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Abstract
We investigate the universal linear inequalities that hold for the von Neumann entropies in a
multi-party system, prepared in a stabiliser state. We demonstrate here that entropy vectors for
stabiliser states satisfy, in addition to the classic inequalities, a type of linear rank inequalities
associated with the combinatorial structure of normal subgroups of certain matrix groups.

In the 4-party case, there is only one such inequality, the so-called Ingleton inequality. For
these systems we show that strong subadditivity, weak monotonicity and Ingleton inequality
exactly characterize the entropy cone for stabiliser states.
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1 Introduction

1.1 Background
Undoubtedly, the single most important quantity in (classical) information theory is the
Shannon entropy, and its properties play a key role: for a discrete probability distribution p
on T

H(p) = −
∑
t∈T

p(t) log p(t) . (1)

The quantum (von Neumann) entropy is understood to be of equal importance to quantum
information: for a quantum state (density operator) ρ ≥ 0, Tr ρ = 1

S(ρ) = −Tr ρ log ρ (2)
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which reduces to (1) when ρ is diagonal.
For N -party systems, one can apply these definitions to obtain the entropy of all marginal

probability distributions (in the classical case) and reduced density operators (aka quantum
marginals) in the quantum case. The collection of these entropies can be regarded as a vector
in R2N , and the collection of all such vectors forms a set whose closure is a convex cone. It
is an interesting open question to determine the inequalities which characterize this cone. As
discussed in Section 1.3, it is now known that in the classical setting the Shannon inequalities
given below do not suffice; they describe a strictly larger cone.

This work has motivated us to consider analogous questions for the von Neumann entropy
in N -party quantum systems. Although we are unable to answer this question, we can fully
characterize the cone associated with a subset of quantum states known as stabiliser states in
the 4-party case. Moreover, we can show that for any number of parties, entropy vectors for
stabiliser states satisfy additional inequalities in the class known as linear rank inequalities
discussed in Section 3. In the classical setting, distributions whose entropies satisfy this
subclass of stronger inequalities, suffice to achieve maximum throughput in certain network
coding problems [28].

1.2 Classic inequalities and Definitions
It is well-known that the classical Shannon entropy for an N -party classical probability
distribution p on a discrete space T1 × · · · × TN , has the following properties, commonly
known as the Shannon inequalities:
1. It is non-negative, i.e. H(A) ≥ 0; H(∅) = 0. (+)
2. It is strongly subadditive (aka submodular), i.e.

H(A) +H(B)−H(A ∩B)−H(A ∪B) ≥ 0. (SSA)

3. It is monotone non-decreasing, i.e.

A ⊂ B =⇒ H(A) ≤ H(B). (MO)

where H(A) denotes the entropy H(pA) of the marginal distribution pA on TA =
⊗

j∈A Tj .
The monotonicity property (MO) implies that if H(A) = 0 then H(B) = 0 for all B ⊂ A

and, thus, pA =
⊗

j∈A δtj is a product of point masses. Some of the most remarkable
features of quantum systems arise when (MO) is violated. Indeed, for a pure entangled state
ρAB = |ψ〉〈ψ|AB for which S(ρAB) = 0, but the entropy of the reduced states ρA = TrB ρAB
and ρB = TrA ρAB can be (and usually is) strictly positive. In fact, S(ρAB)− S(ρA) can be
as large as − log d, where d is the Hilbert space dimension of the smaller of A and B.

For multi-party quantum systems, (+) and (SSA) are still valid [29], but (MO) has to be
replaced by the third property below – in analogy to the classical case, we call them Shannon
inequalities:

1. Non-negativity: S(A) ≥ 0; S(∅) = 0. (+)
2. Strong subadditivity:

S(A) + S(B)− S(A ∩B)− S(A ∪B) ≥ 0. (SSA)

3. Weak monotonicity:

S(A) + S(B)− S(A \B)− S(B \A) ≥ 0. (WMO)
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272 Entropy Inequalities for Stabiliser states

However, in contrast to the classical setting, this weaker version of monotonicity is not
completely independent of strong subadditivity (SSA). In fact, it can be obtained from the
latter by the (non-linear) process known as purification described in Section 2.2. Using a
slight abuse of notation, we use I(A : B) and I(A : B|C) to denote, respectively, the mutual
information and conditional mutual information for both classical and quantum systems,
defined explicitly in the latter case as

I(A : B) = S(A) + S(B)− S(AB),
I(A : B|C) = S(AC) + S(BC)− S(ABC)− S(C),

for pairwise disjoint sets A, B, C. Note that SSA can then be written as I(A : B|C) ≥ 0.

1.3 Entropy cones and non-Shannon inequalities

The first non-Shannon entropy inequality was obtained in 1997-98 by Yeung and Zhang [43,
44, 45] for 4-party systems. Their work established that the classical entropy cone is strictly
smaller than the polyhedral cone defined by the Shannon inequalities. This was the only
non-Shannon inequality known until 2006, when Dougherty, Freiling and Zeger [12, 13] used
a computer search to generate new inequalities. Then Matúš [34] found two infinite families,
one of which can be written as

t Ing(AB : CD) + I(A : B|D) + t(t+ 1)
2

[
I(B : D|C) + I(C : D|B))

]
≥ 0 (3)

where t is a non-negative integer, and Ing(AB : CD) is defined in (ING) below. The case
t = 1 in (3) yields the inequality in [45]. Moreover, either of the Matúš families can be used
to show that the 4-party entropy cone is not polyhedral. In [15] additional non-Shannon
inequalities were found.

In the quantum setting, Lieb [30] considered the question of additional inequalities in
a form that could be regarded as extending SSA to more parties, but found none. Much
later Pippenger [39] rediscovered one of Lieb’s results and used it to show constructively
that there are no additional inequalities for 3-party systems. He also explicitly raised the
question of whether or not additional inequalities hold for more parties. Despite the fact
that (SSA) is still the only known inequality, it has been shown that for 4-party systems
there are constrained inequalities [4, 31] that do not follow from SSA. (Numerical evidence
for additional inequalities is given in the thesis of Ibinson [21].)

1.4 Structure of the paper

This paper is organized as follows. In Section 2 we give some basic notation and review
some well-known facts. In Section 3 we discuss what is known about linear rank inequalities
beginning with the Ingleton inequality in Section 3.1 and concluding with a discussion of
their connection to the notion of common information in Section 3.3. In Section 4 we discuss
stabiliser states, beginning with some basic definitions in Section 4.1. In Section 4.2 we
consider the entropies of stabiliser states, showing half of our main result that pure stabiliser
states generate entropy vectors which satisfy the Ingleton inequality and a large class of
other linear rank inequalities. In Section 5 we prove the other half, i.e., that all extremal
rays of the 4-party Ingleton cone can be achieved using 5-party stabiliser states. We conclude
with some open questions and challenges.
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2 Preliminaries

2.1 Notation

We now introduce some notation needed to make precise the notion of entropy vectors and
entropy cones. We will let X = {A,B,C, . . .} denote an index set of finite size |X | = N so that
in many cases we could just assume that X = {1, 2, . . . N}. However, it will occasionally be
useful to consider the partition of some the index set into smaller groups, e.g, by grouping A
and B as well as D and E, X5 = {A,B,C,D,E} gives rise to a 3-element X3 = {AB,C,DE}.
When the size of X is important, we write XN .

An arbitrary N -partite quantum system is associated with a Hilbert space H =
⊗

x∈X Hx
(with no restrictions on the dimension of the Hilbert spaces Hx) with |X | = N . The reduced
states (properly called reduced density operators, but more often referred to as reduced
density matrices (RDM) and also known as quantum marginals) are given by ρJ = Tr Jcρ,
where Jc = X \ J . This gives rise to a function S : J 7−→ S(J) = S(ρJ) on the subsets
J ⊂ X . An element of the output of S can be viewed as a vector in R2X , whose coordinates
are indexed by the power set 2X of X . We study the question of which such vectors arise
from classical or quantum states, i.e., when their elements are given by the entropies S(ρJ)
of the reduced states of some N -party quantum state.

Classical probability distributions can be embedded into the quantum framework by
restricting density matrices to those which are diagonal in a fixed product basis. A function
H : 2X → R, associating real numbers to the subsets of a finite set X , which satisfies the
Shannon inequalities, eqs. (+), (SSA) and (MO), is called poly-matroid. By analogy with
poly-matroids, we propose to call a function S : 2X → R a poly-quantoid, if it satisfies (+),
(SSA) and (WMO) [36].

We will let ΓCX and ΓQX denote, respectively, the convex cone of vectors in a poly-matroid
or poly-quantoid. The existence of non-Shannon entropy inequalities implies that there are
vectors in ΓCX which can not be achieved by any classical state. Neither the classical nor
quantum set of true entropy vectors is convex, because their boundaries have a complicated
structure [4, 31, 35, 39]. However, the closure of the set of classical or quantum entropy
vectors, which we denote ΣCX or ΣQX , respectively, is a closed convex cone. The inclusion
ΣCX ⊂ ΓCX is strict for N ≥ 4 [45]. It is an important open question whether or not this also
holds in the quantum setting, i.e., is the inclusion ΣQX ⊆ ΓQX also strict?

In this paper, we consider entropy vectors which satisfy additional inequalities known as
linear rank inequalities, i.e. those satisfied by the dimensions of subspaces of a vector space and
their intersections. A poly-matroid H is called linearly represented if H(J) = dim

∑
j∈J Vj

for subspaces Vj of a common vector space V .
The simplest linear rank inequality is the 4-party Ingleton inequality (see section 3 below).

Poly-matroids and poly-quantoids which also satisfy these additional inequalities will be
denoted ΛCX and ΛQX respectively.

2.2 Purification and complementarity

For statements about J and Jc = X \ J , it suffices to consider a bipartite quantum system
with Hilbert spaces HA and HB . It is well-known that any pure state |ψAB〉 can be written
in the form

|ψAB〉 =
∑
k

µk|φAk 〉 ⊗ |φBk 〉 (4)
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274 Entropy Inequalities for Stabiliser states

with µk > 0 and {φAk } and {φBk } orthonormal. Indeed, this is an immediate consequence of
the isomorphism between HA ⊗HB and L(HA,HB), the set of linear operators from HA to
HB, and the singular value decomposition. It then follows that both ρA and ρB have the
same non-zero eigenvalues µ2

k, and hence S(ρA) = S(ρB).
This motivates the process known as purification. Given a density matrix ρ =

∑
k λk|φk〉〈φk|,

one can define the bipartite state

|ψ〉 =
∑
k

√
λk |φk〉 ⊗ |φk〉

whose reduced density matrix TrB |ψ〉〈ψ| is ρ.
Therefore, every vector in an N -party quantum entropy cone ΣQN can be obtained from

the entropies of some reduced state of a (N + 1)-party pure state |Ψ〉. In that case, we say
that the entropy vector is realized by |Ψ〉.

In an abstract setting, we could define a cone Γ̃QX whose elements satisfy (+), (SSA) and
the complementarity property S(J) = S(Jc), and let ΓQN be the cone of vectors which arise as
subvectors of Γ̃QN+1. Although we will not need this level of abstraction, this correspondence
is used in Section 5.

2.3 Group inequalities
Consider a (finite) group G and a family of subgroups Gx < G, x ∈ X . Then, H(J) =
log |G/GJ |, with GJ =

⋂
j∈J Gj is a poly-matroid. In fact, Chan and Yeung [9] show that

it is entropic because it can be realised by the random variables Xj = gGj ∈ G/Gj for a
uniformly distributed g ∈ G. The fact that for two subgroups G1, G2 < G, the mappings

G/(G1 ∩G2) −→ G/G1 ×G/G2 and g(G1 ∩G2) 7−→ (gG1, gG2),

are one-to-one [42], guarantees that indeed H(XJ) = H(J).
Thus, the inequalities satisfied by poly-matroids, and more specifically entropic poly-

matroids give rise to relations between the cardinalities of subgroups and their intersections
in a generic group. Conversely, Chan and Yeung [9] have shown that every such relation
for groups, is valid for all entropic poly-matroids. This result motivates the search for a
similar, combinatorial or group theoretical, characterization of the von Neumann entropic
poly-quantoids, and our interest in stabiliser states originally grew out of it.

However, it must be noted that if some subgroups of G are not general, but, e..g, normal
subgroups as in Theorem 6 below, then the Chan-Yeung correspondence breaks down. In this
case further inequalities hold for the group poly-matroid that are not satisfied by entropic
poly-matroids.

3 Linear rank inequalities

3.1 The Ingleton inequality
The classic Ingleton inequality, when stated in information theoretical terms, and as manifestly
balanced, reads

Ing(AB : CD) ≡ I(A : B|C) + I(A : B|D) + I(C : D)− I(A : B) ≥ 0, (ING)

where A, B, C and D are elements (more generally pairwise disjoint subsets) of X . It was
discovered by Ingleton [22] as a constraint on linearly represented matroids.
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Although this inequality does not hold universally, it is of considerable importance, and
continues to be studied [32, 37, 41, 36], particularly when reformulated as an inequality for
subgroup ranks. In Theorem 11 we show that (ING) always holds for a special class of states.
Before doing that, we give some basic properties first. Observe that (ING) is symmetric
with respect to the interchanges A↔ B and C ↔ D, so that it suffices to consider special
properties only for A and D.

Because it is not always easy to see if a 4-party state ρABCD is the reduction of a pure
stabiliser state, it is worth listing some easily checked conditions under which (ING) holds.

I Proposition 1. The Ingleton inequality (ING) holds if any one of the following conditions
holds.

a) ρABCD = |ψABCD〉〈ψABCD| is any pure 4-party state.
b) ρABCD = ρABC ⊗ ρD or ρA ⊗ ρBCD
c) The two-party component of the entropy vector for (ρABCD) is symmetric under a

partial exchange between (A,B) and (C,D), i.e. under any one (but not two) of the exchanges
A↔ C, B ↔ D, A↔ D or B ↔ C.

Proof. To prove (a) it suffices to observe that

Ing(AB : CD) = I(A : B|C) + S(AD) + S(BD)− S(D)− S(ABD)
+S(C) + S(D)− S(CD)− S(A)− S(B) + S(AB)

= I(A : B|C) + S(AD) + S(AC)− S(A)− S(ACD)
= I(A : B|C) + I(C : D|A) ≥ 0.

To prove (b) observe that when ρABCD = ρABC ⊗ ρD then I(A : B|D) = I(A : B) and
I(C : D) = 0 so that (ING) follows immediately from (SSA). For ρABCD = ρA ⊗ ρBCD the
first, second and last terms in (ING) are zero so that it becomes simply I(C : D) ≥ 0.

For (c) we observe that (ING) is equivalent to

I(B : C|A) + I(A : D|B) +R ≥ 0 with R = S(BC) + S(AD)− S(CD)− S(AB). (5)

The exchange A↔ C takes R to −R. Thus, if ρABCD is symmetric under this exchange, then
R = 0 and (ING) holds. The sufficiency of the other exchanges can be shown similarly. J

If (ING) holds, then all of the Matúš inequalities (3) also hold, since they add only condi-
tional mutual informations I(X : Y |Z) ≥ 0 to it. However, it is well-known that entropies do
not universally obey the Ingleton inequality. A simple, well-known counterexample is given
by independent and uniform binary variables C and D, and A = C ∨D, B = C ∧D. Then
the first three terms in (ING) vanish, so that Ing(AB : CD) = −I(A : B) < 0.

To obtain a quantum state which violates Ingleton, let |ψ〉 = 1√
2

(
|0000〉+ |1111〉

)
and

ρABCD = 1
2 |ψ〉〈ψ|+

1
4 |1010〉〈1010|+ 1

4 |1001〉〈1001|. (6)

All the reduced states ρABC , ρBD, etc. are separable and identical to those of the state

ρABCD = 1
4 |0000〉〈0000|+ 1

4 |1111〉〈1111|+ 1
4 |1010〉〈1010|+ 1

4 |1001〉〈1001|.

corresponding to the classical example above. Therefore (6) violates the Ingleton inequality,
but still satisfies all of the Matúš inequalities. Note that the state |ψ〉 is maximally entangled
wrt the splitting A and BCD. Additional quantum states with the same entropy vectors as
classical states which violate Ingleton [32, 33] can be similarly constructed. However, we do
not seem to know “genuinely quantum” counterexamples to the Ingleton inequality.

I Question 2. Do there exist quantum states which violate Ingleton and are neither separable
nor have the same entropy vectors as some classical state?

TQC’13



276 Entropy Inequalities for Stabiliser states

3.2 Families of inequalities
When the subsystem C or D is trivial, the Ingleton inequality reduces to the 3-party SSA
inequality, I(A : B|C) ≥ 0; when subsystem A or B is trivial, it reduces to the 2-party
subadditivity inequality I(C : D) ≥ 0. This suggests that the Ingleton inequality is a member
of a more general family of N -party inequalities. In 2011, Kinser [23] found the first such
family, which can be written (for N ≥ 4) as

K[N ] = I(1 : N |3) +H(1N)−H(12)−H(3N) +H(23) +
N∑
k=4

I(2 : k − 1|k) ≥ 0. (7)

This is equivalent to the Ingleton inequality when N = 4.
I Remark. As in the proof of Proposition 1(c), it can be shown that Kinser’s inequalities
hold if ρ is symmetric with respect to the interchange 1↔ 3 or 2↔ N . They also hold if
ρ1,2,...N = ρ2 ⊗ ρ1,3,...N One can ask if part (a) of Theorem 1 can be extended to the new
inequalities, i.e., do they hold for hold for N -party pure quantum states?

3.3 Inequalities from common information
Soon after Kinser’s work, another group [14] found new families of linear rank inequalities
for poly-matroids for N > 4 that are independent of both Ingleton’s inequality and Kinser’s
family. In the 5-party case, they found a set of 24 inequalities which generate all linear rank
inequalities for poly-matroids. Moreover, they give an algorithm which allows one to generate
many more families of linear rank inequalities based on the notion of common information,
considered much earlier in [1, 2, 16] and used below. However, it was shown in [8] that there
are N -party linear rank inequalities that cannot be obtained from the process described in
[14].

I Definition 3. In a poly-matroid H on X , two subsets A and B are said to have a common
information, if there exists an extension of H to a poly-matroid on the larger set X

.
∪ {ζ},

such that H({ζ} ∪ A) − H(A) =: H(ζ|A) = 0, H({ζ} ∪ B) − H(B) =: H(ζ|B) = 0 and
H(ζ) = I(A : B).

Here we used H(Z|A) = H(AZ)−H(A) to denote the conditional entropy. For complete-
ness we include a proof (courtesy of a Banff talk by Dougherty) of the following result, as
well as a proof of Lemma 5 below, which appear in [14].

I Proposition 4. Let h be a poly-matroid on X , and A,B,C,D ⊂ X such that A and B
have a common information. Then the Ingleton inequality (ING) holds for A, B, C and D.

Proof. Let ζ be a common information of A and B. Then, using H(F |A) ≥ H(F |AC) in
Lemma 5 below, and letting F = ζ, gives

I(A : B|C) +H(ζ|A) ≥ I(ζ : B|C).

Using this a total of six times, we obtain

I(A : B|C) + I(A : B|D) + I(C : D) + 2H(ζ|A) + 2H(ζ|B)
≥ I(A : ζ|C) + I(A : ζ|D) + I(C : D) + 2H(ζ|A)
≥ I(ζ : ζ|C) + I(ζ : ζ|D) + I(C : D)
= H(ζ|C) +H(ζ|D) + I(C : D) ≥ H(ζ|C) + I(ζ : D) ≥ I(ζ : ζ) = H(ζ).

Inserting the conditions for ζ being a common information, completes the proof. J
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I Lemma 5. In a poly-matroid H on a set X with subsets A,B,C, F ⊂ X .

I(A : B|C) +H(F |AC) ≥ I(F : B|C) (8)

Proof. By a direct application of the poly-matroid axioms:

I(A : B|C) +H(F |AC)− I(F : B|C) = H(B|FC)−H(B|AC) +H(F |AC)
= H(BCF ) +H(ACF )−H(CF )−H(ABC) (9)
≥ H(BCF ) +H(ACF )−H(CF )−H(ABCF )
= I(A : B|CF ) ≥ 0, (10)

where we used only algebraic identities, SSA and monotonicity. J

In a linearly represented poly-matroid, (ING) is universally true: There, H(J) = dimVJ ,
with VJ =

∑
j∈J Vj for a family of linear subspaces Vj ⊂ V of a vector space. The common

information of any A,B ⊂ X is constructed by defining Vζ = VA ∩ VB .

I Theorem 6. Any linear rank inequality for a poly-matroid obtained using common inform-
ation and the poly-matroid inequalities, also holds for a group poly-matroid when its defining
subgroups are normal.

Proof. It suffices to show that when GA, GB C G are normal subgroups for A,B ⊂ X , then A
and B have a common information given by Gζ = GAGB C G (the latter from the normality
of GA and GB). The first two conditions for a common information are clearly satisfied, as
GA, GB ⊂ GAGB , and the third follows from the well-known natural isomorphisms [42]

G/(GAGB) h (G/GA)
/(

(GAGB)/GA
) and (GAGB)/GA h GB/(GA ∩GB),

which imply

H(ζ) = log |G/(GAGB)| = log |G/GA| − log |(GAGB)/GA|
= log |G/GA|+ log |G/GB | − log |G/(GA ∩GB)| = I(A : B). J

4 Entropies of stabiliser states

4.1 Stabiliser groups and stabiliser states
Motivated by the stabiliser states encountered in the extremal rays of Σ2, Σ3 and Σ4, we
now focus on (pure) stabiliser states, i.e. 1-dimensional quantum codes. Stabilizer codes
have emerged in successively more general forms. We use the formulation described by
Klappenecker and Rötteler [24, 25] (following Knill [26]) which relies on the notion of abstract
error group: This is a finite subgroupW < U(H) of the unitary group of a (finite dimensional)
Hilbert space H, which satisfies the following axioms:
1. The center C of W consists only of multiples of the identity matrix (“scalars”): C ⊂ C11.
2. Ŵ ≡W/C is an abelian group of order |H|2, called the abelian part of W .
3. For all g ∈W \ C, Tr g = 0.
Note that conditions 1 and 2 imply that W is non-abelian; whereas condition 2 says that the
non-commutativity is played out only on the level of complex phases: for g, h ∈W ,

gh = ω(g, h)hg, with ω(g, h) ∈ C.

Finally, condition 3 means that g, h ∈W in different cosets modulo C are orthogonal with
respect to the Frobenius (or Hilbert-Schmidt) inner product: Tr g†h = 0. It is known that
Ŵ is a direct product of an abelian group T with itself, such that |T | = |H|.

TQC’13



278 Entropy Inequalities for Stabiliser states

I Example 7 (Discrete Weyl-Heisenberg group). Let H be a d-dimensional Hilbert space,
with a computational orthonormal basis {|j〉}dj=0. Define discrete Weyl operators

X|j〉 = |j + 1〉 mod d, Z|j〉 = ej
2πi
d |j〉.

They are clearly both of order d, and congruent via the discrete Fourier transform. The funda-
mental commutation relation, XZ = e2πi/dZX ensures that the groupW generated by X and
Z is finite, and indeed an abstract error group with center C =

{
ej

2πi
d : j = 0, . . . , d− 1

}
.

Note that the tensor product of abstract error groups is again an abstract error group. Now,
assume that each party x ∈ X of the composite quantum system can be associated with an
abstract error group Wx < U(Hx) of unitaries with center Cx, which satisfy Wx ⊃ Cx ⊂ C11,
such that Ŵx = Wx/Cx is abelian and has cardinality d2

x ≡ |Hx|2. Let W ≡
⊗

x∈X Wx be
the tensor product abstract error group, acting on H =

⊗
x∈X Hx. For any subgroup Γ < W ,

we let Γ̂ = (CΓ)/C ' Γ/(Γ ∩ C) denote the quotient of Γ by the center of W .
Stabiliser codes [17, 5] are subspaces of H which are simultaneous eigenspaces of abelian

subgroups of W .
Consider a maximal abelian subgroup G < W , which contains the center C =

⊗
x∈X Cx <

C11 of W , so that Ĝ = G/C has cardinality
√
|Ŵ | = |H| =

∏N
j=1 |Hj |. Since G is abelian it

has a common eigenbasis, each state of which is called a stabiliser state |ψ〉.
More generally, let G < W be any abelian subgroup of an abstract error groupW < U(H).

Since all g ∈ G commute, they are jointly diagonalisable: let P be one of the maximal joint
eigenspace projections. Then for g ∈ G, gP = χ(g)P , for a complex number χ(g). Thus
χ : G −→ C is necessarily the character of a 1-dimensional group representation, which gives
rise to the following expression for P :

P = 1
|G|

∑
g∈G

χ(g) g. (11)

If χ(g0) = 1 and g = c g0 is in the coset g0 C, then c = χ(g) and χ(g) g = g0. Thus,
G0 = {g ∈ G : χ(g) = 1} is a subgroup of G isomorphic to Ĝ = G/C and (11) can be
rewritten as

P = 1
|G0|

∑
g∈G0

g. (12)

Since g−1 = g† this sum is self-adjoint, and

P 2 = 1
|G0|2

∑
g,h∈G0

gh = 1
|G0|

∑
g∈G0

g = P,

so that (12) is indeed a projection.

Note: The above reasoning is true because we assumed that χ(g) records the eigenvalues of
g on the eigenspace with projector P ; as such, it has the property χ(t11) = t for t ∈ C. For a
general character χ, however, only G0 < χ−1(1) holds.

Because of the importance of the case of rank one projections, we summarize the results
above in the case of maximal abelian subgroups.

I Theorem 8. Let G be a maximal abelian subgroup of an abstract error group W with
center C. Any simultaneous eigenstate of G can be associated with a subgroup G0 ' G/C

for which |ψ〉〈ψ| = 1
|G0|

∑
g∈G0

g. J
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I Remark. The use of the trivial representation is not essential in the expression above. It
was used only to define G0. Once this has been done, one can use the (1-dim) irreducible
representations of G0 to describe the orthonormal basis of stabiliser states associated with G.
Let χk(g) denote the d = |G0| irreducible representations of G0 and define

|ψk〉〈ψk| = 1
|G0|

∑
g∈G0

χk(g)g. (13)

Then the orthogonality property of group characters implies that Tr |ψj〉〈ψj ||ψk〉〈ψk| =
|〈ψj |ψk〉|2 = δjk.

4.2 Entropies of stabiliser states
The next result seems to have been obtained independently by several groups [20, 10, 11].

I Proposition 9. For a pure stabiliser state ρ = |ψ〉〈ψ| with associated error group G < W ,
and any J ⊂ X , the entropy

S(J) = S(ρJ) = log dJ

|ĜJ |
. (14)

Here, dJ =
∏
x∈J dx and

GJ ≡ {⊗x∈X gx ∈ G : ∀x 6∈ J gx = 11} ⊂ G,

and ĜJ = GJ/CJ is the quotient of GJ with respect to the center CJ = GJ ∩ C.

Proof. It is enough to consider a bipartite system with local error groups WA and WB , by
considering party A all systems in J , and B all systems in X \ J . Then,

|ψ〉〈ψ| = 1
|Ĝ|

∑
(gA,gB)∈Ĝ

gA ⊗ gB .

Since Tr gB = 0 unless gB = 11 and |Ĝ| = dAdB , this implies

ρA = TrB |ψ〉〈ψ| =
1
|Ĝ|

∑
(gA,gB)∈Ĝ

(Tr gB) gA

= 1
|Ĝ|

∑
gA∈ĜA

|HB | gA

= 1
|HA|

∑
gA∈ĜA

gA = |ĜA|
dA

(
1
|ĜA|

∑
gA∈ĜA

gA

)
.

Since, Tr ρA = 1 , the last line implies that ρA is proportional to a projector of rank dA

|ĜA|
.

Thus, its entropy is simply S(ρA) = log dA

|ĜA|
. J

The following corollary is the key to our main result, Theorem 11.

I Corollary 10. For a pure stabiliser state as in Proposition 9, the entropy of the reduced
state ρJ satisfies

S(J) = S(ρJ) = log |Ĝ|
|ĜJc |

− log dJ = log |Ĝ|
|ĜJ |

− log dJc . (15)
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Proof. As in Proposition 9, it suffices to consider the bipartite case. Since |ψ〉〈ψ| is pure,

S(ρA) = S(ρB) = log dB

|ĜB |
= log dAdB

|ĜB |
− log dA.

Since dAdB = |Ĝ| this gives the desired result. J

I Theorem 11. Any pure stabiliser state ρ = |ψ〉〈ψ| on an 5-party system gives rise to
4-party reduced states whose entropies satisfy the Ingleton inequality.

Proof. By Corollary 10, we have

S(J) = log |Ĝ|
|ĜJc |

−
∑
x∈J

log dx . (16)

The first term H(J) = log |Ĝ|
|ĜJc |

is a Shannon entropy of the type used in [9]. To be precise,

observe that ĜJc =
⋂
x∈J ĜX\x. Moreover, since Ĝ and its subgroups ĜJc are abelian, this

implies that the entropy vector for each of the 4-party reduced states satisfies the Ingleton
inequality. (This was observed in [9] and also follows from Theorem 6.)

To complete the argument, it suffices to observe that the Ingleton inequality is balanced,
so that the Ingleton expression is identically zero for the sum-type “rank function” from the
second term in (16), i.e. h0(J) ≡

∑
x∈J log dx defines a poly-matroid satisfying (ING) with

equality. J

Any linear combination of mutual informations and conditional mutual informations is a
balanced expression (and vice versa, any balanced expression can be written as such a linear
combination). Kinser’s family of inequalities is balanced, which can be seen by inspection of
(7). It also holds by construction for the inequalities obtained from [14, Thms. 3 and 4] and,
more generally, any inequality obtained using a “common information” as in [14]. Therefore,
we can conclude using the same argument as above that

I Theorem 12. Any pure stabiliser state on an (N + 1)-party system generate an N -party
entropy vector which satisfies the Kinser [23] family (7) of inequalities, and more generally
those of Dougherty et al. [14].

A consequence of Theorem 11 is that the Matúš family of inequalities holds for stabiliser
states; however, rays generated by the stabiliser state entropy vectors do not span the entropy
cone ΣQ4 . In fact, from the proof of Theorem 11, we see that every balanced inequality that
holds for the Shannon entropy, holds automatically for stabilizer quantum entropies.1 Note
also that apart from (MO), all other necessary entropy inequalities for the Shannon entropy
are balanced [6].

5 The 4-party quantum entropy cone

By direct calculation using symbolic software, we can compute the extreme rays of 4-party
poly-quantoids plus Ingleton inequalities. The results are given (up to permutation) as rays
0 to 6 in Table 1 below, as elements of the 5-party cone Γ̃Q4+1 (on subsets of {a, b, c, d, e})
of vectors which satisfy (+) (SSA) and the complementarity property S(J) = S(Jc) as
described at the end of Section 2.2.

1 We are grateful to D. Gross and M. Walter, whose paper [18] made us aware of this observation.
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subset
∖ray 1 2 3 4 5 6 0

a 1 1 1 1 2 1 1
b 1 1 1 1 1 1 1
c 0 1 1 1 1 2 1
d 0 1 1 1 1 2 2
e (=̂ abcd) 0 0 0 1 1 2 2

ab 0 1 2 1 3 2 2
ac 1 1 2 1 3 3 2
ad 1 1 2 1 3 3 2
ae (=̂ bcd) 1 1 1 1 3 3 2
bc 1 1 2 1 2 3 2
bd 1 1 2 1 2 3 2
be (=̂ acd) 1 1 1 1 2 3 2
cd 0 1 2 1 2 2 2
ce (=̂ abd) 0 1 1 1 2 2 2
de (=̂ abc) 0 1 1 1 2 2 2

Table 1 Extreme rays of the 4-party quantum Ingleton cone

The following stabiliser states found by Ibinson [21] (some of which were known earlier)
realise entropy vectors on the rays 1 through 6 shown in Table 1.

|ψ1〉 = 1√
2
(
|00〉+ |11〉

)
ab
|000〉cde, (R1)

|ψ2〉 = 1√
2
(
|0000〉+ |1111〉

)
abcd
|0〉e, (R2)

|ψ3〉 = 1
3

∑
i,j=0,1,2

|i〉a|j〉b|i⊕ j〉c|i⊕ 2j〉d|0〉e, (R3)

|ψ4〉 = 1√
2
(
|00000〉+ |11111〉

)
abcde

, (R4)

|ψ5〉 = 1√
2
(
|0〉a′ |0L〉a′′bcde + |1〉a′ |1L〉a′′bcde

)
, (R5)

|ψ6〉 = 1√
27

∑
i,j,k=0,1,2

|i〉a|j〉b|i⊕ j〉c′ |k〉c′′ |i⊕ j〉d′ |k〉d′′ |i⊕ j〉e′ |k〉e′′ , (R6)

where in eq. (R5), |0L〉 and |1L〉 are the logical 0 and 1 on the famous 5-qubit code [27, 3].
These are also extremal rays of the quantum entropy cone ΣQ4 . In addition, ray 0 in Table 1
is realised by the (stabiliser!) state

|ψ0〉 = 1
2
∑

i,j=0,1
|i〉A|j〉B |i⊕ j〉C |ij〉D|ij〉E . (R0)

on 1 + 1 + 1 + 2 + 2 qubits.
Let us call an N -party poly-quantoid stabiliser-represented, if it is in the closure of the

cone generated by the entropy vectors of (N + 1)-party stabiliser states in the sense used
above. Then the above reasoning proves the following analogue of a theorem by Hammer,
Romashchenko, Shen and Vereshchagin [19]:
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I Theorem 13. A 4-party poly-quantoid is stabiliser-represented if and only if it satisfies
the Ingleton inequality (and all its permutations). J

It seems reasonable to conjecture that the closure of the cone generated by the entropy
vectors of stabiliser states is identical to that obtained when inequalities obtained from
common information as in [14] are added to the classical ones. However, it is not even clear
if stabiliser states satisfy the additional linear rank inequalities shown to exist in [8].

6 Conclusion

The difficult question of whether or not the quantum entropy satisfies inequalities beyond
positivity and SSA remains open for four or more parties.

Do quantum states which do not satisfy Ingleton always lie within the classical part of
the quantum entropy cone? We know that the quantum entropy cone ΣQX is strictly larger
than the classical one ΣCX . Recall that ΛC,Q4 denotes the polyhedral cones formed from the
classical inequalities (in each case) and the Ingleton inequality. We want to know whether or
not ΣQ4 \ ΛQ4 is strictly larger than ΣC4 \ ΛC4 , i.e., are there quantum states whose entropy
vectors do not satisfy the Ingleton inequality and are not equal to any vector in the closure
of the classical entropy cone, ΣC4 ? If the answer is negative, then 4-party quantum entropy
vectors must also satisfy the new non-Shannon inequalities.

It seems that a better understanding of quantum states which do not satisfy (ING) may
be the key to determining whether or not quantum states satisfy the classical non-Shannon
inequalities.

This question extends naturally to the 5-party case, in which all linear rank inequalities
are known from [14]. However, for more parties, one can ask the same question for both the
cones associated with inequalities obtained using one common information as in [14], and
for the cones obtained using all linear rank inequalities. Although we know from [7, 8] that
additional inequalities are required, we do not even have explicit examples to consider.

Related work After completion of the present research, we became aware of independent
work by Gross and Walter [18], who use discrete phase space methods for stabilizer states to
show that the entropies of stabilizer states satisfy all balanced classical entropy inequalities.
Indeed, this can also be seen from our formula for the reduced state entropies in Corollary 10.
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