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Algebraic matroids are almost entropic∗

Frantǐsek Matúš †

Abstract. Algebraic matroids capture properties of the algebraic dependence
among elements of extension fields. Almost entropic matroids have the rank
functions arbitrarily well approximated by the entropies of subvectors of random
vectors. The former class of matroids is included in the latter. A key argument in
the proof is the Lang-Weil bound on the number of points in algebraic varieties.

Let M = (N, r) be a matroid with a finite ground set N and rank function r, see [13].

Let G be a field. The matroid M is algebraic over G if there exist an extension
field H of G and ei ∈H for i∈N such that r(I) = degtr/G G(ei : i∈ I) for I ⊆ N .
Here, degtr/G denotes the transcendence degree over G and G(ei : i∈ I) the smallest
subfield of H that contains G and {ei : i∈ I}. Thus, I ⊆N is an independent set of M ,
r(I) = |I|, if and only if ei, i∈ I, are algebraically independent over G. This means that
a nonzero polynomial with indeterminates xi, i∈ I, and coefficients in G cannot vanish
when substituting ei for xi.

For random variables ξi, i∈N , that take only finitely many values, the mapping that
assigns to I ⊆ N the Shannon entropy of (ξi : i∈ I) is a polymatroidal rank function [4].
The polymatroids constructed in this way are called entropic. Their rank functions ex-
haust the entropy region [11]. A polymatroid (N, g) with rank function g is almost en-
tropic, or asymptotically entropic [9], if there exists a sequence of entropic polymatroids
(N, hn) such that hn → g pointwise, thus if g belongs to the closure of the entropy region.
This defines in particular the almost entropic matroids.

Theorem 1. Every algebraic matroid is almost entropic.

Proof. Let M be a matroid that is algebraically representable over G by ei ∈ H, i∈N .
There is no loss of generality in assuming that H is algebraically closed, H = H.
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In the first part of the proof, let the characteristic of G be positive. If G is infinite then
M is algebraically representable over the prime field of G by [7]. Thus, it suffices to assume
that G is finite.

The following form of the Lang-Weil bound [6], estimating the number of points of a va-
riety, is needed in the sequel. Let G be finite field, G its algebraic closure and V ⊆G d

an affine algebraic variety defined by a set of polynomials with coefficients in G. The
variety decomposes into irreducible components over G. Every component has a dimen-
sion, which is the transcendence degree of its coordinate ring over G. Let cV denote the
number of those components that have the maximal dimension, which is by definition
the dimension dimV of V . Every component is defined by a finite set of polynomials
with coefficients in G. Let A ⊆ G denote the finite set of all coefficients in these polyno-
mials. The smallest subfield of G that contains G and A is denoted by GV . It is a finite
extension of G. The Lang-Weil inequality implies that if F is a finite field extending GV

then the number of points in the variety V ∩Fd is approximately cV · |F|dimV in the sense
that there exists a constant κV > 0 not depending on F such that

(1)

∣∣∣∣ |V ∩ Fd|
|F|dimV

− cV
∣∣∣∣ 6 κV√

|F|
.

For more sophisticated bounds see [2]. The reader may like to consult Corollary 4 of the
blog‡ by T. Tao, however, in the above formulation, cV does not depend on F.

The polynomials from the ring G[xi : i∈N ] that vanish when substituting ei, i∈N ,
form a radical ideal IG. Given a base I of the matroid M , if a polynomial from IG contains
only the indeterminates xi, i∈ I, then it is zero. Given a circuit C of M , the collection
(ei : i∈C) is algebraically dependent but (ei : i∈C \ j) is algebraically independent for
any j ∈C. Hence, there exists a nonzero polynomial pC from IG that contains each of
the indeterminates xc, c∈C, and none of the remaining ones. Let P denote the set of
the polynomials pC for C running over the circuits of M . The polynomials from P define
an affine algebraic variety in GN that will be denoted by VP .

The variety VP ⊆G d has the dimension r(N). In fact, the algebraic dependence in H
is the same over G and G, see Remark 3. For a base I ⊆N , the elements ei, i∈ I, are
algebraically independent over G and every j ∈N \ I is algebraically dependent on them
over G. Hence, the quotient ring of VP has the transcendence dimension |I| = r(N).

It follows from the above formulation of the Lang-Weil bound and (1) that there exist
a finite extension field GVP of G and constants cVP > 1 and κVP > 0 such that for every
finite extension field F of GVP

(2)

∣∣∣∣ |VP ∩ FN |
|F|r(N)

− cVP

∣∣∣∣ 6 κVP√
|F|
.

The index P at VP is omitted in the sequel.

‡https://terrytao.wordpress.com/2012/08/31/the-lang-weil-bound/
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The ineq. (2) implies that V ∩FN is nonempty if the cardinality of F is large. In such a
case, let PF be the probability measure on FN that sits and is uniform on V ∩FN . In other
words, the probability of each point of the variety is the same and the points outside the
variety have the probability zero. For the coordinate projection πI : FN → FI , I ⊆ N , the
image of PF under πI , thus a marginal probability measure on FI , is denoted by P I

F . The
projections πi, i∈N , turn into random variables, having the joint distribution PF. They
give rise to the entropic polymatroid (H(P I

F ))I⊆N where H stands for the Shannon entropy.
Then, the polymatroid (H(P I

F )/ln |F|)I⊆N is almost entropic using that the closure of the
entropy region is convex [12, Remark 2]. It remains to prove that this point can be
arbitrarily close to (r(I))I⊆N when the cardinality of the field F is large enough.

For I ⊆N and yI ∈ πI(V ∩FN) ⊆ FI let π−1I,F(yI) denote the fibre consisting of those

z ∈ V ∩ FN that project to yI , thus πI(z) = yI . The entropy of the marginal P I
F can be

written as

(3) H(P I
F ) = −

∑
yI∈πI(V ∩FN )

|π−1I,F(yI)|
|V ∩FN | ln

|π−1I,F(yI)|
|V ∩FN | , I ⊆ N .

Let I ⊆N be a base of M , j ∈N \ I and C = γ(j, I) be the fundamental circuit of j
w.r.t. I. The polynomial pC contains a term with a positive power of the indeterminate xj,
having a nonzero coefficient. Let dj,C > 1 be the largest power of xj in such a term. The
product of dj,γ(j,I) over j ∈N \ I is denoted by DI . It follows that each fibre π−1I,F(yI) has
at most DI elements. Let D∗ denote the maximum of DI over the bases I of M . This
number does not depend on the choice of F. Hence, if a finite field F extends GV and its
cardinality is large enough then

H(P I
F ) > − ln D∗

|V ∩FN | > − lnD∗ + ln
[
cV − κV√

|F|

]
+ r(N) ln |F| , I ⊆ N base,

estimating the ratio under logarithm in (3) and using (2). In turn, as r(N) = |I|,
H(P I

F )
ln |F| − |I| > −

lnD∗

ln |F| +
ln[1−κV /

√
|F| ]

ln |F| , I ⊆ N base.

By submodularity of entropy, H(P I
F ) 6 H(P J

F )+H(PF
I\J), J ⊆ I. The last term is at most

|I \ J | ln |F|. Therefore, dividing by ln |F| and subtracting |I|, as r(J) = |J |,

(4) 0 >
H(P J

F )
ln |F| − r(J) > − lnD∗

ln |F| +
ln[1−κV /

√
|F| ]

ln |F| , J ⊆ N independent.

The strategy is to prove similar bounds for circuits C which together with (4) imply
bounds for any subset K of N . For a circuit C in M , j ∈ C and J = C \ j, using (3)
with I = C and I = J ,

H(PC
F ) = H(P J

F )−
∑

yC∈πC(V ∩FN )

|π−1C,F(yC)|
|V ∩FN | ln

[ |π−1C,F(yC)|
|V ∩FN |

/ |π−1J,F(πC
J (yC))|

|V ∩FN |

]
where πCJ : FC → FJ is the coordinate projector. For yJ ∈ πJ(V ∩ FN), the mapping

yj 7→ |π−1C,F(yj, yJ)|/|π−1J,F(yJ)| , yj ∈ F ,
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takes at most dj,C nonzero values. It defines a conditional probability measure whose en-
tropy is at most ln dj,C . Hence, summing in the above sum first over yj,

H(PC
F ) 6 H(P J

F ) + ln dj,C 6 |J | ln |F|+ lnD∗ .

By r(C) = |J |, H(PC
F ) > H(P J

F ) and (4),

(5) lnD∗

ln |F| >
H(PC

F )
ln |F| − r(C) > − lnD∗

ln |F| +
ln[1−κV /

√
|F| ]

ln |F| , C ⊆ N circuit .

For arbitrary K ⊆N let J be a maximal independent subset of K, and for k ∈K \ J
let γ(k, J) be the unique circuit contained in k ∪ J . Abbreviating H(PK

F ) to h(K), by
submodularity of entropy,∑

k∈K\J
[
h(γ(k, J))− h(γ(k, J) \ k)

]
>
∑

k∈K\J
[
h(k ∪ J)− h(J)

]
> h(K)− h(J) .

The inequalities are combined with (5), applied to the circuits γ(k, J), and (4), applied
to the independent sets γ(k, J) \ k,

|K \ J | ·
[

2 lnD∗

ln |F| −
ln[1−κV /

√
|F| ]

ln |F|

]
>
[
H(PK

F )
ln |F| − r(K)

]
−
[
H(P J

F )
ln |F| − r(J)

]
> 0 , K ⊆ N ,

using also that r(γ(k, J))) = r(γ(k, J) \ k) and r(K) = r(J). It follows by (4) that the
almost entropic point (H(PK

F )/ln |F|)K⊆N can be arbitrarily close to (r(K))K⊆N when
the cardinality of F, extending GV , is sufficiently large.

In the second part of the proof, the characteristic of G is zero. Then, M is linear over
G(T ) where T is a finite set of transcendentals over G [13, Proposition 6.7.11]. In turn,
M is linear over a finite field F [13, Proposition 6.8.2]. Hence, M is algebraic over F [13,
Proposition 6.7.10]. By the first part of the proof, it is almost entropic. �

The assertion of Theorem 1 settles [12, Conjecture 2]. Since there exists a multilinear
matroid that is not algebraic [1] the implication of Theorem 1 cannot be reversed, knowing
that the multilinear matroids are partition representable, see Remark 2, and hence almost
entropic. Relations between several classes of matroids are summarized in [12, Figure 1].

The Vámos matroid is not algebraic [5]. The assertion follows alternatively from The-
orem 1 and the fact that it is not almost entropic. Namely, the almost entropic matroids
are selfadhesive [10] whence they satisfy Zhang-Yeung inequality, violated by the Vámos
matroid. However, the algebraic matroids are selfadhesive directly by [12, Lemma 14].

Remark 1. An interesting special case in the above proof is when the polynomials from P
are linear. Each variety VP ∩FN becomes a linear space over F. The probability measure
PF on the space has all marginals sitting on linear spaces and uniform. Then, the entropies
of the marginals are integer multiples of ln |F|. It follows from the proof that the entropic
point (H(PK

F ))K⊆N is equal to (r(K) · ln |F|)K⊆N , provided F is large enough and extends
GVP . No limiting with the size of the field F is needed.

Remark 2. The situation when an entropic point is a multiple of a matroidal rank function
corresponds to a matroid representation by partitions, or to an ideal secret sharing scheme
from cryptography. A matroid M = (N, r) is partition representable of the degree d> 2
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if there exist a set of the cardinality d r(N) and its partitions πi, i∈N , such that the
meet-partition

∧
i∈ I πi has d r(I) blocks of the same size, I ⊆N , see [8]. In Remark 1, the

set is VP ∩ FN and the blocks of the i-th partition are the fibers of the i-th coordinate
projection of FN .

Remark 3. To see that the algebraic dependence (a.d.) is the same over G and G, let t∈H
be a.d. on a finite set T ⊆H over G. Thus, a nonzero polynomial q in an indeterminate
y with coefficients in G[T ] vanishes when substituting t for y. However, q is also a
polynomial with coefficients from G[T ∪B] for a finite set B ⊆ G. Then t is a.d. on T ∪B
over G. The elements of B are a.d. on the finite set G over G. Hence, the elements of
T ∪B are a.d. on T ∪G over G. It follows that t is a.d. on T ∪G over G [13, Lemma 6.7.5]
which implies that t is a.d. on T over G.

Sampling of points on algebraic varieties, thus from the distribution PF, is studied in
[3] in connection to problems in np.
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