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Summary

This thesis is concerned with Bayesian identification of parameters of linear models. Linear models are

used in many important problems of Digital Signal Processing (DSP). Computationally efficient meth-

ods of parameter inference are available under certain restrictive assumptions, such as known transfor-

mation of system output, known number of signal sources, etc. These assumptions, however, limit the

applicability of these models. In this thesis, we study four important special cases of the linear model as

listed below. When we relax the restrictive assumption, in each case, the Bayesian inference becomes

intractable. Tractability is restored using the Variational Bayes (VB) approximation technique. Special

attention is paid to computational efficiency and flow of control of the associated inference algorithms.

Chapters 2 and 3 review the relevant state-of-the-art knowledge. In Chapter 2, the basics of Bayesian

parameter inference, and the most common approximation techniques, are reviewed. The Variational

Bayes (VB) method is chosen as a reasonable trade-off between accuracy and computational require-

ments. In Chapter 3, the linear model is introduced and existing Bayesian inference methods are re-

viewed for this context. At the end of Chapter 3, in Section 3.5, four special cases of the linear model

are selected for detailed consideration in the rest of the thesis. For each of these models, a computa-

tionally efficient Bayesian inference technique is not currently available and the aim of the thesis is to

derive one.

The main contributions of the thesis are presented in Chapters 4–7, in the context of each of these

four models:

Chapter 4: the AutoRegressive (AR) model with unknown transformation of its output is studied.

The unknown transformation is approximated by a finite mixture of known candidates. What

follows is a new Mixture-based Extension of the AR model (MEAR). Computationally efficient

inference algorithms for the MEAR model are derived. The model is successfully applied to the

reconstruction of an AR process corrupted by outliers, burst noise, and in a speech reconstruction

problem respectively.

Chapter 5: the AR model withnon-stationaryparameters is studied. We relax the assumption of

known forgetting factor underlying an established Bayesian approach to this problem. The re-

sulting recursive Bayesian identification algorithm has better tracking ability with respect to the

non-stationary parameters. Improvements over the standard fixed-forgetting approach are demon-

strated in a simulation study involving an AR process with abrupt changepoints.

Chapter 6: the problem of Bayesian Principal Component Analysis (PCA) is studied. The traditional

Maximum Likelihood (ML) estimation of model parameters is numerically efficient. However,
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it does not provide an estimate of the number of relevant principal components, nor any associ-

ated uncertainty bounds. The known Bayesian solutions do not take into account the rotational

ambiguity inherent in the model and are, therefore, computationally inefficient. We show that an

approximate Bayesian solution can be found with a computational cost comparable to that of the

ML solution. This VB solution is potentially attractive in the many scientific areas where PCA is

used, but where, currently, inference of rank, and measures of uncertainty are unavailable.

Chapter 7: the problem of functional analysis of medical image data is studied. The standard mathe-

matical model used for this task is reformulated. The complexity of the model demands that the

standard approach to parameter estimation is achieved in three separate steps: (i) pre-processing,

(ii) orthogonal analysis, and (iii) oblique analysis. We show that the VB-approximate inference

unifies all these steps. Moreover, the resulting Bayesian inference solves tasks that were not

addressed before, such as selection of the number of relevant physiological sources.

Conclusions and suggestions for further work, are presented in Chapter 8.
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Notational Conventions

Analysis

χ (·) the indicator (characteristic) function on the argument set

erf (x) error function:erf (x) = 2√
π

∫ x
0 exp

(
−t2
)
dt

Γr

(
1
2p
)

Multi-Gamma function,Γr

(
1
2p
)

= π
1
4
r(r−1)∏r

j=1 Γ
{

1
2 (p− j + 1)

}
0F1(a,AA′) hypergeometric function,pFq(·), with p = 0, q = 1, scalar parametera, and

symmetric matrix parameterAA′

δ (x) delta-type function. Exact meaning is determined by the type of the argument,

x. If x is a continuous variable, thenδ (x) is the Dirac delta function:∫
x δ (x− x0) g (x) dx = g (x0) .

If x is a discrete variable, thenδ (x) is the Kronecker function:

δ (x) =
{

1,
0,

if x=0,
otherwise.

δp (i) theith elementary basis vector of lengthp:

δp (i) = [δ (i− 1) , δ (i− 2) , . . . , δ (i− p)]′

Probability calculus

Pr (·) probability of argument

f (x|θ) probability density function (pdf) of random variablex, conditioned by known

θ

f̆ (x) variable pdf to be optimized (‘wildcard’ in functional optimization)

θ̂ maximizer off (x|θ), with latter taken as a function ofθ (i.e. the ML estimate)

Ef(x) (·), Ex (·) expected value of argument with respect to pdff (x)

ĝ (x) simplified notation forEx (g (x))
x, x upper bound, lower bound of random variablex, respectively

N
(
µ, s2

)
Normal distribution with mean value,µ, and variance,s2

tN
(
µ, s2; (α, β]

)
truncated Normal of typeN

(
µ, s2

)
, confined to support(α, β]

M (F ) von-Mises-Fisher distribution with matrix parameterF

G (α, β) Gamma distribution with scalar parametersα andβ

U (·), U ((α, β]) Uniform distribution on the argument set, on the interval(α, β], respectively
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Chapter 1.

Introduction

Mathematics looks like a pile of abstract facts, axioms and theorems to most people. It is hard to imagine

that in some branches of mathematics, there are unresolved controversies about the meanings of basic

notions such as Probability. Statistics is one of these branches, where researchers can be divided into

various "schools of thought". This division further propagates into all scientific areas where statistics is

applied, notably in (statistical) Digital Signal Processing (DSP).

Traditionally, DSP is dominated by classical methods, such as least squares and maximum likelihood

methods, Wiener theory, etc. [1]. The classical interpretation sees each probability as a long-run relative

frequency. On the contrary, the Bayesian school sees probability as a quantified degree-of-belief (or

plausibility). However, what may sound like a minor philosophical disagreement can lead to very

different ways of solving practical problems. In scenarios with plenty of observed data, the differences

in results obtained using these philosophies are negligible.

The amount of available data is often limited however. For example, in medical applications, the

measurement of data is expensive and may be uncomfortable for the patient. In these cases, classical

methods have been found to be unreliable and the Bayesian approach has provided better results [2, 3, 4].

In DSP, these scenarios arise in image processing, analysis of medical data, signal-source separation,

and non-stationary processing.

Bayesian inference is analytically tractable only for a limited class of models. The full Bayesian

solution for more complicated and realistic models is not tractable and must be approximated. This

problem has been studied in many scientific areas and many approximate methods have been proposed.

The Markov Chain Monte Carlo (MCMC) approximation is now a popular approximation in DSP and

statistics. As an alternative, the method known as Mean Field Theory has been developed in statistical

physics [5]. This latter principle was introduced to the machine learning community [6], which de-

veloped it as the Variational Bayes (VB) method [7, 8]. Further research into this approach is now an

inter-disciplinary activity, ranging over many scientific fields [9]. Its impact in DSP has yet to be felt.

In this thesis, we study the application of the Variational Bayes (VB) method in DSP. The main con-

cern in DSP is with computational efficiency and implementation of inference algorithms. Quite often,

implementational restrictions—in terms of memory size and processor speed—must be taken into ac-

count when designing a new algorithm. This is very important, for example, in real-time and adaptive

signal processing. These implementational restrictions influence the choice of mathematical models,

as well as the inference methods employed. The preferred mathematical models are simple—i.e. ones

with a small number of parameters and with computationally cheap operations—and primarily of the

1



1. INTRODUCTION

linear model kind. Computationally cheap inference methods are also preferred, such as least squares

methods. However, such methods have limited modelling capabilities and do not perform well in areas

such as model order selection, non-stationary processing, and treatment of non-linear distortions. Many

extensions of classical linear models have been proposed to address these problems. Inference of pa-

rameters of such extended models has proved intractable, and various approximations—oftenad hocor

heuristic—have had to be made, in order to achieve tractability.

In this thesis, we are concerned with extensions of linear models which allow for computationally

efficient Bayesian inference. In order to achieve this, we start with a basic linear model for which a

computationally efficient inference is known. Applicability of this model is, however, limited by the

restrictive assumptions it depends on. When we relax the assumption, the Bayesian solution becomes

intractable. The Variational Bayes (VB) approximation is used to overcome these difficulties. Compu-

tational issues in the resulting inference algorithm are addressed and, where possible, computationally

efficient solutions are proposed.

This experience encourages us to study a range of important DSP problems where, currently, severe

restrictions are needed to achieve tractability. Approximative Bayesian analysis using the VB approach

allows us to achieve effective and numerically efficient results in the much broader contexts where these

restrictions are relaxed.
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Chapter 2.

Distributional Approximations in Bayesian
Inference

The Bayesian methodology is a well established approach to statistical inference [10]. It is appreciated

as a consistent framework for dealing with uncertainty [11]. While this is also important for DSP,

practical benefits are the primary concern in this field. The Bayesian framework has advantages over

other approaches, notably in model order selection [12, 13] and decision making [14, 15]. In this

Chapter, we briefly review the parts of the theory we need for further development in DSP.

In Section 2.1, we review the basics of Bayesian theory. Two basic scenarios are considered: (i) the

off-line scenario, where all data are available for the inference procedure, and (ii) the on-line scenario,

where the data are acquired incrementally and the inference is re-evaluated for each new data record.

Numerically efficient inference can be achieved only for a limited class of problems. For more com-

plicated models, full Bayesian treatment of a problem may be computationally prohibitive. Therefore,

various approximating techniques are employed to lower the computational load.

The approximations used in the off-line scenario are briefly reviewed in Section 2.2, with emphasis

on accuracy and computational cost. The Variational Bayes (VB) method (Section 2.2.4) is chosen for

further development as a promising compromise between computational requirements and accuracy.

Therefore, this method is studied in detail, with proofs of basic theorems. The approximations used in

the on-line scenario are reviewed in Section 2.3. Once again, our concern is with the Variational Bayes

approximation.

2.1. The Basics of Bayesian Theory

Let the measured data be denoted byD. A parametric probabilistic model of the data is then usually

given by the probability density function (pdf),f (D|θ), conditioned by knowledge of the parameters,

θ. In this thesis, we will use notationf (·) for both continuous and discrete parameters. In this way a

significant simplification and unification of all formulas can be achieved. One only has to keep in mind

that the integration has to be replaced by regular summation wherever the argument is discrete1.

The basic concept underlying Bayesian theory is the treatment of the unknown parameterθ as a

random variable. In this thesis, we suppose that the dataD are composed ofn p-dimensional data

1This can also be achieved by employment of measure theory, operating in a consistent way with probability densities
generalized in the Radon-Nikodym sense [16]. The practical effect is the same and therefore is neither necessary nor
helpful for our purposes.
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2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

records,di ∈ <p, i = 1, . . . , n. These are aggregated together as follows:D = [d1, . . . ,dn]. We

recognize two scenarios of parameter inference: (i)off-linescenario, when the number of observations,

n, is fixed and all data are available before the inference procedure, and (ii)on-linescenario, when the

data are acquired incrementally. In the latter case, the number of data available at each moment has the

role of time indext, and the available data at timet are called the data history,Dt = [d1, . . . ,dt].
Bayesian inference of the model parameters,θ, is based on application of Bayes’ rule:

f (θ|D) =
f (θ,D)
f (D)

=
f (D|θ) f (θ)∫

θ f (D|θ) f (θ) dθ
. (2.1)

Here,f (θ|D) will be known as theposteriordistribution,f (D|θ) as theobservation model, andf (θ)
as theprior distribution of the parameterθ (i.e. initial belief of the parameter distribution without any

information from the measured data).f (D) will be referred to as thenormalizing constant, ζ,

ζ = f (D) =
∫

θ
f (D, θ) dθ =

∫
θ
f (D|θ) f (θ) dθ. (2.2)

Bayes’ rule (2.1) can be re-written as

f (θ|D) =
1
ζ
f (D|θ) f (θ) ∝ f (D|θ) f (θ) , (2.3)

where∝ means equal up to the normalization constant,ζ. The posterior is fully determined by the

productf (D|θ) f (θ), since the normalization constant follows from the requirement thatf (θ|D) be a

pdf; i.e.
∫
θ f (θ|D) = 1. Evaluation of the normalizing constant can be computationally expensive, or

even intractable. If the normalizing constant (2.2) is not finite, the distribution is calledimproper[17].

The posterior pdf with explicitly known normalization will be called thefull pdf.

The task of evaluation of the full posterior pdf will be calledparameter identificationin this thesis.

We favor this phrase over the alternative—density estimation—used in some decision theory texts [15].

The full posterior distribution is a complete description of uncertainty in parameters of the assumed

model. For many practical tasks, we need to derive conditional and marginal distributions of model

parameters, and their moments. Consider the model parameters to be partitioned into two subsets

θ = [θ1, θ2]. The marginal distribution ofθ1 is defined as

f (θ1|D) =
∫

θ2

f (θ1, θ2|D) dθ2. (2.4)

The moments of the pdf, i.e. expected values of functions of parameters,g (θ), will be denoted

Ef(θ|D) (g (θ)) =
∫

θ
g (θ) f (θ|D) dθ, (2.5)

In context, where it is clear which pdff (θ|D) is associated with the parameterθ, the notation can be

simplified further toEf(θ|D) (g (θ)) ≡ Eθ|D (g (θ)) ≡ ĝ (θ).
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2.1. The Basics of Bayesian Theory

2.1.1. Choice of prior pdf

The required prior distribution (2.1) is a function which must be elicited by the designer of the model.

It is an important part of the inference problem. Its use has been widely discussed from a philosophical

point-of-view. See [17], for example. In this thesis, we are concerned with practical aspects of priors.

The prior distribution is used for:

1. supplementing the data in order to reach an estimate, in cases where there is insufficient data

and/or a poorly defined model; This will be calledregularization(via the prior);

2. imposing various restrictions on the parameterθ reflecting physical constraints. For example, if a

prior distribution on a subset of parameter support is zero, then the posterior distribution will also

be zero on this subset;

3. appropriately acknowledging our prior ignorance aboutθ. If the data are assumed to be informa-

tive enough, we prefer to choose anon-informativeprior (i.e. prior with minimal impact on the

posterior pdf). The choice ofnon-informativepriors was studied, for example, in [18].

In this thesis, we use priors in all three roles described above. However, in case 3., we do not perform full

analysis ofnon-informativepriors. Instead, we choose the form of the prior using other principles (such

as conjugacy, to be explained in the next Section) and we achieve non-informativeness by choosing its

statistics such that the prior is flat [16]. This choice of prior will be called anon-commitalprior.

2.1.2. Conjugate prior pdfs

In the on-line scenario, our concern is with the inference of unknown model parameters at all obser-

vation times,t = 1, 2, 3, . . .. The Bayesian perspective therefore requires evaluation of a probability

distribution on these unknowns at allt. Tractability is assured when the form of the posterior distribu-

tion is identical for allt. Such a distribution is known asself-replicating[16], or conjugate[10]. This

principle is briefly reviewed in this Section.

The observation model of the data observed at timet is f (dt|θ,Dt−1), whereD0 = {} by assign-

ment. From Bayes’ rule:

f (θ|Dt) ∝ f (dt|θ,Dt−1) f (θ|Dt−1) . (2.6)

Since (2.6) is recursive, analytical tractability of the update is assured if distributionsf (θ|Dt) and

f (θ|Dt−1) are of the same form. This is achieved if there exists a mapping,st = s (Dt) , s ∈ <q,

satisfying the condition:

f (θ|Dt) = f (θ|st) , (2.7)

with s (·) time-invariant and finite-dimensional, i.e.q < ∞. st are known asthe sufficient statisticsat

time t [10]. Substituting (2.7) into (2.6), it follows that

f (θ|st) ∝ f (dt|θ,Dt−1) f (θ|st−1) . (2.8)
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2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

The distribution is then uniquely determined byst and the functional recursion (2.6) can be replaced by

an algebraic recursion onst:

st = s (st−1, Dt) , t = 1, 2, 3, . . . (2.9)

with initializer s0 being the parameter of the priorf (θ|s0), from (2.7). Note that evaluation of (2.9)

may be difficult ass (·) is a function of the whole historyDt. A numerically efficient procedure is

assured ifs (·) is a function of the last observation only:

st = s (st−1,dt) , t = 1, 2, 3, . . . (2.10)

Then,f (θ|·) is said to be conjugate to the observation model,f (dt|θ,Dt−1). One consequence of this

is seen whent = 1 in (2.8). Then, the prior,f (θ|s0), must also be conjugate to the observation model.

It has been proven that a conjugate distribution exists for every observation model belonging to the

exponential family [19]. In this case, algebraic recursion (2.10) achieves Bayesian identification ofθ,

∀t, guaranteeing a numerically tractable procedure. If the observation model does not have a conjugate

distribution on parameters, the computational complexity of full Bayesian inference is condemned to

grow with timet. To restore computational tractability, we seek approximate inference techniques, as

discussed in Section 2.3.

2.2. Off-line Distributional Approximations

Tractability of the full Bayesian analysis—i.e. application of Bayes’ rule (2.1), normalization (2.2),

marginalization (2.4), and evaluation of moments of posterior distributions (2.5)—is assured only for a

limited class of models. Numerical integration can be used, but it is often computationally expensive,

especially in higher dimensions.

The problem can be avoided by approximating the true posterior distribution by a distribution that is

computationally tractable:

f (θ|D) ≈ f̃ (θ|D) . (2.11)

Then, all subsequent operations, such as normalization, marginalization and evaluation of moments, are

performed on the approximating pdf,̃f (θ|D). Various approximation strategies have been developed.

In this Section, we review the most common approximation techniques.

2.2.1. Certainty Equivalence Approximation

In many engineering problems, dealing with full pdfs is avoided. A point estimate, i.e. one value of

parameterθ, is considered as the summarizing result of parameter inference. This approach will be

calledparameter estimationin this thesis.

The point estimate,̂θ = θ̂ (D), can be interpreted as an extreme approximation of the posterior pdf

by the functionδ (·):
f (θ|D) ≈ f̃ (θ|D) = δ

((
θ − θ̂

)
|D
)
, (2.12)
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2.2. Off-line Distributional Approximations

whereθ̂ is the chosen point estimate of parameterθ, andδ (x) is the Dirac delta function∫
x
δ (x− x̂) g (x) dx = g (x̂) ,

if x is a continuous variable, and the Kronecker function

δ (x) =
{

1,
0,

if x = 0
otherwise

if x is a discrete variable.

This approximation is known as thecertainty equivalenceprinciple [20]. It remains to determine an

optimal value of the point estimate. This value should be optimal with respect to some criterion, popular

choices are:

• MaximumA Posteriori(MAP) estimate:

θ̂ = arg max
θ
f (θ|D) . (2.13)

This approach may be computationally attractive, as we do not need to evaluate the normalizing

constant (2.2).

• Mean value:

θ̂ ≡ θ̂ =
∫

θ
θ f (θ|D) dθ.

Evaluation of the mean value may be computationally expensive, owing to the required integra-

tion. Therefore, further approximation are usually necessary for this approach.

Remark 2.1 (Maximum likelihood (ML) estimation) is a classical method of parameter point esti-

mation [1]. From a Bayesian perspective, ML estimation corresponds to MAP estimation with uniform

prior distributions [17, 18]. The philosophical difference between those two methodologies has been

discussed in [17].

Remark 2.2 (Approximations of Marginals by Conditionals) In the point-based context, the true marginal

distribution (2.4) can be approximated via

f (θ1|D) ≈ f
(
θ1|D, θ̂2

)
, (2.14)

i.e. the conditional distribution of θ1 given a fixed estimate of θ̂2. The choice of point estimate θ̂2 is,

again, subject to the chosen criterion of optimality.

Algorithm 2.1 (Expectation Maximization (EM) algorithm) is a well known algorithm for ML estimation—

and by extension for MAP estimation—of model parameters θ = [θ1, θ2] [21]. Here, we follow an

alternative derivation of EM via distributional approximations [22]. The task is to estimate parameter

θ1, of the (intractable) marginal distribution (2.4). Using Jensen’s inequality, it is possible to obtain a

lower bound on (2.4) which is numerically tractable [22]. The resulting inference algorithm is then a

cyclic iteration of two basic steps:

7



2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

E-step: compute approximate distribution of parameter θ2, of type (2.14), at iteration i:

f̃ (i) (θ2|D) ≈ f
(
θ2|D, θ̂(i−1)

1

)
. (2.15)

M-step: using approximate distribution from the E-step, find new estimate θ̂(i)
1 :

θ̂
(i)
1 = arg max

θ1

∫
θ2

f̃ (i) (θ2|D) ln f (θ1, θ2, D) dθ2. (2.16)

It was proven that this algorithm monotonically increases the marginal likelihood, f (D|θ1), thus con-

verging to a local maximum [23].

Note that the posterior,f (θ|D) and the joint distributionf (θ,D) differ only in the normalization con-

stant (2.3), which is independent ofθ. Hence, (2.16) can also be written as a function ofln f (θ1, θ2|D)
in place ofln f (θ1, θ2, D). We prefer to use the form of (2.16), as it is clear that the normalization

constant does not have to be known.

2.2.2. Laplace’s Approximation

This method is based on local approximation by a Gaussian distribution at the MAP estimateθ̂, of the

posterior pdff (θ|D) [24], θ ∈ <p.

Formally, Laplace’s method approximates the posterior (2.1) as follows

f (θ|D) ≈ N
(
θ̂, H−1

)
(2.17)

whereθ̂ is the MAP estimate (2.13), andH ∈ <p×p is the (negative) Hessian matrix of the logarithm of

the joint pdff (θ,D) with respect toθ, evaluated atθ = θ̂,

H = −
[
∂2 log f (θ,D)

∂θi∂θj

]
θ=θ̂

, i, j = 1, . . . , p, (2.18)

The asymptotic error of approximation was studied in [24].

2.2.3. Fixed-form Minimum Distance Approximation

The approximating distributioñf (θ|η) is chosen as a tractable distribution with parameterη. The

optimal approximatioñf (θ|η̂)—given the fixed-form functioñf (·)—is then determined as

η̂ = arg min
η

∆
(
f̃ (θ|η) , f (θ|D)

)
, (2.19)

where∆
(
f̃ (·) , f (·)

)
is an appropriate measure of distance between two pdfs. Various measures

are used for specific problems, such as Kullback-Leibler, Levy, chi-squared,L2-norm, etc. These are

8



2.2. Off-line Distributional Approximations

reviewed in [25]. Specifically, the Kullback-Leibler (KL) distance [26] fromf (θ|D) to f̃ (θ|η),

KL
(
f (θ|D) ||f̃ (θ|η)

)
=
∫

θ
f (θ|D) ln

f (θ|D)
f̃ (θ|η)

dθ = Ef(θ|D)

(
ln
f (θ|D)
f̃ (θ|η)

)
, (2.20)

is important for two reasons:

1. statistical inference via KL distance was shown to be optimal in statistical utility sense [27].

2. minimization (2.19) with respect the KL distance (2.20) has a unique—and therefore global—

solution [28].

Moreover, the KL distance is also used in many practical applications [29, 30, 31]. It has the following

properties:

1. KL
(
f (θ|D) ||f̃ (θ|η)

)
≥ 0;

2. KL
(
f (θ|D) ||f̃ (θ|η)

)
= 0 iff f (θ|D) = f̃ (θ|η) almost everywhere;

3. KL
(
f (θ|D) ||f̃ (θ|η)

)
= ∞ iff on a set of a positive measuref (θ|D) > 0 andf̃ (θ|η) = 0;

4. KL
(
f (θ|D) ||f̃ (θ|η)

)
6= KL

(
f̃ (θ|η) ||f (θ|D)

)
and KL distance does not obey the triangle

inequality.

Given 4., care is needed in the syntax describingKL (·). We say that (2.20) isfromf (θ|D) to f̃ (θ|η).

2.2.4. Variational Bayes (VB) Approximation

Variational Bayes (VB) approximation [7, 4, 8] is also known as Ensemble Learning [32, 33], or

naïve Mean Field Theory [5, 34]. Here, we prefer its interpretation asfunctionalminimization of the

Kullback-Leibler (KL) distance. Compared tofixed-formminimum distance approximation (2.19) there

are two key differences:

1. the approximating distribution is not confined to a given form, but it is restricted functionally,

using the assumption of conditional independence:

f (θ|D) ≈ f̆ (θ|D) = f̆ (θ1|D) f̆ (θ2|D) . . . f̆ (θq|D) , (2.21)

whereθ =
[
θ′1, θ

′
2, . . . , θ

′
q

]′
is the multivariate parameter partitioned intoq elements. Notation

f̆ (·) is used to denote an unspecified functional variant (‘wildcard’ function) used in optimization

procedure which yield the approximating distribution.

2. for reasons of tractability, the VB procedure does not minimize the ‘original’ KL distance from

f (θ|D) to f̆ (θ|η) (2.20) but the ‘reverse’ KL distanceKL
(
f̆ (θ|D) ||f (θ|D)

)
,from f̆ (θ|D) to

f (θ|η).

These have, respectively, the following consequences:
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2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

1. conditional independence:

• the VB approximation can be used only for models with more than one parameter,

• cross-corelation between variablesθ1 and θ2 is not modelled. Intuitively, the correlated

multivariate distribution is modelled as a product of approximating marginals.

2. the use of ‘reverse’ KL distance:

• from property 4. of the KL distance (Section 2.2.3), the ‘reverse’ KL distance is not equal

to the ‘original’ one and therefore, it islessoptimal in the statistical utility sense [27].

• minimum distance approximation viaKL
(
f̆ (·) ||f (·)

)
is not guaranteed to have a unique

minimum [28].

These disadvantages are, however, outweighted by computational advantages: (i) functional (i.e. free

form) optimization has an analytical solution, and (ii) parameters of the optimal approximating posteri-

ors can be evaluated using an alternating algorithm of the EM kind (Algorithm 2.1). These advantages

are now described in detail.

Theorem 2.1 (Variational Bayes)Let f (θ|D) be the posterior pdf of multivariate parameter θ. The

parameter θ is partitioned into θ =
[
θ′1, θ

′
2, . . . , θ

′
q

]′. Let f̆ (θ|D) be an approximate pdf restricted to

the set of conditionally independent distributions on θ1, θ2, . . . , θq:

f̆ (θ|D) = f̆ (θ1, θ2, . . . , θq|D) = Πq
i=1f̆i (θi|D) . (2.22)

Then, the minimum of the KL distance,

f̃ (θ|D) = arg min
f̆(·)

KL
(
f̆ (θ|D) ||f (θ|D)

)
, (2.23)

is reached for

f̃i (θi|D) ∝ exp
(
Ef̃/i(θ/i|D) (ln (f (θ,D)))

)
, i = 1, . . . , q, (2.24)

where θ/i denotes the complement of θi in θ, and f̃/i

(
θ/i|D

)
=
∏q

j=1,j 6=i f̃j (θj |D). We will refer to

f̃ (θ|D) (non-unique, see 2. above) as the Variational Extreme. Conditionally independent elements of

(2.24) will be called VB-marginals. The parameters of the posterior distributions (2.24) will be called

VB-statistics. At the extreme (2.24), the KL distance form the approximant, f̃ (·), to the true posterior,

f (·), is

KL
(
f̃ (θ|D) ||f (θ|D)

)
= ln f (D)− ln (ζi) + Ef̃/i(·)

(
ln
(
f̃/i (·)

))
. (2.25)

for any i ∈ {1, . . . , q}, where ζi =
∫
θi

expEf̃(θ/i|D) (ln f (θ,D)) dθi.

10



2.2. Off-line Distributional Approximations

Proof: The KL distance from (2.23) can be rewritten as follows:

KL
(
f̆ (θ|D) ||f (θ|D)

)
=

=
∫

θ
f̆i (θi|D) f̆/i

(
θ/i|D

)
ln
f̆i (θi|D) f̆/i

(
θ/i|D

)
f (θ|D)

f (D)
f (D)

dθ

=
∫

θ
f̆i (θi|D) f̆/i

(
θ/i|D

)
ln f̆i (θi|D) dθ

−
∫

θ
f̆i (θi|D) f̆/i

(
θ/i|D

)
ln f (θ,D) dθ+

+
∫

θ
f̆i (θi|D) f̆/i

(
θ/i|D

) [
ln f̆/i

(
θ/i|D

)
+ ln f (D)

]
dθ,

=
∫

θi

f̆i (θi|D) ln f̆i (θi|D) dθi + ln f (D) + η

−
∫

θi

f̆i (θi|D)

[∫
θ/i

f̆/i

(
θ/i|D

)
ln f (θ,D) dθ/i

]
dθi . (2.26)

Here,η = Ef̆/i(·)

(
ln
(
f̆/i (·)

))
. For any non-zero scalarζi it holds:

KL
(
f̆ (θ|D) ||f (θ|D)

)
=

=
∫

θi

f̆i (θi|D) ln f̆i (θi|D) dθi + ln f (D) + η

−
∫

θi

f̆i (θi|D)
{

ln
[
ζi
ζi

expEf̆(θ/i|D) (ln f (θ,D))
]}

dθi,

=
∫

θi

f̆i (θi|D) ln
f̆i (θi|D)

1
ζi

expEf̆(θ/i|D) (ln f (θ,D))
dθi + ln f (D) − ln (ζi) + η, (2.27)

If ζi is chosen as the following normalizing coefficient ofexpE· (·),

ζi =
∫

θi

expEf̆(θ/i|D) (ln f (θ,D)) dθi,

the last equality in (2.27) can be rewritten in terms of a KL distance:

KL
(
f̆ (θ|D) ||f (θ|D)

)
= KL

(
f̆i (θi|D) || 1

ζi
expEf̆(θ/i|D) (ln f (θ,D))

)
+ ln f (D)− ln (ζi) + η. (2.28)

The only term on the right hand side of (2.28) dependent onf̆i (·) is the KL distance. Hence, minimiza-

tion of (2.28) with respect tŏfi (θi|D), keepingf̆/i

(
θ/i|D

)
fixed, is achieved by minimization of the

first term. Invoking non-negativity (Property 1) of the KL distance (Section 2.2.3), the minimum of the

first term is zero. The minimizer is almost surelyf̆i (θi|D) = f̃i (θi|D) ∝ exp
(
Ef̃/i(θ/i|D) (ln (f (θ,D)))

)
,

(i.e. (2.24)), using the second property of the KL distance (Section 2.2.3).
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2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

This proof is—our own—simpler alternative to the proofs in the literature, which use Lagrange multi-

pliers [33].

The extreme (2.24) is dependent on the data via the joint distributionf (θ,D), notf (θ|D). This is

important, as the expensive normalization (2.2) is thereby avoided.

The main computational problem of the VB approximation is that the Variational Extreme (2.24) is

not given in closed-form. For example, withq = 2, the moments of̃f1 (·), are needed for evaluation

of f̃2 (·), and vice-versa. The solution of (2.24) is usually found via an iterative algorithm that is

suggestive of the EM algorithm (Remark 2.1), but where all steps involve expectations of the kind in

(2.16), as follows.

Algorithm 2.2 (Variational EM (VEM)) Consider the case where q = 2, i.e. θ = [θ′1, θ
′
2]
′, then cyclic

iteration of the following steps, i = 1, 2, . . ., converge to a VB extreme (2.24).

E-step: compute approximate distribution of parameter θ2 at iteration i:

f̃
(i)
2 (θ2|D) ∝ exp

∫
θ1

f̃
(i−1)
2 (θ1|D) ln f (θ1, θ2, D) dθ1. (2.29)

M-step: using approximate distribution from the ith E-step compute approximate distribution of pa-

rameter θ1 at iteration i:

f̃
(i)
1 (θ1|D) ∝ exp

∫
θ2

f̃
(i)
1 (θ2|D) ln f (θ1, θ2, D) dθ2. (2.30)

Where the initializers, i.e. VB-statistics of f̃ (0)
1 (·) and f̃ (0)

2 (·), may be chosen randomly. Conver-

gence of the algorithm to fixed VB-marginals, f̃ (i)
i (θi|D), ∀i, was proven in [35] via natural gradient

technique [36].

In general, the algorithm requiresq steps—one for eachθi, i = 1, . . . , q—in each iteration. Following

the nomenclature of the ‘EM algorithm’, this algorithm should be called an ‘Eq algorithm’. However,

we will use the name Variational EM (VEM) for compatibility with other publications, e.g. [37].

Remark 2.3 (Marginal Lower Bound) An alternative derivation of (2.24) is via the marginal posterior

distribution of data [7]. For an arbitrary approximating density, f̆ (θ|D), it is true that

ln f (D) = ln
∫

θ
f (θ,D) dθ = ln

∫
θ

f̆ (θ|D)

f̆ (θ|D)
f (θ,D) dθ,

≥
∫

θ
f̆ (θ|D) ln

f (θ|D) f (D)

f̆ (θ|D)
dθ, (2.31)

= ln f (D)−KL
(
f̆ (θ|D) ||f (θ|D)

)
, (2.32)

using Jensen’s inequality [7]. Minimizing the KL distance on the right-hand side of (2.31)—e.g. via the

VB procedure (Theorem 2.1)—error in the approximation

f (D) ≈ exp
∫

θ
f̃ (θ|D) ln

f (θ,D)
f̃ (θ|D)

dθ, (2.33)
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2.2. Off-line Distributional Approximations

is minimized.

2.2.5. Quasi-Bayes (QB) Approximation

The iterative evaluation of the Variational Extreme via the VEM algorithm (Algorithm 2.2) may be

prohibitive, e.g. in the on-line scenario. Therefore, we seek a modification of the original Variational

Bayes approximation that yields aclosed-formsolution.

Corollary 2.1 (of Theorem 2.1, Restricted Variational Bayes (RVB))Let f (θ|D) be the posterior

pdf of multivariate parameter θ =
[
θ′1, θ

′
2, . . . , θ

′
q

]′, and f/1

(
θ/1|D

)
be a fixed posterior distribution of

θ/1 =
[
θ′2, . . . , θ

′
q

]′. Let f̆ (θ|D) be a conditionally independent approximation of f (θ|D) of the kind

f̆ (θ|D) = f̆ (θ1, θ2, . . . , θq|D) = f̆1 (θ1|D) f/1

(
θ/1|D

)
. (2.34)

Then, the minimum of the KL distance, KL
(
f̆ (θ|D) ||f (θ|D)

)
, is reached for

f̃1 (θ1|D) ∝ exp
(
Ef/1(θ/1|D) (ln (f (θ,D)))

)
. (2.35)

Proof: Follows directly from (2.24), for choicei = 1.

Note that Corollary 2.1 is equivalent to the first step of the VEM algorithm (Algorithm 2.2). However,

with distributionf/1

(
θ/1|D

)
being known, the equation (2.35) is aclosed-formsolution. This greatly

reduce the computational load needed for evaluation, since no iterations are required. Sincef/1

(
θ/1

)
is fixed, the KL distance of Variational Extreme (2.24) is less than or equal to the KL distance of the

RVB minimum (2.35). These distances can be compared via (2.25).

The quality of the approximation strongly depends on the choice of the fixed approximating distribu-

tion f/1 (·) in (2.34). Iff/1 (·) is chosen close to the VB-optimal posterior (2.24), i.e.f/1 (·) ≈ f̃/1 (·),
then one step of the RVB algorithm avoids many iterations of the original VEM algorithm. Here, we

propose one such strategy for choice off/1 (·).

Remark 2.4 (Quasi-Bayes (QB))RVB solution (2.35) holds for any choice of distribution f/1

(
θ/1|D

)
.

We seek a reasonable choice for this function. We choose q = 2 for notational clarity, i.e. f/1

(
θ/1

)
=

f/2 (θ2), however the result is also valid for the general case.

The VB extreme (2.23) is

f̆2 (θ2|D) = arg min
f̆2

(
min
f̆1

KL
(
f̆ (θ|D) ||f (θ|D)

))
. (2.36)

13



2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

As noted (Algorithm 2.2), a solution to (2.36) cannot be found in closed form. Hence we seek a

reasonable ‘first guess’. Rewriting the KL distance in (2.36) as

KL
(
f̆ (θ|D) ||f (θ|D)

)
=

∫
θ
f̆1 (θ1|D) f̆2 (θ2|D) ln

f̆1 (θ1|D) f̆2 (θ2|D)
f (θ1|θ2, D) f (θ2|D)

dθ,

=
∫

θ
f̆1 (θ1|D) f̆2 (θ2|D) ln

f̆1 (θ1|D)
f (θ1|θ2, D)

dθ

+
∫

θ2

f̆2 (θ2|D) ln
f̆2 (θ2|D)
f (θ2|D)

dθ2. (2.37)

we note that the second term in (2.37) is KL
(
f̆2 (θ2|D) ||f (θ2|D)

)
which is minimized for

f2 (θ2|D) ≡ f (θ2|D) =
∫

θ1

f (θ|D) dθ1, (2.38)

i.e. exact marginal distribution of the joint posterior f (θ|D). The global minimum of (2.37) is not

reached as the first term in (2.37) is also dependent on f̆2 (θ2|D). Therefore we consider (2.38) as the

best analytical choice we can make.

The name Quasi-Bayes (QB) was first used in the context of finite mixture models [25]. There, the

choice of (2.14) for the approximation was based on point-estimation arguments (Remark 2.2), choosing

θ̂2 as the expected value of the true posterior marginal:

θ̂2 = Eθ2|D (θ2) . (2.39)

Note that, iffln f (θ1, θ2, D) is linear inθ2, then, using (2.35), the RVB approximation (Corollary 2.1)

yields results equivalent to (2.14) [37]. The choice off2 (θ2) (Remark 2.4) yields (2.39). Therefore, we

consider Remark 2.4 to be a generalization of the QB idea expressed in [25].

2.2.6. Markov Chain Monte Carlo (MCMC) Approximation

In this approach, the posterior pdf is approximated by a piece wise constant density on a partitioned sup-

port, i.e. via a histogram constructed from a sequence of random samples,
{
θ(0), θ(1), θ(2), . . . , θ(n), . . .

}
,

of variableθ.

The sequence of random samples is called a Markov chain if then-th sampleθ(n) is generated from

a chosen conditional distribution

f
(
θ(n)|θ(n−1)

)
(2.40)

which depends only upon the previous state of the chainθ(n−1).

For mild regularity conditions onf (·|·) (2.40), then, asn → ∞, θ(n) ∼ fs (θ), the (time-invariant)

stable distribution of the Markov chain defined via the kernel (2.40). Hence i.i.d. samples fromfs (θ)
may be drawn via an appropriate choice of kernel (2.40), ifn is chosen sufficiently large. Typically, the

associated computational burden is high, especially for high-dimensional parameters.
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2.3. Distributional Approximations for Recursive Identification

2.2.7. Summary

The methods described in this Chapter were ordered with increasing complexity and accuracy of ap-

proximation. In signal processing, the full distribution must often be collapsed to a point estimate in

order to complete a typical task. Therefore, in many applications, point estimates are evaluated with-

out any reference to their full posterior distribution. The Laplace approximation is known in the DSP

community in the context of criteria for model order selection, such as the Schwarz criterion or Bayes

Information Criterion (BIC), both of which were derived using the Laplace method [24]. Sampling

methods—e.g. MCMC—are valued for their ability to provide arbitrarily close approximation. How-

ever, for closer and closer approximation, more and more computational power is required. Thus, this

approximation is mostly used for low-dimensional problems evaluated off-line (e.g. [38]).

In this thesis, we are concerned mostly with the Variational Bayes approximation. The main ad-

vantage of the VB approximation is its ease of use. Note that the form of the approximate posterior

distribution is found explicitly. Evaluation of the VB-statistics of these posterior distributions can be

achieved by a general iterative algorithm (Algorithm 2.2). Therefore, we see VB as a good starting

point in the search for an optimal trade-off between accuracy and computational complexity of the

identification procedure. If the accuracy of the VB-posterior distributions is not acceptable, we can use

more sophisticated (and thus more computationally expensive) approximations (e.g. mean field theory

[34, 39], or sampling methods (MCMC)). In this thesis, we assume that the accuracy of the VB approx-

imation is acceptable, while the computational cost of the iterative VEM algorithm is not acceptable.

Therefore, much of our effort will be dedicated to studying further simplifications and approximations

of the implied VB-posteriors.

2.3. Distributional Approximations for Recursive Identification

If the observation pdf does not belong to the exponential family—i.e. finite-dimensional sufficient statis-

tics is not available—the full history of data has to be used in each step. Hence, computational com-

plexity grows with each step. To achieve computational tractability, we have to find an approximate

representation of the data history at each step. In contrast to the previous Section, we do not seek a

single approximation (2.11), but a sequence of approximations:

f (θ|Dt) ≈ f̃ (θ|Dt) , t = 1, . . . ,∞ (2.41)

In this Section, we review the relevant approaches to this problem. The following list is by no means

complete. It is provided, by way of introduction to the VB approximation, which is the main subject of

the thesis.

2.3.1. Bayes-closed Approximation

The problem of recursive estimation with limited memory was addressed in general in [40]. There, the

problem was defined as finding a functional form,f̆ (θ), of approximating distributions that is closed
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2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

under Bayes’ rule, i.e.

f̆ (θ|Dt) ∝ f (dt|θ,Dt−1) f̆ (θ|Dt−1) . (2.42)

wheref̆ (θ|Dt−1) andf̆ (θ|Dt) are of the same functional form. Moreover, the form must depend only

on a finite-dimensional statistics,st ∈ <q×1, such as

f̆ (θ|Dt) = f̆ (θ|st) ,

whereq is assigned, and may be chosen arbitrarily small. Note thatst plays the role of sufficient

statistics, however, in this case it isnot sufficient for full description of the posterior.

The approximating family was found in the form of probabilistic mixture ofq fixed (known) pdfs

f i (θ), i = 1, . . . , q, weighted by elements ofst. Non-sufficient statisticsst is then updated by a linear

functional,l (·),
si,t = si,t−1 + l

(
f i (θ) , f (dt, θ|Dt−1)

)
, i = 1, . . . , q. (2.43)

Alternatively, the choice ofq fixed pdfs,f i (θ), can be replaced by the choice ofq functionalsli (·),
such as

si,t = si,t−1 + li (f (dt, θ|Dt−1)) .

It was proven then the approximate on-line identification (2.42) isgloballyoptimal2, [41].

Practical use of the approximation is, however, rather limited. The method requires time- and data-

invariant linear operators,li (·) to be chosena priori. Design criteria for these operators are available

only for special cases. The method was demonstrated to be applicable to low-dimensional problems

only.

2.3.2. One-step Approximation

In this case, the requirement for the approximation family to be closed under Bayes’ rule is relaxed.

The form of the posterior,f (θ|Dt), is givena priori and fixed for allt. It is the Bayes’ rule what is

aproximated at each step [25, 42]. If the posterior distribution,f (θ|Dt), has a form different from the

prior, f (θ|Dt−1), an approximation of the posterior is found in the family of the prior distribution

f (θ|Dt) ≈ f (θ|Dt) ∝ f (dt|θ,Dt−1) f (θ|Dt−1) (2.44)

The approximation (2.44) is used as prior in the next step. As the efficient recursive estimation can be

achieved only for the exponential family,f (·) is chosen from this family.

There are two basic approaches to the choice of the approximation in (2.44):

1. probability fitting: the approximation (2.44) is optimized with respect to a chosen distance (Sec-

tion 2.2.3).

2. moment fitting (also known as the probabilistic editor [25]): parameters of the approximating

distribution are chosen so that moments of the approximating distribution match moments of the

true posterior.

2with respect to orthogonal projection on the true posterior distribution.
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Note that one-step approximation is onlylocally optimal (i.e. optimal only for one step, not for the

whole trajectory), and so the error of approximation may grow with time. Typically, the quality of the

approximation is studied asymptotically, i.e. fort→∞. Furthermore, the approximation is not closed

under Bayes’ rule. In practice, this means that on-line identification given a set of i.i.d. observations

yields different results depending on the order in which the data are processed [25].

2.3.3. On-line Variational Bayes

The general VB approximation (Section 2.2.4) was extended to the on-line scenario in [35]. It is found

that the on-line VB method is a special case of one-step approximation, namely distribution fitting, with

Theorem 2.1 used to satisfy (2.44). Convergence of the method was also proven in [35], by showing

on-line VB to be a special case of stochastic approximation, which is known to converge [43].

Off-line VB approximation (Section 2.1) is a functional optimization of the KL distance. This func-

tional optimization can be extended to the on-line scenario (2.6) as follows:

f̆ (θ|Dt) = f (dt|θ,Dt−1) f̆ (θ|Dt−1) . (2.45)

We seek an optimal approximation of the true posterior under the conditional independence constraaint

(assumeq = 2 for algebraic simplicity):

f̆ (θ|Dt) = f̆ (θ1|Dt) f̆ (θ2|Dt) , (2.46)

f̆ (θ|Dt−1) = f̆ (θ1|Dt−1) f̆ (θ2|Dt−1) . (2.47)

Then, using (2.45) and (2.46) in Theorem 2.1, the VB-optimal form of (2.46) is found in the following

form:

f̃ (θi|Dt) ∝ exp
(
Ef̃(θ/i|Dt) (ln f (dt|Θ, Dt−1)) + ln f̆ (θi|Dt−1)

)
,

∝ exp
(
Ef̃(θ/i|Dt) (ln f (dt|Θ, Dt−1))

)
f̆ (θi|Dt−1) . (2.48)

Equation (2.48) can be rewritten as:

f̃ (θi|Dt) = fV B (dt|Θ, Dt−1) f̆ (θi|Dt−1) , i = 1, 2, (2.49)

fV B (dt|Θ, Dt−1) ∝ exp
(
Ef̃(θ/i|Dt) (ln f (dt|Θ, Dt−1))

)
. (2.50)

Then, (2.49) is the VB-approximate update of parameter distribution, wherefV B (dt|Θ, Dt−1) plays

the role of VB-approximate observation model. Hence, the choice off̆ (θi|·) conjugate with the VB

observation model (2.50) yields a numerically tractable recursive identification algorithm. ThisVB-

conjugatedistribution can be found if the VB observation model (2.50) is from the exponential family.

Note that (2.50) is, in fact, in the form of the Bayes-closed approximation (2.43) withEf̃(θi|Dt)
(·)

playing the role of linear operatorli (·). However, the expected value,Ef̃(θi|Dt)
(·), is conditioned by

Dt and is, therefore, time-variant. This is not allowed for the linear operators used in the Bayes-closed

approximation. Therefore, the on-line VB approximation (2.49) is not closed under Bayes’ rule.
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Chapter 3.

Linear Models: Classes and Their Inference

Classification of an observation model into linear and non-linear classes is of primary importance. Non-

linear models are intrinsically more more flexible but imply bigger intellectual challenges for their

identification. Linear models—which have been studied for a very long time—have many attractions,

including (i) analytical tractability, and (ii) computationally efficient evaluation (resulting from (i)). The

main drawback of linear models are their modelling limitations. Various non-linear methodologies were

proposed to match real-life problems, but these are often analytical intractable, and computationally

expensive. Thus, linear models continue to be used, almost exclusively, in areas like real-time data

processing or processing of high-dimensional data, where computational tractability is essential.

In this Chapter, we review the published Bayesian solution to special cases of the linear model. We

focus on some special cases for which an efficient parameter inference procedure is available, namely,

the AutoRegressive (AR) model (Section 3.2) and Principal Component Analysis (PCA) (Section 3.3).

The use of the PCA model in the area of medical image processing is described in Section 3.4. In

Section 3.5, we introduce possible extensions of these models and formulate the principal challenges of

the thesis.

3.1. Bayesian Methods for Linear Models

We define a linear model as one to satisfying two conditions. First, it is assumed that the observed data

are additively decomposed into an underlying signal and additive noise

D = M + E, (3.1)

whereD ∈ <p×n are the observed data,M ∈ <p×n is the signal, andE ∈ <p×n is the noise. Second,

the signal,M , is a linear combination,

M = AX, (3.2)

of underlying parametersA ∈ <p×r andX ∈ <r×n. Naming conventions forA andX differ in

different application contexts. For the purpose of this thesis, we callA the matrix parameter andX

the regressor. The rich linear model class described above, (3.1) and (3.2), has been studied with many

different restrictive assumptions, yielding other rich classes constituting distinct research directions. We

will review the most important models in this Chapter.
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We start the classification of (3.1) and (3.2) by consideration of the dimensionality of the matricesA

andX. Note that the role ofp andn is interchangeable, as transposition of (3.1) yields the same model

(with roles ofA andX swapped). However, for the sake of clarity, we adopt a common convention,

that the observed data matrixD is composed ofn observations of thep-dimensional variable,di, i =
1, . . . , n, i.e.D = [d1, . . . ,dn]. We recognize two basic cases of model parameter inference based on

the nature of the observation process:

off-line: the data has been acquired, andn data records have been saved. The task is to infer unknown

A andX given all data,D, at once.

on-line: data are acquired incrementally withn growing possibly up to infinity. The task is to infer

unknownA andX given all available data at given timet, as discussed in Section 2.1.2. It is

useful to rewrite the model (3.1), (3.2) in terms of the time-indexed observation,dt:

dt = Axt + et, (3.3)

The accumulated data available at timet will be denotedDt = [d1, . . . ,dt]. Hence,t replacesn

in (3.1), (3.2).

Further classification of linear models is related toa priori knowledge available aboutA andX. We

recognize two families:

Regression models: eitherA or X is assumed to be known. The task is to infer the other. In this

scenario, dimensionr typically satisfiesr > p.

Signal separation models: where bothA andX are assumed to be unknown. The task is to infer

both of them. In this scenario, the dimensionr typically satisfiesr ≤ p.

Further sub-classed can be defined with respect to an assumed distribution for the noise,f (E). In this

thesis, we focus our attention to models with Normal distributed noise. The most general case of the

Normal distribution ofE can be written as

f (vec (E)) = N (vec (µE) ,ΣE) ,

with: mean value,µE ∈ <p×n, transformed into a vector,vec (µE) ∈ <pn×1, and symmetric, positive

definite covariance matrixΣE ∈ <pn×pn. Note thatΣE is typically a large matrix, with12 (pn+ 1) pn
distinct elements. It is therefore much larger than the numberpn of available dataD. Therefore, a

restricted covariance structure must be considered. One such restriction comes from confiningf (E) to

the following matrix Normal distribution (Appendix A.1):

f (E) = N (µE ,Σp ⊗ Σn) , (3.4)

whereµE ∈ <p×n, while Σp ∈ <p×p andΣn ∈ <n×n are symmetric, positive definite matrices. The

covariance matrixΣE = Σp ⊗ Σn has now1
2 (p+ 1) p+ 1

2 (n+ 1)n distinct elements, which is, once

again, more than the numberpn of available dataD. A typical further restriction in regression models
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is independent identically distributed (i.i.d.) assumption defined via a time-invariant distribution for the

noise vector,et:

f (et|µe,Σe) = N (µe,Σe) , (3.5)

with µe ∈ <p×1, Σe ∈ <p×p constant for allt = 1, . . ., andet, es independent fort 6= s. This can be

written in the matrix Normal distribution form as:

f (E|µe,Σe) =
n∏

t=1

f (et|µe,Σe) = N (µe11,n,Σe ⊗ In) .

Thusfar, we have defined the Normal distribution in terms of its covariance matrixΣ. However, for

some problems, it is more convenient to work with the precision matrix,Ω, instead of the covariance

matrix, in which case, we denoteΣ = Ω−1.

The above mentioned classes and scenarios can be mutually combined to yield a wide class of iden-

tification problems. Further restriction and assumptions often constitute research directions (e.g. Factor

Analysis, General Linear Models, etc.). The most important special cases of the linear model, (3.1) and

(3.2), are listed in Table 3.1. The name of each model often comes from the associated inference tech-

nique (e.g. PCA or FA) since the inference technique was developed before its associated assumptions

were recognized as constituting a special case of the linear model. In these cases, by convention, we

will use the name of the method as part of the name of the model, such asFactor Analysis (FA) Model.

We list references to both point-based inference (ML or MAP) and Bayesian inference methods in Table

3.1.

General Linear Models (GLM) are traditional statistical models for modelling time-series and for

forecasting [17, 54]. Typically, the on-line scenario is considered. Assumptions underlying the

model often vary, the most common being a known matrix of parametersA, unknownxt, and

Gaussian distribution of noise

f (E) = N
(
0p,n, ω

−1Ip ⊗ In
)
,

with scalar precision parameterω > 0. A full Bayesian solution is available in [17].

Various extensions of the model has been studied, such as Dynamic Generalized Linear Models

[54]. The extensions impose extra parameterization that should be knowna priori. The model

is then identified using Kalman-filter theory (which can be interpreted as approximate Bayesian

identification [55]) or using an MCMC approach [56]. These models are traditionally applied in

analysis of econometric data, where computational cost is not critical. However, recently, it was

successfully used in real-time processing [57].

Autoregressive Models (AR) can be considered as a special case of GLMs. However, they were

developed independently, and for different application contexts, such as control theory [16, 58].

Typical assumptions are that the parameterA is unknown, and regression vectorxt is known,

being a function of previously observed data. Noise is considered to be Normal,

f (E) = N
(
0p,t,Ω−1 ⊗ It

)
,
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3.1. Bayesian Methods for Linear Models

with symmetric, positive definite precision matrixΩ ∈ <p×p. Recursive Bayesian identification

is available in [16], using the principle of conjugacy. The model can be extended while pre-

serving conjugacy to cases of a known transformation of the system output, and non-stationary

parameters, as will be discussed in Section 3.2.

A popular extension of the AR model is via state-space modelling. In the state-space model,

xt is considered unknown but modelled by another linear model [59]. Hence, we consider the

state-space model to be bi-linear. In general, full analytical recursive Bayesian identification of

parameters of the state-space model cannot be achieved. An approximate Bayesian inference of

the parameters of the state-space model, using the VB approximation, was presented in [60].

Generalized AR Models (GAR) are extensions of the AR model to allow a mixture type noise [46],

f (et|Ω,µe,α) =
c∑

i=1

αiN
(
µi,Ω−1

i

)
,

with Ω = {Ω1, . . . ,Ωc}, µe = [µ1, . . . ,µc], andα = [α1, . . . , αc]
′ being the mixture weights.

An approximate Bayesian identification was presented in [46], using the VB approximation.

However, recursive identification was not achieved.

AutoRegressive Moving Average Models (ARMA) are AR models with correlated noise. The

noise distribution is then

f (E|Ω, C) = N
(
0p,n,Ω−1 ⊗ [Φ (C)]−1

)
,

with parameterization extended via a symmetric positive definite matrix,Φ (C) ∈ <n×n, where

C ∈ <m×1 is formed by the coefficients of the order-m Moving Average (MA) part of the model

[61]. Full Bayesian identification is achieved ifC is known [61]. Bayesian identification for

unknownC was addressed in [62], using mixture-based methods and Quasi-Bayes (QB) approx-

imation [25].

Probabilistic PCA (PPCA) is a probabilistic formulation of the Principal Component Analysis (PCA)

method. The model assumes a Normal distribution of noise:

f (E) = N
(
0p,n, ω

−1Ip ⊗ In
)
.

Its MAP inference was published in [63], and extended to full Bayesian inference in [7] using a

VB approximation.

Factor Analysis (FA) is a classical model for addressing the signal separation problem [47]. BothA

andX are assumed to be unknown, andr < min (p, n) is typically assumed to be known. There

may be various restrictions onA orX. The noise is normally distributed,

f (E) = N
(
0p,n,Ω−1 ⊗ In

)
, (3.6)
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3. LINEAR MODELS: CLASSES AND THEIR INFERENCE

with positive definite matrixΩ assumeddiagonal. The inference is traditionally done via the

ML approach [47]. The Bayesian solution was studied in [50] and evaluated using an MCMC

approximation [64]. The Variational Bayes approximation was published in [4].

Independent Component Analysis (ICA) is a new, popular model for addressing the signal sepa-

ration problem. The noise is typically considered to be zero, henceD is fully modelled byAX

with r = p. The signal-noise separation is achieved with respect to columns ofA and rows of

X respectively. Separation ofA andX is achieved by imposing priors (typically non-Normal)

on columnsai of parameterA. An iterative MAP estimation was published in [52]. Bayesian

identification was considered in [33] using a VB approximation.

Independent Factor Analysis is an extension of the ICA idea to include the noise model of Factor

Analysis (3.6). The productAX is modelled in the same way as for ICA. An iterative MAP

estimation was published in [53].

The above list of methods is by no means exhaustive. Further extensions of model assumptions can be

(and indeed are being) made to extend modelling capability of the basic linear model. The resulting

inference schemes naturally involve more parameters, thus increasing the number of samples which

must be generated by MCMC, or the number of iterations in prospective EM or VEM algorithms.

In this thesis, our concern is with computational tractability of the VB distributional approximation.

For better understanding of the problem, we start with simple models such as (i) the AutoRegressive

(AR) model, and (ii) Principal Component Analysis (PCA). Both models enjoy, under certain modelling

restrictions, analytically tractable inference. Relaxation of these restrictions leads to a loss of analytical

tractability, which has to be restored via further approximations. Successful application of VB approx-

imation has been reported for (i) mixture-based extension of an AR process [46], and (ii) Bayesian

identification of the PPCA model with unknown rankr [7]. Both methods use the VEM algorithm (Al-

gorithm 2.2) for evaluation of the parameter inference. We seek a simplification of the inference method

(or re-parameterization of the model), yielding results comparable to these VEM-based solutions but at

significantly lower computational cost.

3.2. The Multivariate AutoRegressive (AR) Model

Linear AR processes are widely applied in filtering [65], speech analysis [66], spectrum analysis [67],

control [68], etc. The main advantage of the model is analytical tractability which results in compu-

tationally efficient and stable estimation algorithms. However, its underlying assumptions (i.e. linear

combination of measured values, and Gaussian distribution for the residue) are rarely met in practice.

Physical models, typically requiring complex non-linear modelling, may be used to fit the observed

data. Attempts to extend the AR model itself have also been made [46, 69]. However, these solutions

are computationally expensive and thus unsuitable for processing of large amounts of data or for on-line

(real-time) evaluation. Typically, therefore, AR models continue to be used even in these cases.

In this Section, we study an extension to the AR model that preserves its analytical tractability, al-

lowing fast on-line estimation of the model. Of particular concern is the study of numerically tractable
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3.2. The Multivariate AutoRegressive (AR) Model

recursive algorithms. Recursive estimation algorithms are widely used for on-line control applications

[58], and for adaptive filtering [70]. Computational simplicity is a key requirement for real-time adap-

tive estimation. In off-line cases, the emphasis on computational issues and recursive methods can also

pay off, for example in the off-line processing of massive datasets [31].

3.2.1. Bayesian Inference of the AR model

As outlined in Section 3.2, the AR model is a special case of the recursive linear model (3.3) with the

noise distributed as

f (et|Ω) = N
(
0p,Ω−1

)
. (3.7)

The noise vectorset, eτ are independent fort 6= τ . Ω ∈ <p×p is an unknown positive definite matrix.

ParametersA,Ω are considered time-invariant, and so the observation process (3.3) is stationary. This

assumption will be relaxed in Section 3.2.3.

Regressorxt is assumed to be known, i.e. it may contain any observed variables or theirknown

transformations. Formally,

xt = g (Dt−1,Wt) , (3.8)

where auxiliary variable,Wt, may contain any known variables, such as a measured external (exoge-

nous) signal, time variable,t, for time-variant systems, etc.

The model described above is rather general. For better intuition we list a few special cases:

1. Univariate autoregressive (AR) model:

dt =
r∑

k=1

akdt−k + et, (3.9)

wherext = g (Dt−1) = [dt−1, . . . , dt−r]. This is illustrated on Figure 3.2 (left) in standard

signal flow graph form.

2. The ARX model, i.e. AR with exogenous observed inputwt. In this case, the model becomes

dt =
m∑

k=1

akdt−k +
r∑

k=m+1

akwt−k+m+1 + et. (3.10)

The external input,wt, can be seen as a time-variant auxiliary variable,Wt, and the transformation

set,g = [g1, . . . , gr]
′, is defined as:

xi;t = gi (Dt−1,Wt) =

{
dt−i i = 1, . . . ,m
wt−i+m+1 i = m+ 1, . . . , r

.

Remark 3.1 (Order of an AR model) The choice of g (Dt) does not imply that the regressor must

contain all historical values. Such a formulation would not be tractable. Typically, only a finite length
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Figure 3.2.:Signal flow graphs of the AR (left) and EAR (right) models.

of historical data is used: xt = g (dt−1,dt−2, . . . ,dt−q). The maximum delay, q, of an observation

used in the regression will be called the order. It follows that (3.3) is valid only for t > q. Specifically,

for the univariate AR model (3.9) q = r.

Remark 3.2 (Classical approach)In the classical literature, a univariate case is usually considered,

i.e. p = 1. The classical solution to this problem is based on the prediction-error criterion. The pre-

dictor is a Wiener filter with unknown coefficients. Parameter estimates are obtained by solution of the

normal equations. Two principal approaches to its solution are the covariance and correlation methods

respectively [45]. There are many techniques for the numerical solution of these equations, including

recursive ones, such as the Recursive Least Squares (RLS) algorithm [58].

The problem of Bayesian inference is to find posterior distributions of the unknown, real parameters,Ω
andA, of this model. Combining (3.3), and (3.7) we obtain the conditional distribution of observations,

dt:

f (dt|A,Ω,xt) = N
(
Axt,Ω−1

)
. (3.11)

Inference of the unknown parametersΩ andA follows from Bayes’ rule:

f (A,Ω|Dt, Xt) ∝ f (dt|A,Ω, Xt−1) f (A,Ω|Dt−1, Xt) . (3.12)

The model (3.11) belongs to the exponential family, and so both a conjugate prior and sufficient

statistics are available (Section 2.1.2). The conjugate distribution of parameters for (3.11) is of the

Normal-Wishart (NW) type [10]:

NWA,Ω (V, ν) ≡ |Ω|
1
2
ν

ζNW (V, ν)
exp

{
−1

2
Ω [−Ip, A]V [−Ip, A]′

}
, (3.13)

ζNW (V, ν) = Γp

(
1
2

(ν − r + p+ 1)
)
|Λ|−

1
2
(ν−r+p+1) ×

|Vaa|−0.5p 20.5p(ν+p+1)π
r
2 , (3.14)

V =

[
Vdd V ′ad

Vad Vaa

]
, Λ = Vdd − V ′adV

−1
aa Vad, (3.15)
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3.2. The Multivariate AutoRegressive (AR) Model

with Vdd being thep×p upper-left sub-block of matrixV . V, ν are the sufficient statistics ofNWA,Ω (·).
Γp

(
1
2ν
)

is the Multi-Gamma function

Γp

(
1
2
ν

)
= π

1
4
p(p−1)

p∏
j=1

Γ
{

1
2

(ν − j + 1)
}
,

with Γ (·) baing the Gamma function [71].

In this Section, we are concerned with on-line identification, i.e. we evaluate distribution (3.13) at

each timet > q. We will distinguish statistics at each time moment by subscriptt, i.e. Vt, νt. If the

variable already has a subscript, this time index will be separated from it by a semi-colon, e.g.Vdd;t.

The statistics of the conjugate prior distribution,V0, ν0, are chosen to reflect our initial knowledge

of parameters. If we do not have any preference, we use a very flat (non-committal)NW distribution.

Typically V0 = εIp+r, where andε is a small positive scalar. We chooseν ≥ r − 2 in order that the

normalizing constant (3.14) be finite.

Substituting (3.11) into (3.12) and invoking (3.13) at timet−1, then the posterior distribution at time

t > q is

f (A,Ω|Dt, Xt) = NWA,Ω (Vt, νt) , (3.16)

Vt = Vt−1 +
[
dt

xt

]
[d′t,x

′
t] = Vt−1 + yty

′
t = V0 +

t∑
i=q+1

yiy
′
i, (3.17)

νt = νt−1 + 1 = ν0 + (t− q) . (3.18)

Here,

yt =

[
dt

xt

]
=

[
dt

g (Dt−1,Wt) ,

]
, (3.19)

is the extended regression vector. The outer product,yty
′
t will be called adyad in this thesis. The

history of the extended regressor will be denoted byYt = [y1, . . . ,yt]. Since the recursion begins at

t = q + 1, Vq andνq are chosen to beVq = V0 andνq = ν0. This is equivalent to choosing the

distribution on parameters to be stationary for0 ≤ t ≤ q, of the form given by prior. Finally, from

(3.18), noteνt acts as a counter of incoming data samples.

Remark 3.3 (Moments of the distribution) Note, from Appendix A.2, that the mean values of poste-

rior distribution (3.13) are

Ât = V ′ad;tV
−1
aa;t, (3.20)

Ω̂t =
1

νt − r + p+ 1
Λ−1

t . (3.21)

3.2.1.1. Computational Issues

The Bayesian posterior estimates presented above are closely related to approaches available in the

signal processing literature. Key properties are now summarized:
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1. (3.20)–(3.21)—evaluated via recursions (3.17, 3.18)—are algorithmically identical to the covari-

ance method [45], and are valid,∀t > q, as derived.

2. Vt (3.15), (3.17) is asymptotically Toeplitz, and so (3.20) becomes algorithmically the same as the

correlation method ifft→∞. Only then do the computational benefits of Toeplicity accrue to the

Bayesian approach, namely ease of updating and storage ofr rather thenr (r + 1) /2 numbers.

While this simplification is popular in real-time applications such as audio processing [72], it is

unreliable fort small and/or for non-stationary data.

3. A numerically efficient solution to (3.17), (3.20) is based on the LD decomposition [73], i.e.Vt =
LtTtL

′
t, whereLt is lower triangular andTt is diagonal. The update of the sufficient statistics

(3.17) is replaced by recursions onLt andTt [74]. This approach is superior to accumulation of

the full matrixVt for the following reasons:

a) Compactness: all operation are performed on triangular matrices, i.e.(r + p) (r + p) /2
values, compared to(r + p)2 for full Vt.

b) Computational Efficiency: the estimation update requiresO
(
(r + p)2

)
operations in each

step to re-evaluateLt, Tt, followed by evaluation of the normalizing coefficient (3.14) with

complexityO (r + p) and finally evaluation of (3.20) with complexityO
(
(r + p)2

)
. In

contrast, operations (3.14) and (3.20) are ofO
(
(r + p)3

)
for full matrix Vt. Implementa-

tion of the update with full matrixVt using the matrix inversion lemma [16, 58] is of the

same complexity as using the LD decomposition.

c) Regularity: elements ofTt are certain to be positive, which guarantees positive-definiteness

of Vt. This property is unique to the LD decomposition.

3.2.1.2. Prediction

One of the main benefits of AR modelling of time series is its appropriatness for prediction of future

observations. The one-step-ahead predictive distribution is given by the ratio of normalizing coefficients

(3.14), a result established in general for the exponential family in [10]. For the AR model:

f (dt+1|Yt,xt+1) = (2π)−
1
2
ζNW

(
Vt + yt+1y

′
t+1, νt + 1

)
ζNW (Vt, νt)

, t ≥ q. (3.22)

This is the Student-t distribution withνt − r + p+ 1 degrees of freedom [16]. The mean value of this

distribution is readily found to be

E (dt+1|Yt) = Âtxt+1 = d̂t+1, (3.23)

which is equal to the intuitively appealing result from classical theory [45].

3.2.1.3. Model Structure Determination

The structure of the regression model is determined by choice of the set of transformation functions

g (Dt−1,Wt). This is the choice of the model designer. The problem of choice of the appropriate
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3.2. The Multivariate AutoRegressive (AR) Model

model is called model structure determination problem, treated in detail in [75]. We can assemble a

finite set of possibilitiesG = {g1, g2, . . . , gc}, wheregi denotes theith possible choice of regressor

structure. It is then necessary to calculate thea posterioriprobabilities of all cases inG. Using Bayes’

rule:

f (gi|Yt) ∝ f
(
Yt\q(i)|Yq(i), gi

)
f (gi) , i = 1, . . . , c, (3.24)

whereYt\q(i) =
[
yq(i)+1, . . . ,yt

]
, andq(i) is the longest data memory with respect toDt across all

functionsgi.

From (3.22):

f
(
Yt\q(i)|Yq(i), gi

)
= (2π)−

t−q(i)
2

t∏
j=q(i)+1

ζNW (Vj (gi) , νj)
ζNW (Vj−1 (gi) , νj−1)

= (2π)−
t−q(i)

2
ζNW (Vt (gi) , νt)
ζNW (V0 (gi) , ν0)

, i = 1 . . . c. (3.25)

Here, we use notationVt (gi) to emphasize the fact that the statisticsVt (3.17) are accumulated differ-

ently for each choice of the structuregi in G. In situations where it is clear which structure was used to

obtain the statistics, we will use the simplified notationVt.

Note that (3.24), (3.25) engenders Ockham’s Razor since the involved determinant term in (3.14)

penalizes candidates of greater complexity [13]. (3.24) provides a posterior inference for unknowng ∈
G, going the way towards relaxing the former restriction on regression models that the transformations

be known.

3.2.2. The Extended AutoRegressive (EAR) Model

In this section, we review the widest cass of models for which the algorithms in Section 3.2 remain valid.

The favourable algorithmic properties for the AR model are based on the elegant recursive form (3.17),

(3.18) of theNW sufficient statistics (3.13), and so this feature must be conserved under any extension.

We note that the posterior distribution remainsNW if the extended regressor,yt, is constructed from

yt =

[
yd;t

xt

]
=

[
gd (Dt,Wt)
gx (Dt−1,Wt)

]
= g (Dt,Wt) , (3.26)

as compared to (3.19). Here,yd;t denotes transformed data,dt, corresponding to the model

yd;t = Axt + Ω−
1
2et, (3.27)

dt = g−1
d (yt, Dt−1,Wt) . (3.28)

This model structure is illustrated in Figure 3.2 (right), see page 26. The distribution of observations is

now obtained by transformation of (3.11):

f (dt|A,Ω, Yt−1) = |Jt (dt)| N
(
−Ayt,Ω−1

)
, (3.29)
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whereJt is the Jacobian of transformationgd (·) (3.26); i.e. Jt (dt) = ∂gd
∂dt

∈ <p×p. This creates an

additional restriction thatgd (·) be a differentiable one-to-one (bijective) mapping for each setting of

Wt. Moreover,gd (·) (3.27) must explicitly be a function ofdt in order thatJt 6= 0. This ensures the

necessary uncertainty propagation fromet todt (Figure 3.2 (right)). In conclusion, Bayesian estimation

with this model is, by design, of the same form as for the AR model (3.13)-(3.18).

The EAR model class (3.29) includes the following important cases [16]:

1. An AR process with bijective known non-linear transformation of observations:dt = τ(yt).
The transformationg is then defined as the inverse of this non-linearity:gd (·) = τ−1 (·), and

gx (·) = τ−1 (·).

2. The ARMA model with aknownMA part, i.e. an AR model driven by coloured noise of known

covariance matrix. Transformationg is then the necessary pre-whitening filter on the collored

innovations. This process has a numerically efficient recursive identification [61].

3. The incremental AR process with the regression defined on increments of the measurement pro-

cess.

Both prediction and model structure identification must be adjusted for the observation model (3.29).

The marginal predictive distribution becomes, from (3.22),

f (dt+1|Yt,xt+1) = |Jt+1 (dt+1)| (2π)−
1
2
ζNW

(
Vt + yt+1y

′
t+1, νt + 1

)
ζNW (Vt, νt)

, (3.30)

and model structure identification is adjusted from (3.25) using (3.30), as follows:

f
(
Dt\q(i)|Dq(i), gi

)
= (2π)−

t−q(i)
2

t∏
j=q(i)+1

|Jj (dj)|
ζNW (Vj (gi) , νj)

ζNW (Vj−1 (gi) , νj−1)
,

= (2π)−
t−q(i)

2
ζNW (Vt (gi) , νt)
ζNW (V0 (gi) , ν0)

t∏
j=q(i)+1

|Jj (dj)| , i = 1, . . . , c.(3.31)

Remark 3.4 (Linear transformations) Note that iff Jacobian Jt (3.29) is independent of dt (i.e. iff

gd (·) (3.27) is a linear transformation), then (3.30) implies that the expected prediction is

d̂t+1 = g−1
d

(
−Âtxt+1

)
, (3.32)

in analogy with (3.23). Moreover, if the transformation gd (·) constitutes a simple scaling (i.e. yd;t =
αdt, so that Jt = α), this is further simplified to:

d̂t+1 = −Âtxt+1α
−1. (3.33)
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3.2. The Multivariate AutoRegressive (AR) Model

3.2.3. Modelling Time-Varying Parameters of Non-Stationary AR Models Using
Forgetting

The assumption of constant parameter values is rarely met in practice. In many applications, however, a

complete model of parameter variations is not known. The problem is then under-determined, obviating

the full Bayesian solution and leading to many heuristic techniques. The standard batch (off-line)

algorithm uses windowing [76]. Alternatively, the concept of forgetting [77] is used in adaptive signal

processing [78] and recursive estimation [58].

3.2.3.1. Explicit Modelling of Parameter Evolution

Non-stationarity of the parameters is handled by modellingθt = [At,Ωt] as a new random variable

for each timet. Then, the observation model (3.11),f (dt|θt, Yt−1,xt) , does not update the posterior

distribution of parameters at timet− 1, f (θt−1|Yt−1) . This can be overcome by the explicit modelling

of parameter evolution by a pdff (θt|θt−1, Yt−1) . The joint distribution is then

f (dt, θt|θt−1, Yt−1) = f (dt|θt, Yt−1) f (θt|θt−1, Yt−1) . (3.34)

The update of parameter distributions via (3.34),

f (θt, θt−1|Yt) ∝ f (dt, θt|θt−1, Yt−1) f (θt−1|Yt−1) , (3.35)

causes proliferation of random variables, in that a new random variableθt is introduced at each step.

Hence, the parameter distributions at timest andt− 1 have different functional forms, violating conju-

gacy. Therefore, computationally efficient on-line identification cannot be achieved.

θt−1 can be eliminated from (3.35) by marginalization:

f (θt|Yt) ∝ f (dt|θt, Yt−1,xt) f (θt|Yt−1) , (3.36)

f (θt|Yt−1) =
∫

θt−1

f (θt|θt−1, Yt−1) f (θt−1|Yt−1) dθt−1. (3.37)

The choice of the parameter evolution modelf (θt|θt−1, Yt−1) is discussed in [79]. Integration of (3.37)

is feasible, for example, for a random-walk process

f (θt|θt−1, S) = N (θt−1, S) , (3.38)

whereS is a covariance matrix of dimensionsp (2p+ r)×p (2p+ r), chosena priori. In many practical

situations, we may not have any guide about how to chooseS, and wrong choice may lead to poor

performance of the identification.

3.2.3.2. Modelling of Time-varying Parameters via Forgetting

As an alternative approach, the technique of forgetting was suggested in [79]. There, the explicit model

of parameter evolution (3.34), and the subsequent integration (3.37), are replaced via a probabilistic
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operator:

f (θt|Yt−1, φt) ∝
[
f (θt−1|Yt−1)θt

]φt × f t (θt|Yt−1)
1−φt . (3.39)

The notationf (·)θt
indicates the replacement of the argument off (·) by θt, whereθt is the time-

variant unknown parameter set at timet. f (·) is a chosen alternative distribution, expressing auxiliary

knowledge aboutθt at timet. Coefficientφt, 0 ≤ φt ≤ 1 is known as the forgetting factor. From (3.39),

the limits are interpreted as follows:

for φt = 1: prior information, at timet, about the new variableθt is identical to the posterior ofθt−1

at t− 1:

f (θt|Yt−1, φt) = f (θt−1|Yt−1)θt
.

This is consistent with the choiceθt = θt−1, i.e. the time-invariant parameter assumption.

for φt = 0: prior information, at timet, about the new variableθt is chosen as the alternative distribu-

tion:

f (θt|Yt−1, φt) = f (θt|Yt−1) .

This is consistent with the choice of independence betweenθt andθt−1, i.e.

f (θt, θt−1|Yt−1) = f (θt|Yt−1) f (θt−1|Yt−1) .

The forgetting factor is typically considered as fixed and it is chosen by the designer of the model. The

choise ofφt close to1 models slowly varying parameters. The choise ofφt close to0 models rapidly

varying parameters.

We require (3.39) to be conjugate to the observation model (3.11), i.e. belong to theNW family

(3.13). TheNW family is closed under the convex combining (i.e. geometric mean) in (3.39) yielding

another member of the same family. Therefore, theNW distribution with parametersV , ν is used as

the alternativef (·). It is typically chosen as a flat distribution, e.g. with the same parameter values as

the prior: V = V0, ν = ν0. Substituting (3.39) and (3.11) into (3.12) yields the following recursive

update of theNW statistics:

f (At,Ωt|Yt) = NWA,Ω (Vt, νt) , (3.40)

Vt = φtVt−1 + yty
′
t + (1− φt)V , (3.41)

νt = φtνt−1 + 1 + (1− φt) ν. (3.42)

Whenφt = 1, the update is identical to the stationary equations (3.17,3.18).

For the caseV0 = 0, ν0 = 0, andφt = φ constant, the method is known asexponential forgetting

because (3.41) implies a sum of dyads weighted by a discrete exponential sequence,

Vt =
t∑

i=q+1

φt−iyiy
′
i + V , (3.43)

νt =
t∑

i=p+1

φt−i
i + ν. (3.44)

32



3.3. Probabilistic Principal Component Analysis (PPCA)

This interpretation is helpful, since it provides an intuitive choice forφ, as follows.

Remark 3.5 (Intuitive choice of forgetting factor) Here, we compare the exponential forgetting tech-

nique with the windowing approach. First, we identify a stationary AR model on the observation win-

dow of h samples. We assume that the prior was chosen as regular, i.e. ν0 > q. Then the degrees of

freedom of the posterior distribution is from (3.18):

νh = h− q + ν0. (3.45)

Second, we identify a non-stationary AR model using exponential forgetting with ν = ν0, φ < 1.

This time, we assume that the identification is done on-line, i.e. based on large number of samples.

Then, from (3.44):

νh =
1− φt−q

1− φ
+ ν0

t→∞−→ 1
1− φ

+ ν0. (3.46)

Equating (3.45) and (3.46):

φ =
h− q − 1
h− q

= 1− 1
h− q

. (3.47)

The interpretation of this choice of φ is that it yields Bayesian posterior estimates for Ah and Ωh

which—under both scenarios—have an equal number of degrees of freedom in their uncertainty.

3.3. Probabilistic Principal Component Analysis (PPCA)

Principal Component Analysis (PCA) is one of the classical data analysis tools for dimensionality reduc-

tion. It is used in many application areas including data compression, de-noising, pattern recognition,

shape analysis and spectral analysis. For an overview of its use, see [80]. A typical example in DSP is

spectral analysis [1] or functional analysis of dynamic image data [81].

Probabilistic Principal Component Analysis (PPCA) [63] is a special case of the linear model (3.1),

(3.2), with the following assumptions:

M(r) = AX ′, r < min (p, n) , (3.48)

f (E|ω) = N
(
0p,n, ω

−1Ip ⊗ It
)
, (3.49)

where scalarω > 0 denotes precision, and other symbols have their usual meaning (Section 3.1), i.e.

D ∈ <p×n, A ∈ <p×r, X ∈ <n×r, E ∈ <p×n, andM(r) ∈ <p×n. Note that (3.48) is a special case of

(3.2) with restrictionr < min (p, n) and usingX ′, instead ofX, for notational simplicity in the sequel.

The restriction on rank,r, implies thatrank
(
M(r)

)
= r, which is explicitly denoted by subscriptM(r).

The original model of [63] contains an extra parameterµ, modelling a common mean value for the

columns,mi, of M(r). In this work, we do not impose the restriction of common mean value, i.e. we

assume that the common mean valueµ = 0p,1. This issue is further discussed in Section 6.5.

Model (3.1), complemented by (3.48), (3.49), yields:

f (D|A,X, ω, r) = N
(
AX ′, ω−1Ip ⊗ It

)
. (3.50)
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Inference of the parameters of the model (3.50) is now reviewed.

3.3.1. Maximum Likelihood Inference

The maximum (3.50), viewed as a function ofA,X andω, but with givenr (i.e. the likelihood function)

is reached for

M̂(r) = Ur;DLr,r;DV
′
r;D, , ω̂ =

pn∑p
i=r+1 l

2
D,i

. (3.51)

Here,Ur;D, andVr;D are the firstr columns of the matricesUD, andVD respectively, obtained from the

SVD [73]

D = UDLDV
′
D. (3.52)

Lr,r;D is ther × r upper-left sub-block of matrixLD.

Remark 3.6 (Rotational ambiguity) ML estimates ofA andX in (3.48), using (3.51), are notunique,

because (3.48) exhibits multiplicative degeneracy; i.e.:

M̂(r) = ÂX̂ ′ =
(
ÂT
)(

T−1X̂ ′
)

= ÃX̃ ′, (3.53)

for any invertible matrix, T ∈ <r×r. This is known as rotational ambiguityin the factor analysis

literature [47].

The method of Principal Component Analysis (PCA) was originally developed without any explicit

noise model [82]. Correspondence of PCA to ML estimation (3.51) of the PPCA model (3.50) was

shown later [47, 48]. We briefly review the connection between (3.51) and the classical PCA now.

The classical method of Principal Component Analysis (PCA) is concerned with projections ofp-

dimensional vectorsdi, i = 1, . . . , n, into anr-dimensional subspace. Optimality of the projection was

studied from both a maximum variation [83], and least squares [82] point-of-view. In both cases, the

optimal solution leads to eigen-decomposition of the sample covariance matrix

S =
1

n− 1
DD′ = UΛU ′, (3.54)

whereΛ = diag (λ) is a matrix of eigenvalues ofS, andU is the matrix of associated eigenvectors.

The columnsui, i = 1, . . . , r of U corresponding to the largest eigenvaluesλi, λ1 > λ2 . . . > λr, form

a basis for the optimal projection sub-space.

Consider the following decomposition of the ML estimate (3.51) of the linear model (3.50)

Â = Ur;D, X̂ = Lr,r;DV
′
r;D. (3.55)

From (3.52), it follows that

DD′ = UDLDV
′
DVDLDU

′
D = UDLDLDU

′
D. (3.56)
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3.3. Probabilistic Principal Component Analysis (PPCA)

Hence, comparing (3.54) with (3.56), and using (3.55), the following equalities hold:

Â = Ur;D = Ur;, LD = (n− 1)
1
2 Λ

1
2 . (3.57)

Equalities (3.57) formalize the relation between PCA and ML estimation of the PPCA model.

Remark 3.7 (Ad hocchoice of rank,r) Rank r has been assumed to be known a priori. If this is not

the case, many heuristic methods for selection of r exist [80]. One is based on asymptotic properties of

the noise. Specifically, from (3.1), (3.49):

EE

(
DD′) = EE

(
MM ′)+MEE

(
E′
)

+ EE (E)M ′ + EE

(
EE′

)
, (3.58)

= MM ′ + nω−1Ip.

Using the SVD decomposition, MM ′ = UML
2
MU

′
M , and noting the equality, UMU

′
M = Ip, then, from

(3.58), (3.56):

lim
n→∞

UDL
2
DU

′
D = UML

2
MU

′
M + nω−1UMU

′
M . (3.59)

It follows that limn→∞ UM = UD, and that

l2i;D =

l2i,M + nω−1 i ≤ r,

nω−1 i > r,
(3.60)

Hence, the index, î, for which the singular values li;D, i > î are constant is considered to be an estimate

of rank r. In finite samples, however, (3.60) holds only approximately. The estimate can be chosen

by visual examination of the graphed singular values [80], looking for the characteristick ‘knee’ in the

graph. In finite samples, it follows from (3.60):

1
p− r

p∑
i=r+1

l2i;D ≈ nω−1, (3.61)

p∑
i=1

l2i;D ≈
r∑

i=1

l2i;M + pnω−1. (3.62)

From ordering of singular values, l1;D > l2;D > . . . > lp;D, it follows that lp;D < 1
p−r+1

∑p
i=r l

2
i;D.

Hence, using (3.61), we assign an upper bound on ω, namely l2p;D < nω−1. From (3.62), it follows that∑p
i=1 l

2
i;D > pnω−1, forming a lower bound on ω. This leads to the following choice of interval for ω̂:

pn∑p
i=1 l

2
i;D

< ω̂ <
n

l2p;D

. (3.63)

3.3.2. Maximum A Posteriori Inference

An alternative inference of parameters of the PPCA model (3.50) do not maximize directly the like-

lihood (3.50), but complement (3.50) by a Gaussian prior onX, f (X) = N (0r,n, Ir ⊗ In) and

marginalize overX [48, 47]. The resulting maximum of the marginal likelihood, conditioned byr,
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is then reached for̂ω given by (3.51) and

Âr = Ur;D

(
L2

r,r;D − ω̂−1Ir
)
R. (3.64)

Here,Ur;D, Lr,r;D are given by (3.52), andR ∈ <r×r is any orthogonal (i.e. rotation) matrix. In this

case, indeterminacy of the model is reduced from an arbitrary invertible matrixT (3.53) to an orthogonal

matrixR. This reduction is a direct consequence of the restriction imposed on the model via the prior

onX.

3.3.3. Variational Bayes Inference

Bayesian inference of the parameters of the PPCA model (3.50) was considered in [7], using a VB

approximation (Section 2.2.4). The observation model (3.50) was complemented by the following

priors:

f (A|υ) = N
(
0p,r, Ip ⊗Υ−1

)
, (3.65)

f (X) = N (0r,n, Ir ⊗ In) , (3.66)

f (υi|α0, β0) = G (α0, β0) , i = 1, . . . , r, (3.67)

f (ω|ϑ0, ρ0) = G (ϑ0, ρ0) , (3.68)

whereΥ ∈ <r×r is a diagonal matrix of hyper-parameters,Υ = diag (υ), υ = [υ1, . . . , υr]
′, and

α0, β0, ϑ0, ρ0 are known scalar parameters. Complementing (3.50) by (3.65)–(3.68) the joint likelihood

is:

f (D,A,X,Υ, ω|α0, β0, ϑ0, ρ0, r) = N
(
AX,ω−1Ip ⊗ It

)
(3.69)

N
(
0p,r, Ip ⊗Υ−1

)
N (0r,n, Ir ⊗ In)

[G (α0, β0)]
r G (ϑ0, ρ0) .

The posterior distribution of the model parameters is then obtained using Bayes’ rule:

f (A,X,Υ, ω|D, r) =
f (D,A,X,Υ, ω|r)

f (D|r)
. (3.70)

Here, conditioning byα0, β0, ϑ0, ρ0, was dropped for brevity. Exact posterior inference from (3.70) is

not available.

Corollary 3.1 (Corollary 1 of Theorem 2.1) Consider the following conditionally independent factorization:

f̆ (A,X,Υ, ω|D, r) = f̆ (A|D, r) f̆ (X|D, r) f̆ (Υ|D, r) f̆ (ω|D, r) . (3.71)
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Using (3.70) and (3.71) in Theorem 2.1, the VB-marginals in (3.71) are found as follows:

f̃ (A|D, r) = N (µA, Ip ⊗ ΣA) , (3.72)

f̃ (X|D, r) = N (µX ,ΣX ⊗ It) , (3.73)

f̃ (υi|D, r) = G (αi, βi) , i = 1, . . . , r, (3.74)

f̃ (ω|D, r) = G (ϑ, ρ) , (3.75)

with the following VB-statistics:

µA = ω̂DX̂ ′ΣA, (3.76)

ΣA =
(
ω̂nΣX + ω̂X̂X̂ ′ + Υ̂

)−1
, (3.77)

µX = ω̂ΣXÂ
′D, (3.78)

ΣX =
(
ω̂pΣA + ω̂Â′Â+ Ir

)−1
, (3.79)

αi = α0 +
p

2
, i = 1, . . . , r, (3.80)

βi = β0 +
1
2
(
pΣA;i,i + â′iâi

)
, i = 1, . . . , r, (3.81)

ϑ = ϑ0 +
np

2
, (3.82)

ρ = ρ0 +
1
2
tr
((

D − ÂX̂
)(

D − ÂX̂
)′)

, (3.83)

+
1
2
ω̂−1

(
pΣAX̂

′X̂ + pnΣAΣX + nΣXÂ
′Â
)
.

In (3.81), notation ai denotes the ith column of matrix A, so that A = [a1, . . . ,an]. Â, X̂ , υ̂i and ω̂

denote the expectation with respect to the VB marginals (3.72)–(3.75), so that the associated moments

are: Â = µA, X̂ = µX , υ̂i = αi
βi

, and ω̂ = ϑ
ρ . The VB-statistics—µA, ΣA, µX , ΣX , α = [α1, . . . , αr]

′,

β = [β1, . . . , βr]
′, ϑ, and ρ—are evaluated via the VEM algorithm (Algorithm 2.2).

Remark 3.8 (Automatic Rank Determination (ARD) Property of VPCA) The VB-statistics α and

β can be used for rank selection. It is observed that for some values of the index, i, the posterior

expected values υ̂i = αi/βi converge to the prior value υ̂i → α0/β0. This can be explained via

prior domination, i.e. the observed data are not informative in those dimensions. Therefore, the rank

is determined as the number of υ̂i that are significantly different from the prior value α0/β0. This

observation will be called the as Automatic Rank Determination property (ARD)1.

Remark 3.9 (Laplace approximation) Estimation of the rank of the PPCA model via the Laplace

approximation (Section 2.2.2) was published in [84]. There, the parameter A was restricted by orthogo-

nality constraints A′A = Ir. The parameter X was treated in the same way as in the VB approximation

above, i.e. as a matrix random value with prior (3.66).

1In the machine learning community, it is known as the Automatic Relevance Determination property. In our case, however,
the relevance is with respect to the unknown rank.
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3.4. Functional Analysis of Medical Image Sequences (FAMIS)

Functional analysis of dynamic image data (i.e. sequences of images) is an established area in medical

imaging. Its aim is to visualize physiological function of biological organs in living creatures. The

physiological function is typically measured by volume of a physiological liquid involved in the process.

This liquid is marked by a contrast material (e.g. radiotracer) and a sequence of pictures is taken. The

key assumption is that there is no relative movement between the camera (e.g. scintigraphic) and the

imaged tissues. Under this assumption, the problem can be modelled as a special case of the linear

model (3.1), (3.2). The model is closely related to the FA model (3.6). The problem is described in [81]

as Factor Analysis of Medical Image Sequences (FAMIS), a nomenclature we will adopt, and review

briefly in this Section. Functional analysis is an example of the linear model where parameters have a

physical meaning. Therefore, naming conventions used in this area are rather specific. We will follow

these conventions, but the general conventions for linear models will be used when the models are

discussed in a wider context.

3.4.1. Physiological Model

The task is to analyze the sequence ofn images taken at timest = 1, . . . , n. Each image stored

column wise as ap-dimensional vector of observationsdt, while the whole sequence forms the matrix

D ∈ <p×n. It is assumed that each image in the sequence is formed from a linear combination ofr < n

images of the physiological organs. Formally,

dt =
r∑

j=1

ajxj;t + et, (3.84)

whereaj , j = 1, . . . , r are the underlying images of the physiological organs, known as thefactor

images, andxj;t is the weight assigned to thejth factor image at timet. The vector of weightsxj =
[xj;1, . . . , xj;n]′ is known as thefactor curveor theactivity curveof thejth factor image. The product

ajx
′
j is known as thejth factor. Vectoret models the observation noise.

The main application area of functional analysis is in nuclear medicine. In this context, additional

restrictions arise. Each pixel of the observation image is acquired as a count of radioactive particles.

This has the following consequences:

1. all pixels aggregated in the matrixD, are positive. The factor images,A, are interpreted as

observations of isolated physiological organs, hence, theajs are also assumed to be non-negative.

The factor curves,X, are interpreted as the variable activity of the associated factor images,

which, at each timet, acts to multiply each pixel by the same amount. Therefore, thexjs are

assumed to be non-negative:

ai,j ≥ 0, i = 1, . . . , p, j = 1, . . . , r, (3.85)

xi,j ≥ 0, i = 1, . . . , r, j = 1, . . . , n.
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2. the observed data are known to be Poisson-distributed:

f (di;t) = Po

 r∑
j=1

ai;jxj,t

 , i = 1, . . . , p, j = 1, . . . , n. (3.86)

However, inference of model parameters with this distribution is analytically intractable.

Analysis of the sequence is traditionally decomposed in sub-problems which are solved independently.

The basic steps are [81]: (i) data pre-processing, (ii) orthogonal analysis, and (iii) oblique analysis.

3.4.2. Data pre-processing

The aim of the pre-processing step was to transform the data model into the PPCA model (3.50). The

first task is to approximate the intractable Poisson distribution by a suitable replacement. The problem

has been studied theoretically [85, 86, 87, 88], and it was concluded that, asymptotically, the data

distribution may be approximated by a Gaussian:

f (D|A,X,Ωp,Ωn) = N
(
AX ′,Ω−1

p ⊗ Ω−1
n

)
. (3.87)

whereAX ′ models the mean value of the signal, andΩp ∈ <p×p, Ωn ∈ <n×n are positive-definite

precision matrices. (3.87) implies the following additive decomposition:D = AX + E, hence it is

another case of the linear class (3.1), (3.2). If the covariance matricesΩ−1
p andΩ−1

n are knowna priori,

the data may be pre-processed as follows:

D̃ = Ω
1
2
pDΩ

1
2
n . (3.88)

Here,Ω
1
2
p denotes the matrix square-rootΩ

1
2
p Ω

1
2
p = Ωp [73]. Then,D̃ can be modelled by the proba-

bilistic PCA model (3.50)

f
(
D̃|A,X,Ωp,Ωn

)
= N

(
Ω

1
2
pAX

′Ω
1
2
n , Ip ⊗ In

)
,

using elementary properties of the matrix Normal distribution (Appendix A.1, equation (A.3)). The

whitening operation (3.88) is known in the factor analysis literature asscaling.

The optimal scaling for the Poisson distribution (3.86) is known ascorrespondence analysis[89]:

d̃i,j =
di,j(∑p

k=1 dk,j .
∑n

l=1 di,l

) 1
2

. (3.89)

This corresponds to choosing diagonal matrices,

Ωp = diag (D1n,1)
−1 , (3.90)

Ωn = diag
(
D′11,p

)−1
,

in the asymptotic model (3.87), whereD is the observation matrix.
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Appropriatness of the correspondence analysis for the medical sequences was experimentally com-

pared with otherad hocscaling techniques in [90].

3.4.3. Orthogonal analysis

Following the pre-processing, the transformed data,D̃, may be modelled using the PPCA model (3.88).

From now on, it is assured that the data,D, has been pre-processed in this way (i.e. we drop the tilde

fro notational conventions). Next, the problem is to find a low rank representation ofD, i.e. to infer

parametersA andX. Traditionally, inference ofA andX is addressed using the ML approach, as

reviewed in Section 3.3. However, this approach is not sufficient as it does not provide a solution to the

following problems:

Number of relevant factors: the ML solution is available only if the number of relevant factors,

r, is knowna priori. Various methods for selection ofr—based on both ad-hoc and formal

criteria—are available [80]. However, the problem is typically neglected in functional analysis

as it is assumed thatr may be reasonably guessed from thebiological knowledge. However, this

assumption is valid only for healthy organs. If the organs are damaged, the number of factors in

the sequence can increase significantly, and indeed, become a key indicator in the diagnostics of

disease states.

Rotation: the probabilistic PCA model does not impose restrictions of positivity on its parameters.

The ML solution,Â andX̂, is confined only to the sub-space spanned by the columns ofM̂(r)

(3.53) (Remark 3.6). Uniqueness of the solution is assured if the parametersA andX are orthog-

onal matrices, this will be studied in Section 6.3.1.

It is assumed that the optimal positive-constrained solution is found close to ther-dimensional sub-

space inferred by the ML solution (3.53). Therefore, in this step, the orthogonal solution (3.55) is

evaluated and rotation towards the physiological factors is addressed in the next step.

3.4.4. Oblique analysis

In this step, the physiologically restricted solution is being searched close to the optimal sub-space

(3.53), identified in the previous step. Physiological restrictions of a general nature may be imposed,

such as positivity (Section 3.4.1). Alternatively, specific biological knowledge may be used to rotate to

valid physiological factors [87]. Extensive discussion on these restrictions can be found in [91].

Uniqueness of decomposition (3.2) under the assumption of positivity ofA andX (3.85) was studied

in [92]. It was concluded that the decomposition is unique if there exists at least one pixel,ai,j , in each

factor image,aj , for which all corresponding pixels in the remaining factor images are equal to zero:

∀j = 1, . . . , r, ∃i : ai;j > 0 ⇒ ai;k = 0, ∀k = 1, . . . , r, k 6= j.

This assumption is known assimple structure. An algorithm for rotation of the orthogonal estimates

towards valid physiological factors was published in [91], by exploiting this uniqueness property.
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3.4.5. The FAMIS model

The name “factor analysis” usually denotes the method of inference of parameters,A, X, andω of the

model (3.50). Therefore, we denote (3.50) as the factor analysis model. In the same spirit, we define

the FAMIS model now.

The basic model used for functional analysis is the probabilistic PCA (3.50) with additional assump-

tion on the noise (3.87) and positivity of all elements ofA andX. These extensions are handled

independently as pre-processing (Section 3.4.2) and oblique analysis (Section 3.4.4) respectively. This

can be summarized in a unified model as

f (D|A,X,Ωp,Ωn) = N
(
AX ′,Ω−1

p ⊗ Ω−1
n

)
, (3.91)

where the covariance matricesΩn, Ωp are considered known. However, this is rarely true in practice.

The presented method—i.e. scaling (3.90)—is optimal for a large number,n → ∞, of samples. We

seek a solution that is optimal in finite number of samples.

Hence, we now consider covariance matrices,Ωp and Ωn, asunknownparameters with diagonal

structureΩp = diag (ωp) , ωi,p > 0, i = 1, . . . , p, andΩn = diag (ωn) , ωi,n > 0, i = 1, . . . , n.

This has the following consequences:

• The measured data are corrupted by additional artefacts that are considered as noise from med-

ical point-of-view. The relaxation of knownΩp, Ωn allows these artefacts to be captured, and

modelled as noise. This should lead to a better signal and noise separation.

• The assumption of diagonality is similar to that of the Factor Analysis (FA) model (3.6). In

consequence, inference of the FA model parameters yields a signal and noise separation in such

a form that the correlated part of the data is taken as the signal, and the uncorrelated part as the

noise2 [47].

• Identification of the model with unrestricted precision matrices is not feasible because the number

of parameters is then higher than number of available data. The introduced restriction ( covariance

in the form of Kronecker product and diagonality) keeps the number of estimated parameters well

below the number of available data.

• Approprietness of the method may be compared with the asymptotic result (3.90). If the under-

lying assumptions are valid, the expected value ofΩp andΩn should be similar to (3.90).

Inference of model parameters in (3.91) is, again, analytically intractable.

3.5. Open problems

In this Chapter, we have presented a review of linear models. Special cases of the linear model—of con-

cern in this thesis—were reviewed in detail. Namely, the AutoRegressive (AR) model (Section 3.2), the

2This may not be appropriate for some applications in medical imaging. In such cases, other restrictions on the precision
matricesΩp, andΩn must be introduced.
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Probabilistic PCA (PPCA) model (Section 3.3), and the Factor Analysis for Medical Image Sequences

(FAMIS) model (Section 3.4). For these models, a numerically efficient inference of parameters is

available under the following restrictive assumptions, respectively:

AR model: the full Bayesian inference is available under assumptions of: (i) known transformation

of the system output (Section 3.2.2), and (ii) stationary or slowly-varying parameters (Section

3.2.3).

PPCA model: computationally efficient inference is achieved for the ML and MAP inferences under

the assumption of known rank (Section 3.3). The approximate Bayesian inference of the PPCA

model (Section 3.3.3) is computationally expensive.

FAMIS model: in order to achieve tractability, the parameter inference is done in three steps (Section

3.4): (i) data pre-processing, (ii) orthogonal analysis, and (iii) oblique analysis. The Bayesian

solution is available only for the orthogonal analysis, which is identical to the PPCA problem. The

remaining two steps, and indeed the overall problem, has not been addressed from the Bayesian

perspective yet.

The aim of this thesis is to relax the above mentioned restrictions and derive numerically tractable

inference algorithms for parameter identification in each case. We study the following special cases:

Unknown observation transformation (AR): The parameter inference is analytically tractable if

the transformationg is known (Section 3.2.2). Note that modelling of the observation transfor-

mationg via an additional linear model is known as the state-space approach [58]. In our forth-

coming approach, we do not impose any model ong. We seek a numerically efficient inference

algorithm for the model with an unknowng.

Non-stationary parameters (AR): can be modelled by means of the forgetting operator (Section

3.39). The technique of forgetting itself is an optimized approximation of the intractable model

involving posterior distributionf (θ|Dt−1) and alternativef (θ|Dt) [79]. The analytical solution

is preserved if the forgetting factor,φt, is known at each timet, a priori. Typically, it is chosen as

time-invariant known constantφt = φ. This is appropriate only for processes with slowly varying

parameters. We seek a numerically efficient inference algorithm for the model with an unknown

φt. This would greatly extend the tracking abilities of the inference algorithm for non-stationary

AR processes with rapid variations of parameters.

Inference of rank (PPCA): (i.e. number of relevant principal components) is not provided by the

ML approach. It can be obtained using Variational Bayes approximate inference for the PPCA

model (VPCA) (Section 3.3.3). The computational load of the VPCA algorithm is, however,

much higher than that associated with the ML or MAP solution. Moreover, VPCA provides only

a point estimate of the rank. In this case, we seek a numerically efficient Bayesian inference of

all posterior densities, including distribution for the rank.
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Unknown scaling and rank (FAMIS): the standard solution is based on assumptions of (i) known

scaling for the pre-processing step, and (ii) known rank (number of relevant factors) for the or-

thogonal analysis step. The second assumption have been already relaxed since orthogonal anal-

ysis is achieved using (Probabilistic) PCA. However, the chosen VB approximation allows to

develop a joint identification procedure for the whole model.

For each of these problems we will derive: (i) an analytical analysis of the correct Bayesian solution and

justification of the VB approximation; (ii) a Variational Bayesian inference; (iii) a numerically efficient

inference algorithm (or, at least, a discussion of this topic); and (iv) experiments on simulated or real-

life data. In general, progress in all these tasks will be achieved using the ‘gateway’ of the Variational

Bayes (VB) approximation.
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Chapter 4.

Mixture-Based Extension of the EAR (MEAR)
model

The Extended AutoRegressive model was introduced in Section 3.2.2. The model was designed to ex-

tend modelling abilities of the AR model (Section 3.2). This is achieved under the assumption of known

and stationary transformationg. In this Chapter, we relax this assumption using a probabilistic mixture

approach. Our approach is similar to those in [46, 62]. OUr aim is to achieve recursive identification of

the EAR model parameters,A,Ω, for a wide class of transformations and distortions.

4.1. The MEAR Model

Following the Bayesian methodology, we treat the unknowntime-varianttransformation,gt, as a prob-

ability entity, γt, drawn from a space,G, of candidates. The conditional distribution (3.29) is then

replaced by the marginal

f (dt|A,Ω, Dt−1) =
∫
G
f (dt|A,Ω, Dt−1,γt) f (γt|A,Ω, Dt−1) dγt, (4.1)

where, tacitally, a continuous space is assumed. Evaluation of this distribution is usually prohibitive

because the spaceG may be extremely rich (recall that the EAR model allows for arbitrary, smooth,

non-linear functions with dynamics (Section 3.2.2)). The challenge is to restrict the spaceG and reach

algorithmically affordable complexity. We assume thatG may be partitioned into a finite number,c, of

disjoint subsets:

G =
c⋃

i=1

Gi. (4.2)

Moreover, we assume that the partition can be designed to ensure that effects of all filters in any one

subset,Gi, are very similar. This requirement is summarized in the following conditional independence

property for (3.29):

f (dt|A,Ω, Dt−1,γt ∈ Gi) ≈ f (dt|A,Ω, Dt−1, gi) , (4.3)
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wheregi ∈ Gi is a representative transformation in the subsetGi. Substituting (4.3) into (4.1), it follows

that:

f (dt|A,Ω, Dt−1) ≈
c∑

i=1

αi (A,Ω, Dt−1) f (dt|A,Ω, Dt−1, gi) (4.4)

= f (dt|A,Ω, Dt−1, G) , (4.5)

where

αi (A,Ω, Dt−1) =
∫
Gi

f (γt|A,Ω, Dt−1) dγt, (4.6)

G = {gi, i = 1, . . . , c} . (4.7)

(4.4) is a probabilistic mixture with components,f (dt|A,Ω, Dt−1, gi), with respective weightsαi (A,Ω, Dt−1)
which are data- and, thus, time-dependent. Note, trivially, that

f (dt|A,Ω, Dt−1) = f (dt|A,Ω, Dt−1,γ ∈ G) .

Then, from (4.4):

f (dt|A,Ω, Dt−1,γ ∈ G) ≈ f (dt|A,Ω, Dt−1, G) .

Hence, approximation (4.4) is valid iff the setG is chosen to satisfy certainty equivalence [20]. (4.7)

constitutes afilter-bankdesigned in such a way as to meet this certainty equivalence requirement.

The integral (4.6) can be evaluated only if the partitionGi is available explicitly. In many practical

cases, this will prove difficult to achieve. Therefore, we propose—following the Bayesian methodology—

to model the uncertain quantityαi (4.4) by a probabilistic model. We introduce a labelling transforma-

tion:

li (γt) =

1 γt ∈ Gi,

0 γt /∈ Gi,
i = 1, . . . , c. (4.8)

That can be written in a vector form asl (γt) = [l1 (γt) , . . . , lc (γt)]
′. From (4.2), it follows that

l (γt) ∈ {e1, . . . , ec}, where

ei = δc (i) = [δ (i− 1) , δ (i− 2)) , . . . , δ (i− c)]′ , i = 1, . . . , c.

ConsideringGi as unknown, we can define a new random variablelt ≡ l (γt), with pdf:

f (lt = ei|·) = Pr (γt ∈ Gi|·) =
∫
Gi

f (γt|·) dγt. (4.9)

Note that the last term in (4.9) is in the form of the mixture weight (4.6). Hence, using (4.9), we can

assign

αi (A,Ω, Dt−1) = f (lt = ei|A,Ω, Dt−1,Gi) . (4.10)

However, the weight (4.10) requires an explicit model of the spaceGi. This is prohibitive from

a computational point of view. Therefore, most of the literature on statistical mixtures (e.g. [25])
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approximates

f (lt|A,Ω, Dt−1) ≈ f (lt|α) = Mult (α) ,

i.e. a multinomial distribution with time-invariant vector parameterα = [α1, . . . , αc]
′. This yields a

mixture model with stationary weightsαi (A,Ω, Dt−1) = αi. This assumption is however, not realistic

for non-stationary processing. We address the problem as follows.

Proposition 4.1 (Markov weights) Variable lt constitutes a hidden field which we model via a first-

order Markov chain with transition matrix T ∈ [0, 1]c×c :

αi (A,Ω, Dt−1) ≈ f (lt|T, lt−1) = Mult (T lt−1) =
c∏

i=1

c∏
j=1

t
li;tlj;t−1

i,j ; (4.11)

i.e. Pr (lt = ei|T, lt−1 = ej) = ti,j , the ijth element of T . Mult (·) denotes the multinomial distribu-

tion.

Recall, from Section 3.2, that the Extended AR (EAR) model is an AR model on transformed data:

yd;t = Axt + Ω−
1
2et,

xt = gx (Dt−1,Wt) .

For algebraic simplicity, we have introduced an extended regressor,yt = [yd;t,xt] = g (Dt−1,Wt),
which is dependent on the transformationg (·). In this Chapter, the time-invariant transfromationg (·)
was replaced by a filter-bankG = [g1, . . . , gc]. The regressor corresponding to theith transformation

will be denoted as follows:

yi,t = gi (Dt−1,Wt) , i = 1, . . . , c. (4.12)

The history of the regressor—which is used mostly in contitioning part of the posterior pdfs—is adapted

to Yt =
[[
y′1,1, . . . ,y

′
c,1

]′
, . . . ,

[
y′1,t, . . . ,y

′
c,t

]′]
. Intuitively, it denotes the knowledge of all observed

data under all considered transformations.

Substituting (4.11), into (4.4), the observation model is

f (dt|A,Ω, T, Yt−1, G, lt−1) =
c∑

i=1

c∏
j=1

t
lj;t−1

i,j f (dt|A,Ω,yi,t, G) , (4.13)

where the conditioning setA,Ω, Yt−1, G has been augmented byT, lt−1.

4.2. Bayesian Formulation

Consider the joint distribution of the observationdt and the labellt:

f (dt, lt|A,Ω, T, Yt−1, G, lt−1) = f (dt|A,Ω, Yt−1, G, lt) f (lt|T, lt−1) . (4.14)

Then, the marginal distribution of (4.14) overlt is the observation model (4.13). Next, consider the

posterior distribution of model parameters of (4.14) at timet − 1, i.e.f (A,Ω, T, lt−1|Dt−1, G). This
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is updated by (4.14) according to Bayes’ rule:

f (A,Ω, T, lt, lt−1|Yt, G) ∝ f (A,Ω, T, lt−1|Yt−1, G) f (dt, lt|A,Ω, T, lt−1, Yt−1, G) . (4.15)

The update introduces, at each step, an extra random variable,lt. Hence, the parameter distributions

at timest and t − 1 have different functional forms, violating conjugacy. Aftert updates,t random

variables will have been generated, withct possible states. This scenario has been used in the off-line

case [46], but it is unsuitable for on-line identification.

The exponential explosion of terms, described above, is overcome via the following conditional in-

dependence approximation of the posterior distribution at timet (4.15):

f̆ (A,Ω, T, lt, lt−1|Yt, G) = f̆ (A,Ω, T |Yt, G) f̆ (lt|Yt) f̆ (lt−1|Yt) , (4.16)

where thef̆ (·) denote ‘wildcard’ approximating distribution. Using (4.16) at botht andt − 1 (i.e. for

the first two terms in (4.15) respectively), we see thatf̃ (A,Ω, T |Yt) is updated in the step fromt − 1
to t independently of the label sequencelt, avoiding the exponential explosion.

4.3. Variational Bayes (VB) Approximation

The conditional independence (4.16) is the underlying assumption of the VB approximation method

(Section 2.2.4). In order to achieve conjugacy-based recursive identification, we seek a posterior dis-

tribution on parameters,A,Ω, T , at timet − 1 to be of the same form as at timet. The functional

optimization achieved by the VB approximation allows us to choose the posterior distribution conju-

gate to the VB-optimized observation model (Section 2.3.3).

4.3.1. VB-conjugate Prior

Let the distribution of model parameters at timet − 1 to be of the form (4.16). It is updated by the

extended observation model (4.14) to yield the posterior distribution (4.15). Taking the logarithm of the

joint distribution, then

ln f (dt, lt, A,Ω, T, lt−1|Yt−1,xt, G) =
c∑

i=1

li,t

ln f (dt|A,Ω,xi;t, gi;t) +
c∑

j=1

lj,t−1 ln ti,j

(4.17)

+ ln f̆ (A,Ω, T |Yt−1) + ln f̆ (lt|Yt−1) + ln f̆ (lt−1|Yt−1) .
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Using Theorem 2.1 for (4.17) with restrictions (4.16), the VB-approximate distribution onA,Ω, T is

found to be

f̃ (A,Ω, T |Yt) ∝ exp

(
c∑

i=1

l̂i,t

ln f (dt|A,Ω,yi,t, gi,t) +
c∑

j=1

l̂j,t−1 ln ti,j


+ ln f̆ (A,Ω, T |Yt−1)

)
, (4.18)

∝ f̆ (A,Ω, T |Yt−1)
c∏

i=1

f (dt|A,Ω,yi,t, gi,t)
bli,t c∏

i=1

c∏
j=1

t
bli,tblj,t−1

i,j . (4.19)

The expected valueŝli;t of f̃ (lt|Yt) and will be evaluated shortly. These approximate distributions oflt

andlt−1 are found in the form

f̃ (lt|Yt) = f̆ (lt|Yt−1)
c∏

i=1

η
li;t
i;t , (4.20)

f̃ (lt−1|Yt) = f̆ (lt−1|Yt−1)
c∏

i=1

κ
li;t−1

i , (4.21)

ηi;t = exp
[
EA,Ω,T lt−1

(
− 1

2
tr
(
Ω [−Ip, A]

[
yi,ty

′
i,t

]
[−Ip, A]′

)
+

c∑
j=1

lj,t−1 ln ti,j
)

+ ln |Jj,t|
]
,

κi;t = exp

ET,lt

 c∑
j=1

lj;t ln tj,i

 ,
whereηi;t andκi;t, i = 1, . . . , c are statistics of distributions (4.20) and (4.21) respectively.

In order to achieve tractable recursive identification we want to choose approximate distributions

f̃ (·) to be closed under these VB updates (i.e. VB-conjugacy, Section 2.3.3). We note the following:

• if f̆ (A,Ω, T |Yt−1) is chosen in the form̃f (A,Ω|Yt−1) f̃ (T |Yt−1)—i.e. with independence be-

tween the AR parametersA,Ω and weightsT—the approximate posterior (4.19) is also indepen-

dent.

• parametersA,Ω are present in the VB-approximate observation model (4.19), only via the condi-

tioning part of the distribution of datadt. This distribution is the product of Normal distributions

being therefore a Normal distribution. Hence,f̆ (A,Ω|Yt−1) of the Normal-Wishart type is con-

jugate to it.

• parameterT is present in (4.19), only via the product of multinomial distributions which is also a

multinomial distribution. Hence,̆f (T |Yt) of the Dirichlet type is conjugate to it.

• both f̆ (lt|Yt−1) andf̆ (lt−1|Yt−1) in (4.20) and (4.21) are self-replicating if they are chosen as

Multinomial.
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• f̆ (lt|Yt−1) is, in fact, the prior distribution onlt, aslt was not considered in previous updates.

We choose it to be uniform on[1, . . . , c], i.e.Mult

(
c−11p,1

)
.

This VB-conjugate approximate distribution (4.16) is then of the form:

f̃ (A,Ω, T, lt, lt−1|Vt−1, νt−1,Φt−1) = NWA,Ω (Vt−1, νt−1)DiT (Φt−1)

Mult

(
c−11p,1

)
Mult−1 (wt−1) . (4.22)

Here,NWA,Ω (Vt−1, νt−1) is the Normal-Wishart distribution with statisticsVt−1 andνt; DiT (Φt−1)
denotes the Dirichlet distribution with statisticsΦt−1 ∈ <c×c, Appendix A.3; andMult−1 (wt−1)
denotes the Multinomial distribution with statisticswt−1 ∈ <c×1.

4.3.2. VB-optimized Posterior Distribution

Substituting (4.22) into (4.15) yields the following joint distribution:

f (dt, lt, lt−1, A,Ω, T |Yt) =

(
c∏

i=1

f (dt|A,Ω,yi,t, gi,t)
li;t

) c∏
i=1

c∏
j=1

t
li,tlj,t−1

i,j

DiT (Φt−1)

NWA,Ω (Vt−1, νt−1)Mult

(
c−11p,1

)
Mult−1 (wt−1) . (4.23)

Corollary 4.1 (Corollary 1 of Theorem 2.1) Using (4.16) and (4.23) in Theorem 2.1, the VB-optimal

form of (4.16) is found via the following assignments:

f̃ (A,Ω|Yt) = NWA,Ω (Vt, νt) , (4.24)

f̃ (T |Yt) = DiT (Φt) , (4.25)

f̃ (lt|Yt) = Mult (wt) , (4.26)

f̃ (lt−1|Yt) = Mult−1 (ut) , (4.27)

with VB-statistics

Vt = Vt−1 +
c∑

j=1

l̂j,tyj,ty
′
j,t, (4.28)

νt = νt−1 + 1, (4.29)

Φt = Φt−1 + l̂tl̂′t−1, (4.30)

wi;t ∝ |Ji;t| exp
[
−1

2
y′i,t

[
−Ip, Â

]′
Ω̂
[
−Ip, Â

]
yi,t

−1
2
py′i,tV

−1
aa;tyi,t +

c∑
j=1

l̂j;t−1 l̂n ti,j
]

(4.31)

ui;t ∝ wi;t−1

c∑
j=1

l̂j;t l̂n tj,i (4.32)

The constants of proportionality in (4.31), and (4.32) follow from normalizations,
∑c

j=1wj,t = 1,

and
∑c

j=1 uj,t = 1, respectively. Moments of (4.24), i.e. Â = EA|Vt,νt
(A) and Ω̂ = EΩ|Vt,νt

(Ω),
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are given by (3.20) and (3.21) respectively. The moment of (4.25) required for (4.31), (4.32), i.e.

l̂n ti,j = ET |Φt
(ln ti,j), is given in Appendix A.3, namely (A.22). The first moment of (4.26) and (4.27)

are l̂t = [w1;t, . . . , wc;t] and l̂t−1 = [u1;t, . . . , uc;t] respectively.

Proof: Logarithm of the joint distribution (4.23) is:

ln f (dt, lt, lt−1, A,Ω|α, Yt) = (4.33)

=
c∑

i=1

li;t

ln f (dt|A,Ω,yi,t, gi,t) +
c∑

j=1

lj;t−1 ln ti,j

 (4.34)

+ lnNWA,Ω (Vt−1, νt−1) + lnDit (Φt−1) + lnMult (wt−1) ,

= −r
2

ln (2π) +
1
2

ln |Ω|+
c∑

i=1

li;t

ln |Ji,t|+
c∑

j=1

lj;t−1 ln ti,j


+

c∑
i=1

li;t

[
−1

2
tr
(
Ω [−Ip, A]

[
yi,ty

′
i,t

]
[−Ip, A]′

)]
+

1
2
νt−1 ln |Ω| − ln ζNW (Vt−1, νt−1)−

1
2
Ω [−Ip, A]Vt−1 [−Ip, A]′

− ln ζDi (Φt−1) +
c∑

i=1

c∑
j=1

φi,j;t−1 ln ti,j +
c∑

i=1

li,t−1 lnwi;t−1.

From Theorem 2.1, distributions (4.24) and (4.25) are obtained as proportional to exponential of the

expected value of (4.33) over̃f (lt|dt, Yt). As (4.33) is linear inlt and lt−1, the expectation is just

a replacement oflt by l̂t, andlt−1 by l̂t−1 Removing all terms independent ofA,Ω from (4.33) and

normalizing we obtain (4.24) with assignments (4.28) and (4.29). Removing all terms independent of

T from (4.33) and normalizing, we obtain (4.25) with assignment (4.30).

Distribution (4.26) is proportional to exponential of expected value of (4.33) with respect to distri-

butions (4.24) and (4.25). All terms independent oflt become part of the normalizing constant, hence

(4.26) is obtained, via assignment

wi;t ∝ exp

EA,Ω,T,lt−1

−1
2
tr
(
Ω [−Ip, A]

[
yi,ty

′
i,t

]
[−Ip, A]′

)
+

c∑
j=1

lj;t−1 ln ti,j

+ ln |Ji,t|

 .
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Using elementary properties of thetr (·) operator and the properties of the matrix Normal distribution

(Appendix A.1), namely (A.2):

wi;t ∝ |Ji;t| exp

EA,Ω

(
−1

2
y′i,t [−Ip, A]′Ω [−Ip, A]yi,t

)
+

c∑
j=1

Elt−1 (lj;t−1) ET (ln ti,j)

 ,
∝ |Ji;t| exp

EA,Ω

(
−1

2
y′i,t

[
Ω −ΩA

−A′Ω A′ΩA

]
yi,t

)
+

c∑
j=1

l̂j;t−1 l̂n ti,j

 ,
∝ |Ji;t| exp

EΩ

(
−1

2
y′i,t

[
Ω −ΩÂ

−Â′Ω Â′ΩÂ+ pV −1
aa;t

]
yi,t

)
+

c∑
j=1

l̂j;t−1 l̂n ti,j

 ,
∝ |Ji;t| exp

[
−1

2
y′i,t

[
−Ip, Â

]′
Ω̂
[
−Ip, Â

]
yi,t

−1
2
py′i,tV

−1
aa;tyi,t +

c∑
j=1

l̂j;t−1 l̂n ti,j
]
,

prooving (4.31). The mean value of (4.26) follows trivially from the fact that all possible realizations of

lt are elementary basis functions.

VB-statistics (4.28)–(4.32) can be evaluated via the standard VEM algorithm (Algorithm 2.2). However,

as the VB approximation is applied to a single step, we need to iterate the solution for each step of the

on-line algorithm, as follows:

For each t:

1. collect data recorddt

2. assign initial valuesV (0)
t , ν(0)

t , Φ(0)
t ,w(0)

t , u(0)
t , (e.g.V (0)

t = Vt−1, etc.)

3. iterate (4.28)–(4.32) using the VEM algorithm (Algorithm 2.2) until convergence is reached

at, say, themth iteration.

4. assign the approximate statistics at timet as: Vt = V
(m)
t , νt = ν

(m)
t , Φt = Φ(m)

t , wt =
w

(m)
t , ut = u

(m)
t .

end

This, of course, may prove impractical for applications requiring real-time processing, since the con-

vergence of step 3 is not guaranteed in a given number of operations. This problem can be addressed by

setting a thresholdmmax on the maximum allowed number of iterations of the VEM algorithm, as sug-

gested, for example, in [35] wheremmax = 1. For time-invariant models, the algorithm asymptotically

(i.e. for t → ∞) converges to the local Variational extreme, but, it does not hold for the time-varying

models. Alternatively, we can use the Restricted VB approximation (RVB) as introduced in Section

2.2.5. We consider this next.
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4.4. Quasi-Bayes (QB) Approximation

In this Section, we derive an alternative identification algorithm using Restricted Variational Bayes

(RVB) (Section 2.2.5). The RVB approximation requires all but one VB-marginal to be known. More-

over, the Quasi-Bayes (QB) approximation (Remark 2.4) use the analytical marginals of the true poste-

rior distribution. Here, we note thatlt is a dicrete variable withc < ∞ states, hence, marginalization

over this label field is analytically tractable.

4.4.1. Fixing the VB-marginal for the Label Field

Label variables in (4.23), namelylt and lt−1 together possessc2 possible states. Evaluation ofc2

possibilities may be prohibitive for largec. Therefore, we make the following choice of fixed VB-

marginals in the RVB approximation (2.34):

f̃ (lt−1|Yt) = f̃ (lt−1|Yt−1) , (4.35)

f̃ (lt|Yt) =
∫

dt,A,Ω,T

∑
lt−1

f (dt, A,Ω, T, lt, lt−1|Yt−1,xt) ddtdAdΩdT. (4.36)

Hence, (4.35) was chosen as fixed at the previous time-data step, and (4.36) was chosen as suggested

by Remark (2.4).

Marginal (4.36) of the joint distribution (4.23) overA,Ω, T,dt, is a discrete distribution of the form

f̃ (lt|Yt) =
c∏

i=1

w
li;t
i;t , (4.37)

Wherewi,t can be found via

wi,t =
∫

dt,A,Ω,T

c∑
j=1

wj;t−1f (A,Ω, T, lt = ei,dt|Yt−1,xt, lt−1 = ej) dAdΩ dT

∝
∫

dt,A,Ω,T

c∑
j=1

wj;t−1f (A,Ω, T, lt = ei,dt|Yt−1,xt, lt−1 = ej) dAdΩ dT

=
∫

dt,A,Ω,T

[
f (dt|A,Ω, T,yi,t)NWA,Ω (Vt−1, νt−1) +

c∑
j=1

wi;tDiT (Φt−1) f (lt = ei|T, lt−1 = ej)

]
dAdΩ dT (4.38)

∝ ζNW
(
Vt−1 + yi,ty

′
i,t, νt−1 + 1

) c∑
j=1

wj;t−1ζDi (φi,j;t−1 + 1) (4.39)

whereζNW (·) is given by (3.14) andζDi (·) is given by (A.20) in Appendix A.20. The constant of

proportionality for (4.39) is easily determined from normalization of (4.37), i.e.
∑c

j=1wi;t = 1.
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4.4.2. QB-optimal Posterior Distribution

The full updating algorithm follows from Corollary 4.1, using the RVB approach (Corollary 2.1, Section

2.2.5).

Corollary 4.2 (Quasi-Bayes (QB) estimation of the MEAR model)Using (4.16) with assignments (4.35),

and (4.36) in Corollary 2.1, the RVB-optimal form of (4.16) is found via the following assignments:

f̃ (A,Ω|Yt) = NW (Vt, νt) , (4.40)

f̃ (T |Yt) = Di (Φt) , (4.41)

with statistics

Vt = Vt−1 +
c∑

i=1

wi;tyi,ty
′
i,t, (4.42)

νt = νt−1 + 1, (4.43)

Φt = Φt−1 +wtw
′
t−1. (4.44)

Proof: (4.40)–(4.44) are of the same form as (4.24) and (4.25). Expected valuel̂t follows form

(4.37). Substitutinĝlt = wt andl̂t−1 = wt−1 from (4.39) into (4.28)–(4.30) proves (4.42)–(4.44).

4.5. Viterbi-Like (VL) approximation

Note that the matrixVt is updatedc-times by a dyad weighted by corresponding weightwi;t. Dyadic

update is a rather expensive operation (Section 3.2.1.1). In situations where one weightwi;t is dominant,

it may be unnecessary to perform dyadic updates for the remainingc− 1 dyads with low weights. This

motivates the followingad hocproposition.

Proposition 4.2 (Viterbi-like Algorithm) Further simplification of the QB algorithm may be achieved

using an even coarser approximation of the label-field distribution, namely certainty equivalence (Sec-

tion 2.2.1):

f̃ (lt|Yt) = δ
(
lt − l̂t

)
, (4.45)

in place of (4.36). Here, l̂t is the MAP estimate from (4.37), i.e.

l̂t = arg max
lt

f̃ (lt|Yt) . (4.46)

This corresponds to the choice of one ‘active’ model with index ît ∈ {1, . . . , c}, such as l̂t = eit . The

idea is related to the Viterbi algorithm [93]. Replacing (4.37) in the Corollary 4.2 by (4.45), we obtain
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Vt

w2;tEq. (4.39)

g2

y2;t
O.P.

y2;ty
′
2;t

u
m

x

...

dt

wc;t

gc

yc;t
O.P.

yc;ty
′
c;t

...
...

...

wt

z−1

O.P.

wt−1

1
1−z−1

Φt

1
1−z−1

w1;t

g1

y1;t
O.P.

y1;ty
′
1;t

Eq. (4.39)

Eq. (4.39)

Figure 4.1.:The Recursive summed-dyad computational scheme for Quasi-Bayes identification of the
MEAR model. O.P. denotes outer product (dyad). For clarity, dependence of Eq. (4.39) on
Vt−1 andkt−1 is not shown.

the approximating distributions in the same form as (4.40)–(4.41), but with statistics

Vt = Vt−1 + yît;t
y′

ît;t
, (4.47)

νt = νt−1 + 1, (4.48)

Φt = Φt−1 +wtw
′
t−1. (4.49)

Note that the update of Φt (4.49) is computationally cheap. Weightswt are already available for evalu-

ation of (4.45), hence, Φt is updated as in the QB algorithm (Corollary 4.2, equation (4.44)).

4.6. Inference with the MEAR model

4.6.1. Computational Issues

We have introduced three methods for recursive identification of the MEAR model:

1. Variational Bayes (VB) algorithm (Corollary 4.1)

2. Quasi-Bayes (QB) algorithm (Corollary 4.2)

3. Viterbi-Like (VL) algorithm (Proposition 4.2)

The computational flow is the same for all algorithms involving updates of statisticsVt, νt,Φt.

The recursive scheme for computation of (4.42)-(4.44) via the QB algorithm is displayed in Figure

4.1. The computational scheme for the VB algorithm is, in principle, the same, but the statistics,wi,t,

Φt andVt, must be iterated in each time using the VEM algorithm. This is difficult to visualize. The

main points of interest are the weight evaluation, i.e. Eq. (4.39), and summation of dyads.

Weights are computed via (4.31) for VB, and by (4.39) for the QB and VL algorithms. The operations

required for this step are:
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Table 4.1.:Computational complexity of recursive identification algorithms for the MEAR Model.
algorithm computational complexity of one-step estimation

VB m (2c+ 1)×O
(
(r + p)2

)
QB 2c×O

(
(r + p)2

)
+ c×O (r + p)

Viterbi-like (c+ 1)×O
(
(r + p)2

)
+ c×O (r + p)

m denotes number of iterations of the VEM algorithm (for VB only)
c is the number of components in the MEAR model
p andr are the dimensions of measured data and regressor, respectively

VB: (i) evaluation ofÂ, Ω̂, Vaa;t; (ii) evaluation of (4.31)c-times. All operations in (i) and

each operation in (ii) are of complexityO
(
(r + p)2

)
. (Section 3.2.1.1). Moreover, these

evaluations must be repeated foreachstep of the Variational EM algorithm.

QB: (i) update ofVt c-times in the (4.39), and (ii) evaluation of the corresponding normalization

constant (4.39). Computational complexity of normalization isO (r + p).

VL: same as QB plus determination of maxima (4.46).

This operation can be done in parallel for each condidate transformation in all cases.

Update of Vt is done via dyadic updates (4.28), (4.42), and (4.47) for VB, QB, and VL respectively.

VB: LD update ofVt, c-times

QB: LD update ofVt, c-times

VL: one LD update ofVt.

This operation must be done sequentially.

The overall computational complexity is summarized in Table 4.1.

The main drawback of the VB algorithm is that the number of iterations,m, of the VEM algorithm

at each step,t, is unknowna priori. For stationary processes, i.e.θt = θ, it can be expected that with

growing number of data, the new data recorddt will cause just a small shift in the expected values of

parameters. Hence, the VEM algorithm will converge fast andm may be as low asm = 2 orm = 1.

Remark 4.1 The layout of the scheme (Figure 4.1) suggests a multiple model approach [94]. This

similarity is not surprising, since the approximation used there is based on the principle of partitioning

[95], which is equivalent to the conditional independence assumption (4.3) in this work. The MEAR

scheme, with its restrictions (namely a fixed filter bank (4.7)), represents a special case of the inter-

acting multiple model [96]. Specifically, the interactive multiple model updates the covariance matrix

(corresponding to Vt) at time t with a vector, this vector being a combination (interaction) of candidate

states. Hence, the covariance matrix is updated with a matrix of rank 1. This corresponds to the update

of Vt by one dyad, as was the case for the Viterbi-like algorithm for the MEAR model. On the other

hand, matrix Vt is updated in the VB and QB algorithms with a weighted sum of dyads. Hence, Vt is

updated by a matrix of rank min (p+ 1, c).
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It is emphasized that the VB, QB and Viterbi-like algorithms are alternative strategies for collecting

the approximate statisticsVt, νt,Φt in (4.22). All subsequent operations, namely prediction and model

structure determination, are determined by the form of the yielded posterior, which is thesamein all

three cases. Hence, these tasks can now be addressed in the following sections without reference to the

chosen approximation.

4.6.2. MEAR-based Prediction

The MEAR predictor can be found by marginalization, using (4.13) (replacingt by t + 1), (4.22) and

the chain rule:

f (dt+1|Yt+1, G) =
∫

A,Ω,lt,lt+1,T
f (dt+1, A,Ω, lt+1, T, lt|Yt+1, G) dadσdα (4.50)

which is a task similar to (4.36). The predictor is found as

f (dt+1|Yt+1, G) =
c∑

i=1

αi,tf (dt+1|Yt, gi) , (4.51)

which is a mixture of EAR predictors (3.30), weighted by the respective component weightsαi;t:

αi,t =
c∑

j=1

wj;t
ζDi (φi,j;t−1 + 1)
ζDi (φi,j;t−1)

.

In typical signal processing applications, only moments of these distributions are of interest:

d̂t+1 =
c∑

i=1

αi;td̂i,t+1,

whered̂i,t+1 is the prediction of each candidate, in special case it is given by (3.32), (3.33). Note, in

general, that all non-central moments of (4.51) can be obtained as this weighted algebraic mean of the

respective non-central moments of the candidates. However, this does not hold for the central moments

[97].

4.6.3. MEAR Model with Non-stationary Parameters

In Section 3.2.3, we relaxed the assumption of stationarity of parametersA,Ω by means of a forgetting

operator (3.39). The same can be done for the MEAR model with parametersA,Ω,α, sinceA,Ω
has the same distribution as in the AR model andT has Dirichlet distribution, which belongs to the

exponential family. Distributions onA,Ω andT were chosen conditionally independent (Section 4.3).

Hence, we choose distinct forgetting factors,φNW andφDi, respectively. The prior at timet is then

chosen as

f (At,Ωt,αt|Yt) =
[
f (At−1,Ωt−1|Yt−1)At,Ωt

]φNW [
f (At,Ωt|Yt)

1−φNW
]
×[

f (Tt−1|Yt−1)Tt

]φDi
[
f (Tt|Yt)

1−φDi

]
. (4.52)
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Wheref (At,Ωt|Yt) andf (αt|Yt) are alternative distributions chosen by the designer.

Replacing prior (4.22) by (4.52), and choosingf (At,Ωt|Yt) = NW
(
V , ν

)
, f (Tt|Yt) = Di

(
Φ
)
,

stationary for allt, then all foregoing algorithms maintain their structure, with the following modifica-

tion of the statistics update mechanism:

Vt = φNWVt−1 +
c∑

i=1

l̂i,tyi,ty
′
i,t + (1− φNW)V t, (4.53)

νt = φNWνt−1 + 1 + (1− φNW) νt, (4.54)

Φt = φDiΦt−1 + l̂tl̂′t−1 + (1− φDi) Φt. (4.55)

This is the form for VB and QB variants. The required modification of the Viterbi-Like (VL) variant is

of the same kind.

4.6.4. MEAR Model Structure Determination

The key restriction of the MEAR model—namely, common AR parametersA,Ω (4.13)—implies that

all filter candidates,gi ∈ G, must have the same dimension,p+ r. The estimation of the MEAR model

does not provide inference of the model structure and additional treatment is required.

The likelihood of the whole data set,Dt, can be obtained from the one-step-ahead predictor (4.51),

using the chain rule:

f
(
Dt\q|Dq, G (q)

)
∝

t∏
j=q+1

f (dj |Yj−1, G (q)) . (4.56)

From Bayes’ rule, we can evaluate the inference onG (q) as:

f (G (q) |Dt) ∝ f
(
Dt\q|Dq, G (q)

)
f (G (q)) . (4.57)

Note that the one-step-ahead predictor (4.50) is based on the expected values of the label,l̂t. One of

the immediate consequences is that the trajectory ofl̂t with respect tot must be recalculated for each

setting ofG (q).

4.7. Inference of an AR Model Robust to Outliers

One of the main limitations of the AR model is sensitivity of the estimates to outliers in measurements.

In this section, we analyse the problem of estimation of a scalar (p = 1) AR process (3.9) of order

q = r, with observations corrupted by isolated outliers. An isolated outlier is not modelled by the AR

model because the outlier-affected observed value does not take part in the future regression. Instead

the process is autoregressive ininternal (i.e. not directly measured) variablezt, i.e.

zt = Axt + ω−
1
2 et, xt = [zt−1, . . . , zt−q]

′ , (4.58)
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which is observed via

dt = zt + ξt. (4.59)

Here,ξt denotes a possible outlier at timet. Moreover, for anisolatedoutlier it holds that

Pr (ξt±i = 0|ξt 6= 0) = 1, i = 1, . . . , q. (4.60)

The AR model is identified viaf (A,ω|Dt) (3.12) (i.e.not via f (A,ω|Zt)) and so the outlier degrades

estimation iff it enters the extended regressoryt = [zt, . . . , zt−q] (3.17).

4.7.1. Filter-Bank Design

Sinceyt is of finite length, and since the outliers are isolated, it is easy to define a finite number of

mutually exclusive scenarios. Each of these scenarios can be captured via an EAR model and combined

together using the MEAR approach, as follows:

1. None of the values inyt is affected by an outlier, i.e.dt−i = zt−i, i = 0, . . . q. The set of

transformations (3.26), (4.2) is then the singleton set:

G1 =
{
g|yt = [dt, dt−1, . . . , dt−q]

′} . (4.61)

2. The observed value,dt, is affected by an outlier, and so all delayed values are unaffected, given

assumption (4.60); i.e.dt−i = zt−i, i = 1, . . . q. For convenience, realization ofξt can be ex-

pressed as a multiple of realized valueet, via unknown multiplierht > 0:

ξt = htω
− 1

2 et. (4.62)

Then (4.58), (4.59) can be rewritten as:

dt = Axt + (1 + ht)ω−
1
2 et, xt = [dt−1, . . . , dt−q]

′ .

This can now be transformed to the form

1
ht + 1

dt =
1

ht + 1
Axt + ω−

1
2 et.

Therefore, the space of transformations in this case is

G2 =
{
g
∣∣∣yt =

1
ht + 1

[
dt,x

′
t

]′
, 1 < ht <∞

}
, (4.63)

parameterized by variableht. The Jacobian of allg ∈ G2 is J2 = 1
ht+1 .

3. The observed value is not affected by an outlier, but ak-steps-delayed observation,dt−k, k ∈
{1, . . . , q}, is. In this case, the transformation should replace this value by an appropriate AR
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process estimate,̂zt−k. The set of transformations for eachk = 1, . . . q is then:

Gk+2 =
{
g|yt = [dt, . . . , dt−q]

′ + δq+1 (k + 1) (ẑt−k − dt−k) ,∀ẑt−k = ρk (Dt)
}
, (4.64)

whereδp (i) = [δ (1− i) , . . . , δ (p− i)]. The elements ofGk+2 are indexed by every possible

function,ρk, denoting an estimator of unobserved quantityzt−k from dataDt. The Jacobian of

all possible transformationsg ∈ Gk+2 is Jk+2 = 1.

We have describedc = q+2 different modes (partitions),Gi, of an ideal filter transforming observation

process,dt, to a process,yt, for which an AR model is valid. For each of these partitions, a representative

candidate,gi, should be chosen (4.3). The choice of candidateg1 = G1 is trivial. Choosingg2 is

equivalent to choosing a known fixedht = h. Alternatively, if the variance of outliers is known to

vary significantly, we can splitG2 into finer subsets and chooseu candidates with fixed valuesh1 <

h2 < . . . < hu. The transformation sets,Gk+2, must each be represented by a functionρk defined with

respect to a known reconstruction (smoothing) filter. We have tested the algorithm forρk chosen as the

k-steps delayed valueŝzt−k of the expected valuêzt at timet, givenDt:

ẑt =
c∑

i=1

Ezt|lt=ei
(zt) f (lt = ei|Dt, G) . (4.65)

Using (3.33), expected value (4.31) of the Multinomial distribution (4.26), and the fact thatzt = dt, for

all i = 1, 3, . . . , c, the reconstruction filter is

ẑt = dt

c∑
j=1,j 6=2

wj;t + w2;tÂtxt−k. (4.66)

Here, the Bayesian predictor, (3.33) has been used to replace the outlier arising in scenario 2 above.

In our simulations, the interpolation strategy chosen isẑt−k = ρk (Dt) = ρk (Dt−k) (i.e. filtering).

This choice requires only one calculation ofẑt−k for eacht. Adopting the non-causal (smoothing)

choice,ẑt−k = ρk (Dt), would requireq calculations of̂zt−k for eacht, with, presumably, negligible

benefit over the causal (filtering) choise.

4.7.2. Simulation Study

A second-order stable AR model with parametersA = [1.85,−0.95]′, ω = 100, was simulated with a

random outlier on every 30th sample. The total number of samples wasn = 200. A segment of the sim-

ulated data (t = 55, . . . , 100) is displayed in Figure 4.2 (dotted line) along with the reconstruction (solid

line) (4.66), and corrupted data (dots). Two outliers occurred during the displayed period: a ‘small’ out-

lier at t = 60 and ‘big’ outlier att = 90. The MEAR model with four candidate transformations—G1

(4.61),G2 (4.63) withht = h = 10, G3 andG4 (4.64) as derided in the previous Section—was used

for identification of the AR parametersA,ω. The prior distribution was chosen asNW (V0, ν0) with
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Figure 4.2.:Reconstruction of an AR(2) process corrupted by isolated outliers. Results for VB, QB,
and VL algorithms, respectively, are shown. There are outliers att = 60 andt = 90.

               

    

    

    

    

    

                            
     

     

     

     

Figure 4.3.:Identification of an AR(2) process corrupted by isolated outliers.Left : comparison of the
terminal moments of the posterior distribution ofA; Right: detail of left, boxed region.
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V0 =

 0.1 0 0
0 0.001 0
0 0 0.001

 andν0 = 1. This choice of prior corresponds to point estimates with

Â = [0, 0] (3.20), and̂ω = 10 (3.21).

Note that when an outlier occurs, all candidate filters are sequentially used, as seen in Figure 4.2

(middle and right columns). Thus, the outlier is removed from the estimation formulae (4.28)-(4.30)

very effectively. We note that all considered algorithms—i.e. VB, QB, and VL—have performed well

when the ‘big’ outlier occurred. The estimated weights and reconstructed values are almost identical

across the procedures. However, when ‘small’ outlier occurred, the VB algorithm identified the weights

more accurately than the QB and VB algorithms.

The terminal—i.e.t = n—posterior distribution ofA, (A.10) is illustrated (via the mean value and

2 standard deviation ellipse) for the various identification methods in the left (overall performance) and

right (detail) of Fig 4.3. In the left diagram, the scenarios are (i) AR identification of the AR process

corruptedby outliers (boxed); (ii) AR identification of the AR processuncorruptedby outliers (boxed).

In the right, we zoom in on the boxed area surrounding (ii) above, revealing the three MEAR-based

identification scenarios: (iii) MEAR identification using the VB approximation; (iv) MEAR identifi-

cation using the QB approximation; (v) MEAR estimation using the Viterbi-like (VL) approximation.

Impressively, the MEAR-based strategies perform almost as well as the AR strategy with uncorrupted

data, which is displayed via the full line. The posterior uncertainty in the estimate ofA appears, there-

fore, to be due to the AR process itself, with all deterious affects of the outlier process removed.

4.8. Inference of an AR Model Robust to Burst Noise

The previous example relied on outliers being isolated (4.60), permitting the assumption that there is

only one outlier in the extended regressoryt. In such a case, additive decomposition (4.59) allowed

successful MEAR modelling ofdt via a finite number (q + 2) of candidates.

4.8.1. Filter-Bank Design for Burst Noise

A burst noise scenario, in contrast, requires more than one outlier to be considered in the regressor,

obviating the filter bank design in the previous example. To address this problem, we need to transform

the underlying scalar AR model (4.58) into state-space form [58]:

zt+1 = Bzt + kω−
1
2 et. (4.67)
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We choose the model with state variable assignmentzt = [dt, . . . , dt−q]
′. Therefore:

B =



−a1 −a2 −a3 · · · −aq

1 0 0 · · · 0

0 1 0 · · ·
...

...
... ... ... 0

0 · · · 0 1 0


, k =



1
0
0
...

0


, (4.68)

whereB ∈ <q×q andr ∈ <q×1. The process with burst noise is modelled as

dt = c′zt + htω
− 1

2 ζt, (4.69)

wherec = [1, 0, . . . , 0]′∈ <q×1, andζt is N (0, 1), independent ofet. htω
− 1

2 denotes the standard

deviation of the burst noise which is assumed strictly positive during any burst, and is zero otherwise.

Note that the autoregressive part of the model (4.67, 4.68) is identical to the AR model in the previous

example. The key difference is in the corruption process (4.69) compared to (4.59), (4.60). Once

again, we identify a finite number of mutually exclusive—but now non-exhaustive—scenarios that can

be modelled using an EAR process:

1. The current observationdt and the lastq observations,dt−1, . . . , dt−q are all distortion-free; i.e.

ht = ht−1 = . . . = ht−q = 0. Formally,G1 = {g|yt = zt}, a singleton set.

2. The measurements are all affected by burst noise; we setht = ht−1 = . . . = ht−q = h. The

state-space model (4.67,4.69) is now defined by the joint distribution:

f (zt, dt|a, ω,zt−1, h) = N

([
Bzt−1

c′zt

]
, ω−1

[
rr′ 0
0 h2

])
. (4.70)

(4.70) cannot be modelled directly as an EAR process because it contains unobserved state vector

zt. Using standard Kalman-filter theory [16, 58], we can marginalize (4.70); i.e. we use the chain

rule t times and integrate over the unobserved trajectory—namely over{z1 . . .zt}— to obtain

the direct observation model:

f (dt|a, ω,Dt−1, h) = N
(
aẑt, ω

−1σt

)
(4.71)

with moments defined recursively as follows:

σt = h+ c′St−1c, (4.72)

S̃t = St−1 − σ−1
t (St−1c) (St−1c)

′ , (4.73)

ẑt = Bẑt−1 + h−1S̃tc
(
dt − c′Bẑt−1

)
, (4.74)

St = rr′ +BS̃tB
′. (4.75)
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(4.71) can be expressed as a valid EAR model (3.29), ifẑt andσt are independent of the unknown

AR parameters,A,ω. Unfortunately, both,̂zt andσt are functions of matrixB and thus of

A. In order to obtain a valid EAR model, we replaceB = B (A) (4.68) in (4.74,4.75) by its

expected value,̂Bt = B
(
Ât

)
, via (3.20). Then, (4.71) is a valid EAR model defined by the set

of transformations:

G2 =
{
g
∣∣∣yt =

1
σt

[
dt, ẑ

′
t

]′
, 1 < h <∞

}
, (4.76)

with time-variant Jacobian,Jt = σ−1
t (Dt−1) evaluated, recursively using (4.72). The spaceG2

is parameterized by the unknownh.

3. Cases 1) and 2) do not consider the situation wherehk is not constant on a regression interval

k ∈ [t − q, t] (i.e. a transitional phase). Complete modelling for all such a cases is too difficult,

and so these scenarios are ignored. However, our experiments suggest that this has little impact

on performance.

The final step is to define candidates to representG2 (g1 = G1 is trivial). One candidate may be chosen

for G2 if the variance of burst noise is reasonably well knowna priori. In other cases, we can partition

G2 with respect to intervals ofh. Candidates are chosen as one element from each interval. The best

experimental results were achieved for multiple partitioning ofG2, with at least one candidate,gl =
g (h = hl) in (4.76), wherehl is belowthe true value ofh, and at least one candidate,gu = g (h = hu)
in (4.76) wherehu is abovethe true value ofh. hl andhu can conveniently be chosen as the prior lower

and upper bounds, respectively, onh. Increasing the number of candidates drawn fromG2 generates a

richer set,G, which better spans the subsetG2. This improves the quality of approximation.

4.8.2. Simulation Study

A non-stationaryAR(2) process was studied, witha1;t in the interval[−0.98,−1.8] (as displayed in

Figure 4.4 (top-right)),a2;t = a2 = 0.98, ωt = ω = 100, andn = 200. Realizations are displayed in

Figure 4.4 (top-left, solid line). Fort < 95, a1;t is increasing, corresponding to faster signal variations.

Thereafter,a1;t decreases, yielding slower variations. These variations ofa1;t do not influence the

absolute value of the complex poles of the system, but only their polar angle. The process was corrupted

by two noise bursts (samples 50–80 and 130–180), with parametersh = 8 andh = 6 respectively

(4.69). Realizations of the burst noise process imposed on the simulated signal are displayed in Figure

4.4 (top-left, dotted line).

The process was estimated usingc = 3 filter candidates: namely the unity transformation,G1, along

with G2 (h = 5) andG2 (h = 10). Identification results, are displayed in the right column in Figure

4.4 as follows: (i) simulated data, (ii) AR model foruncorrupteddata, (iii) VB variant of the MEAR

model forcorrupteddata, (iv) QB variant of the MEAR model, (v) VL variant of the MEAR model.

Specifically, the95% Highest Posterior Density (HPD) interval, via (A.13) and (A.15), of the marginal

Studentt-distribution ofa1;t anda2;t respectively, is displayed. The process was identified using forget-

ting factors (4.52)φNW = 0.92, φDi = 0.9, and non-comittal, stationary, alternativeNW distribution,

f (A,ω) = NWA,Ω

(
V , ν

)
. Furthermore, the matrix parameter,Φ, of the stationary, alternativeDi
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Figure 4.4.:Reconstruction and identification of a non-stationary AR(2) process corrupted by burst
noise, using KF variant of the MEAR model. In the final column, full lines denote sim-
ulated values of parameters, dashed lines denote posterior expected values, and dotted lines
denote uncertainty bounds.
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Figure 4.5.:Reconstruction and identification of a non-stationary AR(2) process corrupted by burst
noise, using KF+LPF variant of the MEAR model. In the final column, full lines denote
simulated values of parameters, dashed lines denote posterior expected values, and dotted
lines denote uncertainty bounds.
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4.9. Application of the MEAR model in Speech Reconstruction

distribution,f (T ) (4.52), was chosen to be diagonally dominant with ones on the diagonal. This dis-

courages frequent transitions between filters.

Note that all methods (VB, QB and VL) achieved robust identification of the process parameters

during the first burst. As already noted,ẑi,t, i = 2, . . . , c, (which denotes the reconstructed state vector

(4.74) with respect to theith filter), is correlated witĥAt−1, which may undermine the tracking of time-

varying AR parameters,At. In this case, each Kalman component predicts observations poorly, and

receives low weights,w2;t andw3;t (4.31), in (4.53). This means that the first component—which does

not pre-process the data—has a significant weight,w1;t. Clearly then, the Kalman components have not

spanned the space of necessary pre-processing transformations well, and need to be supplemented.

Extra filters can be ‘plugged in’ in a naïve manner (in the sense that theymayimprove the spanning

of the pre-processing space, but should simply be rejected, via (4.31), if poorly designed). During the

second burst (Figure 4.4), the process is slowing down. Therefore, we have extended the bank of KF

filters by a simple arithmetic mean Low-Pass Filter (LPF) on the observed regressors:

G3 : yn =
1
3

(xn + xn−1 + xn−2) . (4.77)

(4.76) and (4.77) yield EAR models with the same AR parameterization, and so they can be used

together in the MEAR filterbank. Reconstructed values for the KF variant are derived from (4.65):

ẑt = w1;tdt −
3∑

i=2

wi;tÂtẑi,t, (4.78)

using (3.20). For the KF+LPF variant, the termw4;t

3 (dt + dt−1 + dt−2) is added to (4.78), wherew4;t

is the estimated weight of the LPF component (4.31), (4.53)–(4.55).

Identification and reconstruction of the process using the KF+LPF filter-bank is displayed in Figure

4.5, in the same layout as Figure 4.4. The distinction is most clearly seen in the final column of each.

During the second burst, the added LPF filter received high weights,w4;t, Figure 4.5 (middle column).

Hence, identification of the parameterA is improved during the second burst.

4.9. Application of the MEAR model in Speech Reconstruction

The MEAR filter-bank for the burst noise case (KF variant) was applied in the reconstruction of speech.

A c = 4 MEAR model was used, involvingG1 (yt = xt), G2 (h = 3), G2 (h = 6), G2 (h = 10). The

speech was modelled as AR with orderq = 8 (3.9). The forgetting factors (4.52) wereφNW = φDi =
0.95. Once again, a diagonally-dominantΦ was chosen forf (T ).

During periods of silence in speech, statistics (4.53) are effectively not updated, creating difficulties

for adaptive identification. Therefore, we use aninformativestationary alternative distribution,f (A,ω),
of theNW type (3.13) for the AR parameters in (4.52). To elicit an appropriate density, we identify the

time-invariant alternative statistics,V , ν, using 1800 samples of unvoiced speech.f (A,ω) was then

flattened to reduceν from 1800 to 2. This choice moderately influences the accumulating statistics at

each step, via (4.53). Specifically, after a long period of silence, the influence of data in (4.53) becomes

negligible, andVt is reduced toV .
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Three sections of thebbcnews.wav speech file, sampled at 11kHz, were corrupted by additive

noise. Since we are particularly interested in performance in non-stationary epochs, we have consid-

ered three transitional cases: (i) voiced-to-unvoiced transition corrupted by zero-mean, white, Gaussian

noise, with a realized Signal-to-Noise Ratio (SNR) of−1 dB during the burst; (ii) an unvoiced-to-

voiced transition corrupted by zero-mean white uniform noise at−2 dB; and (iii) a silence-to-unvoiced

transition corrupted by a click of type0.25 cos (3t) exp (−0.3t), superimposed on the silence period.

Reconstructed values using VB, QB and VL methods respectively are displayed in Figure 4.6. All

three methods successfully suppressed the burst in the first two cases. In the third case, the click

was suppressed by all methods. However, the QB and VL methods also had the deteriorious effect of

suppressing the unvoiced speech.

4.10. Discussion

The MEAR model (4.13) proposes a relatively rich extension of the classical AR model. It allows

transformations on regressors, which relates it to semi-physical modelling [98]. Being a mixture-based

extension, it is also related to the multiple model approach [94], to mixtures of AR processes [99], and

to the Generalized AR (i.e. GAR) approach [46]. It must be remembered, though, that the MEAR

model is asingleAR model subject to an unknown transformation of observations. This is formalized

as a mixture withcommonAR parameters (4.13). There are two main consequences. Firstly, the

MEAR model is appropriate in cases where the transformation/distortion process is independent of the

underlying AR process. Secondly, the AR parameter inference (4.24) requires asinglesufficient statistic

matrix,Vn (4.28), updated via a linear combination ofc dyads, each calculated from one component in

turn.

The restriction to common AR parameterization across all components can easily be relaxed via

obvious changes to the recursive algorithm (4.28)–(4.30). Each AR component would then experience

a local rank-1 update, and there would be no inter-component interaction. Such a model would be

over-parameterized, as each component would then have unknown AR parametersand an unknown

transformationgi, causing identification problems. The common AR parameterization in the MEAR

model overcomes this problem. It can be seen as a model-based regularization.

We have derived three variants of the identification algorithm: (i) Variational Bayes (VB), (ii) Quasi-

Bayes (QB), and (iii) Viterbi-Like (VL). The VB algorithm is the optimal in the sense of KL mini-

mization (Section 2.2.4), while the QB and VL variants are computationally simpler methods derived

as approximations of the VB solution. All variants yield acceptable solutions in particular contexts, as

demonstrated in Section 4.9.

The statistics,Vt, are updated by a structure of rankc in the VB and QB variants as stated already.

This implies an interaction of regressors from each component, which appears to be a key benefit of the

MEAR model, since it allows a small number of candidate models to span a larger transformation space.

The concept of interaction between a finite set of components has been exploited in other techniques.

The Kalman-based Interacting Multiple Models (IMMs) [94] linearly combine state vectors (i.e. cer-

tainty equivalents) evaluated using each filter, before using it in the Kalman updates. Again, however,

this corresponds to a rank-1 update in our framework as in the VL variant (Section 4.6.1).
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Figure 4.6.:Reconstruction of three sections of thebbcnews.wav speech file. In the second row,
dash-dotted vertical lines delimit the beginning and end of each burst.
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Bayesian identification unifies all tasks of inference into a single, model-consistent framework. In the

burst noise example of Section 4.8, the MEAR algorithm combines the pre-processing tasks (of burst

detection and signal reconstruction) with on-line identification. It is the dynamic weights (4.31) which

balance the dyadic update contributed by each component at every step (4.28). This contrasts with the

previously reported methods. For example, in [100], a Boolean detection decision is made concerning

presence of outliers. During a detected burst, a Kalman filter is used for reconstruction, and updating

of statistics is interrupted. In our approach, the updating of statistics isneverinterrupted. Components

which, in effect, pre-process noisy data, contribute dyads constructed fromfiltered data. Furthermore,

exponential forgetting is used to handle time-varying AR parameters, in place of the extended Kalman

filter in [100]. In difficult cases, such as silence regions of speech, forgetting with informative alternative

distributions (3.39) might be used, as it was in Section 4.9.

A Quasi-Bayes (QB)-based approximate update of sufficient statistics was employed in [62], for

estimating an ARMA model using a mixture-based extension (known as ARMMAX). The ARMMAX

model is a special case of the MEAR model, but with time-invariant component weights, instead of

(4.11), and with moving-average whitening filters as candidate transformations (3.26). The candidates,

G (4.7), used to represent the continuous multidimensional space of whitening filters, were designed

using a simplex method. This is an example of a technique for filter-bank design, which was achieved

at the price of loss of recursivity in the identification method.

In our work, we model the possible degradations of the AR process, and design the filter-bank,G

(4.7), in an attempt to span all possibilities. The parallel architecture of the summed-dyad algorithm

(Figure 4.1) permits extra candidates to be ‘plugged in’ with ease, in order to supplement the set. We

saw in Section 4.8, for instance, how this can improve identification. When the extra candidate is

not relevant, its contributing dyads are weighted by low component weights in (4.28), and become

negligible.
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Chapter 5.

Bayesian Inference of Non-stationary
AutoRegressive Models Using Time-variant
Forgetting

In Section 3.2.3, we reviewed the Bayesian inference of non-stationary parameters of the AR model.

Analytical solution is available under the assumption of known forgetting factor,φ. The value ofφ is

chosen by the designer and always represents a trade-off: higherφ gives lower variance of estimates in

stationary scenarios, and lowerφ provides better tracking ability during non-stationary epochs. Intu-

itively, we would like to develop ‘smart’ forgetting, one which keepsφ high when the identified model

is in agreement with the observed data, and which decreasesφ when incoming data do not correspond

to this model. This idea was studied in the context of window-based processing [101], and using a

gradient-based MAP approach [102]. The min-max criterion approach of adaptive forgetting was pro-

posed in [103]. The idea has also been studied in the context of Recursive Least Squares (RLS) [104].

In this Chapter, we seek a joint Bayesian inference of the non-stationary AR parameters of the mul-

tivariate AR model in tandem with the time-variant forgetting factor. The method will be extended to

the MEAR model in Section 5.3. Progress in these areas is made possible via the VB-approximation of

Section 2.2.4.

5.1. Bayesian Formulation

Following the Bayesian methodology, we treat uncertainφt as a random variable. We seek a joint

identification of bothθt andφt. From (3.11), (3.39) the joint posterior distribution is then

f (θt, φt|Yt) ∝ f (dt|θt, Yt−1,xt) f (θt|Yt−1, φt) f (φt|Yt−1) , (5.1)

where the prior onφt is uniform,∀t, in the interval0 ≤ φt ≤ 1:

f (φt|Yt−1) = U ([0, 1]) . (5.2)

Note that (5.1) is conditionally independent of the previous parametersθt−1 andφt−1, givenYt. This

is achieved via the forgetting operator (3.39) and the choice of prior (5.2). Hence, the proliferation of

new random variables is avoided. Computationally feasible recursive identification is achieved if the
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posterior distribution

f (θt, φt|Yt) = f (θt|φt, Yt) f (φt|Yt) , (5.3)

is chosen as conjugate with the observation model (3.29). This is possible for known forgetting, choos-

ing f (θt|φt, Yt−1) from NW family (Section 3.2.3). However, this cannot be achieved for the joint

posterior (5.3).

Therefore, we seek an approximate posterior in conditionally independent form:

f̆ (θt, φt|Yt) = f̆ (θt|Yt) f̆ (φt|Yt) . (5.4)

5.2. Variational Bayes (VB) Approximation

The conditional independence (5.4) is the basic assumption of the Variational Bayes (VB) approxima-

tion method (Section 2.2.4). In order to achieve recursive identification, we demand that the posterior

distribution on parameters at timet−1 be of the same form as that at timet. The functional optimization

achieved by the VB approximation allows us to choose the posterior distribution to be conjugate with

the VB-optimized observation model (Section 2.3.3).

5.2.1. VB-conjugate Prior

Assume that the distribution of model parameters at timet− 1 is of the form (5.4). It is updated by the

observation model (3.11) to yield a posterior distribution. Then, the logarithm of the joint distribution

is:

ln f (θt, φt,dt|Yt−1,xt) = ln f (dt|θt, Yt−1,xt) + φt ln f̆ (θt|Yt−1) +

+ (1− φt) ln f (θt|Yt−1)− ln ζ (φt) . (5.5)

Hereζ (φt) is the ‘wildcard’ for normalizing constant of the forgetting operator (3.39), which depends

on the form of the optimized distribution̆f (θt|·). Using (5.5) and (5.4) in Theorem 2.1, the VB-

optimized form of (5.4) is found in the following form:

f̃ (θt|Yt) ∝ exp
(

ln f (dt|θt, Yt−1,xt) + φ̂t ln f̆ (θt|Yt−1) +

+
(
1− φ̂t

)
ln f (θt|Yt−1)

)
,

∝ f (dt|θt, Yt−1,xt) f̆ (θt|Yt−1)
bφt f (θt|Yt−1)

1−bφt , (5.6)

f̃ (φt|Yt) ∝ exp
(
φtEθt

(
ln f̆ (θt|Yt−1)− ln f (θt|Yt−1)

)
− ln ζ (φt)

)
. (5.7)

Note that the VB-approximate update (5.6) is in the form the standard forgetting for the AR model

(Section 3.2.3), with the forgetting factor given bŷφt = Eφt|Yt
(φt). Therefore, using results from
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Section 3.2.3, a conjugate update is possible if bothf̆ (θt|Yt−1), andf (θt|Yt−1), are of theNW form:

f̃ (θt|Yt−1) = NW (Vt−1, νt−1) , (5.8)

f (θt|Yt−1) = NW
(
V t−1, νt−1

)
. (5.9)

5.2.2. VB-optimal Posterior Distribution

For the choice of priors (5.8) and (5.9), we can evaluate the ‘wildcard’ normalizing constant of the

forgetting operator (3.39), as

ζ (φt) = ζNW (V (φt) , ν (φt)) = Γp

(
1
2

(ν (φt)− r + p+ 1)
)
|Λ (φt)|−

1
2
(ν−r+p+1)

|Vaa (φt)|−0.5p 20.5p(ν(φt)+p+1)π
r
2 . (5.10)

V (φt) = φtVt−1 + (1− φt)V t−1, (5.11)

ν (φt) = φtνt−1 + (1− φt) νt−1. (5.12)

Equation (5.10) defines a complicated function inφt. Moreover,ζ (φt) determines the approximate pos-

terior distributionf̃ (φt|Yt) via its logarithm in (5.7). No standard distribution of this form is known to

us. Moreover, evaluation of moments off̃ (φt|Yt), involving (5.10), would be numerically intractable.

Therefore, we seek an approximation ofζ (φt). We take advantage of the fact that it is computationally

simple to evaluate the normalizing coefficient of theNW distributionζNW (·) using LD decomposi-

tions (Section 3.2.1.1). Hence, we evaluate (5.10) at the extrema of its support:

ζ (0) = ζNW
(
V , ν

)
, (5.13)

ζ (1) = ζNW (Vt−1, νt−1) . (5.14)

Using these, we will now approximate (5.10) by interpolation betweenζ (0) andζ (1).

Proposition 5.1 (Approximate Normalization of the Forgetting Operator) Let us choose the approx-

imation of (5.10) in the following form:

ζ (φt) = exp (h1 + h2φt) , (5.15)

where h1 and h2 are unknown constants. Matching (5.15) at extrema (5.13), and (5.14) we obtain:

h1 = ln ζNW
(
V t−1, νt−1

)
, (5.16)

h2 = ln ζNW (Vt−1, νt−1)− ln ζNW
(
V , ν

)
. (5.17)

Under this proposition, and using priors (5.8), (5.9), the joint log-distribution (5.5) is then approximated

by

ln f (θt, φt,dt|Yt−1,xt) ≈ lnN
(
Axt,Ω−1

)
+ φtNWA,Ω (Vt−1, νt−1) +

+ (1− φt)NWA,Ω

(
V t−1, νt−1

)
+ h1 + h2φt, (5.18)
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whereh1 andh2 are given by (5.16) and (5.17) respectively. Note that the choice (5.15) ensures that

(5.18) is linear inφt.

Corollary 5.1 (Corollary 3 of Theorem 2.1, Variational Extreme for time-variant forgetting) Using

(5.4) and (5.18) in Theorem 2.1, the VB-optimal form of (5.4) is found via the following assignments:

f̃ (θt|Yt) = NW (Vt, νt) , (5.19)

f̃ (φt|Yt) ≈ tExp (b, [0, 1]) , (5.20)

with VB-statistics:

Vt = φ̂tVt−1 + yty
′
t +
(
1− φ̂t

)
V , (5.21)

νt = φ̂tνt−1 + 1 +
(
1− φ̂t

)
ν, (5.22)

b = −1
2

(νt−1 − ν) l̂n |Ωt| −
1
2
p tr

((
Vaa;t−1 − V aa

)
V −1

aa;t

)
− ln ζNW (Vt−1, νt−1) + ln ζNW

(
V , ν

)
−1

2
tr
((
Vt−1 − V

) [
−Ip, Ât

]′
Ω̂t

[
−Ip, Ât

])
. (5.23)

The required moments of the of the matrix Normal distribution (5.19), Ât, Ω̂t, ̂ln (Ωt), and the first

moment of the truncated Exponential distribution (5.20), φ̂t, are given in Appendix A.1, and Appendix

A.7 respectively.

Proof: (5.19), and the VB-statistics (5.21) and (5.22), follow from (5.6), using conjugacy of

Normal distribution with Normal-Wishart, and closure ofNW distributions under geometric mean.

(5.20) follows from (5.7) evaluating the expected value in there, using (5.8), and (5.9)

Eθt

(
ln f̃ (θt|Yt−1)− ln f (θt|Yt−1)

)
= −1

2
(νt−1 − ν) l̂n |Ωt|

− 1
2
Eθt

(
tr
((
Vt−1 − V

)
[−Ip, At]

′Ωt [−Ip, At]
))
,

= −1
2

(νt−1 − ν) l̂n |Ωt| −
1
2
ptr
((
Vaa,t−1 − V aa

)
V −1

aa,t

)
− 1

2
EΩt

(
tr
((
Vt−1 − V

) [
−Ip, Ât

]′
Ωt

[
−Ip, Ât

]))
(5.24)

We have used elementary properties of the trace operator, and property (A.2) of the Matrix Normal

distribution were used. MomentŝAt, Ω̂t are given by (A.13), and (A.14) respectively. Truncation of the

VB-posterior ofφt to interval[0, 1] follows from prior restriction (5.2).

The Variational Extreme (5.19), (5.20) can be found by iterating the implicit set of functions (5.21)–

(5.23) to convergence via the VEM algorithm (Algorithm 2.2).

Remark 5.1 (Numerical Simplification) In this case, it is difficult to find a numerical simplification

of the VEM algorithm. The Restricted VB (Corollary 2.1) can be used. However, we cannot use the

Quasi-Bayes principle (Remark 2.4), because exact marginal distributions are not tractable. Hence,
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5.3. Time-variant Forgetting for the MEAR model

instead we use a threshold for the number of iterations of the VEM algorithm. This was proposed in

[35], as on-line VB for models with time-invariant parameters, where the number of iterations can be

restricted to one. In our case, i.e. model with non-stationary parameters, one iteration per time step

is equivalent to standard forgetting with an initial guess for the forgetting factor. In order to achive an

improvement, we fix the number of steps at each VEM iteration to two.

Remark 5.2 (MAP solution via EM algorithm) The classical EM algorithm for MAP estimation is

similar to the Variational approximation, as described in Section 2.2.4. Specifically, the M-step involves

maximization of (5.5) with respect to φt. Note, however, that under Proposition 5.1, (5.5) is linear in

φt, and so the maximum is reached at one of the boundaries, i.e. 0 or 1. Thus MAP estimation via EM

algorithm is possible only under a different approximation than that of Proposition 5.1.

5.3. Time-variant Forgetting for the MEAR model

Identification of the MEAR model with non-stationary parameters was discussed in Section 4.6.3, using

time-invariant forgetting factors,φNW andφDi. Note that the posterior distribution of the AR parame-

ters of the MEAR model,A andΩ (4.24), is inNW form which was studied in the previous Section.

Hence, these results can be used for inference of an unknown forgetting factorφNW for the MEAR

model as follows:

f (φNW,t|Yt) ≈ tExp (bNW , [0, 1]) , (5.25)

wherebNW is given by (5.23).

A time-variant forgetting factor of the Dirichlet distribution (4.25),φDi,t, can be derived in a similar

manner to the one forφNW,t. Once again, the normalizing constant of the forgetting operator for the

Dirichlet distribution is not tractable. Hence, we invoke an approximation of the type in Proposition

5.1:

ζDi (φDi,t) ≈ exp (h1 + φDi,th2) , (5.26)

where

h1 = ln ζDi

(
Φ
)
,

h2 = ln ζDi (Φt−1)− ln ζDi

(
Φ
)
.

It is easy to verify that Theorem 2.1, applied to (4.23) extended by (5.26), yields the following approx-

imate posterior:

f (φDi,t|Yt) ≈ tExp (bDi, [0, 1]) , (5.27)

bDi = − ln ζDi (Φt−1) + ln ζDi

(
Φ
)

−1
2

c∑
j=1

c∑
i=1

(
Φi,j;t−1 − Φi,j

)
ETt|Yt

(ln ti,j) .
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The posterior distributions of the MEAR model parameters,A, Ω, T , lt, lt−1, are identical to (4.24)–

(4.27) with VB-statistics (4.53)–(4.55), but with fixed values,φNW andφDi, replaced now by expected

values,φ̂NW;t andφ̂Di;t, from (5.25) and (5.27) respectively. This result is intuitively appealing.

It is necessary to mention that the Bayesian interpretation of forgetting [79] invokes a mixture-type

model. The first component is the posterior distribution at timet− 1, and the second component is the

alternative distribution (3.39). Hence, the forgetting factorφt plays the same role as labellt. These

differ in two respects:

• φt is a continuous variable on support[0, 1], while lt is a discrete random variable withc possible

states{e1, . . . , ec}.

• each component of the MEAR model is an EAR model (3.29), which must be strictly data driven

(that being achieved via the requirement of a non-zero Jacobian of (3.26) in Section 3.2.2). There

is no such condition on the alternative distribution in forgetting (3.39). Typically, alternative

distributions are chosen as non-committal priors, i.e. fixed and flat∀t.

Remark 5.3 Note that the update of the VB-statistics, Vt (4.28), for the MEAR model havs the follow-

ing form:

Vt = V + w1;tV1,t + . . .+ wc;tVc,t + φt

(
Vt−1 − V

)
. (5.28)

We have introduced the notation Vi,t = yi,ty
′
i,t. Note that the statistic at time t is, therefore, a weighted

linear combination of statistics from different sources: (i) expert knowledge, V , (ii) c transformations

of the data source, wi;tVi,t, and (iii) accumulated statistics from the past data, Vt−1. The same is

composition can also be shown for the remaining statistics, Φt, νt. This structure is common in al-

gorithms for on-line identification of non-stationary models, however, all the weights are typically as-

sumed to be known. In this Section, we have assumed that all weights involved in the update (5.28),

i.e. w1;t, . . . , wc;t and φt, are unknown. The resulting algorithm, balances, in effect, the contributions

being made by past data, current data, and expert knowledge. It achieves this on-line.

From (5.28), we note that, in effect, the alternative distribution is balanced with respect to components

in the MEAR model. Therefore, choice of the alternative distribution must be considered as a part of

the filter-bank design.

5.4. Inference of an AR process with Switching Parameters

This experiment is designed to verify the ability of time-variant forgetting to detect sudden changes in

parameters (changepoints) and to adjust the forgetting factor accordingly. A univariate second-order

stable AR model (i.e.xt = [dt−1, dt−2]
′) with parametersω = 1, and

A =

[1.8,−0.98] if mod (t, 30) = mod (t, 60)

[−0.29,−0.98] if mod (t, 30) 6= mod (t, 60)
,

wheremod (t, x) denotes the modulo function, i.e. remainder after division. The model was identified

via VB-posteriors (5.19) and (5.20) using the VEM algorithm (Algorithm 2.2) to complete the asso-
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ciated VB-statistics (5.21)–(5.23). In our simulation, we have chosen the alternative statistics to be

V = diag
(
[1, 0.001, 0.001]′

)
, ν = 10, (5.29)

corresponding to the prior estimatesA0 = [0, 0], var (a1) = var (a2) = 1000, ω0 = 0.1. The prior

distribution is chosen equal to the alternative distribution. The initial value of the forgetting factor was

φ̂
(1)
t = 0.7. The full VEM algorithm was stopped when

∣∣∣φ̂(m)
t − φ̂

(m−1)
t

∣∣∣ < 0.001. The restricted VEM

algorithm was stopped after two steps. The results of identification are displayed in Figure 5.1.

Note that the method—to within one time-step—correctly detects a change of parameters and esti-

mates the forgetting factor as low asφ̂t = 0.05 (at t = 33), which achieves almost instant replacement

of statisticsVt, νt by alternative (prior) valuesV , ν. Thus, identification process is restarted. Note that

number of iterations of the VEM algorithm is significantly higher at the changepoint. Therefore, at

these points, the expected value of forgetting factor,φ̂t, obtained using the restricted VEM algorithm

(Remark 5.1), remains too high compared to the converged value of the full VEM algorithm (Figure

5.1). For comparison, the results of identification with stationary forgetting,φt = 0.9, are displayed in

Figure 5.1. The best parameter tracking is achieved using the VB posterior distributions evaluated via

VEM iterated to convergence. Identification of the process using restricted VEM is acceptableif the

parameter variations are not too rapid.

5.5. Inference of a Stationary AR Process using Time Variant

Forgetting

The forgetting technique can be used even for on-line identification of stationary processes. In on-

line scenario, the early estimates are heavily dependent on the chosen prior distribution,f (θ), which

can negatively influence the convergence of the identification algorithm. Therefore, variousdiscount

scheduleshave been proposed to overcome this problem [35].

We now compare the performance of our method with the discount schedule proposed in of [35],

which can be seen as a heuristic choice of forgetting factor in the form

φt = 1− 1
η1 (t− 2) + η2

, (5.30)

whereη1, andη2 area priori chosen constants. Note thatφt → 1 ast → ∞. The aim of this schedule

is to discount the influence of the (possibly wrong) prior statistics at the beginning of identification. As

the posterior becomes data-dominant, the forgetting factor approaches unity, resulting in standard AR

identification. The rate of forgetting is, however, chosen by the designer viaη1 andη2. In our approach,

this rate is inferred from data.

A univariate second-order, stable, AR model (i.e.xt = [dt−1, dt−2]) with parametersA = [1.8,−0.98]′, ω =
1, was simulated. The results of parameter identification using VB posterior distributions (Corollary 5.1)

are displayed in Figure 5.2. For comparison, identification using the discount factor (5.30) was also un-

dertaken (Figure 5.2), via standard AR identification with forgetting (Section 3.2.3), for the choise of

non-stationary forgetting factor (5.30) withη1 = η2 = 1.
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Figure 5.1.:Results of identification of a non-stationary process using time-variant forgetting. In sub-
figures (i)–(iii), full lines denote simulated values of parameters, dashed lines denote pos-
terior expected values, and dotted lines denote uncertainty bounds.
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Figure 5.2.:Results of identification of a stationary process using time-variant forgetting. In the second
sub-figure, full lines denote simulated values of parameters, dashed lines denote posterior
expected values, and dotted lines denote uncertainty bounds.
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Note that fort < 15, the expected value of the unknown forgetting factor,φ̂t, is very close to the

discount factor. However, ast→∞ theφ̂t does not converge to one but a smaller invariant value (in this

simulation,φt ≈ 0.92 for t > 20). This is a consequence of the stationary alternative distribution,f (·).
Note that for stationary forgetting,φt = φ (Section 3.2.3), parameters of the alternative distribution,V

andν, are always present inVt−1, νt−1 (3.43), (3.44). Hence,limt→∞ φ̂t is determined by the chosen

alternativef
(
V , ν

)
. The alternative statistics were chosen as (5.29).

We believe that, in many practical applications, it is easier to choose a reasonable prior from expert

knowledge, than to tune the discount schedule, via parametersη1 andη2. The latter must be done

experimentally, which may be time-consuming.

Note that number of iterations of the VEM algorithm is rather low (Figure 5.2). Hence, the truncation

of VEM cycles (Remark 5.1) yields almost identical results to the full VB scheme, which achieves

convergence at each time-step. The results of the latter were not, therefore, shown in this experiment.

5.6. Discussion

The technique of forgetting is used in many estimation methods for non-stationary processes [58, 105],

with the forgetting factor considered to be time-invariant and known. Attempts to relax the assump-

tion of a priori known forgetting factor were made, especially for the Recursive Least Square (RLS)

algorithms [58]. The method presented in [102] is the closest to our approach. It is a gradient-based

estimation of the forgetting factor for the RLS algorithm. We note the following differences:

• The RLS algorithm is based on the assumption of a Normal distribution of parameters. The

Bayesian interpretation of forgetting (Section 3.2.3) can be applied to any class of posterior dis-

tributions that is closed under the geometric mean (3.39). This was demonstrated in Section 5.3,

where we applied variable forgetting to the identification of the non-stationary parameters of the

Markov model.

• In our approach, we minimize the KL distance from the approximating to the true posterior dis-

tribution ateachtime t. This allows for rapid changes (i.e. switching) of the model parameters.

The criterion of asymptotic mean square error minimized in [102] addresses slower variations of

parameters.

• The posterior inference of the forgetting factor (5.20) is sensitive to the chosen alternative pdf of

the parameters, viaV andν in (5.23). They play a similar role to the tuning parameters (α andβ)

in [102]. The alternative distribution can be chosen using the available expert knowledge of the

problem, via formal prior elicitation procedures [106]. The tuning parameters of [102] must be

adjusted experimentally.

We have noted that the optimal posterior distribution of the forgetting factor is not tractable and it

must be approximated to achieve a numerically efficient identification algorithm (Proposition 5.1). The

choice of approximation, of course, influences the quality of results of the inference algorithm. The

proposed approximation is simple and it may be inappropriate for certain tasks. Other approximations

might be investigated in such cases, to improve performance.
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Chapter 6.

Bayesian Treatment of Principal Component
Analysis

In this Chapter, we study the Bayesian inference of parameters of the Probabilistic PCA (PPCA) model

(Section 3.3). An approximate inference of the model, using the VB approximation, was reviewed

in Section 3.3.3. The parameters of the posterior distribution are evaluated via the VEM algorithm

(Algorithm 2.2), which is computationally intensive in the high-dimensional contents where PCA is

typically applied. In this Chapter, we new VB identification algorithms, which are significantly faster.

Recall, that the PPCA model (3.50) is

f (D|A,X, ω, r) = N
(
AX ′, ω−1Ip ⊗ It

)
.

Hence, throughout the Chapter, we assume the identity covariance matrix of the additive noise. Results

achieved in this Chapter can also be used even for colored, Normal distributed noise ofknowncovari-

ance matrix. In this case, the results are valid for a matrix of pre-processedD̃ (3.88). Identification for

the Factor Analysis model—i.e. the PPCA model withunknowncovariance—will be adressed in the

next Chapter.

The model is first studied at the lowest possible dimension, i.e. scalar variables, to gain insight

into the problem. Detailed analysis of thistoy problemleads to (i) faster evaluation of the posteriors

for PPCA, and (ii) interest in the orthogonal parameterization of the PPCA model. The orthogonal

PPCA model is then proposed and its Bayesian inference is developed. Performance of both methods is

compared on simulated data. Application of the resulting algorithms to real data is deferred to Chapter

7.

6.1. Toy Problem: Scalar Decompositions

In this Section, we reduce the model (3.50) to the simplest case. Reducing (3.50) to minimal dimensions,

i.e. p = n = r = 1, we obtain a scalar model:

d = ax+ e. (6.1)

Model (6.1) is clearly over-parameterized, with three unknown parameters (a, x, e) for one measure-

ment,d. It expresses any additive/multiplicative decomposition of a real number. Separation of the
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‘signal’, ax, from the ‘noise’,e, is not possible without further information, i.e. the model (6.1) must

be regularized. Towards this end, let us assume that noisee is distributed asN (0, σe). Then,

f (d|a, x, σe) = N (ax, σe) , (6.2)

whereσe is assumed to be known.

The likelihood function for this model ford = 1, σe = 1 is displayed in the upper row of Figure

6.1, in surface plot (left) and contour plot (right) froms. The maximum of the likelihood is reached

anywhere in the manifold defined by the signal estimate

âx = d. (6.3)

This illustrates the rotational ambiguity problem (3.53) of Section 3.3. Further regularization is clearly

required.

6.1.1. Bayesian Formulation

It can also be appreciated from Figure 6.1 (upper-left), that volume under the likelihood function is

infinite. This means thatf (a, x|d, σe) ∝ f (d|a, x, σe) f (a, x) is improper (unnormalizeble) when the

parameter priorf (a, x) is itself improper (uniform in<2). Prior-based regularization is clearly required

to achive a proper posterior distribution via Bayes’ rule. Under the assignment,

f (a|σa) = N (0, σa) , (6.4)

f (x|σx) = N (0, σx) , (6.5)

the posterior distribution is:

f (a, x|d, σe, σa, σx) ∝ exp

(
−1

2
(ax− d)2

σe
− 1

2
a2

σa
− 1

2
x2

σx

)
. (6.6)

(6.6) is displayed in the lower row of Figure 6.1, forσa = 10, σx = 20, d = 1, σe = 1. The model

is now regularized, with the consequence that the posterior (6.6) is normalizable (proper) with point

maximizers (MAP estimates) as follows:

1. Ford > σe√
σaσx

, then

x̂ = ±
(
d

√
σx

σa
− σe

σa

) 1
2

, (6.7)

â = ±
(
d

√
σa

σx
− σe

σx

) 1
2

. (6.8)

Note that product of maxima is

âx̂ = d− σe√
σaσx

. (6.9)

82



6.1. Toy Problem: Scalar Decompositions

Probability surface Contour plot

unregularized

      
  

  

  

regularized
(via prior)

      
  

  

  

Figure 6.1.:Illustration of scaling ambiguity in the toy problem.Upper row: the likelihood function
f (d|a, x, σe) for d = 1 (dash-dotted line denotes manifold of maxima).Lower row : pos-
terior pdff (a, x|d, σa, σx, σe) for d = 1, with priorsσe = 1, σa = 10, σx = 20. Cross
marks denote maxima.

From (6.9), the signal estimate has been shifted towards the coordinate origin compared to (6.3).

For the choice,σa � σe andσx � σe, the prior strongly influences the posterior and is therefore

informative. For the choice,σa � σe andσx � σe, the prior has negligible influence on the

posterior and can be considered as non-commital.

2. Ford ≤ σe√
σaσx

, x̂ = â = 0.

Clearly, the quantitỹd = σe√
σaσx

constitutes an important inferential breakpoint. Ford > d̃, a non-zero

signal is inferred, ford ≤ d̃, the observation is considered to be purely noise.

6.1.2. Full Bayesian Solution

The posterior distribution (6.6) is normalizable, but the normalizing constant cannot be expressed in

closed form. Integration of (6.6) overx ∈ < yields the following marginal distribution fora:

f (a|d, σe, σa, σx) ∝ 1
2

exp
(
−1

2
d2σa + a4σx + a2

σa (a2σx + 1)

)[
π2σa

(
a2σx + 1

)]− 1
2 , (6.10)
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Figure 6.2.:Analytical marginals (of distribution from Figure 6.1).σe = 1, σa = 10, σx = 20, and
d = 1 (left), d = 2 (right).

whose intergral overa is not available in closed form. Structural symmetry with respect toa andx in

(6.1) implies hat the marginal inference forx has the same form as (6.10).

The maximum of the marginal (6.10) is reached for

â =

±
[
−σaσx−2σe+

√
σaσx(σaσx+4d2)

2σx

] 1
2

if d >
√

σ2
e

σaσx
+ σe,

0 if d ≤
√

σ2
e

σaσx
+ σe.

(6.11)

The same symbol,̂a, is used to denote the (distinct) joint (6.8) and marginal (6.11) MAP estimates. No

confusion will be encountered. Both cases of (6.11), respectively, are demonstrated in Figure 6.2, for

d = 1 (left) andd = 2 (right).The curves were normalized by numerical integration.

The only operation on the marginal posterior that can be evaluated analytically, is the maximum

(6.11). Most importantly, analytical normalization of the marginal posteriors is not available, and so

the moments of the posterior must be evaluated using numerical methods. Recall, that purpose of

this analysis is to understand the Bayesian inference of the multivariate PPCA model (3.50). The full

Bayesian solution presented in this section can, indeed, be extended into multivariate case [50]. The

multivariate posterior distributions suffer the same difficulties as those of the toy problem: normaliza-

tion of the marginal posteriors and their moments must be evaluated using numerical methods, such as

MCMC (Section 2.2.6) [64]. Hence, we now seek an approximation of the posterior distribution using

a Variational Bayes approximation.

6.1.3. Variational Bayes (VB) Approximation

Corollary 6.1 (Corollary 4 of Theorem 2.1) Consider the following conditionally independent factor-

ization of (6.6):

f̆ (a, x|d, σe, σa, σx) = f̆ (a|d, σe, σa, σx) f̆ (x|d, σe, σa, σx) . (6.12)
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Then, using (6.12) and (6.6) in Theorem 2.1, the VB-optimal form of (6.12) via found in the following

assignments:

f̃ (x|d, σe, σa, σx) = N (x̂, φx) ,

f̃ (a|d, σe, σa, σx) = N (â, φa) ,

with VB-statistics

x̂ = dσ−1
e φxâ, (6.13)

â = dσ−1
e φax̂, (6.14)

φx =
(
σ−1

e (φa + ââ) + σ−1
x

)−1
, (6.15)

φa =
(
σ−1

e (φx + x̂x̂) + σ−1
a

)−1
. (6.16)

The VB-statistics—̂a, x̂, φa, φx—can be found inclosed-formfrom (6.13)–(6.16). There are three

possible cases:

1. zero-signal inference:

x̂ = 0, (6.17)

â = 0,

φx =
σe

2σa

(√
1 +

4σaσx

σe
− 1
)
,

φa =
σe

2σx

(√
1 +

4σaσx

σe
− 1
)
,

2. and 3. non-zero signal inference:

x̂ = ±

[(
d2 − σe

)√
σaσx − dσe

dσa

] 1
2

, (6.18)

â = ±

[(
d2 − σe

)√
σaσx − dσe

dσx

] 1
2

,

φx =
σe

d

√
σx

σa
sgn

(
d2 − σe

)
, (6.19)

φa =
σe

d

√
σa

σx
sgn

(
d2 − σe

)
.

Here,sgn (·) returns the sign of the argument.

From (6.19) we note, that extreme 2. and 3. is meaningful only ford >
√
σe. However, (6.18) collapses

to x̂ = 0 (i.e. to the zero-signal inference) for

d̃ =
1
2
σe +

√
σe (σe + 4σaσx)
√
σaσx

≈
√
σe +

σe

2
√
σaσx

. (6.20)

85



6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

      
  

  

  

      
  

  

  

Figure 6.3.:Comparison of Laplace and Variational Bayes approximations (for distributions in Figure
6.1). σe = 1, σa = 10, σx = 20, d = 2. Left: (Laplace approximation): full line
ellipse corresponds to2-standard-deviation boundary of the joint Normal approximation;
dashed line corresponds to product of Laplace marginal approximations (for comparison
with VB). Right: (Closed-form solution of the VB approximation): VB approximation for
the zero-signal (6.17) and non-zero-signal modes (6.18) are shown.

Hence, (6.20) denotes the VB-based breakpoint. Ford > d̃, a non-zero signal is inferred (case 2. and

3.), ford ≤ d̃, the observation is considered to be purely noise.

These solutions are illustrated in Figure 6.3 (right). This result illustrates a key consequence of the

VB approximation, namely, absence of any cross-correlation between variables, in direct consequence

of the conditional independece assumption. For comparison, the result of a Laplace approximation (Sec-

tion 2.2.2) is displayed in Figure 6.3 (left). The Laplace approximation does model cross-correlation

between variables.

The availability of a closed-form VB solution is rare. Therefore, we have the opportunity to study

properties of the standard VEM algorithm in this case. Trajectory of the VEM iterations for mean values

of VB-posteriors (6.17), (6.17), are shown in Figure 6.4, ford = 2 (left) andd = 1 (right). These two

cases demonstrate the two distinct modes of solution of equations (6.13)–(6.16). Though there are no

limiting conditions for the mode in origin, iterative algorithm typically converge to the positive (or

negative) solution ford > σe. This suggest that ford > σe the zero-signal solution is a local extreme

of the KL distance.

These results, along with Colorary 6.1, suggest the following:

• The prior distribution is indispensable; as it regularizes the model, and necessary for yielding

finite VB statistics. With uniform priors, i.e.σa → ∞ andσx → ∞, none of the derived

solutions is valid.

• From (6.18), the ratio of the posterior expected valuesâ/x̂ is fixed by the priors.

• The inferential breakpoint,̃d—i.e. value ofd above which a non-zero signal is inferred—depends

on the product ofσaσx (6.20).
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Figure 6.4.:VB approximations of the toy problem parameter distributions, using the VEM algorithm.
Dashed line denote initial VB-posterior; full line denotes converged VB-posterior; trajec-
tory of the VB means is also illustrated,σe = 1, σa = 10, σx = 10. Left: (non-zero-signal
mode)d = 2. Right: (zero-signal-mode)d = 1.

Remark 6.1 (Alternative priors) The choice of priors in VPCA (3.65), (3.66) corresponds to the fol-

lowing choise of priors for the toy problem:

σx = 1, f (σa|α, β) = G (α, β) ,

where σx is fixed, but σa is considered as unknown (i.e. random variable of G distribution with known

hyper-parameters α, β) to be estimated jointly with other parameters. Using this prior structure for the

toy problem, closed-form VB-statististics can also be found. In fact, the closed form VB-statistics can

be found for many different choises. For example:

1. symmetric priors

f (σa|α, β) = f (σx|α, β) = G (α, β) ,

2. fixed σx, and σa conditioned by precision ω,

σx = 1, f (σa|ω, α, β) = G (α, βω) .

This suggests, that an analytical solution may be achieved for a wider choice of multivariate priors.

This may be significant for the development of numerically efficient algorithms for of extended PPCA

models.

6.1.4. Non-Degenerate Parameterization for the Toy Problem

The inference problems encountered in previous Sections are consequence of degenerate parameteriza-

tion of the mean value:m = ax. In the multivariate case, this parameterization was used to model the

rank restriction inM(r), r < min (n, p). In this scalar case,n = p = r = 1. Hence, the multiplicative
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decomposition is not necessary, and we can work with a purely additive model:

d = m+ e. (6.21)

Once again, we assume that,e is Normally distributed:f (e) = N (0, ω), expressed via the precision

parameter,ω, for consistency with Section 3.2. Identification ofm under the assumption of knownω

constitutes the trivial identification task of inferring the mean value of a Normal distribution with known

variance [17]. The problem is well-posed, and no regularizing prior is needed.

We, therefore, analyze the more complicated problem, whereω is unknown. Then, the observation

model (6.21) is a Normal distribution conditioned on an unknown mean value and precision. As such, it

is a special case of the regression model (Section 3.1), for which a conjugate prior is available (Section

3.2)

f (m,ω) = NW (V0, ν0) . (6.22)

We choose the prior statistics of (6.22) to beV0 = diag
(
[ε1, ε2]

′), ν0 = ε3, where scalarsε =
[ε1, ε2, ε3]

′ can be chosen small to yield a flat—i.e. non-committal—pdf. The posterior distribution

is then

f (m,ω|d, ε) = NW
(
V0 + [d, 1]′ [d, 1] , ν0 + 1

)
. (6.23)

From (6.21), and (6.22), the joint distribution is:

f (d,m, ω|ε) = ω
1
2
(1+ε3) exp

(
−1

2
(d−m)2 ω − 1

2
m2ε2ω −

1
2
ε1ω

)
. (6.24)

The posterior distribution is found using Bayes’ rule:

f (m,ω|d, ε) =
f (d,m, ω|ε)
f (d|ε)

. (6.25)

In this case, the analytical form of the posterior (6.25) is of theNW (·) form (3.13), which is regular

and for which moments are available in Appendix A.2. Recall, from (6.10), that this was not possible for

the degenerate PPCA decomposition. Hence, for comparison, we now proceed with VB approximation

of (6.25).

Consider the following conditional independent factorization of (6.25):

f̆ (m,ω|d) = f̆ (m|d) f̆ (ω|d) . (6.26)

Using (6.26) with (6.25) in Theorem 2.1, the VB-optimal form of (6.26) is found via the following

assignments:

f̃ (m|d, ε) = Nm

(
d (1 + ε2)

−1 , (1 + ε2) ω̂−1
)
, (6.27)

f̃ (ω|d, ε) = Gω

(
3
2

+ ε3,
1
2

[
(1 + ε2) m̂2 − 2dm̂+ d2 + ε1

])
. (6.28)
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Figure 6.5.:Illustration of the VB-posterior, (6.27)–(6.28), for the scalar additive decomposition
(dashed contour). Full contour lines denote the exactNW posterior distribution (6.25).

For this simple case,̃f (m,ω|d, ε) = Nm (·)Gω (·) can be compared to the exact posterior (6.23).

Graphical comparison ford = 1 is displayed in Figure 6.5.

We note the following:

• the prior distribution (6.22) can be chosen such that,ε2 = ε3 = 0, without loss of tractability.

This choice corresponds to a uniform (improper) prior on parameterm. Hence, in contrast to the

PPCA model (6.1), the prior on the mean value has no regularizing role.

• the hyperparameter,ε1, above has a regularizing effect. It is a hyper-parameter of the prior on

the precision parameterω. Note that we are inferringω from a single observation only, hence the

data does not contain any information about uncertainty and the inference must be regularized.

6.1.5. The Lessons Learnt

In this Section, we have studied scalar decomposition in an attempt to understand the nature of the

VPCA approximation for the PPCA model (Section 3.3.3). We have noticed the following, which

generates to the full multivariate context:

1. if the variance of the noise is known, the VB-statistics can be found inclosed-form. This elimi-

nates the need to evaluate VB-statistics via an iterative VEM algorithm;

2. inference of the model,d = m + e, where the mean is not degenerativly poarameterized is

predictably much simpler. Moreover, the correct posterior distributions ofm andω exhibits less

correlation than is the case ofa andx. Therefore, the conditional independece assumption of the

VB approximation is less intrusive in the former case. More formal analysis related to this issue

can be found in [84].

We will next explore these insights for the multivariate PPCA model (3.50).
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6.2. Fast Variational PCA (FVPCA)

In this Section, we study the VB-posterior for the PPCA problem reviewed in Section 3.3.3. Notably,

we exploit the fact that VB-statistics for the associated toy problem (Section 6.1) can be found in

closed form. The solution reviewed in Section 3.3.3 uses the VEM algorithm which can be inefficient,

especially when poor initial conditions are chosen. Hence, we begin with consideration of initial values

for the VEM algorithm. Here, we use two simple ideas:

• the closer the initial value of the VB-statistics are to the optimal values, the faster the VEM

algorithm will converge,

• the MAP estimate of a parameter is typically not too far from its expected value. This is supported

by the fact that the approximate posterior distributions (3.72)–(3.73) are of Normal-type for which

the mean and the maximum are identical.

Recall, that the maximum of the PPCA model (3.50) was reached for an orthogonal solution (3.51).

Hence, we expect that solution of (3.76) will be very close to (3.55).

Proposition 6.1 (Orthogonal solution of VPCA) Consider a special case of distributions of random

variables A and X , with restricted first and second moments. The first moments, Â (3.76) and X̂

(3.78), are formed from scaled singular vectors of the data matrix, D (3.52),

Â = Ur;DKA, (6.29)

X̂ = Vr;DKX , (6.30)

where KA = diag (kA) ∈ <r×r and KX = diag (kX) ∈ <r×r denote matrix constants of proportion-

ality. The second moments (3.77), (3.79) are restricted to have a diagonal form:

ΣA = diag (σA) , (6.31)

ΣX = diag (σX) . (6.32)

Then, evaluation of the VB-statistics (3.76)–(3.83), via the VEM algorithm initialized with values in

the form of (6.29)–(6.32), yields results also in the form of (6.29)–(6.32).

Proof: By induction: (i) the VEM algorithm is initialized in the form (6.29)–(6.32); (ii) substitut-

ing (6.29)–(6.32) into (3.76)–(3.83) yields results in the form of (6.29)–(6.32).

Note that, under Proposition 6.1, the distribution ofA andX are determined by the constants of propor-

tionality, kA andkX , and variances,σA andσX , respectively. The iterative algorithm is then greatly

simplified, since we need only iterate on the4r degrees of freedom constitutingkA, kX , σA, andσX

together, and not on̂A, X̂, ΣA, ΣX with r (p+ n+ 2r) degrees of freedom. Note that (3.76)–(3.83)

now involve products of diagonal matrices. Hence, we need only evaluate diagonal elements, using

identities of the kind

KAKX = diag (kA ◦ kX) ,
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where◦ denotes Hadamard product. Equations (3.76)–(3.83) can now be re-formulated in efficient

diagonal form. Intuitively, the equation for the mean valueµA (3.76) is replaced by an equation for

its diagonalkA, the equation for the covariance matrix,ΣA (3.77), is replaced by an equation for its

diagonalσA, etc.

kA = ω̂lr;D ◦ kX ◦ σA, (6.33)

σA = (ω̂nσX + ω̂kX ◦ kX + υ̂)−1 , (6.34)

kX = ω̂σX ◦ kA ◦ lr;D, (6.35)

σX = (ω̂pσA + ω̂kA ◦ kA + 11,r)
−1 , (6.36)

αi = α0 +
p

2
, i = 1, . . . , n, (6.37)

βi = β0 +
1
2
(
pσA,i + k2

A,i

)
, i = 1, . . . , n, (6.38)

ϑ = ϑ0 +
np

2
, (6.39)

ρ = ρ0 +
1
2
(
l′DlD − 2l′r;D (kA ◦ kX) + (kA ◦ kX)′ (kA ◦ kX)

)
,

+
1
2
ω̂−1

(
pσ′A (kX ◦ kX) + pnσ′AσX + nσ′X (kA ◦ kA)

)
. (6.40)

Hence, equations (6.33)–(6.40) can be used as replacement for (3.76)–(3.83).

Note that elements of vectorsσ andk correspond in such a way that theith element of one vector

depends only on theith elements of the remaining vectors, e.g.

kA;i = ω̂lD,ikX,iσA,i.

The only equation that makes them mutually dependent is (6.40), i.e. the expected value,ω̂, of ω. If ω̂

is known, the complexity of the problem is now reduced to the complexity of the toy problem (Section

6.1), which is analytically tractable.

Proposition 6.2 Let the posterior expected value ω̂ of ω be known. Then, equations (6.29)–(6.36) have

an analytical solution with two modes:

the first one for lD,i ≤
√

p+
√

n√bω
√

1− β0ω̂,

kA,i = 0, (6.41)

kX,i = 0 (6.42)

σX,i =
1
2

2n+− (n− p)β0ω̂ −
√
β2

0 ω̂
2 (n− p)2 + 4β0npω̂

n (1− β0ω̂)
, (6.43)

σA;i =
1− σX,i

σX,ipω̂
, (6.44)

βi =

(
α0 + 1

2p
)
(σX,i − 1)

(n (σX,i − 1) + p)σX,iω̂
, (6.45)
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and the second one for lD,i >
√

p+
√

n√bω
√

1− β0ω̂,

kA,i = z2, (6.46)

kX,i =

(
ω̂l2D,i − p

)
kA,i

lD

(
ω̂k2

A,i + 1
) , (6.47)

σA,i =
ω̂k2

A,i + 1

ω̂
(
ω̂l2D,i − p

) , (6.48)

σX,j =

(
ω̂l2D,i − p

)
ω̂lD,i

(
ω̂k2

A,i + 1
) (6.49)

βi =

(
α0 + 1

2p
) (
ω̂k2

A,i ((1− ω̂β0) (n− p) + lD,i) + n+ β0ω̂
2l2D,i

)
ω̂k2

A,i (p− n)− n+ ω̂l2D,i

, (6.50)

where the expression denoted as z2 for kA,i is too long and can be found in Appendix B.

Proof: evaluated using the symbolic software package, Maple. See Appendix B for detailed

analysis.

Conjecture 6.1 (Soft orthogonality constraints) Prior distributions onA andX , i.e. (3.65) and (3.66),

were chosen with diagonal covariance matrices. This choice favours such matrices A and X whose

product A′A and X ′X is a diagonal matrix. Hence, the Variational Extreme (Corollary 3.1) converges

to posterior distributions with orthogonal mean value, even if the VEM algorithm was initialized with

non-orthogonal matrices.

Note that, using Proposition 6.2, the VEM algorithm can be greatly simplified. Substituting (6.41)–

(6.45) into (6.33)–(6.38), the VB-statistics are determined up to the expected value of the precision

(6.40). The VB-statistics can be evaluated via a simplified VEM algorithm with one degree of freedom,

as follows:

Algorithm 6.1 (Fast VPCA)

1. SVD of the data matrix (3.52)

2. Choose initial value of ω̂ as1 ω̂ = n
lp;D

.

3. Evaluate the breakpint point:

l̃D =
√
p+

√
n

√
ω̂

√
1− β0ω̂.

4. Split lD into l(1) =
{
lD,i < l̃D

}
and l(2) =

{
lD,i ≥ l̃D

}
. In fact, the number of elements in l(1)

determines the ARD property, and thus ru.

5. Evaluate solutions of mode 1, (6.41)–(6.45), for l(1), and of mode 2, (6.46)–(6.50), for l(2).
1This choice will be explained in Section 6.4.
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6. Update estimate of ω̂(t) = ϑ
ρ , using (6.39) and (6.40).

7. If difference of ω̂(t) − ω̂(t−1) > threshold, go to 3.

Comparison with the standard model will be studied in Section 6.4.

6.3. Orthogonal Variational PCA (OVPCA)

In Section 3.3, we have shown that the ML estimation of parametersA andX of the PPCA model

suffers from rotational ambiguity (Remark 3.6). It is a consequence of inappropriate modelling of low-

rank matrixM(r), which is clearly over-parameterized. This is a complication in the Bayesian treatment,

where the inference ofA andX must be regularized via priors, as noted in Section 6.1.1.

However, from an analytical point-of-view, the model contains redundant parameters. For example,

under the VB approximation, the posterior expected value of the mean,

EA,X

(
M(r)

)
= EA,X (AX) = Ur;Ddiag (kr;A ◦ kr;X)V ′r;D,

is found in the SVD form, but the singular values are found as element-wise product of two vectors,kA

andkX . Element-wise ratio of these two vectors is governed by the chosen priors. In this Section, we

re-parameterize the model in a more compact way.

6.3.1. Orthogonal Parameterization of the PPCA Model

A standard tool for dealing with reduced-rank matrices is the ‘economic’ Singular Value Decomposition

(SVD) [73]:

M(r) = ALX ′. (6.51)

Since the rankr of the matrixM(r) is known2, we can restrict matrices,A andX, to<p×r and<n×r

respectively, with orthogonality restrictionsA′A = Ir, X ′X = Ir. Also L = diag (l) ∈ <r×r is a

diagonal matrix of non-zerosingular values,l = [l1, . . . , lr]
′, ordered, without loss of generality, as

l1 > l2 > . . . > lr > 0. (6.52)

The decomposition (6.51) is unique, up to the sign of ther singular vectors, (i.e. there are2r possible

decompositions (6.51) satisfying the stated constraints, all equal to within a sign ambiguity).

Model (3.1), extended by (3.49), (6.51), yields:

f (D|A,L,X, ω, r) = N
(
ALX ′, ω−1Ip ⊗ In

)
. (6.53)

To our knowledge, this model [107] has not been considered before in the literature. The maximum

likelihood estimates of the model parameters, conditioned by knownr, are given by(
Â, L̂, X̂, ω̂

)
= arg max

A,L,X,ω
f (D|A,L,X, ω, r) ,

2At present we suppose it is known. This will be relaxed later.
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with assignments

Â = Ur;D, L̂ = Lr,r;D, X̂ = Vr;D, ω̂ =
pn∑p

i=r+1 l
2
D,i

. (6.54)

Here,Ur;D, andVr;D are the firstr columns of the matricesUD, andVD of the SVD decomposition of

the data matrixD (3.52) respectively, andLr,r;D is ther × r upper-left sub-block of matrixLD.

6.3.2. Bayesian Formulation

The confinement, in the orthogonal model, ambiguity to only a sign-based ambiguity is an advantage

gained at the expense of orthogonal restrictions which are generally difficult to handle. Specifically,

parametersA andX are restricted to having orthonormal columns, i.e.A′A = Ir andX ′X = Ir

respectively. Intuitively, each columnai, i = 1 . . . r, ofA belongs to the unit hyperball inp dimensions,

i.e. ai ∈ Hp. Hence,A ∈ Hr
p, the Cartesian product ofr p-dimensional unit hyperballs. However, the

requirement of orthogonality—i.e.a′iai = 0, ∀i 6= j—confines the space further. The orthonormally

constrained subset,Sp,r ⊂ Hr
p is known as the Stiefel manifold [108]. SpaceSp,r has finite area, which

will be denoted asτ (p, r):

τ (p, r) =
2rπ

1
2
pr

π
1
4
r(r−1)∏r

j=1 Γ
{

1
2 (p− j + 1)

} , (6.55)

whereΓ (·) is the Gamma function [71]. Both the prior and posterior distributions have a support

confined toSp,r.

We choose the priors onA andX to be the least informative, i.e. uniform onSp,r andSn,r respec-

tively:

f (A) = τ (p, r)−1 χ (Sp,r) , (6.56)

f (X) = τ (n, r)−1 χ (Sn,r) . (6.57)

There is no upper bound onω > 0 (3.49). An appropriate prior is therefore (the improper) Jeffreys’

prior on scale parameters [18]:

f (ω) ∝ ω−1. (6.58)

Suppose that the sum of squares of elements ofD is fixed, e.g.:∑
i=p

∑
j=n

d2
i,j = tr

(
DD′) = 1. (6.59)

This can easily be achieved in a pre-processing step. (6.59) can be expressed, using (3.52), as:

tr
(
DD′) = tr

(
UDLDLDU

′
D

)
=

p∑
i=1

l2D,i = 1.

94



6.3. Orthogonal Variational PCA (OVPCA)

This implies an upper bound onl:
r∑

i=1

l2i ≤
p∑

i=1

l2D,i = 1. (6.60)

This, together with (6.52), confinesl to the space

Lr =

{
l
∣∣∣l1 > l2 > . . . > lr > 0,

r∑
i=1

l2i ≤ 1

}
, (6.61)

which is a section of a unit hyperball. Constraint (6.60) forms a full hyperballHr, with volume

hr = π
r
2 /Γ

(r
2

+ 1
)
. (6.62)

Positivity constraints restrict the allowed volume tohr/2r, and hyperplanes{li = lj , ∀i, j = 1 . . . r}
partition the positive section of the hyperball intor! sections with equal volume, only one of which

satisfies condition (6.52). Hence, the volume of the support (6.61) is

ϕr = hr
1

2r (r!)
=

π
r
2

Γ
(

r
2 + 1

)
2r (r!)

.

Therefore, we choose the prior distribution onl to be non-committal—i.e. uniform—on support (6.61):

f (l) = U (Lr) = ϕ−1
r χ (Lr) . (6.63)

Multiplying (6.53) by (6.56), (6.57), (6.58) and (6.63), and using the chain rule of probability, we

obtain the joint distribution:

f (D,A,L,X, ω|r) = N
(
ALX, ω−1Ip ⊗ It

)
×

ϕ−1
r τ (p, r)−1 τ (n, r)−1 , (6.64)

on support{A ∈ Sp,r} × {l ∈ Lr} × {X ∈ Sn,r} × {ω > 0} .
The posterior distribution is then obtained using Bayes’ rule:

f (A,L,X, ω|D, r) =
f (D,A,L,X, ω|r)

f (D|r)
. (6.65)

Exact posterior inference from (6.64) is not available.

6.3.3. Variational Bayes (VB) Approximation

Corollary 6.2 (Corollary 5 of Theorem 2.1) Consider the following conditionally-independent fac-

torization of (6.65):

f̆ (A,L,X, ω|D, r) = f̆ (A|D, r) f̆ (X|D, r) f̆ (L|D, r) f̆ (ω|D, r) (6.66)
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Using (6.64) and (6.66) in Theorem 2.1, the VB-optimal form of (6.66) is found via the following

assignments:

f̃ (A|D, r) = M (FA) , (6.67)

f̃ (X|D, r) = M (FX) , (6.68)

f̃ (l|D, r) = tN
(
µl, s

2Ir;Lr

)
, (6.69)

f̃ (ω|D, r) = G (ϑ, ρ) . (6.70)

Here, M (·) denotes the von Mises-Fisher distribution (i.e. normal distribution restricted on the Stiefel

manifold [108]). Their matrix parameters are FA ∈ <p×r in (6.67), and FX ∈ <n×r in (6.68). tN
is the truncated Normal distribution with truncation points given by the lower and upper bounds of the

prior (6.85).

The VB-statistics of (6.67)–(6.70) are:

FA = ω̂DX̂L̂, (6.71)

FX = ω̂D′ÂL̂, (6.72)

µl = diag−1
(
X̂ ′D′Â

)
, (6.73)

s2 = ω̂−1, (6.74)

ϑ =
pn

2
, (6.75)

ρ =
1
2
tr
(
DD′ − 2DX̂L̂Â′

)
+

1
2
l̂′l. (6.76)

These, in turn, are defined in terms of moments of distributions (6.67)–(6.70), namely Â, X̂ , l̂, l̂′l and

ω̂. These are expressed via the SVD of parameters FA (6.71) and FX (6.72):

FA = UFA
LFA

V ′FA
, (6.77)

FX = UFX
LFX

V ′FX
, (6.78)

with LFX
and LFA

both in <r×r. Then,

Â = UFA
G (p, LFA

)V ′FA
, (6.79)

X̂ = UFX
G (n,LFX

)V ′FX
, (6.80)

l̂ = µl + sϕ (µl, s) , (6.81)

l̂′lr = rs2 + µ′ll̂− sκ (µl, s) , (6.82)

ω̂ =
ϑ

ρ
. (6.83)

Moments of M (·) and tN (·)—from which (6.79)–(6.82) are derived—are reviewed in Appendices

A.5 and A.4 respectively. Functions G (·, ·), ϕ (·, ·), and κ (·, ·) are also defined there.

Proof: Can be handled in the same way as proofs for the previous VB-related Corollaries. It is an

easy but lengthy exercise in probability calculus.
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Remark 6.2 (Approximate support for L) The correct distribution for l is

f (l|D, r) = tN
(
µl, s

2Ir;Lr

)
, (6.84)

i.e. a Normal distribution truncated on support, Lr (6.61). However, the moments of distribution (6.84)

are difficult to evaluate, as Lr forms a non-trivial section of the multivariate support. Therefore we

approximate the support Lr by its envelope Lr ≈ Lr. Note that (6.60) is maximized if l1 = l2 = . . . =
lr, lr+1 = lr+2 = . . . = lp = 0. In this case

∑p
i=1 l

2
i = rl2r < 1, which defines an upper bound, lr < lr

to be lr = r−
1
2 . Hence, (6.61) has a rectangular envelope:

Lr =
{
l|0 < li ≤ lr = i−

1
2 , i = 1 . . . r

}
. (6.85)

(6.84) is then approximated by (6.69). Note that Lr is a rectangular area. Hence, (6.69) can be written

as the product of univariate truncated Normal distributions, moments of which are known (Appendix

A.4). The error of approximation is largest at the boundaries, li = lj , i 6= j, i, j ∈ {1 . . . r}, and is

negligible when no two li’s are equal.

Once again, the general solution of the VEM algorithm (Algorithm 2.2) can be used. However, closer

analysis of equations (6.71)–(6.83) reveals that the evaluation for our model can be simplified, as fol-

lows.

Proposition 6.3 (Orthogonal Variational PCA (OVPCA)) We search for a solution of Â (6.79) and

X̂ (6.80) in the space of scaled singular vectors of matrix D (3.52):

Â = Ur;DKA, (6.86)

X̂ = Vr;DKX . (6.87)

UD and VD are given by (3.52). KA = diag (kA) ∈ <r×r and KX = diag (kX) ∈ <r×r denote

constants of proportionality which must be determined. Then, each iteration using equations (6.71)–

(6.83) will not leave this space: i.e. (6.86) and (6.87) are true at each iteration step.

Proof: Consider thetth iteration step,t = 1, 2, . . ., where superscript(t) denotes the optimized

parameter values in this step. Assume that estimates,Â(t−1), X̂(t−1), at the end of the previous step3,

are of the form (6.86), (6.87); i.e.

Â(t−1)
r = Ur;DK

(t−1)
A , X̂(t−1) = Vr;DK

(t−1)
X . (6.88)

Hence, von Mises-Fisher parametersFA andFX are updated, at iterationt, via (6.71) and (6.72) re-

spectively:

F
(t)
A = ω̂(t−1)

(
UDLDV

′
D

)
Vr;DK

(t−1)
X L̂(t−1) = ω̂(t−1)Ur;DLr,r;DK

(t−1)
X L̂(t−1), (6.89)

F
(t)
X = ω̂(t−1)

(
UDLDV

′
D

)′
Ur;DK

(t−1)
A L̂(t−1)

r = ω̂(t−1)Vr;DLr,r;DK
(t−1)
A L̂(t−1)

r , (6.90)

3Initial conditions, i.e. att = 0, will be specified shortly.
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6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

using (3.52). These are in the SVD form ofFA (6.77), andFX (6.78) respectively, with assignments:

UFA
= Ur;D, L

(t)
FA

= ω̂(t−1)Lr,r;DK
(t−1)
X L̂(t−1)

r , VFA
= Ir, (6.91)

UFX
= Vr;D, L

(t)
FX

= ω̂(t−1)Lr,r;DK
(t−1)
A L̂(t−1)

r , VFX
= Ir. (6.92)

Substituting (6.91) and (6.92) into (6.80) and (6.79) respectively:

Â(t)
r = Ur;DG

(
p, ω̂(t−1)Lr,r;DK

(t−1)
X L̂(t−1)

r

)
Ir = Ur;DK

(t)
A , (6.93)

X̂(t)
r = Vr;DG

(
n, ω̂(t−1)Lr,r;DK

(t−1)
A L̂(t−1)

r

)
Ir = Vr;DK

(t)
X ,

since functionG (·, ·), with diagonal matrix argument, returns also a diagonal matrix (Appendix A.5.2).

Therefore, new estimates remain of the same type (6.86), (6.87) with assignments:

K
(t)
A = G

(
p, ω̂(t−1)Lr,r;DK

(t−1)
X L̂(t−1)

r

)
, (6.94)

K
(t)
X = G

(
n, ω̂(t−1)Lr,r;DK

(t−1)
A L̂(t−1)

r

)
. (6.95)

Note that, under Proposition 6.3, the optimal values ofÂ andX̂ are determined up to the constants

of proportionality,kA andkX . The iterative algorithm is then greatly simplified, since we need only

iterate on the2r degrees of freedom constitutingKA andKX together, and not on̂A and X̂ with

r
(
p+ n− r−1

2

)
degrees of freedom. To achieve this, we must, however, satisfy the requirement of

Proposition 6.3, namely we must initialize the iterative scheme to satisfy (6.86) and (6.87), using any

diagonal matricesKA andKX , with positive elements on their diagonals. In fact, forK
(0)
A = K

(0)
X =

Ir, (6.86) and (6.87) are the ML solutions (6.54), and so an ML-initialized iteration is proposed, leading

finally to the Orthogonal Variational PCA (OVPCA) algorithm.

Note that:

• initialization via the ML solution guarantees fast convergence to the unique solution, since (6.64)

is likelihood-dominated by design.

• (6.71)–(6.83) now involve products of diagonal matrices. Equations (6.73)–(6.76), (6.94), and

(6.95) can now be reformulated in efficient diagonal form.

The final OVPCA algorithm is as follows.

Algorithm 6.2 (OVPCA)

1. Initialize estimates using ML solution (6.54): i.e. k(0)
A = k

(0)
X = 1r,1, l̂(0) = lr;D, ω̂(0) =

pnPp
i=r+1 l2D,i

.
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6.3. Orthogonal Variational PCA (OVPCA)

2. Evaluate until convergence is reached:

k
(t)
A = G

(
p, ω̂(t−1)lr;D ◦ k(t−1)

X ◦ l̂(t−1)
)
, (6.96)

k
(t)
X = G

(
n, ω̂(t−1)lr;D ◦ k(t−1)

A ◦ l̂(t−1)
)
, (6.97)

µ
(t)
l = k

(t−1)
X ◦ lr;D ◦ k(t−1)

A , (6.98)

s(t) =
(
ω̂(t−1)

)− 1
2
, (6.99)

l̂(t) = µ
(t−1)
l + s(t−1)ϕ

(
µ

(t−1)
l , s(t)

)
, (6.100)

l̂′l
(t)

=
(
µ

(t−1)
l

)′
l̂(t−1) + r

(
s(t−1)

)2
− s(t−1)κ

(
µ

(t−1)
l , s(t−1)

)′
11,r, (6.101)

ω̂(t) = pn

[
l′DlD − 2

(
k

(t−1)
X ◦ l̂(t−1) ◦ k(t−1)

A

)′
lr;D + l̂′l

(t−1)
]−1

. (6.102)

Remark 6.3 (Automatic Rank Determination (ARD) Property of the OVPCA algorithm) It is ob-

served that estimates of kA,i and kX,i typically converge to zero for i > ru, for some empirical upper

bound ru. A similar property was used as a rank selection criterion for the OVPCA algorithm (Remark

3.8). There, the model order was chosen as r̂ = ru [7].

Remark 6.4 Equations (6.96)–(6.98) are satisfied for

kA = kX = µl = 0r,1, (6.103)

independently of data, i.e. independently of lD. The only parameter to be determined is ω. Solution

(6.103) is appropriate for data formed only by realizations of homogeneous Gaussian noise without any

signal, i.e. r = 0. This case will then be revealed by the ARD Property (Remark 6.3), i.e. ru will be

equal to zero. If the ARD Property yields a different estimate, i.e. ru ≥ 1, then solution (6.103) is a

local maximum (or saddle point) and the true minimum of the KL distance has to be found by evaluation

of (2.28) for both cases.

With respect to the original PCA (3.57) (Section 3.3), proposition 6.3 reveals an interesting analytical

insight:

• Collinearity (6.86), (6.87) of the posterior mean with the respective ML estimate (i.e. PCA)

means that uncertainty bounds onA are, in fact, uncertainty bounds on principal components

Ur;D, (see Appendix A.5.3).

• We noted2r cases of SVD decomposition (6.51), distinct in terms of the signs of the singular

vectors. Note, however, that Proposition 6.3 separates posterior mean valuesÂ (6.86) andX̂

(6.87) into orthogonal and proportional parts. Only the latter (kA andkX ) are estimated using

the OVPCA algorithm (Algorithm 6.2). Since the functionG (·, ·) is confined to the interval

[0, 1] (see Appendix A.5.2, Figure C.1), estimated values ofkA andkX are always positive. In

other words, the VB solution is unimodal, as though approximating onlyoneof the possible2r

modes. Due to symmetry of all modes, the solution is valid for all of them. This is important, as
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6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

the all-mode distribution ofA is symmetric around the coordinate origin, which would consign

the posterior mean tôA = 0p,r. Note that this symmetry is also reflected in the VB equations

(6.96)–(6.102) (Remark 6.4).

• As a consequence of the ARD Property (Remark 6.3), the number of possible modes of the

approximate posterior distribution is reduced to2ru .

6.3.4. Inference of Rank

In the foregoing, we assumed that the rank,r, of the model (6.51) was knowna priori. If this is not the

case, then inference of this parameter can be made using Bayes’ rule:

f (r|D) ∝ f (D|r) f (r) , (6.104)

wheref (r) denotes the prior onr, typically uniform on1 ≤ r ≤ p. The marginal data posterior

f (D|r) can be approximated by a lower bound (Remark 2.3)

ln f (D|r) ≈ ln f (D|r)−KL
(
f̃ (θ|D, r) ||f (θ|D, r)

)
=
∫

Θ
f̃ (θ|D)

(
ln f (D, θ|r)− ln

(
f̃ (θ|D, r)

))
dθ. (6.105)

The parameters areθ = {A,L,X, ω}, andf (D, θ) is given by (6.64). The optimal approximation,

f̃ (θ|D, r), is the conditionally independent model, obtained via the VB framework (6.67)–(6.73):

f̃ (A,L,X, ω|D) = f̃ (A|D, r) f̃ (L|D, r) f̃ (X|D, r) f̃ (ω|D, r) . (6.106)

Substituting (6.67)–(6.73) into (6.106), and (6.64) into (6.105), then (6.104) yields:

f (r|D) ∝ exp

{
−r

2
lnπ + r ln 2 + lnΓ

(r
2

+ 1
)

+ ln (r!) (6.107)

+
1
2
s−2

(
µ′lµl − l̂′µl − µ′ll̂+ l̂′l

)
+ ln 0F1

(
1
2
p,

1
4
FAF

′
A

)
− ω̂

(
kX ◦ l̂ ◦ kA

)′
lr;D

+ ln 0F1

(
1
2
n,

1
4
FXF

′
X

)
− ω̂

(
kX ◦ l̂ ◦ kA

)′
lr;D

+
r∑

j=1

ln
[
erf
((

s
√

2
)−1 (

lj − µj;l

))
+ erf

((
s
√

2
)−1

µj;l

)]

+r ln
(
s
√
π/2

)
− (ϑ+ 1) ln ρ

}
,

wherekA, kX ,µl, l̂, s andω̂ are the converged solutions of the OVPCA algorithm (Algorithm 6.2), and

FA andFX are functions of these via (6.89) and (6.90) respectively.lj is the upper bound on supportL
(6.85) ofl.
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6.3. Orthogonal Variational PCA (OVPCA)

We note the following:

• One of the main algorithmic advantages of PCA is that a single evaluation of allp eigenvectors,

i.e.U (3.54), provides with ease the PCA solution for any rankr < p, via the simple extraction of

the firstr columns,Ur;D (3.52), ofUD. The OVPCA algorithm also enjoys this property, thanks

to the linear dependence of solution (6.86) onUD (3.57). Furthermore,VD observes the same

property. Therefore, in the OVPCA procedure, the optimal solution for given rank is obtained by

simple extraction ofUr;D andVr;D, followed by iterations involving only scaling coefficients,kA

andkX . Hence,p× (p+ n) values (those ofUD andVD) are determined rank-independently via

the ML solution, and only4r + 2 values (those ofkA, kX , µl, l̂, s andω̂ together) are involved

in the rank-dependent iterations (6.96)–(6.102).

• As a consequence of the Automatic Rank Determination (ARD) property, Remark 6.3, values of

all parameters,A,L,X, ω, inferred by the OVPCA algorithm, are almost identical forr ≥ ru.

Therefore, it is reasonable to evaluate the OVPCA parameters forr = p−1 (we cannot user = p

becausêωp is not valid (6.54)), and approximatêAr ≈ Âp−1, ∀r ≥ ru (and similarly forL,X

andω). This approximation can significantly reduce the number of runs of the OVPCA algorithm

required for evaluation off (r|D) (6.107).

• The explicit posterior distribution onr, i.e. (6.107), was not provided by previously published

approaches [4, 7]. In its place, the ARD property oftheir algorithms was used to infer rank.

Since the OVPCA algorithm also possesses the ARD property (Remark 6.3), it will be used

for comparison with the formal Bayesian solution (6.107) in the simulation studies that follow

(Section 6.4).

6.3.5. Moments of the Model Parameters

The Bayesian solution provides an approximate posterior distribution of all involved parameters (6.67)–

(6.70), and (6.107). Moments and uncertainty bounds are then inferable from these distributions.

The first moments of all involved parameters have already been presented, (6.80)–(6.81) and (6.83),

since they are required by the OVPCA algorithm (Algorithm 6.2). The second non-central moment of

l—i.e. l̂′l—was also produced by the algorithm. Parameterω is Gamma distributed (6.70), and so its

confidence intervals are therefore available.

The difficult task is to determine uncertainty bounds on orthogonal parameters,A andX, which are

von Mises-Fisher distributed (6.67), (6.68). To our knowledge, confidence intervals on this distribution

are not published. Therefore, we develop approximate uncertainty bounds in Appendix A.5.3, using a

maximum entropy (i.e. Gaussian-based) approach. The pdf ofX ∈ <n×r is fully determined by the

r-dimensional vectoryX :

yX (X) = diag−1
(
U ′FX

XVFX

)
= diag−1

(
V ′r;DX

)
. (6.108)

Therefore, confidence intervals onX can be mapped to confidence intervals onyX by (6.108), as shown

in Appendix A.5.2. The idea is illustrated graphically forp = 2 andr = 1 in Figure 6.6.

101



6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

space of X (thickness is proportional to pdf value)
direction of pdf maximum, and also axis of y

maximum of pdf
mean value
example of projection X0 → Y0

confidence interval on f(y)
projection of uncertainty bounds y → X

X

X0

Y0

y0

y

X

Figure 6.6.:Illustration of properties of von-Mises-Fisher distributionX ∼M (F ), forX,F ∈ <2×1.

Hence, lower and upper uncertainty bounds onX can be defined as follows:

X =
{
X : yX (X) = y

X

}
, (6.109)

X = {X : yX (X) = yX} , (6.110)

using (6.108) andy, y given in Appendix A.5.3, being bounds to the approximating Gaussian distri-

bution ofyX (A.42). In other words, uncertainty bounds (6.109) onX are those values ofX that are

projected onto the boundary of the confidence interval foryX .

SinceA has the same distribution,A andA, are analogous.

6.4. Simulation Studies

In this section, we study properties of the algorithms described above in the context of simulated data.

Artificial data were generated using model (3.2) forp = 10, n = 100, andr = 3. Simulated data are

displayed in Figure 6.7. Three noise variances were considered: (i)ω = 100, denoted as SIM1 (ii)

ω = 25, (SIM2) and (iii)ω = 10, (SIM3).

6.4.1. VPCA vs. FVPCA

In Section 6.2, we have presented numerically efficient algorithm (FVPCA, Algorithm 6.1) for evalua-

tion of VB-statistics (3.72)–(3.75) for Variational PCA (Corollary 3.1). A significant simplification of

the algorithm was achieved by confining the space of possible solution to an orthogonal subspace, as

formalized by Proposition 6.1. It is assumed that the chosen priors confine the space in such a way that

the solution is found within this orthogonal subspace (Conjecture 6.1). The purpose of this experiment

is to verify the validity of this Conjecture by simulation.

If Conjecture 6.1 is true, then the posterior moments,µ̂X (3.78) and̂µA (3.76), converge to orthogonal

(but not orthonormal) matrices for each possible initialization. A Monte Carlo study of 100 runs of the

original VPCA algorithm (Section 3.3.3) was performed with random initial conditions. During the

iterations, we tested orthogonality of the expected values of matrixX, via the assignment

O (µX) =
∣∣∣∣µ̂X

′µ̂X

∣∣∣∣ ,
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Figure 6.7.:Simulated data used for testing of PCA-based inference method.
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Figure 6.8.:Monte Carlo study (100 trials) to illustrate convergence of the VPCA algorithm to an or-
thogonal solution.Left: initial values ofo (µX) (6.111). Middle: converged values of
o (µX). Right: number of iterations required for convergence.

Table 6.1.:Comparison of converged values ofkA obtained from VPCA and FVPCA algorithms.
VPCA, median FVPCA

kA,1 9.989 9.985
kA,2 9.956 9.960
kA,3 8.385 8.386

where||A|| = [|ai,j |] ,∀i, j, denotes absolute value of a matrix applied element-wise. A criterion of

diagonality is then

o (µX) =
1′n,1O (µX)1n,1

1′n,1diag−1 (O (µX))
, (6.111)

i.e. the ratio of the sum of all elements ofO (µX) over the sum of its diagonal elements. Obviously,

o (µX) = 1 for a diagonal matrix, ando (µX) > 1 for a non-diagonal matrix,̂µX . We stopped the VEM

algorithm foro (µX) < 1.01, i.e. when the absolute value of non-diagonal elements was less than one

percent of the diagonal elements.

In all simulated cases, this level was reached, though it took many iteration steps. Results are dis-

played in Figure 6.8: histograms of the orthogonality criterion (6.111) for initial values of matrixµ̂X

(left), and for its converged value (middle). The histogram of the number of iterations required to reach

the stopping rule is displayed in Figure 6.8 (right). The middle picture seems to be redundant, since

levelo (µX) < 1.01 was used as the stopping rule. This criterion is, however, important for comparison

with the original proposal (threshold on moments ofω). The Variational Extreme is reached with high

accuracy, even for non-orthogonal solutions (i.e.o (µX) above the chosen threshold). However, further

iterations clearly push the solution towards the orthogonal one. This illustrates the flatness of the pos-

terior distribution (see illustration for the toy problem Figure 6.2) and how expensive it is to iterate on

the full space.

For comparison, values ofkA from VPCA4 and FVPCA for the SIM1 data set are listed in Table

6.1. Clearly, values ofkA obtained by VPCA and FVPCA converge to the same values. Tables of the

remaining values (kX , σA, σX ) are not shown for conciseness.

Thus, we have demonstrated that the VPCA algorithm converges to the same values as FVPCA.

Hence, in subsequent studies, we will consider FVPCA as a replacement for VPCA.

4Values of VPCA are sorted here, since the method produces elements ofkA in random order.
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Figure 6.9.:Posterior estimates,̂ω, for the data set SIM2 with respect to different initial valuesω̂(0).

6.4.2. Initial conditions

Note that both algorithms, FVPCA and OVPCA, have to be initialized by expected value ofω, i.e. ω̂(0).

In this Section, we study sensitivity of both algorithms to this choice. From asymptotic properties of

PCA (Remark 3.7), we have a reasonable guess of the interval in which to search forω̂:

np

l′DlD
< ω̂ <

n

l2p;D

. (6.112)

We have tested initialization of both algorithms using values from the interval (6.112).

The posterior results for the data sets, SIM1 and SIM3, converged to the same value for all initial

conditions in interval (6.112). However, for the data set SIM2, the results of both algorithm differ, as is

displayed in Figure 6.9. Note that values of FVPCA are robust with respect to chosen initial conditions,

but OVPCA results have two different modes: (i) the first two values (almost identical with FVPCA),

and (ii) the majority of the interval, (very close to the simulated value). These two modes correspond

to different values of the ARD property. FVPCA estimatesru = 2, while OVPCA results areru = 3 or

ru = 2 for different initializations (6.9).

The basic idea of the VB approximation is minimization of the KL distance (Section 2.2.4). Hence,

the value of the KL distance (2.25) for each mode can be used to choose the global minimum. In this

case, the highest value of KL distance typically corresponds to the mode with highest precision (i.e.

with the lowest variance). Hence, we choose to initialize the VEM algorithm with the upper bound

ω̂(0) =
n

l2p;D

. (6.113)

6.4.3. Comparison of Methods for Inference of Rank

In this Section, we study the rank estimation properties of FVPCA and OVPCA. Note that results of

both methods depend only on singular valueslD of the data matrixD.

The true dimensionality of the simulated data isr = 3. Many heuristic methods for choice of the

number of relevant principal components are used in practice [80]. These methods are valuable, since
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Figure 6.10.:Ad hocmethods for rank estimation for simulated data with different variance of noise.
The methods of visual examination (Remark 3.7) is used for graphs of eigenvaluesλ =
eig (DD′) and cumulative variance (i.e. cumulative sum of eigenvaluesλ).

Table 6.2.:Rank selection for the simulated data usingad hocmethods.
SIM1 SIM2 SIM3

visual inspection 3 2-3 2
cumulative variance 2-3 2 2

they provide an intuitive insight into the problem. For example, the eigenvaluesλ (3.57) of the simulated

data, and the criterion of cumulative variation (i.e. cumulative sum of eigevalues) are displayed in Figure

6.10.

Note that the first two eigenvectors are dominant (first column), while the third one is relatively small

(it contains only 1% of total variation, see Figure 6.10 (right)). In the first row, i.e. case SIM1, the third

eigenvalue is clearly distinct from the remaining ones. In the second case (SIM2), the difference is not

very obvious, and it is completely lost in the third row (SIM3). A subjectivead hocchoice of dimen-

sionality using visual inspection (Remark 3.7) and the method of cumulative variance is summarized in

Table 6.2.

Next, we analyze the same data using formal methods. Results of FVPCA, OVPCA and Laplace

approximation (Remark 3.9) are compared in Table 6.3.
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Table 6.3.:Comparison of formal rank selection methods for simulated data.
FVPCA OVPCA Laplace

ARD f (r|D) , r = f (r|D),r =
2 3 4 5 2 3 4 5

SIM1 3 3 0 98.2 1.7 0.1 0 82 13 2
SIM2 2 3 96 3.5 0.2 0 70 25 3 0.5
SIM3 2 2 97 3.9 0.1 0 94 5 0.5 0.0
values off (r|D) not shown in the table are very close to zero< 0.001

Note that for high signal-to-noise ratio, all methods estimated the true dimensionality correctly. In

this case, data were simulated according to the model. We therefore regard the results of all methods to

be correct. The differences between posterior probabilities caused by different approximations are, in

this case, insignificant. The differences will, however, become important for real data.

6.4.4. Comparison of Moments

A direct comparison of parameter moments for both methods is not possible. Therefore, we seek such

a transformation of model parameters into a common, low dimensional, space in which it is possible

to compare FVPCA and OVPCA. Note that the signal,M(r) (3.48), is (for both methods) a product

of parameters, posterior distributions of which are all conditionally independent. Hence, the expected

values (under different parameterization) ofM(r) is:

EFV PCA

(
M(r)

)
= ÂX̂ ′ = Ur;DKAKXV

′
r;D,

EOV PCA

(
M(r)

)
= ÂL̂X̂ ′ = Ur;DKAdiag (µl)KXV

′
r;D.

WhereKA of the FVPCA method (6.29) is different fromKA of the OVPCA method (6.88). However,

no confusion can arise, since these quantities are always used independently in their own context, i.e. all

results related to FVPCA were evaluated using (6.29). Note that, for both methods, the expected values

of M(r) are determined by singular vectorsUr;D andVr;D. This motivates us to intoduce a transformed

variable:

M̃(r) = U ′r;DM(r)Vr;D ∈ <r×r. (6.114)

Using, linearity of expectations of the Matrix Normal distribution ((A.3) Appendix A.1) and invariance

of von-Mises-Fisher distribution under orthogonal transformation (Appendix A.5), the expected values

of M̃(r), under both methods, are:

EFV PCA

(
M̃(r)

)
= KAKX , (6.115)

EOV PCA

(
M̃(r)

)
= KAdiag (µl)KX .

All elements on the right-hand side above are all diagonal matrices. Therefore, we can compare perfor-

mance of FVPCA and OVPCA using moments of

µM̃ = diag−1
(
M̃(r)

)
= diag−1

(
U ′r;DM(r)Vr;D

)
.
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We evaluate it separately for both methods.

FVPCA: Theith elementµi;M̃ of µM̃ is:

µi;M̃ = u′i;D

 r∑
j=1

ajx
′
j

vi;D, i = 1, . . . , r (6.116)

whereui;D, vi;D, ai, xi denotes theith vector of matricesUD, VD, A andX, respectively. The

first moment, i.e. expected values of (6.116), is then

µ̂i;M̃ = Ef̃(A|D)f̃(X|D)

u′i;D
 r∑

j=1

ajxj

′

vi;D

 ,

= u′i;D

 r∑
j=1

uj;Dkj;Av
′
j;Dkj;X

vi;D,

= ki;Aki;X i = 1, . . . , r, (6.117)

using (6.29). The second equality in (6.117) follows from orthogonality of singular vectors

uiuj = 0, i 6= j. The second non-central moment is:

µ̂2
i;M̃ = Ef̃(A|D)f̃(X|D)

u′i;D
 r∑

j=1

ajx
′
j

vi;D

2 , (6.118)

= Ef̃(A|D)f̃(X|D)

 r∑
j=1

[
u′i;Daj

]2 [
x′jvi;D

]2 (6.119)

=
r∑

j=1

Ef̃(A|D)

(
u′i;Daja

′
jui;D

)
Ef̃(X|D)

(
v′i;Dxjx

′
jvi;D

)
=

r∑
j=1

u′i;D
(
σj;AIp + k2

j;Auj;Du
′
j;D

)
ui;Dv

′
i;D

(
σj;XIn + k2

j;Xvj;Dv
′
j;D

)
ui;D,

=
(
σi;A + k2

i;A

) (
σi;XIn + k2

i;X

)
+

r∑
j=1,j 6=i

σj;Aσj;X , (6.120)

The result was achieved using properties of Matrix Normal distribution (Appendix A.1)—specifically

linearity of expectation (A.3), and second moment (A.2)—and orthogonality of singular vectors

Ur;D andVr;D.

OVPCA: Theith elementµi;M̃ of µM̃ is:

µi;M̃ = u′i;D

 r∑
j=1

ljajx
′
j

vi;D, i = 1, . . . , r (6.121)
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The first moment, i.e. expected value of (6.121), is then

µ̂i;M̃ = Ef̃(A|D)f̃(l|D)f̃(X|D)

u′i;D
 r∑

j=1

ljajxj

′

vi;D

 ,

= u′i;D

 r∑
j=1

ljuj;Dkj;Av
′
j;Dkj;X

vi;D,

= l̂i;lki;Aki;X i = 1, . . . , r, (6.122)

using (6.86), (6.87) and (6.81). The second non-central moment can be derived as follows:

µ̂2
i;M̃ = Ef̃(A|D)f̃(l|D)f̃(X|D)

u′i;D
 r∑

j=1

ljajx
′
j

vi;D

2 , (6.123)

= Ef̃(A|D)f̃(l|D)f̃(X|D)

 r∑
j=1

l2j
[
u′i;Daj

]2 [
x′jvi;D

]2 ,

=
r∑

j=1

l̂2jEf̃(A|D)

(
u′i;Daja

′
jui;D

)
Ef̃(X|D)

(
v′i;Dxjx

′
jvi;D

)
, (6.124)

here, we note that the second moment of the von-Mises-Fisher distribution is not available and

we have chosen to approximate it by a Gaussian using maximum entropy principle (Appendix

A.5.3). Therefore, evaluation of the expected values in (6.124) is equivalent to derivations for the

FVPCA that follow after (6.119). Hence,

µ̂2
i;M̃ = l̂2i

(
φi;A + k2

i;A

) (
φi;XIn + k2

i;X

)
+

r∑
j=1,j 6=i

l̂2jφj;Aφj;X , (6.125)

whereφj;A is a second moment of the von-Mises-Fiseher distribution (6.67), evaluated via (A.40),

Appendix A.5.3.

The uncertainty bounds on̂µM̃ can be—for both methods—evaluated as 2-standard deviation interval,

i.e.

µ
i;M̃

= µ̂i;M̃ − 2
√
µ̂2

i;M̃ − µ̂2
i;M̃

, (6.126)

µi;M̃ = µ̂i;M̃ + 2
√
µ̂2

i;M̃ − µ̂2
i;M̃

,

where (6.117) and (6.120) are used for FVPCA, and (6.122) and (6.122) are used for OVPCA. The

results are summarized in Table 6.4. Note that the spaceµM̃—on which we compare the methods—is

determined by singular vectors (Ur;D andVr;D) of the data matrixD (3.52), which are not orthogonal

with singular vectors of the simulated signalM(r). Hence, diagonal of the projected—via (6.114)—

simulated signal contains non-zero values. These values should also be within uncertainty bounds

(6.126).
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Table 6.4.:Comparison of inference of the diagonalµM̃ of the transformed signal̃M (6.114), using
FVPCA and OVPCA.

FVPCA OVPCA
row numberi simulated µ

i;M̃
µ̂i;M̃ µi;M̃ µ

i;M̃
µ̂i;M̃ µi;M̃

1 0.825 0.780 0.806 0.833 0.793 0.811 0.829
2 0.492 0.469 0.495 0.521 0.481 0.499 0.517
3 0.038 -0.001 0.000 0.001 0.023 0.035 0.046
4 0.000 -0.001 0.000 0.001 0.000 0.000 0.004
5 0.003 -0.001 0.000 0.001 0.000 0.000 0.004
6 0.002 -0.001 0.000 0.001 0.000 0.000 0.004
7 0.000 -0.001 0.000 0.001 0.000 0.000 0.004
8 0.002 -0.001 0.000 0.001 0.000 0.000 0.004
9 0.002 -0.001 0.000 0.001 0.000 0.000 0.004

As may be seen of Table 6.4, all projections of simulated values are within HPD regions for OVPCA.

For FVPCA, the projected values are outside of the HPD regions fori > 2. The valueµ3;M̃ is outside

because of inaccurate estimation ofru, and those fori ≥ 4 are outside because uncertainty bounds for

i > ru are too tight. It is worth noticing that these uncertainty bounds are dependent on hyper-parameter,

β0, which was chosen very low in this simulation. OVPCA has no corresponding hyper-parameter,

which—together with positivity constraints onl—yields more reliable results.

6.5. Discussion

In this Chapter, we have studied the Bayesian approach to Principal Component Analysis. Most of the

published solutions, e.g. [7, 50] were based on the Probabilistic PCA model [48]. We have studied the

simplest case of this model in Section 6.1.3, which we called the ‘toy problem’, and we compared the

approximations available using published methods. The insight gained from this study (Section 6.1.5)

has been explored in the full multivariate model, yielding two distinct algorithms: (i) fast evaluation of

the VB-statistics of the VPCA (FVPCA algorithm) (Section 6.2); and (ii) the Variational approximation

for the orthogonal parameterization (OVPCA) (Section 6.3). Both algorithms provides numerically

efficient inference of the corresponding model parameters. We note the following differences:

• The orthogonal model (6.51) is a more compact parameterization of the signalM(r), as it does

not require any regularizing prior distributions to be elicited. On the other hand, for FVPCA,

the hyper-parameters coming from the priors must be used to regularize the model and find a

solution.

• The orthogonal parameterization of the signal,M(r), is appropriate only if there are no other

constraints imposed on the decomposition. For example, orthogonal decomposition of the signal

under positivity constraints (Section 3.4) is not possible. Therefore, OVPCA can only be used for

the task of denoising.

• The OVPCA algorithm convergences faster (compared to the corresponding FVPCA algorithm)

and the stopping rule on increments of parameter estimates (e.g.ω̂) can be set close to the machine
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precision. Convergence of the FVPCA algorithm is slower and it is sensitive to the choice of the

stopping rule.

• The most numerically demanding operation in the FVPCA algorithm is evaluation of roots of

a quadratic function which is an operation well supported by standard software. The OVPCA

algorithm requires evaluations of hypergeometric functions of multivariate arguments, for which

a reliable solution is not available, and which must be approximated (as presented in Appendix

C).

From a practical (user-oriented) point of view, the FVPCA and OVPCA algorithms are almost equiv-

alent. They yield comparable results (see Table 6.4) at comparable computational cost. The OVPCA

algorithm appears to be more reliable on data with low signal-to-noise ratio (Table 6.4).

Although the orthogonal model (6.51) is a better parameterization—in the sense that it provides

model-based regularization of the problem—it is complicated to extend it further, e.g. for the noise

distribution as used in the factor analysis model (3.6). Formulation of the problem is straightforward,

and so is the application of the Variational Bayes estimation method in this case. However, the resulting

posterior distributions are of the generalized Bingham type [108], whose moments are not known to us.

This suggests that efficient numerical evaluation—possible for OVPCA—cannot be achieved for the

factor analysis model.

The original probabilistic PCA model [48] is based on the full factor analysis model [47], which

explicitly includes a common non-zero mean value for the data columns,E (di) = µ. This was not

considered as a part of the linear model (3.2) in this thesis. It is easy to introduce a common mean value

for applications where it is regarded as important, e.g. for mixtures of PCA model [109]. The model

(3.2) can be readily extended to contain the common mean value, as follows:

M = AX + µ11,n,

withµ ∈ <p×1. The Variational Bayes (VB) approximation (Theorem 2.1) for this model requires more

algebra, but is straightforward. However, Proposition 6.1 is valid only for fixed estimateµ̂. Hence, the

VEM algorithm associated with this model has much higher computational complexity.
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Chapter 7.

Bayesian Modelling for Functional Analysis
of Medical Image Data

In this Chapter, we study the Bayesian inference of parameters of the FAMIS model introduced in

Section 3.4. The standard parameter inference method for this problem is achieved in three steps in

order to achieve computational tractability (Section 3.4). One of the steps is PCA, studied in previous

Chapter. Hence, we now study application of the previous results in this context. The main concern of

this Chapter is, however, derivation of a unified identification method for the FAMIS model (Section

3.4.5), using Variational Bayes (VB) method.

7.1. Bayesian Formulation

The FAMIS model (3.91) is, in essence, an extension of the PPCA model (3.50). We seek a Bayesian

inference of the model parametersA,X,ωp,ωn. Following the Bayesian methodology, we complement

the observation model (3.91) by priors on the model parameters.

Prior distributions on the precision matrices were chosen as follows:

f (ωp|ϑp,ρp) =
p∏

i=1

G (ϑi;p, ρi;p) , (7.1)

f (ωn|ϑn,ρn) =
n∏

i=1

G (ϑi;n, ρi;n) ,

with vector hyper-parametersϑp = [ϑ1;p, . . . , ϑp;p], ρp = [ρ1;p, . . . , ρp;p],ϑn = [ϑ1;n, . . . , ϑn;n], ρn =
[ρ1;n, . . . , ρn;n]. These parameters can be chosen to yield a non-committal prior. Alternatively, recall—

from Section 3.4.2—that pre-processing methods were derived by studying assymptotic properties of

the noise. Hence, the assymptotic values can be used to elicit priors. These hyper-parameters can be

seen as ‘knobs’ to tune the method to suit clinical practice.

The parameters,A andX, are modelled in the same way as those in Variational PCA, with the

additional restriction of positivity. Prior distributions (3.65) and (3.66) then become

f (A|υ) = tN
(
0p,r, Ip ⊗Υ−1,

(
<+
)p,r)

, (7.2)

f (X) = tN
(
0r,n, Ir ⊗ In,

(
<+
)r,n)

, (7.3)

f (υi) = G (α0, β0) , i = 1, . . . , r, (7.4)
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with hyper-parameterΥ = diag (υ) ∈ <r×r, designed for inference of rank via the ARD property

(Remark 3.8).

From (3.91), (7.1)–(7.4), the joint distribution is

f (D,A,X,Ωp,Ωn,υ) = N
(
AX,Ω−1

p ⊗ Ω−1
n

) p∏
i=1

G (ϑi;p, ρi;p)

n∏
i=1

G (ϑi;n, ρi;n) tN
(
0p,r, Ip ⊗Υ−1,

(
<+
)p,r)

tN
(
0r,n, Ir ⊗ In,

(
<+
)r,n)G (α0, β0) . (7.5)

The posterior distribution is then obtained using Bayes’ rule:

f (A,X,Ωp,Ωn,υ|D) =
f (D,A,X,Ωp,Ωn,υ)

f (D)
. (7.6)

Exact Bayesian inference of this model is not tractable.

7.2. Variational Bayes (VB) Approximation

Following the Variational approximation, we can find an approximate posterior inference under the

assumption of conditional independence, Theorem 2.1.

Corollary 7.1 (Corollary 6 of Theorem 2.1) Consider the following conditional independence factor-

ization of (7.6):

f̆ (A,X,Ωp,Ωn,υ|D) = f̆ (A|D) f̆ (X|D) f̆ (Ωp|D) f̆ (Ωn|D) f̆ (υ|D) . (7.7)

Then, using (7.5) and (7.7) in Theorem 2.1, the VB-optimal form of (7.7) is found via the following

assignments:

f̃ (vec (A) |D) = tN
(
µA,ΣA,

(
<+
)pr)

, (7.8)

f̃ (vec (X) |D) = tN
(
µX ,ΣX ,

(
<+
)nr)

, (7.9)

f̃ (υ|D) =
r∏

i=1

G (αi, βi) , (7.10)

f̃ (ωp|D) =
p∏

i=1

G (ϑi;p, ρi;p) , (7.11)

f̃ (ωn|D) =
n∏

i=1

G (ϑi;n, ρi;n) , (7.12)
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with VB-statistics

µA = ΣAvec
(
Ω̂pDΩ̂nX̂

′
)
, (7.13)

ΣA =
(
EX|D

(
XΩ̂nX

′
)
⊗ Ω̂p + diag (υ̂)⊗ Ip

)−1
, (7.14)

µX = ΣXvec
(
Â′Ω̂pDΩ̂n

)
, (7.15)

ΣX =
(
EA|D

(
A′Ω̂pA

)
⊗ Ω̂n + Ir ⊗ In

)−1
, (7.16)

αi = α0 +
1
2
p, i = 1, . . . , r,

β = β0 +
1
2
diag−1

(
EA|D

(
A′A

))
,

ϑp = ϑ0,p +
n

2
,

ρp = ρ0,p +
1
2
diag−1

(
DΩ̂nD

′ − ÂX̂Ω̂nD
′ −DΩ̂nX̂

′Â′+,

+EA|D

(
AEX|D

(
XΩ̂nX

′
)
A′
))

, (7.17)

ϑn = ϑ0,n +
p

2
,

ρn = ρ0,n +
1
2
diag−1

(
D′Ω̂pD −D′Ω̂pÂX̂ − X̂ ′Â′Ω̂pD

+EX|D

(
X ′EA|D

(
A′Ω̂pA

)
X
))

. (7.18)

Posterior distributions of A and X are not of the matrix Normal distribution kind (Appendix A.1).

Therefore, they are written in the form of the vec (·) operator (Appendix A.1).

Proof: Can be handled in the same way as proofs for the previous VB-related Corollaries. It is an

easy but lengthy exercise in probability calculus.

Evaluation of moments of distributions (7.8) and (7.9) is complicated for two reasons:

1. the VB-statistics involve evaluation of large matrices, e.g.ΣA ∈ <nr×nr.

These matrices are block diagonal, hence all the operations involved in evaluation of (7.13)–

(7.18) can be re-written in terms of blocks of these matrices. This operation is formally trivial but

rather lenghty. Therefore, it will be omitted in this text.

2. moments of the truncated Normal distribution of vector argument are not known to us. Therefore,

we approximate all involved moments off̃ (A|D) andf̃ (X|D) by moments of

f (A|D) = tN
(
µA,diag

(
diag−1 (ΣA)

)
,
(
<+
)p×r

)
,

f (X|D) = tN
(
µX ,diag

(
diag−1 (ΣX)

)
,
(
<+
)r×n

)
,

respectively. In effect, we neglect all covariances between elements ofA, and ditto forX.

The Variational Extreme can be found by iterating (7.13)–(7.18) to convergence via the VEM algorithm

(Algorithm 2.2).
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7.3. Computational Simplifications

In principle, the model (7.5) is an extension of the PPCA model (3.50) for (i) unknown precision matrix

of the noise,Ωp⊗Ωn, and (ii) positivity constraints (7.2), (7.3). These extensions results in a significant

increase in the computational complexity of the associated VEM algorithm, compared to the VEM

algorithm associated with VPCA (Section 3.1). The main causes of this are as follows:

1. the structure of covariance matrices of the priors (7.2), (7.3) is different from the covariance struc-

ture of the model (3.91). Therefore, the covariance matrices, (7.14) and (7.16), of the posterior

pdfs, (7.8) and (7.9), are not in the advantageous Kronecker-product form.

2. positivity restrictions, (7.2) and (7.3), are not satisfied for the orthogonal solution (3.51). There-

fore, a simplification similar to Proposition 6.1 cannot be used. Moreover, no analytical result is

known to us that can be used to invoke the Restricted VB (Corollary 2.1).

The first problem may be addressed by choice of different priors. The choice of covariance matrix,

Ip ⊗Υ−1 in (7.8), andIr ⊗ In in (7.9), is intuitively appealing. It is a simple choice which imposes the

same prior on each pixel in the image, and, as a result, it acts as soft orthogonality constraint (Conjecture

6.1). However, as we have shown in the analysis of the toy problem (Section 6.1), analytical solution

can be found for other choices of prior (Remark 6.1), as follows.

Proposition 7.1 (Alternative priors) For the following choice of priors

f (A|υ,Ωp) = tN
(
0p,r,Ω−1

p ⊗Υ−1,
(
<+
)p,r)

, (7.19)

f (X|Ωn) = tN
(
0r,n, Ir ⊗ Ω−1

n ,
(
<+
)r,n)

, (7.20)

in place of (7.2) and (7.3) the VB approximation (Corollary 7.1) yields the posterior results in the form

of (7.8)–(7.12), with VB-statistics (7.14) and (7.16) replaced by

ΣA =
(
EX|D

(
XΩ̂nX

′
)
⊗ Ω̂p + diag (υ̂)⊗ Ω̂p

)−1
, (7.21)

ΣX =
(
EA|D

(
A′Ω̂pA

)
⊗ Ω̂n + Ir ⊗ Ω̂n

)−1
, (7.22)

respectively. These can be written in Kronecker product form:

ΣA =
(
EX|D

(
XΩ̂nX

′
)

+ diag (υ̂)
)−1

⊗ Ω̂−1
p ,

ΣX =
(
EA|D

(
A′Ω̂pA

)
+ Ir

)−1
⊗ Ω̂−1

n .

Hence, the posterior distributions, (7.8) and (7.9), are, again, in the form of the (truncated) Matrix

Normal distribution:

f̃ (A|D) = tN
(
µA, Ω̂−1

p ⊗ Φ−1
A ,
(
<+
)p×r

)
, (7.23)

f̃ (X|D) = tN
(
µX ,Φ−1

X ⊗ Ω̂−1
n ,
(
<+
)r×n

)
, (7.24)
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with VB-statistics

µA = DΩ̂nX̂
′Φ−1

A ,

ΦA = EX|D

(
XΩ̂nX

′
)

+ diag (υ̂) ,

µX = Φ−1
X Â′Ω̂pD,

ΦX = EA|D

(
A′Ω̂pA

)
+ Ir.

Note that the priors proposed in Proposition 7.1 are in the following mutually dependent form:

f (A,X,Ωn,Ωp) = f (A|Ωp) f (X|Ωn) f (Ωp) f (Ωn) ,

which is inconsistent with the assumption of conditional independence of posteriors as enforced by the

VB approximation (7.7). However, the covariance matrices of the priors (7.19), (7.20) were chosen to

reflect the structure of the covariance matrices arising from the observation model (as demonstrated by

operations (7.14), (7.16)). Then, structure of the covariance matrices of the prior (7.19) is similar to that

of the posterior (7.23), and the posterior is not prior-dominated.

Proposition 7.1 reduces the amount of computation associated with the VEM algorithm. However,

no further analytical simplification can be made to decrease the number of iterations or number of

parameters required in iterations (7.13)–(7.18). The main complication is the restriction of the support

of the posterior Normal distributions (7.23), (7.24) to the set<+.

The VB-based identification of the FAMIS model is closely related to Independent Component Anal-

ysis (ICA). Specifically, FAMIS can be seen as a special case ofnoisy ICA[110]. In fact, our linear

modelD = AX + E, (3.1) and (3.2), is identical with that of ICA. In ICA,A is known as themixing

matrix and rows ofX are calledsources. Therefore, any method concerning this model may be called

ICA. This broad meaning attached to ‘ICA’ makes cathegorical comparison rather difficult. However,

the main keyword of ICA is the wordindependent. The method is typically defined in relation to the

classical signal separation methods of Principal Component Analysis (PCA) and Factor Analysis (FA)

[110]. In PCA and FA, the criteria used for signal separation are based on the sample covariance matrix

of the signal, i.e. on the second moment of its distribution. In ICA, the criterion for signal separation is

full statistical independence of sources, which corresponds to the assumption

f (xt) =
r∏

i=1

f (xi;t) , t = 1, . . . , n, (7.25)

in our notation. Note that this assumption does not imply any particular functional form of the proba-

bility distribution1. Therefore, inference of parameters has to be adjusted for the chosen pdf. However,

a template algorithm was developped for maximum-likelihood (ML) estimation [111], for which the

change of the pdf influences only one operation in the algorithm. Bayesian inference is, however, much

more complicated, and it is available only for a limited class of prior distributions. The solution for

Gaussian and truncated Gaussian priors was presented in this thesis (Sections 3.3.3 and 7.2). The solu-

tion for mixtures of Gaussian priors was presented in [33].

1In fact, for Gausian distribution, the criterion (7.25) is identical to that of PCA.
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From a computational point of view, the ICA method is currently receiving much attention and many

interesting results has been reported. For example, efficient evaluation of the traditional Maximum

Likelihood (ML) approach to ICA was achieved using fixed-point approximations [112]. Application

of these ideas in the context of the Variational Bayes (VB) approach may bring significant computational

savings.

Reduction of the computational cost for the VEM algorithm can also be achieved using heuristic

techniques. For example:

• the traditional three-step methods (Section 3.4) can be used as a reasonable initial guess for the

VEM iterative algorithm.

• for fixed estimates of the covariance matrices,Ω̂p andΩ̂n, evaluation of the remaining parameters

is somewhat simplified (in analogy to the simplification in Proposition 6.2). It may be useful to

re-evaluatêΩp andΩ̂n only once for everyq steps of the VEM algorithm (e.g.q = 10).

Thesead hocpropositions have not been extensively tested and are left for further study.

7.4. Experiments

In this Section, we study performance of the Bayesian inference of the FAMIS model on a sequence

of scintigraphic images of the chest. In this study, a radiotracer has been administered to the patient to

highlight the kidneys and bladder. In this context, we perform two experiments: (i) we test application

of Bayesian PCA in the orthogonal step of the standard approach (Section 3.4.3), and (ii) we test the

performance of the proposed VB inference of the FAMIS model (Section 3.4.5).

7.4.1. Comparison of Methods for Inference of Rank in Orthogonal Analysis

The advantage of Bayesian PCA over the standard PCA is an explicit estimation of the number of

relevant principal components (Section 6.3.4). In this study, a scintigraphic dynamic image sequence

of the kidneys is considered. It containsn = 120 images, each of size64 × 64. These were analyzed

using the standard approach, as follows:

Pre-processing:

• a rectangular area ofp = 525 pixels was chosen as the region of interest at the same location

in each image.

• data were scaled by the correspondence analysis method (3.89), which is optimal for scinti-

graphic data [89].

Orthogonal analysis:

Bayesian methods of inference for the PPCA model (Section 6) were tested. The expected mean

value of both factor images and factor curves are identical with those obtained using standard

PCA. The methods differ only in the estimated rank of the data.
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Table 7.1.:Comparison of rank selection methods for scintigraphic image data.
OVPCA OVPCA FVPCA Laplace
f (r|D) ARD Property ARD Property f (r|D)

Pr (r = 17|D) = 0.0004
Pr (r = 18|D) = 0.2761
Pr (r = 19|D) = 0.7232
Pr (r = 20|D) = 0.0002

ru = 45 ru = 25

Pr (r = 47|D) = 0.067
Pr (r = 48|D) = 0.622
Pr (r = 49|D) = 0.195
Pr (r = 50|D) = 0.089

Note: where not listed,f (r|D) < 3× 10−7
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Figure 7.1.:Cumulative percentage of total variation for scintigraphic data. For clarity, only the first 20
elements are shown out of a total ofp = 120.

Oblique analysis: this was not tested.

For these data, we compare methods for selection of relevant principal components. The OVPCA-based

approximate posterior distribution of rank (6.107) and the ARD properties of both OVPCA (Remark

6.3) and VPCA (Remark 3.8) infer significantly different optimal rank (Table 7.1). For comparison,

we also inferred the rank of the data via (i) Laplace approximation [84], and (ii) thead hoccriterion

of cumulative percentage of total variation [80] (Figure 7.1). Results are presented in Table 7.1. For

method (ii),r = 5 was chosen.

It is difficult to compare performance of the methods since the true dimensionality is not known. From

a medical point of view, the number of physiological factors should be 4 or 5. This estimate is supported

by thead hoccriterion (Figure 7.1). From this perspective, the formal methods appear to over-estimate

significantly the number of relevant principal components (PCs). The reason for this can be understood

by reconstructing the data using the number of PCs,r, recommended by each method (Table 7.2). Four

consecutive frames of the actual scintigraphic data are displayed in the first row. Though the signal-to-

noise ratio is poor, functional variation is visible in the central part of the left kidney and in the upper

part of the right kidney, which cannot be accounted for by noise. The same frames of the sequence,

reconstructed fromr = 5 PCs (Table 7.2, second row), fail to capture this functional information.

In contrast, the functional informationis apparent on the sequence reconstructed using the Bayesian

estimate—i.e.r = 19 PCs—and, indeed, on sequences reconstructed usingr > 19 PCs, such as the

r = 45 choice suggested by the ARD Property of OVPCA (Table 7.2, last row).
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Table 7.2.:Reconstruction of scintigraphic data for different numbers of PCs
number of PCs used frames 48–51 of the dynamic image sequence

Original images (r = 120)

Ad hoc criterion (r = 5)

Maximum of f (r|D) (6.107)
(r = 19)

ARD property (r = 45)

7.4.2. Variational FAMIS

The FAMIS model is, in principle, the PPCA model (3.50) extended for unknown precision of noise

(3.87), and restricted by positivity constraints (3.85). In the previous Section, the results of the PPCA

model were presented. The precision of the noise was assumed known via the correspondence analysis

(3.90).

Performance of the VEM algorithm for the FAMIS model (Corollary 7.1) was tested on the same

data set used in Section 7.4.1, i.e. the scintigraphic study of kidneys ofn = 120 images, each of size

64 × 64, with selected region of interest ofp = 525 pixels. First, we performed two experiments with

a priori known precision matrices,Ωp, Ωn, corresponding to:

1. homogeneous noise: i.e.Ωp = ωIp, Ωn = In (case 1).

2. correspondence analysis:Ωp = diag (D1n,1)
−1, Ωn = diag (D′1p,1)

−1 (case 2).

Note that this is the same pre-processing that was used in the standard analysis (Section 7.4.1).

The results of these experiments are displayed in Figure 7.2 (top-left) and (bottom-left) respectively.

Next, the VEM algorithm for the FAMIS model (Corollary 7.1) was used with non-committal prior

(ϑp = ϑn = ρn = ρn = 1e − 10 × 1p,1 (7.1)). The algorithm was initialized using the same options

as for the fixed matrices, i.e:

1. homogeneous noise: i.e.̂Ω(0)
p = ωIp, Ω̂(0)

n = In (case 3)

2. correspondence analysis:Ω̂(0)
p = diag (D1n,1)

−1, Ω̂(0)
n = diag (D′1p,1)

−1 (case 4).

Results of these experiments are displayed in Figure 7.2 (top-right) and (bottom-right) respectively.

This experiment with real data leads to the following conclusions:
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results using fixed precision
results with estimated precision (noise

modelling strategy is used as initial condition
of the VEM algorithm)
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Figure 7.2.:Expected posterior values of factor images and factor curves for four noise modelling strate-
gies.
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Figure 7.3.:Comparison of the posterior expected value of of the precision matricesΩp (left) andΩn

(right), for different initializations.
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Number of relevant factors, r, estimated using the ARD property associated with the full model

(Corollary 7.1) is:r̂ = 3 in case 3, and̂r = 4 in all remaining cases (Figure 7.2). This is much

smaller than the rank estimated using the PPCA model (Section 7.4.1). Moreover, it corresponds

to the value expected from the physiological knowledge, as discussed in Section 7.4.1. This result

is achieved for all considered noise modelling strategies. Hence, this result was achieved due to

the imposition of the positivity constraints (3.85). This will be discussed in Section 7.5.

Scaling is an important step in the analysis. We have tested the algorithm with both fixed and varible

scaling. We note the following:

• the expected values,̂Ωp andΩ̂n, of the posterior pdf of the precision matrices (7.11), (7.12)

are similar for both cases of the initialization (cases 3 and 4), and is, in fact, close to the

correspondence analysis (3.89) (see Figure 7.3). This is in agreement with the assumption

that the correspondence analysis is optimal for the scintigraphic data [89].

• for cases 1 and 2—i.e. those with fixed precision matrices—the estimated factor curves

have sharp peaks at timest = 25 andt = 37. This behaviour is not physiologically possi-

ble. These peaks are significantly reduced in cases with unknown (estimated) precision, i.e.

cases 3 and 4. Note that values of precision,ωt;n, in timest = 25 andt = 37, are estimated

significantly lower than those at other times (Figure 7.3).

• inference of the posterior expected values of factors—i.e. imagesandcurves—is sensitive

to the choice of initial conditions of the precision (cases 3 and 4). Note that the inferred

factor images in case 3 (Figure 7.2, top-right) are close to those in case 1 (Figure 7.2, top-

right). The similarity between factor images in cases 4 and 2 (Figure 7.2 bottom) is also

obvious. This suggests that there are many local minima of the KL distance, and the initial

conditions determine which one will be reached by the VEM algorithm.

It is hard to compare these results to state-of-the-art techniques, as the latter do not provide automatic

rank detemination nor variable scaling. The standard techniques also require a lot of tuning knobs.

Hence, for an experienced expert, it is possible to produce results similar to those presented in Figure

(7.2). For real data, there are no exact criteria of quality and so the judgement of the results is always

subjective.

The results of this experiment may be summarized as follows:

1. the number of relevant physiological factors selected by the VB inference corresponds to that

predicted by medical experts;

2. if the scaling is estimated, its posterior values are close to the theoretically optimal values for the

Poisson distribution. However, variable scaling models not only the Poisson errors but all rapid

(non-biological) changes, such as motion of the camera (or patient) during the study. Therefore,

it can significantly suppress artefacts caused by the motion.

3. the method is too sensitive to the choice of initial contitions. Further work on initial conditions

and convergence of the algorithm is required.
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7.5. Discussion

One of the unsolved problems relating to the standard solution of the FAMIS model is estimation of the

number of relevant principal components in orthogonal analysis (Section 3.4.3). This problem can be

addressed using Bayesian PCA, as presented in Chapter 6. Therefore, we have tested the FVPCA and

OVPCA algorithms, in this Chapter, in the context of Functional Analysis of Medical Image Sequences

(FAMIS). We noted, in Section 7.4.1, that both algorithms significantly overestimated the number of

relevant physiological factors. However, the VB inference of the unified FAMIS model (Section 3.4.5)

yields physiologically acceptable results.

7.5.1. Model Matching

This last result can be explained by considering how each model is matched to the actual medical data.

The real scintigraphic data are composed of three elements:

D = M +N + E.

M andE are the modelled elements,M being the rank-restricted mean value (3.48) with positivity

constraints (3.85), andE being the Normally-distributed white noise (3.49).N is anunmodelledmatrix

of non-Gaussian noise and physiological residuals. Inevitably, then, the OVPCA and FAMIS methods

provide estimates of the modelled parameters,M andE, corrupted by the residuals,N , as follows:

M̂ = M +NM ,

Ê = E +NE .

NM andNE are method-dependent parts of the residual element,N = NM +NE .

If the criteria of separation are (i) rank-restriction with unknownr, and (ii) Gaussianity of the noise,

then only a small part ofN fulfills (ii), but a large part ofN fulfills (i) as it has unknown rank. Con-

sequently, the rank,r, is significantly over-estimated. However, if we now impose athird constraint,

namely (iii) positivity of the signalM (3.85), we can expect that only a small part ofN fulfills (iii),

‘pushing’ the larger part ofN into the noise estimate,̂E.

7.5.2. Consequence for Medical Applications

We have demonstrated experimentally that the joint Bayesian identification of the FAMIS model has

the following advantages over the standard approach:

1. identification of the noise distribution—via parametersωp andωn—is more accurate than the

standard scaling technique. Therefore, posterior estimates of the FAMIS model are less sensitive

to non-standard noise distributions, and are more reliable under low Signal-to-Noise Ratio (SNR).

2. identification of the number of relevant physiological factors yields realistic and reliable results.

No such method was available in the standard model; i.e., formerly, the number of relevant phys-

iological factors was either chosen constanta priori, or it was selected by a human expert.
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These results should, however, still be considered as preliminary. The method is not ready for appli-

cation in medical imaging as it has not been showed to meet high standards of reliability and accuracy

required in this area. The following problems must still be overcome:

• convergence of the algorithm is slow, and the overall computational cost is high (tens of minutes

of computation on a 1GHz machine, for analysis of 100 frames of size128 × 128). Possible

approaches to this problem were discussed in Section 7.3;

• the posterior estimates are sensitive to the chosen initial conditions. Extensive experimental stud-

ies will probably be needed to choose the best initialization of the method;

• the only restriction imposed on each factor in the FAMIS model was positivity. Hence, the poste-

rior estimates of the factor curves may contain sharp peaks (Figure 7.2) which are not physiologi-

cally possible. A further restriction of the factors is needed, such as the imposition of smoothness

constraints on the factor curves [113].
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Chapter 8.

Conclusions

8.1. Discussion of the Work

The aim of this thesis was to extend the modelling capabilities of the linear model and to provide a

numerically efficient Bayesian inference of the model parameters. Four different extensions of special

cases of the linear model have been studied, each of them representing an important problem in Digital

Signal Processing (DSP). In each case, we have derived a novel identification algorithm and shown

its advantages over the existing techniques. In all cases, we have used the Variational Bayes (VB)

approximation (Section 2.2.4) to obtain the posterior distributions of model parameters.

We have shown that the VB approximation is particulary appropriate for identification of a non-

stationary process. A non-stationary process generates a new random variable at each time step. This

leads to proliferation of random variables and computational intractability in exact Bayesian identifica-

tion. The problem was circumvented by invoking the conditional independence assumption—which is

the central assumption of the VB approximation—and optimizing it using that same VB procedure.

One of the main concerns of the thesis was computational efficiency, as is appropriate for work in

DSP. We have shown that the the Variational EM (VEM) algorithm (Algorithm 2.2)—i.e. the stan-

dard algorithm for evaluation of VB-statistics (which are the parameters of the VB-optimal posterior

distribution)—may be computationally inefficient. In special cases (Chapter 6), the solution of the VB

posterior distributions can be analytically simplified, yielding significantly faster identification algo-

rithms. Computationally faster algorithms may also be achieved by further approximations of the VB

method, such as the Restricted VB method (Corollary 2.1), of which Quasi-Bayes (QB) is a significant

example. Under these simplified procedures, we showed that significant computational savings could

be achieved at the price of only slight loss of accuracy.

We now discuss in more detail the key contributions of the work.

8.2. Key Contributions of the Thesis

Chapter 2: We reviewed the most common methods for approximation of Bayesian posterior distri-

butions. The main emphasis was on the Variational Bayes (VB) approximation (Theorem 2.1).

We introduced a Restricted VB approximation (Corollary 2.1) which yields parameters of the

VB optimal posterior distribution in closed-form (closed-form solution for the non-restricted VB

approximation is rare, an iterative VEM procedure is almost always implied). We showed that the
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popular Quasi-Bayes (QB) approximation is a special case of this Restricted VB approximation

method.

Chapter 3: We reviewed the most important special cases of the linear model and their Bayesian

identification. Many well known multivariate methods—such as Factor Analysis (FA) or Prin-

cipal Component Analysis (PCA)—had already been re-derived in the literature using the linear

model. We showed that the method known as Factor Analysis of Medical Image Sequences

(FAMIS) can also be understood this way.

Chapter 4: We extended the AutoRegressive (AR) model to embrace unknown transformations of its

output. A tractable identification can be achieved only when there is a finite set of candidates.

What follows is the Mixture-based Extended AR model (MEAR). The MEAR model is a mixture

of AR components with common AR parameterization, each component modelling the AR pro-

cess with respect to one possible data transformation. These transformations can be interpreted as

a bank of filters, where each filter is used to pre-process the observed data. We have derived three

algorithms for Bayesian identification of the underlying AR parameters: (i) Variational Bayes

(VB), (ii) Quasi-Bayes (QB), and (iii) the Viterbi-Like (VL) algorithm. Each of these repre-

sents a different trade-off between numerical speed and accuracy. The VB algorithm is the most

accurate, and the VL is computationally the least expensive. We present applications of these

algorithms in identification of an AR process corrupted by outliers and burst noise respectively.

The burst noise scenario was then considered in the real-data context of speech reconstruction.

Chapter 5: We have relaxed the standard assumption ofknownforgetting factor in on-line Bayesian

identification ofnon-stationaryAR processes. We derived an algorithm for on-line joint identifi-

cation of (i) the unknowntime-variantforgetting factor and (ii) thenon-stationaryparameters of

the AR process. We showed that the resulting identification algorithm improves the parameter-

tracking abilities of the standard fixed-forgetting Bayesian approach. This was demonstrated in

simulation. The derived algorithm constitutes a data-driven procedure for steering the forgetting

factor.

Later in Chapter 5, we also considered on-line identification of the MEAR model with time-

variant parameters and unknown time-variant forgetting. The resulting algorithm, balances, in

effect, the contributions being made by (i) past data (sufficient statistics), (ii) current data (dyadic

update), and (iii) expert knowledge (parameters of the alternative distribution). It achieves this

on-line.

Chapter 6: We derived two algorithms for Bayesian Principal Component Analysis (PCA). The first

one was based on a standard Probabilistic PCA (PPCA) model. We showed that the standard VEM

algorithm for evaluation of the VB-statistics can be analytically simplified. The computational

cost of the new algorithm—called Fast Variational PCA (FVPCA)—was, therefore, significantly

reduced.

We then introduced a new,orthogonal, parameterization of the PCA model and presented the

associated VB solution: Orthogonal Variational PCA (OVPCA). The model avoids modelling

ambiguities inherent in the PPCA model, and so no regularization via priors was needed. In
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consequence, identification of this orthogonal model is robust with respect to choice of the prior

distributions. Moreover, we were able to derive the posterior distribution of the model rank (i.e.

the number of relevant principal components).

Chapter 7: Bayesian identification of the Factor Analysis of Medical Image Sequences (FAMIS)

model—introduced in Chapter 3.1—was achieved using VB approximation. We showed that the

Bayesian identification improves the standard certainty-equivalence-based method in two main

ways: (i) better identification of the noise properties is achieved, and (ii) automatic estimation of

the number of relevant physiological factors is possible. This is important in medical applications,

since it allows more reliable results to be achieved with data manifesting low Signal-to-Noise Ra-

tio (SNR). Furthermore, there is a reduced reliance on external information provided by medical

doctors and imaging experts.

8.3. Further work

8.3.1. Short Term Extensions

1. In Sections 4.7 and 4.8, we used the MEAR model for identification of an AR process corrupted

by additive outliers and burst noise respectively. In both cases, the resulting filter-bank was

composed of linear filters. The MEAR model is, however, capable of dealing with non-linear dis-

tortions of data. It would be interesting to apply the MEAR model, for example, to an AR process

suffering a memoryless non-linear distortion, such as occurs frequently in audio applications. A

priority would be to design a suitable partitioning of the continuous space of distortions.

2. The standard VEM algorithm for evaluation of the VB-statistics is not guaranteed to converge in

a finite number of iterations. Therefore, in an on-line scenario, additional treatment is required to

achieve computational feasibility. For non-stationary forgetting (Section 5.2), we used the simple

strategy of imposing a maximum allowable number of VEM iterations. We note that the space

of unknown forgetting factors is confined to the interval[0, 1]. Therefore, more sophisticated

strategies could be proposed, for exploration of this finite scalar interval.

3. Identification of an AR process using the non-stationary forgetting technique (Chapter 5) can be

easily applied in changepoint detection in noisy speech.

4. Principal Component Analysis (PCA) is used as a standard data processing black-box in many

scientific areas. In DSP, it finds an interesting context in the area of sub-space methods and

spectral estimation, in algorithms such as MUSIC and ESPRIT [67]. Application of the results

achieved in Chapter 6—namely, estimation of the number,r, of relevant principal components,

and uncertainty bounds forA,X, andr— is straightforward in these areas, and could potentially

bring significant added value.

5. In Section 7.3, we proposed various heuristic techniques for improving the numerical efficiency of

the VEM algorithm for the FAMIS model. Implementation of these techniques is straightforward

but time-consuming.
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8.3.2. Future Research Directions

The Variational Bayes (VB) approximation method was chosen as a trade-off between accuracy and

computational feasibility. It is not optimal from the statistical point of view (Section 2.2.4). Its key

advantage is that the approximate posterior distributions are available in analytical form, providing

computational feasibility. In some cases, such as on-line identification of mixture models, the statis-

tically optimal (Section 2.2.3) approximation was shown to outperform the VB approximation [114].

Recent developments in mean field theory [34, 39] suggest that new, more accurate, approximations of

the allowed posteriors may be found. Computationally efficient evaluation of the resulting approxima-

tions is a future challenge for the DSP community. Potentially, it is an intriguing one, as new kinds of

computational algorithms and flow-of-control may be revealed.

Applicability of the MEAR model (Chapter 4) is limited by the assumption of ana priori known

filter-bank. We showed that the filter-bank can be designed using analytical insight into the problem.

However, this approach can be used only for a limited set of problems, such as 1-D and discretized

function spaces. An automated approach would greatly extend applicability of the model. There has

already been an attempt at automated filter-bank selection using simplex methods [62].

The VB-approximate posterior distribution of the time-variant forgetting factor in Chapter 5 was

found to be intractable. Thus, further approximation was needed to achieve a numerically tractable

solution (Proposition 5.1). The impact of this approximation has not been fully explored in this thesis.

Also, performance of the method depends on the choice of alternative distribution (Section 3.2.3), which

must be knowna priori. Further work on the treatment of the alternative distribution would greatly

enhance the applicability of the method in practice.

Preliminary experiments with the Bayesian identification of the FAMIS model (Chapter 7) are very

promising. However, the list of problems that must be solved in order to apply this method in clinical

practice is extensive (Section 7.3). For example, better physiological modelling, efficient numerical

implementation and robustness improvements need to be addressed. Ultimately, clinical studies using

this unified FAMIS framework are necessary.

The VB-based identification of the FAMIS model (Section 7.2) is closely related to the emerging

class of algorithms known as Independent Component Analysis (ICA) (Section 3.2.1, Table 7.2). ICA

is a statistical technique for decomposing a complicated dataset into independent sub-parts. The FAMIS

model is, in fact, a special case of noisy ICA [110], with a non-stationary noise distribution. The ICA

method is currently receiving much attention in signal processing because of its flexibility and ability to

deal with non-linear models. Furthermore, numerically efficient evaluation of the traditional Maximum

Likelihood (ML) approach [51] to ICA has been achieved using fixed-point approximations [112]. The

possible use of these approximations within the Variational Bayes (VB) approach may bring significant

computational savings in the future.
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Appendix A.

Required Probability Distributions

A.1. Matrix Normal distribution

We say matrixX has a matrix Normal distribution,f (X) = N (µX ,Σp ⊗ Σn), if the matrixX ∈ <p×n

has the joint probability density

f(X) = (2π)−pn/2 |Σp|−n/2 |Σn|−p/2 exp
(
−0.5tr

{
Σ−1

p (X − µX)
(
Σ−1

n

)′ (X − µX)′
})

, (A.1)

whereΣp ∈ <p×p andΣn ∈ <n×n are symmetric, positive definite matrices.

The distribution has the following properties:

• first moment isEX (X) = µX ,

• second non-central moments are

EX

(
XZX ′) = tr (ZΣn) Σp + µXZµ

′
X ,

EX

(
X ′ZX

)
= tr (ZΣp) Σn + µ′XZµX , (A.2)

whereZ is an arbitrary matrix of appropriate sizes respectively,

• For any matricesC ∈ <c×p andD ∈ <n×d it holds:

f (CXD) = N
(
CµXD, CΣpC

′ ⊗D′ΣnD
)
. (A.3)

• distribution ofvec (X) is again Normal with

f (vec (X)) = N (vec (µX) , Σn ⊗ Σp) .

Note that covariance matrix has changed the form compared to the matrix case. This notation is

helpful as it allows to store thepn× pn covariance matrix inp× p andn× n structures.

This convention greatly simplifies notation, e.g. if columnsxi of matrixX are independently distributed

with the same Normal pdf

f (x1,x2, . . . ,xn) =
n∏

i=1

N (µi,Σ) ≡ N (µX ,Σ⊗ In) = f (X) . (A.4)
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Moreover, linear transformation of matrix argumentX (A.3) preserves the decomposed form. This

allows all operations on moments ofX being done using matrix algebra.

A.2. Normal-Wishart Distribution

The Normal-Wishart distribution of variableθ = [A,Ω] has pdf

NWA,Ω (V, ν) ≡ |Ω|
1
2
ν

ζNW (V, ν)
exp

{
−1

2
Ω [−Ip, A]V [−Ip, A]′

}
, (A.5)

with normalizing constant

ζNW (V, ν) = Γp

(
1
2

(ν − r + p+ 1)
)
|Λ|−

1
2
(ν−r+p+1) |Vaa|−0.5p 20.5p(ν+p+1)π

r
2 , (A.6)

and auxiliary values

V =

[
Vdd V ′ad

Vad Vaa

]
, Λ = Vdd − V ′adV

−1
aa Vad, (A.7)

where (A.7) denotes partitioning ofV ∈ <(p+1)×(p+1) into blocks andVdd is the upper left sub-block

of sizep× p.

Marginal distributions ofA andΩ are [16]:

f (A|Ω, V, ν) = N
(
Â,Ω−1 ⊗ V −1

aa

)
, (A.8)

f (Ω|V, ν) = W
(
ν − p+ 1

2
, 2Λ−1

)
, (A.9)

f (A|V, ν) = St
(
Â,

1
η
Λ−1 ⊗ V −1

aa , η

)
, (A.10)

with auxiliary constants

Â = V ′adV
−1
aa , (A.11)

η = ν − r + p+ 1. (A.12)

St denotes the matrix Student-t distribution withη degrees of freedom, andW denotes the Wishart

distribution [115].

132



A.3. Dirichlet Distribution

The moments of these distributions are:

EA|Ω (A) = EA (A) = Â, (A.13)

EΩ (Ω) ≡ Ω̂t =
1
η
Λ−1, (A.14)

EA

((
A− Â

)(
A− Â

)′)
=

1
ν − r

ΛV −1
aa , (A.15)

EΩ

((
Ω− Ω̂

)2
)

=
2Λ

(ν − r)2
, (A.16)

EΩ (ln |Ω|) =
1
2

p∏
j=1

ψ

(
1
2

(ν − r + p− j)
)

(A.17)

−1
2

ln |Λ|+ 1
2
p ln 2. (A.18)

Here, conditioning byV, ν was dropped for simplicity.

A.3. Dirichlet Distribution

The Dirichlet distribution of the vector variableα has pdf

f (α|β) = Diα (β) =
1

ζDi (β)

c∏
i=1

αβi−1
i , (A.19)

with vector parameterβ = [β1, β2, . . . , βc]
′, normalizing constant

ζDi (β) =
∏c

i=1 Γ (βi)
Γ (γ)

, (A.20)

whereγ =
∑c

i=1 βi, and with first moment given by:

α̂i = Eα|β (αi) =
βi

γ
, i = 1, . . . , c. (A.21)

Expected value of the logarithm is

̂lnαi = Eα|β (lnαi) = ψ (βi)− ψ (γ) , (A.22)

whereψ (β) = ∂
∂β ln Γ (β).
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A.4. Truncated Normal Distribution

The truncated normal distribution of scalar random variablex is defined as normal—with functional

formN
(
µ, s2

)
—on a restricted supporta ≤ x ≤ b. Its pdf is

f (x|s, a, b) =

√
2 exp

(
−1

2

(x−µ
s

)2)
s
√
π (erf (β)− erf (α))

χ ((a, b]) , (A.23)

whereα = a−µ

s
√

2
, β = b−µ

s
√

2
. Moments of (A.23) are

x̂ = µ− sϕ (µ, s) , (A.24)

x̂2 = s2 + µx̂− sκ (µ, s) , (A.25)

with auxiliary functions:

ϕ (µ, s) =

√
2
[
exp

(
−β2

)
− exp

(
−α2

)]
√
π (erf (β)− erf (α))

, (A.26)

κ (µ, s) =

√
2
[
b exp

(
−β2

)
− a exp

(
−α2

)]
√
π (erf (β)− erf (α))

. (A.27)

(A.26) and (A.27) with vector arguments—e.g.κ (m, s)—are evaluated element-wise. Confidence in-

tervals for this distribution can also be obtained. However, for simplicity, we use the first two moments,

(A.24) and (A.25), to approximate (A.23) by a Gaussian. The Maximum Entropy (MaxEnt) principle

[116] ensures, that uncertainty bounds on the MaxEnt Gaussian approximation of (A.23), enclose the

uncertainty bounds of all distributions with the same first two moments. Hence,

max
(
a,−2

√
x̂2 − x̂2

)
< x− x̂ < min

(
b, 2
√
x̂2 − x̂2

)
. (A.28)

A.5. Von Mises-Fisher Matrix distribution

Moments of the von Mises-Fisher matrix distribution are now considered. Proofs of all unproven results

are available in [108].

A.5.1. Definition

The von Mises-Fisher probability density function of matrix random variable,Z ∈ <p×n, restricted to

Z ′Z = It, is given by:

f (Z|F ) = M (F ) =
1

ζ (p, FF ′)
exp

(
tr
(
FZ ′

))
, (A.29)

ζ
(
p, FF ′

)
= 0F1

(
1
2
p,

1
4
FF ′

)
C (p, n) , (A.30)
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A.5. Von Mises-Fisher Matrix distribution

whereF ∈ <p×n is a matrix parameter of the same dimensions asZ, andp ≥ n. ζ (p, FF ′) is

the normalizing coefficient.0F1(·) denotes a hypergeometric function of matrix argumentFF ′ [117].

C (p, r) denotes the area of the relevant Stiefel manifoldSp,n (6.55).

(A.29) is a Gaussian distribution with restrictionZ ′Z = It, re-normalized onSp,n. It is governed by

a single matrix parameterF . Consider the (economic) SVD decomposition

F = UFLFV
′
F ,

of the parameterF , whereUF ∈ <p×n,LF ∈ <n×n, VF ∈ <n×n. Then, maximum of (A.29) is reached

at

Ẑ = UFV
′
F . (A.31)

Flatness of the distribution is controlled byLF . Whendiag (LF ) = 0n,1 the distribution is uniform on

Sp,n [118]. ForlF,i →∞, ∀i = 1 . . . n the distribution is a Dirac delta function at̂Z (A.31).

A.5.2. First Moment

Let Y be the transformed variable

Y = U ′FZVF , (A.32)

It can be shown thatζ (p, FF ′) = ζ
(
p, L2

F

)
. The pdf ofY is then:

f (Y |F ) =
1

ζ
(
p, L2

F

) exp (tr (LFY )) =
1

ζ
(
p, L2

F

) exp
(
l′Fy

)
, (A.33)

wherey = diag (Y ). Hence,

f (Y |F ) ∝ f (y|lF ) . (A.34)

First moment of (A.33) is given by [108]:

E (Y |LF ) = Ψ, (A.35)

whereΨ = diag (ψ) is a diagonal matrix with diagonal:

ψi =
∂

∂lF,i
ln 0F1

(
1
2
p,

1
4
L2

F

)
. (A.36)

We will denote function (A.36) as

ψ = G (p, lF ) , (A.37)

The mean value of the original random variableZ is then [119]:

E (Z) = UF ΨVF = UFG (p, LF )VF , (A.38)

whereG (p, LF ) = diag (G (p, lF )).
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A.5.3. Second Moment and Uncertainty Bounds

The second central moment of the transformed variabley = diag (Y ) (A.33) is given by

E
(
yy′ − E (y) E (y)′

)
= Φ, (A.39)

with elements,

φi,j =
∂

∂lF,i∂lF,j
ln 0F1

(
1
2
p,

1
4
L2

F

)
, i, j = 1, . . . , r. (A.40)

Transformation (A.32) is one-to-one, with unit Jacobian. Hence, boundaries of confidence intervals on

variablesY andZ can be mutually mapped using (A.32). However, mappingy = diag (Y ) is many-

to-one, and soZ → y is surjective. Conversion of second moments (and uncertainty bounds) ofy toZ

(via (A.32), (A.33)) is therefore available in implicit form only. For example, the upper bound subspace

of Z is expressible as follows:

Z =
{
Z| diag

(
U ′FZVF

)
= y

}
,

wherey is an appropriately chosen upper bound ony. The lower bound,Z, is similarly constructed via

a boundy.

It remains then, to choose appropriately boundsy andy from (A.33). Exact confidence intervals

for this multivariate distribution are not known to us. Therefore we use the first two moments, (A.35)

and (A.39), to approximate (A.33) by a Gaussian. The Maximum Entropy (MaxEnt) principle [116]

ensures, that uncertainty bounds on the MaxEnt Gaussian approximation of (A.33), enclose the uncer-

tainty bounds of all distributions with the same first two moments. Confidence intervals for the Gaussian

distribution, with moments (A.36), (A.40) are well known, e.g.

Pr
(
−2
√
φi < (yi − ψi) < 2

√
φi

)
.= 0.95, (A.41)

whereψi is given by (A.36), andφi by (A.40). Therefore, we choose

yi = ψi + 2
√
φi, (A.42)

yi = ψi − 2
√
φi. (A.43)

The required vector bounds are then constructed asy = [y1, . . . , yr]
′, and ditto fory. The geometric

relationship variablesZ andy is illustrated graphically forp = 2 andn = 1 in Figure 6.6.

A.6. Gamma Distribution

The Gamma distribution has pdf

f (x|a, b) = G (a, b) =
ba

Γ (a)
xa−1 exp (−bx)χ ([0,∞)) , (A.44)
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A.7. Truncated Exponential Distribution

wherea > 0, andb > 0, andΓ (a) is the Gamma function [71] evaluated ata. Its first moment is:

x̂ =
a

b
,

and the second central moment is:

Ex

(
(x− x̂)2

)
=

a

b2
.

A.7. Truncated Exponential Distribution

The Truncated Exponential Distribution has pdf

f (x|k, [a, b]) =
k

exp (kb)− exp (ka)
exp (xk)χ ([a, b]) , (A.45)

wherea < b are boundaries of the support. Its first moment is

x̂ =
exp (bk) (1− bk)− exp (ak) (1− ak)

k (exp (ak)− exp (bk))
, (A.46)

which is not defined fork = 0. Limit at this point is

lim
k→0

x̂ =
a+ b

2
.

Which is not surprising, as the distribution becomes uniform on interval[a, b].
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Appendix B.

Analytical Solution of Fast VPCA, Using
MAPLE

Here, we provide analytical solution of Fast VPCA as obtained using software package Maple. Hence,

we will present them as commented Maple code, i.e. equations are not numbered.

Initialize the Maple enviroment and invoke some basic assumptions.

> restart;
> assume(k[A]>0); assume(k[X]>0); assume(sigma[A]>0);

> assume(sigma[X]>0); assume(b>0);
> assume(omega>0); assume(n>0); assume(p>0);

> assume(ld>0);assume(alpha>0);

Variational equations for Fast VPCA

> eq1:=k[A]-omega*l[D]*k[X]*sigma[A]:

> eq2:=sigma[A] - 1/(omega*(n*sigma[X]+k[X]^2)+upsilon):

> eq3:=k[X]-omega*sigma[X]*k[A]*l[D]:

> eq4:=sigma[X] - 1/(omega*(p*sigma[A]+(k[A])^2)+1):

> eq5:=upsilon - (p)/(p*sigma[A]+k[A]^2+b):

> EQ:={eq1,eq2,eq3,eq4,eq5};

EQ := {kA − ω lD kX σA, υ −
p

p σA + kA
2 + b

, σX −
1

ω (p σA + kA
2) + 1

,

kX − ω σX kA lD, σA −
1

ω (nσX + kX
2) + υ

}

> S:=solve(EQ,{k[A],sigma[A],k[X],sigma[X],upsilon}):

B.1. Closed-form Solution

The first mode (zero-centered):

> S1:=S[1];
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B. ANALYTICAL SOLUTION OF FAST VPCA, USING MAPLE

S1 := {υ = −(−n+ n%1 + p) %1ω
−1 + %1

, σX = %1, kA = 0, kX = 0,

σA = −−1 + %1
%1ω p

}

%1 := RootOf((−n+ b nω) _Z 2 + (2n− b nω + b ω p) _Z − n)

The second mode:

> S2:=S[2];

S2 :=

{
σX = − p− ω lD

2

ω lD
2 (ω%12 + 1)

, σA = − ω%12 + 1
ω (p− ω lD

2)
, kA = %1, υ =

(−nω%12 − n+ ω%12 p+ ω lD
2)nω

/
(%12 b ω2 p− ω%12 p

−%12 b nω2 + %12 ω2 lD
2 − b nω + nω%12 + n+ b ω2 lD

2),

kX = −(p− ω lD
2) %1

lD (ω%12 + 1)

}
%1 := RootOf(_Z 4 nω3 lD

2 + (−p2 ω − b nω2 p+ 2ω2 lD
2 p+ b nω3 lD

2

+ nω2 lD
2 − ω3 lD

4 − b ω3 lD
2 p+ nω p+ b ω2 p2)_Z 2 − b ω3 lD

4

+ p n− b nω p+ b ω2 lD
2 p+ b nω2 lD

2)

B.2. Determination of Acceptable Solutions

Note that solution of both modes depends on evaluation of forth order polynomial in variable _Z.

However, it can be rewritten as second order polynomial in _Z2. Roots of second order polynomials

are easy to evaluate, using formula:

> z=(-a[1]+sqrt(R))/(2*a[2]); R:=a[1]^2-4*a[0]*a[2];

z =
1
2
−a1 +

√
R

a2

R := a1
2 − 4 a0 a2

An important limiting condition is then value of auxiliary variable R, which must be positive. We will

analyze this for both modes.

Zero-centered mode

In this mode, mean values are zero. It remains to make sure that variances are real and positive.

> a[2]:=(-n+b*n*omega): a[1]:=(2*n-b*n*omega+b*omega*p): a[0]:=-n:

> R:=a[1]^2-4*a[2]*a[0]:R:=collect(simplify(R),{b,omega});

R := (n2 − 2 p n+ p2)ω2 b2 + 4 b nω p

Clearly, R is always positive, hence, roots are always real.

Values of the roots are then:
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B.2. Determination of Acceptable Solutions

> z1:=(-a[1]+sqrt(R))/(2*a[2]);

z1 :=
1
2
−2n+ b nω − b ω p+

√
4 b nω p+ b2 n2 ω2 − 2 b2 nω2 p+ b2 ω2 p2

−n+ b nω
> z2:=(-a[1]-sqrt(R))/(2*a[2]);

z2 :=
1
2
−2n+ b nω − b ω p−

√
4 b nω p+ b2 n2 ω2 − 2 b2 nω2 p+ b2 ω2 p2

−n+ b nω
> limit(z1,b=0);limit(z2,b=0);

1

1

Note, that the roots evaluated above are, in fact, values ofσX , which has prior value set to 1. Not

surprisingly, the limit for very smallb is one. The first root,z1, approaching from above, the second

one,z2, from below. Note that sign ofσA depends on(−σX + 1), hence only the lower root,z2, is

valid.

The second mode:

First, let us analyze roots of the polynomial, using the same formula as above.
> a[2]:=n*omega^3*l[D]^2:

> a[1]:=(n*omega*p-p^2*omega+2*omega^2*l[D]^2*p+n*omega^2*l[D]^2+b*n*ome

> ga^3*l[D]^2-omega^3*l[D]^4-b*n*omega^2*p-b*omega^3*l[D]^2*p+b*omega^2*

> p^2):

> a[0]:=n*p-b*omega^3*l[D]^4-b*n*omega*p+b*omega^2*l[D]^2*p+b*n*omega^2*

> l[D]^2:

> R:=a[1]^2-4*a[2]*a[0];

R := (−p2 ω − b nω2 p+ 2ω2 lD
2 p+ b nω3 lD

2 + nω2 lD
2 − ω3 lD

4

− b ω3 lD
2 p+ nω p+ b ω2 p2)2

− 4nω3 lD
2 (p n− b ω3 lD

4 − b nω p+ b ω2 lD
2 p+ b nω2 lD

2)
> sp:=solve({R},{l[D]});

sp := {lD =
√
ω p

ω
}, {lD = −

√
ω p

ω
}, {lD =

√
ω p

ω
}, {lD = −

√
ω p

ω
},

{lD =

√
−ω (b ω p− p− n+ 2

√
p n+ b nω − 2ω b

√
p n)

ω
},

{lD = −
√
−ω (b ω p− p− n+ 2

√
p n+ b nω − 2ω b

√
p n)

ω
},

{lD =

√
−ω (−p− n− 2

√
p n+ b ω p+ b nω + 2ω b

√
p n)

ω
},

{lD = −
√
−ω (−p− n− 2

√
p n+ b ω p+ b nω + 2ω b

√
p n)

ω
}

Clearly only some of these are positive:

> simplify({sp[1,1],sp[5,1],sp[7,1]});

{lD =
(
√
p+

√
n)
√

1− ω b
√
ω

, lD =

√
1− ω b

∣∣√p−√n∣∣
√
ω

, lD =
√
p

√
ω
}
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B. ANALYTICAL SOLUTION OF FAST VPCA, USING MAPLE

The first singular point is notable, as it is also singular point for values ofσA, σX . Value oflD must be

higher than this limit.
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Figure B.1.:Analysis of singular points of roots of second mode solution of fast VPCA, singular points
are denoted by cross.

An example of R-value and both roots for certain numerical values is displayed in Figure B.1. Hence,

the boundary for acceptable solution is at:

lD =
(
√
n+

√
p)
√

1− b ω
√
ω

For values lower than this bound, the second mode has no acceptable solution, and iterative algorithm

than converge to zero-centered solutions.

Singular point of uspilon is:
> spu:=n+n*omega*RootOf(_Z^4*n*omega^3*l[D]^2+(n*omega*p-p^2*omega+2*p*

> omega^2*l[D]^2+n*omega^2*l[D]^2+b*n*omega^3*l[D]^2-omega^3*l[D]^4-b*n*

> omega^2*p-b*omega^3*l[D]^2*p+b*omega^2*p^2)*_Z^2+n*p-b*omega^3*l[D]^4-

> b*n*omega*p+b*omega^2*l[D]^2*p+b*n*omega^2*l[D]^2)^2-omega*RootOf(_Z^4

> *n*omega^3*l[D]^2+(n*omega*p-p^2*omega+2*p*omega^2*l[D]^2+n*omega^2*l[

> D]^2+b*n*omega^3*l[D]^2-omega^3*l[D]^4-b*n*omega^2*p-b*omega^3*l[D]^2*

> p+b*omega^2*p^2)*_Z^2+n*p-b*omega^3*l[D]^4-b*n*omega*p+b*omega^2*l[D]^

> 2*p+b*n*omega^2*l[D]^2)^2*p-omega*l[D]^2:

> solve(spu,{l[D]});

{lD =
√
ω p

ω
}, {lD = −

√
ω p

ω
}, {lD = 0}

Clearly, it is the same singular point as forσA andσX , and it is to be compared with the singular point

for R-value. However, we expect b to be chosen as small as possible, hence, we will consider

lD =
(
√
n+

√
p)

√
ω

to be the limit for acceptable solution of the second mode.

Roots of the polynomial are then:
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B.2. Determination of Acceptable Solutions

> z1:=(-a[1]+sqrt(R))/(2*a[2]):

> z2:=(-a[1]-sqrt(R))/(2*a[2]):

With limits:

> limit(sqrt(z1)/l[D],l[D]=infinity);

1√
n

> limit(sqrt(z2)/l[D],l[D]=infinity);

0

We see, that the first root is assymptotically approachinglD/
√
n, which is intuitively appealing. The

second possible root is approaching zero quite rapidly.
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Appendix C.

Hypergeometric Functions

Numerical evaluation of the OVPCA algorithm requires evaluation of the following transformations of

the hypergeometric function0F1 of matrix argument: (i) its natural logarithm (ln), for Bayesian rank

selection (6.104), and (ii) the first derivative of theln, required for the first moment of the von Mises-

Fisher distribution (A.36). Analytical closed form solutions are not known to us. Recently, a very good

approximation of0F1 of matrix argument was developed [120]. It is based on the Laplace approxima-

tion at the saddle point. It yields reliable results for use in (i). Unfortunately, the first derivative ofln of

this approximation for higher singular values, i.e.li � 1, are greater than one, thus placing the corre-

sponding mean valueE (yi|lF ) (A.36) outside of the unit circle, which is not permissible (Figure 6.6).

Therefore, we now develop an approximation which overcomes this difficulty, by first considering the

hypergeometric function0F1 of scalar argument.

C.1. Hypergeometric Function of Scalar Argument

The natural logarithm (ln) of the hypergeometric function,0F1

(
1
2p,

1
4s

2
)
, of a scalar argument can be

expressed as

ln 0F1

(
1
2
p,

1
4
s2
)

= lnB
(

1
2
p− 1, s

)
+
(

1
2
p− 1

)
(ln 2− ln (s)) + lnΓ

(
1
2
p

)
, (C.1)

whereB denotes the modified Bessel function of the first kind [71]. (C.1) is plotted as a function ofs

in Figure C.1 (left), forp = 5. The first two derivatives of (C.1):

d

ds
ln 0F1

(
1
2
p,

1
4
s2
)

= 2
B
(

1
2p, 2s

)
B
(

1
2p− 1, 2s

) , (C.2)

d2

ds2
ln 0F1

(
1
2
p,

1
4
s2
)

= 4
B
(

1
2p+ 1, 2s

)
B
(

1
2p− 1, 2s

) − 4

[
B
(

1
2p, 2s

)
B
(

1
2p− 1, 2s

)]2

+ 2
B
(

1
2p, 2s

)
sB
(

1
2p− 1, 2s

) .(C.3)

The first derivative is illustrated in Figure C.1 (right), for the same case,p = 5. (C.2) can be expressed
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Figure C.1.: ln 0F1

(
5, 1

4s
2
)

of scalar arguments (left), and d
ds 0F1

(
5, 1

4s
2
)

(right).

as a continuous fraction expansion [71]:

d

ds
ln 0F1

(
1
2
p,

1
4
s2
)

=
si

p
2

1 +
1
4
s2
i

( p
2
+1)( p

2
+2)

»
1+

1
4 s2

i
( p
2 +2)( p

2 +3)+[1+ ...
... ]

–
 . (C.4)

Furthermore, (C.3) can be expressed in terms of (C.2) and, therefore (C.4). The evaluation of expansion

(C.4) converges very fast fors < p. However, whens� p (says > 10p) the convergence is quite slow.

For larges, a more numerically efficient approximation is obtained via a Taylor expansion of (C.2) at

s→∞:
d

ds
ln 0F1

(
1
2
p,

1
4
s2
)

= 1−
(
p− 1
2s

)
exp

(
−p− 3

4s

)
+ o (5) . (C.5)

Here,o (5) denotes elements of the serie in terms ofs−5. This expansion provides an excellent approx-

imation in the cases� p.

C.2. Approximation of 0F1 of Matrix Argument by 0F1 of Scalar

Arguments

Consider the special case of the von Mises Fisher matrix distribution (A.29) withZ = [z1,z2] ∈ <p×2,

and parameterF = [f1,f2] ∈ <p×2, with added constraint thatf1,f2 are mutually orthogonal:f ′1f2 =
0. Then, the marginal distribution ofz1 is [108]:

f (z1|F ) = 0F1

(
1
2 (p− 1) , 1

4 (Ip − z1z
′
1)f2f

′
2

)
0F1

(
1
2p,

1
4FF

′
)
C (p, 1)

exp
(
tr
(
f ′1z1

))
. (C.6)

Note that maximum likelihood estimate ofz1 (A.31), i.e.:

ẑ1 = arg max
z1

f (Z|F ) = f1/
√
f ′1f1,

This is orthogonal tof2, i.e. ẑ′1f2 = 0, [108]. Therefore, the contribution of the quadratic term in the

argument of0F1 in the numerator of (C.6) would be negligible for values ofz1 aroundẑ1. Hence, we
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C.2. Approximation of0F1 of Matrix Argument by0F1 of Scalar Arguments

approximate

0F1

(
1
2

(p− 1) ,
1
4
(
Ip − z1z

′
1

)
f2f

′
2

)
≈ 0F1

(
1
2

(p− 1) ,
1
4
f2f

′
2

)
, (C.7)

which will be satisfied whenf (z1|F ) is not diffuse, i.e. whenf1 → ∞ (see Section A.5.1). Under

this approximation, the leading fraction in (C.6) is independent ofz1, and thus acts as a normalizing

coefficient. Distribution (C.6) is then of the von Mises-Fisher type, namelyf (z1|F ) ≈ f (z1|f1) =
M (f1) (A.29). Comparing the normalizing coefficient in (C.6) with that in (A.30) yields
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. (C.8)

Extending (C.6) into higher dimension and using the chain rule of pdfs we obtain an approximation of

the following type:
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