13) δ · r̄(I ∪ 0) = dim EI ⊕ E0 , I ⊆ N .

If r(I ∪ L) = r(I) then E0 ⊆ EL ⊆ EI∪L = EI . Since r̄(I ∪ 0) = r(I) eq. (13) rewrites to
δ · r(I) = dim EI which holds because Ei, i ∈ N , represent M . If r(I ∪ L) > r(I) then a
hyperplane H from HL contains I. Then, eq. (13) holds because r̄(I ∪ 0) = r(I) + 1, and
EH ⊕ E0 = EN implies dimEI ⊕ E0 = δ · r(I) + δ. �

For the field extension theory the reader is referred to [17]. Let a matroid M with
the ground set {1, . . . , n} have an algebraic representation over a field F by elements
e1, . . . , en of an extension field E. The tower of fields F0 ⊆ . . . ⊆ Fn is constructed from
F0 = F inductively by Fi = Fi−1(i), 1 6 i 6 n, where Fi−1(i) is the smallest subfield
of E that contains Fi−1 and ei. If ei is transcendental over Fi−1 then Fi is isomorphic
to the quotient field Fi−1(x) of an indeterminate x. Otherwise, ei is algebraic and Fi is
isomorphic to the quotient ring Fi−1[x]/pi where pi is an irreducible polynomial in x with
coefficients in Fi−1. There is no loss of generality in assuming that E = Fn. As well known,
for I ⊆ N the transcendence dimension dimtr F(I) of F(I) over F equals the number of
transcendental extensions Fi−1(i), i ∈ I, in the tower construction. The dimension does
not depend on the construction of the tower when e1, . . . , en are permuted.
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Lemma 13. The principal extensions of the algebraic matroids over a field are algebraic
over the same field.

Proof. Let M be represented by e1, . . . , en as above. It suffices to consider the principal
extension M at L ⊆ N such that {1, . . . ,m} is a maximal independent subset of L for
some 0 6 m 6 n. Thus, e1, . . . , em are algebraically independent transcendentals over F.
If en+i = e1 e

i
2 · · · ei

m

m , i > 1, then e1, . . . , em, en+1, . . . , en+i represent algebraically a
uniform matroid Um,m+i over F [33, Example 6.7.8].

Let I ⊆ N . If r(I ∪ L) > r(I) then cl(I) does not contain L whence it does not cover
{1, . . . ,m}. Hence, F(I) does not contain some of e1, . . . , em. In turn, it contains less
than m elements of the sequence en+i, i > 1. It follows that for i sufficiently large none
of the sets I satisfying r(I ∪L) > r(I) contains en+i. Let e0 = en+i for that i. Extending
F(I) by e0 the transcendence dimension jumps up by one. This is not the case when
r(I ∪L) = r(I) by the construction of the sequence. Comparing with (1), it follows that
the principal extension M is represented by e0, . . . , en. �

Let π : N → π(N) be a bijection fixing the points of N ∩π(N). A matroid M = (N, r)
is selfadhesive at N ∩π(N) if it extends to a matroid (N ∪π(N), rπ) such that π becomes
a matroid monomorphism and r(N) + rπ(π(N)) = rπ(N ∪ π(N)) + r(N ∩ π(N)). The
equality expresses the adhesivity. A matroid is selfadhesive if it is selfadhesive at each of
its subsets.

Lemma 14. The algebraic matroids are selfadhesive.

Proof. Let M be algebraically represented by e1, . . . , en as above. It is assumed that for
some 0 6 m 6 n the bijection π : N → π(N) is given by π(i) = i, 1 6 i 6 m, and
π(i) = i + n − m, m < i 6 n. The field E = Fn, closing the tower construction, is
further extended by prolonging the tower F0 ⊆ . . . ⊆ Fn to Fn+1 ⊆ . . . ⊆ F2n−m. Here, if
n < i 6 2n−m then Fi = Fi−1(x) whenever ei−n+m is transcendental over Fi−n+m−1 and
Fi = Fi−1[x]/pi otherwise. In each extension x is successively renamed to ei.

The elements ei, 1 6 i ∈ 2n −m, represent a matroid on N ∪ π(N) that extends M .
The restriction of the matroid to π(N) is the isomorphic copy of M by π. The adhesivity
condition follows by the construction of the prolonged tower. �

Corollary 2. The rank functions of the algebraic matroids enjoy Zhang-Yeung inequality.

Proof. It suffices to combine Lemma 14 with the fact that the selfadhesive polymatroids
satisfy Zhang-Yeung inequality, see [29, Corollary 1]§. �

Proof of Theorem 2. To apply Theorem 1, the assumptions that each of the classes is
closed under minors, addition of coloops and principal extensions are verified. The addi-
tion of coloops is by elementary constructions and is not commented below.

§The reverse implication holds when |N | = 4 [29, Theorem 3].
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It follows from elements of the basic theory of the linear matroids that every class
Mmlin

F,d is closed under minors. The matroids from Mmlin
F,d have the principal extensions

representable if F is infinite, see [24, p. 246]. Representability of the extensions in the case
Mmlin

δ is covered by Lemma 12. It is inherited toMmlin. This implies the assumptions in
the first three cases.

The class Malg

F is closed under minors by [33, Cor. 6.7.14]. Lemma 13 asserts that it
is closed under principal extensions. The two properties inherit to Malg.

The class Maent is closed under minors by [30, Lemma 1]. It is closed under parallel
extensions and convolutions [28, Theorem 2] whence also to the principal extensions.

To apply Theorem 1 to one of the classes, it remains to verify that Zhang-Yeung
inequality is valid. In Malg the inequality holds by Corollary 2. In Maent it holds by
limiting in [42, Theorems 3 and 5]. Then, it suffices to invoke Figure 1 and the inclusions
explained in Remarks 1 and 2. �

It is left open whether Mmlin
F ,

⋃
δ>1 Mmlin

F,δ and Mpare are closed under principal exten-
sions. A positive answer would enable to include these two classes to Theorem 2.
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