February 23, 2024

Publications of Stefan Krömer


[1]   Stefan Krömer, Martin Kružík, Marco Morandotti, and Elvira Zappale. Measure structured deformations. Preprint arXiv:2402.14790, 2024. URL: http://arxiv.org/abs/2402.14790.

[2]   Dominik Engl, Stefan Krömer, and Martin Kružík. Asymptotic analysis of single-crystal plasticity in the limit of vanishing thickness and rigid elasticity. Preprint arXiv:2211.15345, 2022. URL: https://arxiv.org/abs/2211.15345.

Articles in peer-reviewed journals

[3]   Stefano Almi, Stefan Krömer, and Anastasia Molchanova. A new example for the Lavrentiev phenomenon in Nonlinear Elasticity. Z. Angew. Math. Phys, 75(2), 2023. Preprint version: arXiv:2309.08288. doi:10.1007/s00033-023-02132-4.

[4]   Stefan Krömer and Philipp Reiter. Nonlinear elasticity with vanishing nonlocal self-repulsion. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, First view, pages 1–18, 2023. Preprint version: arXiv:2206.09594. doi:10.1017/prm.2023.101.

[5]   Stefan Krömer and Jan Valdman. Surface penalization of self-interpenetration in linear and nonlinear elasticity. Applied Mathematical Modelling, 122:641–664, 2023. Preprint version: arXiv:2302.06268. doi:10.1016/j.apm.2023.06.018.

[6]   Stefan Krömer, Martin Kružík, and Elvira Zappale. Relaxation of functionals with linear growth: Interactions of emerging measures and free discontinuities. Advances in Calculus of Variations, 2022. Preprint version: arXiv:2107.12687. doi:10.1515/acv-2021-0063.

[7]   Stefan Krömer and Tomáš Roubíček. Quasistatic Viscoelasticity with Self-Contact at Large Strains. J. Elasticity, 142(2):433–445, 2020. Preprint version: arXiv:1904.02423. doi:10.1007/s10659-020-09801-9.

[8]   Stefan Krömer. Global invertibility for orientation-preserving Sobolev maps via invertibility on or near the boundary. Archive for Rational Mechanics and Analysis, (238):1113–1155, 2020. Preprint version: arXiv:1912.11086. doi: 10.1007/s00205-020-01559-7.

[9]   Stefan Krömer and Jan Valdman. Global injectivity in second-gradient nonlinear elasticity and its approximation with penalty terms. Mathematics and Mechanics of Solids, 24(11):3644–3673, 2019. Preprint version: arXiv:1811.12049. doi:10.1177/1081286519851554.

[10]   M. Baía, S. Krömer, and M. Kružík. Generalized W1,1-young measures and relaxation of problems with linear growth. SIAM:SIMA, 50(1):1076–1119, 2018. Preprint version: arXiv:1611.04160. doi:10.1137/16M1103464.

[11]   J. Krämer, S. Krömer, M. Kružík, and G. Pathó. A-quasiconvexity at the boundary and weak lower semicontinuity of integral functionals. Adv. Calc. Var., 10(1):49–67, 2017. Preprint version: arXiv:1401.6358v2. doi:10.1515/ acv-2015-0009.

[12]   C. Kreisbeck and S. Krömer. Heterogeneous thin films: Combining homogenization and dimension reduction with directors. SIAM:SIMA, 48(2):785–820, 2016. Preprint version: arXiv:1502.07139. doi:10.1137/ 15M1032557.

[13]   B. Benešová, S. Krömer, and M. Kružík. Boundary effects and weak lower semicontinuity for signed integral functionals on BV. ESAIM:COCV, 21(2):513–534, 2015. Preprint version: arXiv:1405.0449. doi:10.1051/cocv/ 2014036.

[14]   B. Kawohl, S. Krömer, and J. Kurtz. Radial eigenfunctions for the game-theoretic p-laplacian on a ball. Differential and Integral Equations, 27(7-8):659–670, 2014. URL: http://projecteuclid.org/euclid.die/1399395747.

[15]   A. Kałamajska, S. Krömer, and M. Kružík. Sequential weak continuity of null lagrangians at the boundary. Calculus of Variations and Partial Differential Equations, 49(3-4):1263–1278, 2014. doi:10.1007/s00526-013-0621-9.

[16]   S. Krömer and M. Kružík. Oscillations and concentrations in sequences of gradients up to the boundary. Journal of Convex Analysis, 20(3):723–752, 2013. Preprint version: arXiv:1109.3020. URL: http://www.heldermann.de/JCA/JCA20/JCA203/jca20041.htm.

[17]   B. Kawohl and S. Krömer. Uniqueness and symmetry of minimizers of Hartree type equations with external Coulomb potential. Adv. Calc. Var., 5(4):427–432, 2012. doi:10.1515/acv.2011.020.

[18]   H. Hajaiej and S. Krömer. A weak-strong convergence property and symmetry of minimizers of constrained variational problems in N. J. Math. Anal. Appl., 389(2):915–931, 2012. doi:10.1016/j.jmaa.2011.12.041.

[19]   Stefan Krömer. Dimension reduction for functionals on solenoidal vector fields. ESAIM, Control Optim. Calc. Var., 18(1):259–276, 2012. doi: 10.1051/cocv/2010051.

[20]   I. Fonseca and S. Krömer. Multiple integrals under differential constraints: two-scale convergence and homogenization. Indiana Univ. Math. J., 59(2):427–457, 2010. doi:10.1512/iumj.2010.59.4249.

[21]   Stefan Krömer. On the role of lower bounds in characterizations of weak lower semicontinuity of multiple integrals. Adv. Calc. Var., 3(4):387–408, 2010. doi:10.1515/ACV.2010.016.

[22]   Stefan Krömer. On compactness of minimizing sequences subject to a linear differential constraint. Z. Anal. Anwend., 30(3):269–303, 2011. doi:10.4171/ ZAA/1435.

[23]   Stefan Krömer. Necessary conditions for weak lower semicontinuity on domains with infinite measure. ESAIM: COCV, 16:457–471, 2010.

[24]   Stefan Krömer. A priori estimates in L for non-diagonal perturbed quasilinear systems. Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (5), VIII:417–428, 2009.

[25]   Stefan Krömer and Markus Lilli. On properness and related properties of quasilinear systems on unbounded domains. Math. Nachr., 284(8-9):1048–1082, 2011. URL: http://dx.doi.org/10.1002/mana.200810145, doi:10.1002/ mana.200810145.

[26]   T.J. Healey and S. Krömer. Injective weak solutions in second-gradient nonlinear elasticity. ESAIM: COCV, 15:863–871, 2009. doi:10.1051/cocv: 2008050.

[27]   S. Krömer and H. Kielhöfer. Radially symmetric critical points of non-convex functionals. Proc. R. Soc. Edinb., Sect. A, 138:1261–1280, 2008.

[28]   Stefan Krömer. Existence and symmetry of minimizers for nonconvex radially symmetric variational problems. Calc. Var. Partial Differ. Equ., 32(2):219–236, 2008.

[29]   S. Krömer and M. Lilli. Branches of positive solutions of quasilinear elliptic equations on non–smooth domains. Nonlinear Anal., Theory Methods Appl., 64(10):2183–2202, 2006.

[30]   S. Krömer, T.J. Healey, and H. Kielhöfer. Bifurcation with a two-dimensional kernel. J. Differ. Equations, 220(1):234–258, 2006.

Other publications

[31]   Agnieszka Kałamajska, Stefan Krömer, and Martin Kružík. Weak lower semicontinuity by means of anisotropic parametrized measures. In Elisabetta Rocca, Ulisse Stefanelli, Lev Truskinovsky, and Augusto Visintin, editors, Trends in Applications of Mathematics to Mechanics, pages 23–51. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-75940-1_2.

[32]   Stefan Krömer. Compactness in Sobolev spaces, related problems and applications. Cumulative habilitation thesis, Universität zu Köln, 2012.

[33]   Stefan Krömer. Nonconvex radially symmetric variational problems, volume 11 of Augsburger Schriften zur Mathematik, Physik und Informatik. Logos Verlag, Berlin, 2006. Dissertation, Universität Augsburg, 2005.

[34]   Stefan Krömer. Symmetriebrechung bei Variationsproblemen. Diplomarbeit, Universität Augsburg, 2002.