Publications of Stefan Krömer


[1]   A. Kałamajska, S. Krömer, and M. Kružík. Weak lower semicontinuity by means of anisotropic parametrized measures. Preprint arXiv:1704.00368, submitted for publication (2017). URL: http://arxiv.org/abs/1704.00368.

[2]   M. Baía, S. Krömer, and M. Kružík. Generalized W1,1-young measures and relaxation of problems with linear growth. Preprint arXiv:1611.04160 (2016), accepted for publication in SIAM:SIMA. URL: http://arxiv.org/abs/1611.04160.

Articles in refereed journals

[3]   J. Krämer, S. Krömer, M. Kružík, and G. Pathó. A-quasiconvexity at the boundary and weak lower semicontinuity of integral functionals. Adv. Calc. Var., 10(1):49–67, 2017. Preprint version: arXiv:1401.6358v2. doi:10.1515/ acv-2015-0009.

[4]   C. Kreisbeck and S. Krömer. Heterogeneous thin films: Combining homogenization and dimension reduction with directors. SIAM:SIMA, 48(2):785–820, 2016. Preprint version: arXiv:1502.07139. doi:10.1137/ 15M1032557.

[5]   B. Benešová, S. Krömer, and M. Kružík. Boundary effects and weak lower semicontinuity for signed integral functionals on BV. ESAIM:COCV, 21(2):513–534, 2015. Preprint version: arXiv:1405.0449. doi:10.1051/cocv/ 2014036.

[6]    B. Kawohl, S. Krömer, and J. Kurtz. Radial eigenfunctions for the game-theoretic p-laplacian on a ball. Differential and Integral Equations, 27(7-8):659–670, 2014. URL: http://projecteuclid.org/euclid.die/1399395747.

[7]   A. Kałamajska, S. Krömer, and M. Kružík. Sequential weak continuity of null lagrangians at the boundary. Calculus of Variations and Partial Differential Equations, 49(3-4):1263–1278, 2014. doi:10.1007/s00526-013-0621-9.

[8]   S. Krömer and M. Kružík. Oscillations and concentrations in sequences of gradients up to the boundary. Journal of Convex Analysis, 20(3):723–752, 2013. Preprint version: arXiv:1109.3020. URL: http://www.heldermann.de/JCA/JCA20/JCA203/jca20041.htm.

[9]   B. Kawohl and S. Krömer. Uniqueness and symmetry of minimizers of Hartree type equations with external Coulomb potential. Adv. Calc. Var., 5(4):427–432, 2012. doi:10.1515/acv.2011.020.

[10]   H. Hajaiej and S. Krömer. A weak-strong convergence property and symmetry of minimizers of constrained variational problems in N. J. Math. Anal. Appl., 389(2):915–931, 2012. doi:10.1016/j.jmaa.2011.12.041.

[11]   Stefan Krömer. Dimension reduction for functionals on solenoidal vector fields. ESAIM, Control Optim. Calc. Var., 18(1):259–276, 2012. doi:10.1051/cocv/ 2010051.

[12]   I. Fonseca and S. Krömer. Multiple integrals under differential constraints: two-scale convergence and homogenization. Indiana Univ. Math. J., 59(2):427–457, 2010. doi:10.1512/iumj.2010.59.4249.

[13]   Stefan Krömer. On the role of lower bounds in characterizations of weak lower semicontinuity of multiple integrals. Adv. Calc. Var., 3(4):387–408, 2010. doi:10.1515/ACV.2010.016.

[14]   Stefan Krömer. On compactness of minimizing sequences subject to a linear differential constraint. Z. Anal. Anwend., 30(3):269–303, 2011. doi:10.4171/ZAA/ 1435.

[15]   Stefan Krömer. Necessary conditions for weak lower semicontinuity on domains with infinite measure. ESAIM: COCV, 16:457–471, 2010.

[16]   Stefan Krömer. A priori estimates in L for non-diagonal perturbed quasilinear systems. Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (5), VIII:417–428, 2009.

[17]   Stefan Krömer and Markus Lilli. On properness and related properties of quasilinear systems on unbounded domains. Math. Nachr., 284(8-9):1048–1082, 2011. URL: http://dx.doi.org/10.1002/mana.200810145, doi:10.1002/mana. 200810145.

[18]   T.J. Healey and S. Krömer. Injective weak solutions in second-gradient nonlinear elasticity. ESAIM: COCV, 15:863–871, 2009.

[19]   S. Krömer and H. Kielhöfer. Radially symmetric critical points of non-convex functionals. Proc. R. Soc. Edinb., Sect. A, 138:1261–1280, 2008.

[20]   Stefan Krömer. Existence and symmetry of minimizers for nonconvex radially symmetric variational problems. Calc. Var. Partial Differ. Equ., 32(2):219–236, 2008.

[21]   S. Krömer and M. Lilli. Branches of positive solutions of quasilinear elliptic equations on non–smooth domains. Nonlinear Anal., Theory Methods Appl., 64(10):2183–2202, 2006.

[22]   S. Krömer, T.J. Healey, and H. Kielhöfer. Bifurcation with a two-dimensional kernel. J. Differ. Equations, 220(1):234–258, 2006.


[23]   Stefan Krömer. Compactness in Sobolev spaces, related problems and applications. Cumulative habilitation thesis, Universität zu Köln, 2012.

[24]   Stefan Krömer. Nonconvex radially symmetric variational problems, volume 11 of Augsburger Schriften zur Mathematik, Physik und Informatik. Logos Verlag, Berlin, 2006. Dissertation, Universität Augsburg, 2005.

[25]   Stefan Krömer. Symmetriebrechung bei Variationsproblemen. Diplomarbeit, Universität Augsburg, 2002.