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Summary

This thesis is concerned with Bayesian identification of parameters of linear models. Linear models are
used in many important problems of Digital Signal Processing (DSP). Computationally efficient meth-
ods of parameter inference are available under certain restrictive assumptions, such as known transfor-
mation of system output, known number of signal sources, etc. These assumptions, however, limit the
applicability of these models. In this thesis, we study four important special cases of the linear model as
listed below. When we relax the restrictive assumption, in each case, the Bayesian inference becomes
intractable. Tractability is restored using the Variational Bayes (VB) approximation technique. Special
attention is paid to computational efficiency and flow of control of the associated inference algorithms.

Chapter§ P and 3 review the relevant state-of-the-art knowledge. In Chhpter 2, the basics of Bayesian
parameter inference, and the most common approximation techniques, are reviewed. The Variational
Bayes (VB) method is chosen as a reasonable trade-off between accuracy and computational require-
ments. In Chaptdr]3, the linear model is introduced and existing Bayesian inference methods are re-
viewed for this context. At the end of Chapfér 3, in Secfion 3.5, four special cases of the linear model
are selected for detailed consideration in the rest of the thesis. For each of these models, a computa-
tionally efficient Bayesian inference technique is not currently available and the aim of the thesis is to
derive one.

The main contributions of the thesis are presented in Chepitgfs 4-7, in the context of each of these
four models:

Chapter &] the AutoRegressive (AR) model with unknown transformation of its output is studied.
The unknown transformation is approximated by a finite mixture of known candidates. What
follows is a new Mixture-based Extension of the AR model (MEAR). Computationally efficient
inference algorithms for the MEAR model are derived. The model is successfully applied to the
reconstruction of an AR process corrupted by outliers, burst noise, and in a speech reconstruction
problem respectively.

Chapter 5] the AR model withnon-stationaryparameters is studied. We relax the assumption of
known forgetting factor underlying an established Bayesian approach to this problem. The re-
sulting recursive Bayesian identification algorithm has better tracking ability with respect to the
non-stationary parameters. Improvements over the standard fixed-forgetting approach are demon-
strated in a simulation study involving an AR process with abrupt changepoints.

Chapter §] the problem of Bayesian Principal Component Analysis (PCA) is studied. The traditional
Maximum Likelihood (ML) estimation of model parameters is numerically efficient. However,



it does not provide an estimate of the number of relevant principal components, nor any associ-
ated uncertainty bounds. The known Bayesian solutions do not take into account the rotational
ambiguity inherent in the model and are, therefore, computationally inefficient. We show that an
approximate Bayesian solution can be found with a computational cost comparable to that of the
ML solution. This VB solution is potentially attractive in the many scientific areas where PCA is
used, but where, currently, inference of rank, and measures of uncertainty are unavailable.

Chapter 7] the problem of functional analysis of medical image data is studied. The standard mathe-
matical model used for this task is reformulated. The complexity of the model demands that the
standard approach to parameter estimation is achieved in three separate steps: (i) pre-processing,
(ii) orthogonal analysis, and (iii) oblique analysis. We show that the VB-approximate inference
unifies all these steps. Moreover, the resulting Bayesian inference solves tasks that were not
addressed before, such as selection of the number of relevant physiological sources.

Conclusions and suggestions for further work, are presented in Chapter 8.

Vi
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Chapter 1.
Introduction

Mathematics looks like a pile of abstract facts, axioms and theorems to most people. Itis hard to imagine
that in some branches of mathematics, there are unresolved controversies about the meanings of basic
notions such as Probability. Statistics is one of these branches, where researchers can be divided into
various "schools of thought". This division further propagates into all scientific areas where statistics is
applied, notably in (statistical) Digital Signal Processing (DSP).

Traditionally, DSP is dominated by classical methods, such as least squares and maximum likelihood
methods, Wiener theory, etc. [1]. The classical interpretation sees each probability as a long-run relative
frequency. On the contrary, the Bayesian school sees probability as a quantified degree-of-belief (or
plausibility). However, what may sound like a minor philosophical disagreement can lead to very
different ways of solving practical problems. In scenarios with plenty of observed data, the differences
in results obtained using these philosophies are negligible.

The amount of available data is often limited however. For example, in medical applications, the
measurement of data is expensive and may be uncomfortable for the patient. In these cases, classical
methods have been found to be unreliable and the Bayesian approach has provided bettér résults [2, 3, 4].
In DSP, these scenarios arise in image processing, analysis of medical data, signal-source separation,
and non-stationary processing.

Bayesian inference is analytically tractable only for a limited class of models. The full Bayesian
solution for more complicated and realistic models is not tractable and must be approximated. This
problem has been studied in many scientific areas and many approximate methods have been proposed.
The Markov Chain Monte Carlo (MCMC) approximation is now a popular approximation in DSP and
statistics. As an alternative, the method known as Mean Field Theory has been developed in statistical
physics [5]. This latter principle was introduced to the machine learning community [6], which de-
veloped it as the Variational Bayes (VB) method([7, 8]. Further research into this approach is now an
inter-disciplinary activity, ranging over many scientific fields [9]. Its impact in DSP has yet to be felt.

In this thesis, we study the application of the Variational Bayes (VB) method in DSP. The main con-
cern in DSP is with computational efficiency and implementation of inference algorithms. Quite often,
implementational restrictions—in terms of memory size and processor speed—must be taken into ac-
count when designing a new algorithm. This is very important, for example, in real-time and adaptive
signal processing. These implementational restrictions influence the choice of mathematical models,
as well as the inference methods employed. The preferred mathematical models are simple—i.e. ones
with a small number of parameters and with computationally cheap operations—and primarily of the
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linear model kind. Computationally cheap inference methods are also preferred, such as least squares
methods. However, such methods have limited modelling capabilities and do not perform well in areas
such as model order selection, non-stationary processing, and treatment of non-linear distortions. Many
extensions of classical linear models have been proposed to address these problems. Inference of pa-
rameters of such extended models has proved intractable, and various approximationse-btieor
heuristic—have had to be made, in order to achieve tractability.

In this thesis, we are concerned with extensions of linear models which allow for computationally
efficient Bayesian inference. In order to achieve this, we start with a basic linear model for which a
computationally efficient inference is known. Applicability of this model is, however, limited by the
restrictive assumptions it depends on. When we relax the assumption, the Bayesian solution becomes
intractable. The Variational Bayes (VB) approximation is used to overcome these difficulties. Compu-
tational issues in the resulting inference algorithm are addressed and, where possible, computationally
efficient solutions are proposed.

This experience encourages us to study a range of important DSP problems where, currently, severe
restrictions are needed to achieve tractability. Approximative Bayesian analysis using the VB approach
allows us to achieve effective and numerically efficient results in the much broader contexts where these
restrictions are relaxed.



Chapter 2.

Distributional Approximations in Bayesian
Inference

The Bayesian methodology is a well established approach to statistical inference [10]. It is appreciated
as a consistent framework for dealing with uncertainty [11]. While this is also important for DSP,
practical benefits are the primary concern in this field. The Bayesian framework has advantages over
other approaches, notably in model order selection [[12, 13] and decision makirig [14, 15]. In this
Chapter, we briefly review the parts of the theory we need for further development in DSP.

In Sectior{ 2., we review the basics of Bayesian theory. Two basic scenarios are considered: (i) the
off-line scenario, where all data are available for the inference procedure, and (ii) the on-line scenario,
where the data are acquired incrementally and the inference is re-evaluated for each new data record.
Numerically efficient inference can be achieved only for a limited class of problems. For more com-
plicated models, full Bayesian treatment of a problem may be computationally prohibitive. Therefore,
various approximating techniques are employed to lower the computational load.

The approximations used in the off-line scenario are briefly reviewed in Séctipn 2.2, with emphasis
on accuracy and computational cost. The Variational Bayes (VB) method (Sectign 2.2.4) is chosen for
further development as a promising compromise between computational requirements and accuracy.
Therefore, this method is studied in detail, with proofs of basic theorems. The approximations used in
the on-line scenario are reviewed in Secfiorj 2.3. Once again, our concern is with the Variational Bayes
approximation.

2.1. The Basics of Bayesian Theory

Let the measured data be denotediby A parametric probabilistic model of the data is then usually
given by the probability density function (pdfj,(D|#), conditioned by knowledge of the parameters,
6. In this thesis, we will use notatiofi(-) for both continuous and discrete parameters. In this way a
significant simplification and unification of all formulas can be achieved. One only has to keep in mind
that the integration has to be replaced by regular summation wherever the argument iﬂiiscrete

The basic concept underlying Bayesian theory is the treatment of the unknown paréraster
random variable. In this thesis, we suppose that the fatae composed ofi p-dimensional data

This can also be achieved by employment of measure theory, operating in a consistent way with probability densities
generalized in the Radon-Nikodym senisel [16]. The practical effect is the same and therefore is neither necessary nor
helpful for our purposes.
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records,d; € R, i = 1,...,n. These are aggregated together as follows= [d,,...,d,|. We
recognize two scenarios of parameter inferenceoffi)ine scenario, when the number of observations,
n, is fixed and all data are available before the inference procedure, and-{ifje scenario, when the
data are acquired incrementally. In the latter case, the number of data available at each moment has the
role of time indext, and the available data at timeare called the data historig; = [d1, . .., d,].
Bayesian inference of the model paramet@rss based on application of Bayes’ rule:
f(6,D) f(D10) f(0) 2.1)

FOID) = =505y = 77 (Dl6) £ (6) do°

Here, f (6| D) will be known as theosteriordistribution, f (D|6) as theobservation modebnd f (6)
as theprior distribution of the parameté (i.e. initial belief of the parameter distribution without any
information from the measured datg)(D) will be referred to as theaormalizing constant,

(= f(D)= /9 f(D.6)do = /9 £ (DI6) f (6) do. (2.2)

Bayes' rule[(2.]l) can be re-written as
f(0|D) = 2f (D10) f (0) o< f(DI6) f(6), (2.3)

whereox means equal up to the normalization constgnt,The posterior is fully determined by the
productf (D|0) f (), since the normalization constant follows from the requirementgfti@tD) be a
pdf; i.e. [, f (6|D) = 1. Evaluation of the normalizing constant can be computationally expensive, or
even intractable. If the normalizing constgnt [2.2) is not finite, the distribution is datie@per[17].
The posterior pdf with explicitly known normalization will be called tld pdf.

The task of evaluation of the full posterior pdf will be callpdrameter identificatiorn this thesis.
We favor this phrase over the alternative—density estimation—used in some decision theory texts [15].
The full posterior distribution is a complete description of uncertainty in parameters of the assumed
model. For many practical tasks, we need to derive conditional and marginal distributions of model
parameters, and their moments. Consider the model parameters to be partitioned into two subsets
0 = [01,6-]. The marginal distribution of; is defined as

f(01]D) = ; [ (01,02|D) dbs. (2.4)

The moments of the pdf, i.e. expected values of functions of paramei@s,will be denoted

Eran) (9(6)) = [ 9(6) 1 6ID) o, 25)

In context, where it is clear which pdf(6|D) is associated with the parametgrthe notation can be
simplified further toE ;5 py (9 (¢)) = Egp (9 (0)) = g (0).



2.1. The Basics of Bayesian Theory

2.1.1. Choice of prior pdf

The required prior distribution (2.1) is a function which must be elicited by the designer of the model.
It is an important part of the inference problem. Its use has been widely discussed from a philosophical
point-of-view. See[[17], for example. In this thesis, we are concerned with practical aspects of priors.
The prior distribution is used for:

1. supplementing the data in order to reach an estimate, in cases where there is insufficient data
and/or a poorly defined model; This will be callesyularization(via the prior);

2. imposing various restrictions on the paraméteeflecting physical constraints. For example, if a
prior distribution on a subset of parameter support is zero, then the posterior distribution will also
be zero on this subset;

3. appropriately acknowledging our prior ignorance alut the data are assumed to be informa-
tive enough, we prefer to choosenan-informativeprior (i.e. prior with minimal impact on the
posterior pdf). The choice afon-informativepriors was studied, for example, in [18].

In this thesis, we use priors in all three roles described above. However, in case 3., we do not perform full
analysis ohon-informativepriors. Instead, we choose the form of the prior using other principles (such

as conjugacy, to be explained in the next Section) and we achieve non-informativeness by choosing its
statistics such that the prior is flat [16]. This choice of prior will be callesda-commitaprior.

2.1.2. Conjugate prior pdfs

In the on-line scenario, our concern is with the inference of unknown model parameters at all obser-
vation times,;t = 1,2,3,.... The Bayesian perspective therefore requires evaluation of a probability
distribution on these unknowns at allTractability is assured when the form of the posterior distribu-
tion is identical for allt. Such a distribution is known a&elf-replicating[16], or conjugate]10]. This
principle is briefly reviewed in this Section.

The observation model of the data observed at tinsef (d;|0, D;—1), whereD, = {} by assign-
ment. From Bayes’ rule:

f(0|Dy) o< f(di|0, Dy—1) f (0| Dr-1) . (2.6)

Since ) is recursive, analytical tractability of the update is assured if distribufiofi$;) and
f (0] D¢—1) are of the same form. This is achieved if there exists a mapping; s (D;),s € R,
satisfying the condition:

f (9|Dt) =f (9|3t)7 (2.7)

with s (-) time-invariant and finite-dimensional, i.e.< co. s; are known ashe sufficient statisticat
time ¢ [10]. Substituting[(2.]7) intd (2]6), it follows that

f(G\St) ocf(dt\G,Dt_l)f(G\st_l). (28)
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The distribution is then uniquely determined dyand the functional recursiop (2.6) can be replaced by
an algebraic recursion of:

St:S(Stfl,Dt), t:1,2,3,... (29)

with initializer sy being the parameter of the prigr(6|s,), from (2.7). Note that evaluation df (2.9)
may be difficult ass (-) is a function of the whole history);. A numerically efficient procedure is
assured ifs (+) is a function of the last observation only:

St:S(Stfl,dt), t:1,2,3,... (210)

Then, f (0]-) is said to be conjugate to the observation mogde¢l; |0, D,_1). One consequence of this
is seen when = 1 in (2.8). Then, the priorf (f]so), must also be conjugate to the observation model.

It has been proven that a conjugate distribution exists for every observation model belonging to the
exponential family[[19]. In this case, algebraic recursfon (2.10) achieves Bayesian identification of
Vt, guaranteeing a numerically tractable procedure. If the observation model does not have a conjugate
distribution on parameters, the computational complexity of full Bayesian inference is condemned to
grow with timet. To restore computational tractability, we seek approximate inference techniques, as
discussed in Sectidn 2.3.

2.2. Off-line Distributional Approximations

Tractability of the full Bayesian analysis—i.e. application of Bayes’ rfile|(2.1), normalizdtioh (2.2),
marginalization[(2}4), and evaluation of moments of posterior distributions (2.5)—is assured only for a
limited class of models. Numerical integration can be used, but it is often computationally expensive,
especially in higher dimensions.
The problem can be avoided by approximating the true posterior distribution by a distribution that is
computationally tractable:
fO|D) ~ f(0|D). (2.11)

Then, all subsequent operations, such as normalization, marginalization and evaluation of moments, are
performed on the approximating pdf(6| D). Various approximation strategies have been developed.
In this Section, we review the most common approximation techniques.

2.2.1. Certainty Equivalence Approximation

In many engineering problems, dealing with full pdfs is avoided. A point estimate, i.e. one value of
paramete#, is considered as the summarizing result of parameter inference. This approach will be
calledparameter estimatiom this thesis.
The point estimate = é(D), can be interpreted as an extreme approximation of the posterior pdf
by the functiory (-):
£(0|D) ~ f(0|D) :5((9—9“) m), (2.12)
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whered is the chosen point estimate of paraméteands () is the Dirac delta function

/5<x_@g<m>dx:g<@,

if = is a continuous variable, and the Kronecker function

1, ifz=0
) = ’
(z) { 0, otherwise

if x is a discrete variable.

This approximation is known as tleertainty equivalencerinciple [20]. It remains to determine an
optimal value of the point estimate. This value should be optimal with respect to some criterion, popular
choices are:

e MaximumA Posteriori(MAP) estimate:
6 = argméle (0|D). (2.13)

This approach may be computationally attractive, as we do not need to evaluate the normalizing

constant[(Z]2).

e Mean value:

59:/69]‘(0|D)d9.

Evaluation of the mean value may be computationally expensive, owing to the required integra-
tion. Therefore, further approximation are usually necessary for this approach.

Remark 2.1 (Maximum likelihood (ML) estimation) is a classical method of parameter point esti-
mation [1]]. From a Bayesian perspective, ML estimation corresponds to MAP estimation with uniform
prior distributions [17,18)]. The philosophical difference between those two methodologies has been
discussed in [17].

Remark 2.2 (Approximations of Marginals by Conditionals) In the point-based context, the true marginal
distribution (2.4) can be approximated via

F(61|D) = f (91|D,é2), (2.14)

i.e. the conditional distribution of 6 given a fixed estimate of ég. The choice of point estimate éQ is,

again, subject to the chosen criterion of optimality.

Algorithm 2.1 (Expectation Maximization (EM) algorithm) is a well known algorithm for ML estimation—
and by extension for MAP estimation—of model parameters 0 = [01,02] [21]. Here, we follow an
alternative derivation of EM via distributional approximations [22]. The task is to estimate parameter
61, of the (intractable) marginal distribution (2.4). Using Jensen’s inequality, it is possible to obtain a
lower bound on (2.4) which is numerically tractable [22]. The resulting inference algorithm is then a

cyclic iteration of two basic steps:
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E-step: compute approximate distribution of parameter s, of type (2.14), at iteration i:

F9 (8:1D) ~ f (621D,6( V). (2.15)

M-step: using approximate distribution from the E-step, find new estimate 9}"):

6\ = arg max | f@(62D)In [ (01,02, D) db>. (2.16)
02

1

It was proven that this algorithm monotonically increases the marginal likelihood, f (D|6,), thus con-

verging to a local maximum [23].

Note that the posterioy; (6| D) and the joint distributiory (6, D) differ only in the normalization con-
stant(2.B), which is independent@fHence,[(2.16) can also be written as a functiotmof (61, 62| D)

in place ofln f (01,62, D). We prefer to use the form 6), as it is clear that the normalization
constant does not have to be known.

2.2.2. Laplace’s Approximation

This method is based on local approximation by a Gaussian distribution at the MAP egijrofithe
posterior pdff (6|D) [24], 6 € RP.
Formally, Laplace’s method approximates the postefiof (2.1) as follows

FOD) ~ N (é,H‘l) (2.17)

wheref is the MAP estimat3), arid € RP*? is the (negative) Hessian matrix of the logarithm of
the joint pdff (6, D) with respect td, evaluated aff = 6,

g [a%gf(e,p)

g =1,... 2.18
69289] :|eé7 Z?] Y 7p7 ( )

The asymptotic error of approximation was studied.in [24].

2.2.3. Fixed-form Minimum Distance Approximation

The approximating distributiorf(eyn) is chosen as a tractable distribution with parameterThe
optimal approximatiory (|7)—given the fixed-form functiorf (-)—is then determined as

i = argmin A (F (6ln) ./ (61D)) . (2.19)

where A (f(-) f (-)) is an appropriate measure of distance between two pdfs. Various measures
are used for specific problems, such as Kullback-Leibler, Levy, chi-squasedorm, etc. These are
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reviewed in[[25]. Specifically, the Kullback-Leibler (KL) distance|[26] frghid|D) to f(e\n),

( FOID)||f e|n /f (6| D) In ’| ))dez E o) <ln “’;,0,((99’5))), (2.20)

is important for two reasons:

1. statistical inference via KL distance was shown to be optimal in statistical utility sense [27].

2. minimization [2.19) with respect the KL distande (3.20) has a unique—and therefore global—
solution [28].

Moreover, the KL distance is also used in many practical applications [29, B0, 31]. It has the following
properties:

1. K

L(f@ID)IIf ln)) = 0;

2. KL (f ©|D)||f (0]n)) = 0iff f(8|D) = f (6]n) almost everywhere;

3. KL(f(0D)||f( H\n)) oo iff on a set of a positive measuye(d| D) > 0 and f (8|n) = 0;

4. KL ( FOID)|If (0ln)) # KL ( FOmIIf (0|D)> and KL distance does not obey the triangle
inequality.

Given 4., care is needed in the syntax descrilding (-). We say thaO) isom f (0| D) to f (6]n).

2.2.4. Variational Bayes (VB) Approximation

Variational Bayes (VB) approximationl[7| 4] 8] is also known as Ensemble Learhing [32, 33], or
naive Mean Field Theory [5, 34]. Here, we prefer its interpretatiofuastionalminimization of the
Kullback-Leibler (KL) distance. Compared fixed-formminimum distance approximation (2]19) there
are two key differences:

1. the approximating distribution is not confined to a given form, but it is restricted functionally,
using the assumption of conditional independence:

f(8|D) = f(8|D) = f (6:1|D) f (62|D) ... f (8,|D), (2.21)

wheref = [63, 05, ... ,9;]/ is the multivariate parameter partitioned int@lements. Notation
f () is used to denote an unspecified functional variant (‘wildcard’ function) used in optimization
procedure which yield the approximating distribution.

2. for reasons of tractability, the VB procedure does not minimize the ‘original’ KL distance from
f(6]D) to f (6|n) (2.20) but the ‘reverse’ KL distanc L (f(9|D) If (9|D)),fromf(9|D) to
f(@ln).

These have, respectively, the following consequences:
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1. conditional independence:

¢ the VB approximation can be used only for models with more than one parameter,

e cross-corelation between variablés and 6, is not modelled. Intuitively, the correlated
multivariate distribution is modelled as a product of approximating marginals.

2. the use of ‘reverse’ KL distance:

o from property 4. of the KL distance (Sectipn 2]2.3), the ‘reverse’ KL distance is not equal
to the ‘original’ one and therefore, it Isssoptimal in the statistical utility sense [27].

e minimum distance approximation vid L (f(-) [|f (-)> is not guaranteed to have a unique
minimum [28].

These disadvantages are, however, outweighted by computational advantages: (i) functional (i.e. free
form) optimization has an analytical solution, and (ii) parameters of the optimal approximating posteri-
ors can be evaluated using an alternating algorithm of the EM kind (Algofithim 2.1). These advantages
are now described in detail.

Theorem 2.1 (Variational Bayes) Let f (6|D) be the posterior pdf of multivariate parameter 0. The

parameter 0 is partitioned into 6 = [0’1, 0.y 93]/. Let f (0| D) be an approximate pdf restricted to
the set of conditionally independent distributions on 01,6, ..., 0,:
F(O|D) = f(61,62,...,04/D) =112, f; (6:|D). (2.22)

Then, the minimum of the KL distance,

f(01D) = argmin KL ( (0|D) || (01D)) (2.23)
)
is reached for
Ji(0D) o exp (Ef (o) (0. D)), i=1,....0 (2.24)

where 0; denotes the complement of 0; in 0, and f; (6/;|D) = L fj (0;|D). We will refer to
f (0|D) (non-unique, see 2. above) as the Variational Extreme Conditionally independent elements of
will be called VB-marginals The parameters of the posterior distributions (2.24) will be called
VB-statistics At the extreme , the KL distance form the approximant, f (+), to the true posterior,
f (). Is

KL(F(8ID)|If 61D)) =n f (D) —In (&) + Ef, , (1 (F: (1)) (2.25)

foranyi € {1,...,q}, where G; = [, exp Ef(@MD) (Inf (0, D)) db;.

10
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Proof: The KL distance from[(2.23) can be rewritten as follows:

KL (f@ID)IIf (61D)) =

[ i o N fi (6;|D) f/i (6:1D) f (D)
—/efz (D) fi (6:|D)1 7(0ID) f(D)d'g

_ /9 J (6:1D) F; (6,,1D) n f: (6:| D) db

= [ 7.04D) 71 01i10) n 1 0. D) do+
+ /of (6:1D) Ji (6,41D) [nf; (911D) +1n f (D) | dB

=/9_ﬁ(ei\mlnﬁ-(@!D)czemnf(D)+n

- /fi(eiu)) [/ i (Q/i\D)lnf(H,D)dH/i] do; . (2.26)
0; 0,;

Here,n = Ef/¢(~) <ln (f/Z (-))). For any non-zero scaldr it holds:

KL (f©ID)IIf (61D)) =

=/ J; (6:/D) In f: (6:|D) d6; + 1n f (D) +
0;

_ /9 fi (6:)D) {ln [? exp Efv(e/i\p) (In f (Q,D))] } d6;

fi (6:|D)

= fi (05| D) In df; + Inf(D) — In(¢G . (2.27
/ﬁf( O @B+ () = W) + 0 @2

If ¢; is chosen as the following normalizing coefficient@b E. (-),
¢ = /91 exp Ef(é/iID) (In f (8, D)) db;,

the last equality i (2.27) can be rewritten in terms of a KL distance:

L(FODIreD) = KL(fOID)IE ey, ) 07 6.0))

+1nf (D) —In(¢) + . (2.28)

The only term on the right hand side .28) dependeryﬂ-cﬁrj is the KL distance. Hence, minimiza-
tion of ) with respect tg; (0;|D), keepingf/i (H/i\D) fixed, is achieved by minimization of the
first term. Invoking non-negativity (Property 1) of the KL distance (Segtion .2.3), the minimum of the
first term is zero. The minimizer is almost surgly(6;| D) = f; (6;|D) x exp (Ef/ (9,41D) (In(f (6, D)))) )

i

(i.e. (2.24)), using the second property of the KL distance (Seffion 2.2.3). [

11
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This proof is—our own—simpler alternative to the proofs in the literature, which use Lagrange multi-
pliers [33

The extreme[(2.24) is dependent on the data via the joint distribftiénD), not f (9| D). This is
important, as the expensive normalizatipn(2.2) is thereby avoided.

The main computational problem of the VB approximation is that the Variational Extfeme (2.24) is
not given in closed-form. For example, with= 2, the moments off; (-), are needed for evaluation
of fo (1), and vice-versa. The solution 24) is usually found via an iterative algorithm that is
suggestive of the EM algorithm (Remdrk2.1), but where all steps involve expectations of the kind in

(2.18), as follows.

Algorithm 2.2 (Variational EM (VEM))  Consider the case where ¢ = 2, i.e. 6 = [0}, 05]', then cyclic
iteration of the following steps, i = 1,2, ..., converge to a VB extreme (2.24).

E-step: compute approximate distribution of parameter 65 at iteration :

F52(021D) xcexp [ SV (61D)In f (61,65, D) 6. (2.29)
01

M-step: using approximate distribution from the ith E-step compute approximate distribution of pa-

rameter 01 at iteration i:

F90,1D) x exp [ 7 (62)D)In £ (61,02, D) dbs. (2.30)
02

Where the initializers, i.e. VB-statistics of le(O) () and fQ(O) (+), may be chosen randomly. Conver-
gence of the algorithm to fixed VB-marginals, fi(z) (0;|D), Vi, was proven in [35]] via natural gradient
technique |36].

In general, the algorithm requirgssteps—one for eachy, i = 1, ..., ¢—in each iteration. Following
the nomenclature of the ‘EM algorithm’, this algorithm should be calledEfralgorithm’. However,
we will use the name Variational EM (VEM) for compatibility with other publications, é.d. [37].

Remark 2.3 (Marginal Lower Bound) An alternative derivation of (2.24) is via the marginal posterior
distribution of data [7]. For an arbitrary approximating density, f (9|D), it is true that

Inf(D) = 1n/f6Dd01 /f6|D D) do,

£(61D) f (D)
> /f (eyD) 0, (2.31)
=lnf(D)-K ((WDWfWWD, (2.32)

using Jensen’s inequality [7]. Minimizing the KL distance on the right-hand side of (2.31)—e.g. via the

VB procedure (Theorem|2.1)—error in the approximation

n Ji(H’D)dH
@)

f(D) ~ exp /9 f (D)1 (2.33)

12
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1S minimized.

2.2.5. Quasi-Bayes (QB) Approximation

The iterative evaluation of the Variational Extreme via the VEM algorithm (Algorithm 2.2) may be
prohibitive, e.g. in the on-line scenario. Therefore, we seek a modification of the original Variational
Bayes approximation that yieldscbosed-fornsolution.

Corollary 2.1 (of Theorem|[2.], Restricted Variational Bayes (RVB))Let f (§|D) be the posterior
pdf of multivariate parameter § = [0, 65, ... ,0,] ' and ?/1 (60/11D) be a fixed posterior distribution of
01 = 1[0, .. ,9(’1]/. Let f (8| D) be a conditionally independent approximation of f (6| D) of the kind

f(8ID) = f(61,64,...,0,D) = fi (61D) f /1 (01]D) . (2.34)

Then, the minimum of the KL distance, K L (f 0|D) || f (9|D)> , is reached for

i oD) o exp (Ez, (g, py (0 (£ (6, D)) (2.35)

Proof: Follows directly from[(2.24), for choice= 1. u

Note that Corollary 2]1 is equivalent to the first step of the VEM algorithm (Algorjthrh 2.2). However,
with distribution f ; (61| D) being known, the equati035) iclsed-formsolution. This greatly
reduce the computational load needed for evaluation, since no iterations are requiredf/g(r@gg)
is fixed, the KL distance of Variational Extrenie (2.24) is less than or equal to the KL distance of the
RVB minimum [2.3%). These distances can be compared via|(2.25).

The quality of the approximation strongly depends on the choice of the fixed approximating distribu-
tion f 1 () in ). If 1 (-) is chosen close to the VB-optimal poster.24),f731. ()=~ fa (),
then one step of the RVB algorithm avoids many iterations of the original VEM algorithm. Here, we
propose one such strategy for choic&@ic (+).

Remark 2.4 (Quasi-Bayes (QB))RVB solution holds for any choice of distribution 7/1 (0/1 |D) )
We seek a reasonable choice for this function. We choose q = 2 for notational clarity, i.e. f N (9 /1) =
I)2 (62), however the result is also valid for the general case.

The VB extreme (2.23) is

f2 (62 D) = arg min (

f2

min KL (f (6|D)||f <9|D>)> . (2.36)

f1

13
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As noted (Algorithm [2.2), a solution to (2.36) cannot be found in closed form. Hence we seek a
reasonable ‘first guess’. Rewriting the KL distance in (2.36) as

f1(611D) £ (62|D)
f (01102, D) f (62| D)

— /efl(ﬁl\D)ﬁ(H?\D)l f (61162, D)

- f2(62|D)
* J,, 2 D) G

KL (F@OD)|If 61D)) = /6 /1 (011D) > (62|D) In o,
do

dfs. (2.37)

we note that the second term in (2.37) is KL (fg (02|D) || f (62\D)> which is minimized for

f2(02|D) = f (62| D) = ; f(01D) dbn, (2.38)

1
i.e. exact marginal distribution of the joint posterior f (0|D). The global minimum of is not
reached as the first term in (2.37) is also dependent on f; (02| D). Therefore we consider 4 as the

best analytical choice we can make.

The name Quasi-Bayes (QB) was first used in the context of finite mixture madels [25]. There, the
choice of [2.1§) for the approximation was based on point-estimation arguments (RRerhark 2.2), choosing
6, as the expected value of the true posterior marginal:

02 = Eg,p(02). (2.39)

Note that, iffln f (61,6, D) is linear in6,, then, using[(2.35), the RVB approximation (Corollary|2.1)

yields results equivalent tp (2]14) [37]. The choicefof6,) (Remark 2.4) yield{ (2.39). Therefore, we
consider Remark 2.4 to be a generalization of the QB idea expressed in [25].

2.2.6. Markov Chain Monte Carlo (MCMC) Approximation

In this approach, the posterior pdf is approximated by a piece wise constant density on a partitioned sup-
port, i.e. via a histogram constructed from a sequence of random saffesg(), 6 ... o) .},
of variabled.
The sequence of random samples is called a Markov chain if-hesampled(™ is generated from
a chosen conditional distribution
f (9“0\9("—1)) (2.40)

which depends only upon the previous state of the ch@in®).

For mild regularity conditions otf (-|-) ), then, as — oo, 8 ~ f, (), the (time-invariant)
stable distribution of the Markov chain defined via the kerpel (2.40). Hence i.i.d. sampled f(émn
may be drawn via an appropriate choice of kerpel (2.40),i& chosen sufficiently large. Typically, the
associated computational burden is high, especially for high-dimensional parameters.

14



2.3. Distributional Approximations for Recursive Identification

2.2.7. Summary

The methods described in this Chapter were ordered with increasing complexity and accuracy of ap-
proximation. In signal processing, the full distribution must often be collapsed to a point estimate in
order to complete a typical task. Therefore, in many applications, point estimates are evaluated with-
out any reference to their full posterior distribution. The Laplace approximation is known in the DSP
community in the context of criteria for model order selection, such as the Schwarz criterion or Bayes
Information Criterion (BIC), both of which were derived using the Laplace method [24]. Sampling
methods—e.g. MCMC—are valued for their ability to provide arbitrarily close approximation. How-
ever, for closer and closer approximation, more and more computational power is required. Thus, this
approximation is mostly used for low-dimensional problems evaluated off-line (elg. [38]).

In this thesis, we are concerned mostly with the Variational Bayes approximation. The main ad-
vantage of the VB approximation is its ease of use. Note that the form of the approximate posterior
distribution is found explicitly. Evaluation of the VB-statistics of these posterior distributions can be
achieved by a general iterative algorithm (Algorithm|2.2). Therefore, we see VB as a good starting
point in the search for an optimal trade-off between accuracy and computational complexity of the
identification procedure. If the accuracy of the VB-posterior distributions is not acceptable, we can use
more sophisticated (and thus more computationally expensive) approximations (e.g. mean field theory
[34],[39], or sampling methods (MCMC)). In this thesis, we assume that the accuracy of the VB approx-
imation is acceptable, while the computational cost of the iterative VEM algorithm is not acceptable.
Therefore, much of our effort will be dedicated to studying further simplifications and approximations
of the implied VB-posteriors.

2.3. Distributional Approximations for Recursive Identification

If the observation pdf does not belong to the exponential family—i.e. finite-dimensional sufficient statis-
tics is not available—the full history of data has to be used in each step. Hence, computational com-
plexity grows with each step. To achieve computational tractability, we have to find an approximate
representation of the data history at each step. In contrast to the previous Section, we do not seek a
single approximatiorf (2.11), but a sequence of approximations:

fOID) ~ f(O|Dy), t=1,...,00 (2.41)

In this Section, we review the relevant approaches to this problem. The following list is by no means
complete. Itis provided, by way of introduction to the VB approximation, which is the main subject of
the thesis.

2.3.1. Bayes-closed Approximation

The problem of recursive estimation with limited memory was addressed in general in [40]. There, the
problem was defined as finding a functional forfr(ﬂ), of approximating distributions that is closed
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under Bayes’ rule, i.e.
F(OIDy) o< f (di]6, Dev) f (6] Dp1) - (2.42)

wheref (4| D;_1) andf (6| D,) are of the same functional form. Moreover, the form must depend only
on a finite-dimensional statistics, € #7%!, such as

f(0|Dt) = f(@]st),

whereq is assigned, and may be chosen arbitrarily small. Note ¢halays the role of sufficient
statistics, however, in this case itrist sufficient for full description of the posterior.

The approximating family was found in the form of probabilistic mixtureydfxed (known) pdfs
f:(0),i=1,...,q, weighted by elements &f. Non-sufficient statistics; is then updated by a linear
functional,l (-),

sit = Sig—1+1(f; (0),f(d,0|Di1)), i=1,....q. (2.43)

Alternatively, the choice of fixed pdfs, f; (7), can be replaced by the choice pfunctionalsi; (),
such as
Sit = Sit—1+ i (f (de,0]Di—1)).

It was proven then the approximate on-line identificat2.4@)dbally optimaﬂ [41].

Practical use of the approximation is, however, rather limited. The method requires time- and data-
invariant linear operatorg,; () to be chosem priori. Design criteria for these operators are available
only for special cases. The method was demonstrated to be applicable to low-dimensional problems
only.

2.3.2. One-step Approximation

In this case, the requirement for the approximation family to be closed under Bayes’ rule is relaxed.
The form of the posteriorf (9| D;), is givena priori and fixed for allt. It is the Bayes’ rule what is
aproximated at each step [25] 42]. If the posterior distributfofd,| D;), has a form different from the

prior, f (0| D;_1), an approximation of the posterior is found in the family of the prior distribution

T(H\Dt) ~ f(0|Dy) < f (dt|97Dt—1)?(9‘Dt—1) (2.44)

The approximatior{ (2.44) is used as prior in the next step. As the efficient recursive estimation can be
achieved only for the exponential famil,(-) is chosen from this family.
There are two basic approaches to the choice of the approximation if (2.44):

1. probability fitting: the approximatior (2.44) is optimized with respect to a chosen distance (Sec-
tion[2.2.3).

2. moment fitting (also known as the probabilistic editor!|[25]): parameters of the approximating
distribution are chosen so that moments of the approximating distribution match moments of the
true posterior.

2with respect to orthogonal projection on the true posterior distribution.
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Note that one-step approximation is odcally optimal (i.e. optimal only for one step, not for the
whole trajectory), and so the error of approximation may grow with time. Typically, the quality of the
approximation is studied asymptotically, i.e. for~ co. Furthermore, the approximation is not closed
under Bayes' rule. In practice, this means that on-line identification given a set of i.i.d. observations
yields different results depending on the order in which the data are processed [25].

2.3.3. On-line Variational Bayes

The general VB approximation (Section 2]2.4) was extended to the on-line scenario in [35]. It is found
that the on-line VB method is a special case of one-step approximation, namely distribution fitting, with
Theoren{ 2.]1 used to satisfy (2]44). Convergence of the method was also proven in [35], by showing
on-line VB to be a special case of stochastic approximation, which is known to converge [43].

Off-line VB approximation (Sectioh 2.1) is a functional optimization of the KL distance. This func-
tional optimization can be extended to the on-line scenpri¢ (2.6) as follows:

F(O1Dy) = f(de]0, Di—1) f (0] De—1). (2.45)

We seek an optimal approximation of the true posterior under the conditional independence constraaint
(assumey = 2 for algebraic simplicity):

FOIDy) = F(61]1Dy) f (62]Dy), (2.46)
FOIDi—1) = f(61]Ds—1) f (02| Ds1) . (2.47)

Then, using[(2.45) andl (2.46) in Theorgm|2.1, the VB-optimal form of {2.46) is found in the following
form:

F(0:IDy) o exp (Ef(g/iwt) (In f (d¢|©,Ds_1)) +In f <0Z-|Dt_1>) :

o exp (Ef(q, p,) (0f (©, Dy-1))) f (6] Dir). (2.48)
Equation [(2.4B) can be rewritten as:

f@iID) = fvp(d|O,Dir) f (Bl Den), i=1.2, (2.49)
fvp (@10.D1) = exp (Efg,p,) (0 f (|6, Di-1))). (2:50)

Then, [2.4D) is the VB-approximate update of parameter distribution, wheg€d;|©, D;_,) plays

the role of VB-approximate observation model. Hence, the choicg(6f|-) conjugate with the VB

observation mode([ (2.50) yields a numerically tractable recursive identification algorithm.VBhis

conjugatedistribution can be found if the VB observation model (2.50) is from the exponential family.
Note that ) is, in fact, in the form of the Bayes-closed approxim(2.43)E/JvEyaDt) ()

playing the role of linear operatdy(-). However, the expected VaIUEf(Gi\Dt) (+), is conditioned by

D; and is, therefore, time-variant. This is not allowed for the linear operators used in the Bayes-closed

approximation. Therefore, the on-line VB approximatipn (2.49) is not closed under Bayes' rule.
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Chapter 3.
Linear Models: Classes and Their Inference

Classification of an observation model into linear and non-linear classes is of primary importance. Non-
linear models are intrinsically more more flexible but imply bigger intellectual challenges for their
identification. Linear models—which have been studied for a very long time—have many attractions,
including (i) analytical tractability, and (ii) computationally efficient evaluation (resulting from (i)). The
main drawback of linear models are their modelling limitations. Various non-linear methodologies were
proposed to match real-life problems, but these are often analytical intractable, and computationally
expensive. Thus, linear models continue to be used, almost exclusively, in areas like real-time data
processing or processing of high-dimensional data, where computational tractability is essential.

In this Chapter, we review the published Bayesian solution to special cases of the linear model. We
focus on some special cases for which an efficient parameter inference procedure is available, namely,
the AutoRegressive (AR) model (Sectjon|3.2) and Principal Component Analysis (PCA) ($ection 3.3).
The use of the PCA model in the area of medical image processing is described in §egtion 3.4. In
Sectior] 3.p, we introduce possible extensions of these models and formulate the principal challenges of
the thesis.

3.1. Bayesian Methods for Linear Models

We define a linear model as one to satisfying two conditions. First, it is assumed that the observed data
are additively decomposed into an underlying signal and additive noise

D=M+E, (3.1)

whereD € RP*™ are the observed dat&df € RP*" is the signal, andZ € RP*" is the noise. Second,
the signal M, is a linear combination,
M= AX, (3.2)

of underlying parameterd € RP*" and X € R"™*"™. Naming conventions fod and X differ in

different application contexts. For the purpose of this thesis, weAdile matrix parameter andl

the regressor. The rich linear model class described aljovg, (3.1) and (3.2), has been studied with many
different restrictive assumptions, yielding other rich classes constituting distinct research directions. We
will review the most important models in this Chapter.
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3. LINEAR MODELS: CLASSES AND THEIR INFERENCE

We start the classification df (3.1) arnd (3.2) by consideration of the dimensionality of the matrices
and.X. Note that the role op andn is interchangeable, as transposition[of|(3.1) yields the same model
(with roles of A and X swapped). However, for the sake of clarity, we adopt a common convention,
that the observed data matriX is composed ofi observations of the@-dimensional variabled;, i =
1,...,n,i.e.D = [dy,...,d,]. We recognize two basic cases of model parameter inference based on
the nature of the observation process:

off-line: the data has been acquired, andata records have been saved. The task is to infer unknown
A andX given all data,D, at once.

on-line: data are acquired incrementally withgrowing possibly up to infinity. The task is to infer
unknown A and X given all available data at given time as discussed in Sectipn 2[1.2. It is
useful to rewrite the modefl (3.1), (3.2) in terms of the time-indexed observatjon,

dt = Amt + ey, (33)

The accumulated data available at timeill be denotedD, = [d,, ..., d;]. Hencet replaces

in 3.1), 3.2).

Further classification of linear models is relatechtpriori knowledge available abowt and X. We
recognize two families:

Regression models: either A or X is assumed to be known. The task is to infer the other. In this
scenario, dimensiontypically satisfies > p.

Signal separation models:  where both4 and X are assumed to be unknown. The task is to infer
both of them. In this scenario, the dimensiotypically satisfies: < p.

Further sub-classed can be defined with respect to an assumed distribution for th¢ (Bisdn this
thesis, we focus our attention to models with Normal distributed noise. The most general case of the
Normal distribution ofF’ can be written as

f (vec(E)) = N (vec(ug) , Xk),

with: mean valuepr € RP*", transformed into a vectovec (ug) € #P™*!, and symmetric, positive
definite covariance matriXy € RP"*P". Note thatry is typically a large matrix, with} (pn+ 1) pn
distinct elements. It is therefore much larger than the numpbeof available dataD. Therefore, a
restricted covariance structure must be considered. One such restriction comes from cgrifinjirig
the following matrix Normal distribution (Appendjx A.1):

f(E) =N (1,3 ® n), (3.4)

wherepr € RP*", while X, € ®P*P andX,, € R™*" are symmetric, positive definite matrices. The
covariance matrixy = ¥, ® ,, has nows (p + 1) p + 3 (n + 1) n distinct elements, which is, once
again, more than the numbgn of available dataD. A typical further restriction in regression models
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3.1. Bayesian Methods for Linear Models

is independent identically distributed (i.i.d.) assumption defined via a time-invariant distribution for the
noise vectore;:

f (et|“6a Ee) = N (“67 Ee) ) (35)

with g, € RPX1, £, € RP*P constant for alk = 1,.. ., ande;, e, independent fot # s. This can be
written in the matrix Normal distribution form as:

n
[ (Epe, Xe) Hf (et|pe, Xe) N(Hell,naze®fn)-
t=1

Thusfar, we have defined the Normal distribution in terms of its covariance matiixowever, for
some problems, it is more convenient to work with the precision mdtpinstead of the covariance
matrix, in which case, we denoe= Q1.

The above mentioned classes and scenarios can be mutually combined to yield a wide class of iden-
tification problems. Further restriction and assumptions often constitute research directions (e.g. Factor
Analysis, General Linear Models, etc.). The most important special cases of the linear fnofiel, (3.1) and
(3.9), are listed in Table 3.1. The name of each model often comes from the associated inference tech-
nique (e.g. PCA or FA) since the inference technique was developed before its associated assumptions
were recognized as constituting a special case of the linear model. In these cases, by convention, we
will use the name of the method as part of the name of the model, sttty Analysis (FA) Model
We list references to both point-based inference (ML or MAP) and Bayesian inference methods in Table

B.1.

General Linear Models (GLM) are traditional statistical models for modelling time-series and for
forecasting([1l7, 54]. Typically, the on-line scenario is considered. Assumptions underlying the
model often vary, the most common being a known matrix of parametewknownz,, and
Gaussian distribution of noise

F(E) =N (0pn, 0 @ L),

with scalar precision parameter> 0. A full Bayesian solution is available in [17].

Various extensions of the model has been studied, such as Dynamic Generalized Linear Models
[54]. The extensions impose extra parameterization that should be kagsiori. The model

is then identified using Kalman-filter theory (which can be interpreted as approximate Bayesian
identification [55]) or using an MCMC approach [56]. These models are traditionally applied in
analysis of econometric data, where computational cost is not critical. However, recently, it was
successfully used in real-time processing [57].

Autoregressive Models (AR) can be considered as a special case of GLMs. However, they were
developed independently, and for different application contexts, such as control theary|[16, 58].
Typical assumptions are that the parameteis unknown, and regression vectey is known,
being a function of previously observed data. Noise is considered to be Normal,

f(E)= N (Op,th_l ® It) )
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| model name |A |X|E | ML/MAP | full Bayesian

General Linear Model (GLM) K |U|N(0,,,w'],®I,) Analytical [17, 44] Analytical [17, 44]
AutoRegressive Model (AR) U | K| N(0,,Q!®Il,),Q positive definite Analytical [45] Analytical [16]
Generalized AR Model (GAR) U | K| f(E) = [, f(er), f(er) = VB [46]

S5 o (p, w1 I, )with unknown weights

a;i=1...¢c
(Probabilistic) Principal Component Analysisy | U | / A:HZ:ELN@ ® N:v Full [47], EM[48] VB [7]
Model (PPCA)
Factor Analysis Model (FA) U*| U | N(uli X®I,), X diagonal Iterative [47], EM [49] | Partial [50], VB [4]
Independent Component Analysis ModeU | U | E=0,, EM[51] VBJ[33]
(ICA)
Independent Factor Analysis Model U* | U | N (uli,,X®I1,), X diagonal EM [52] VB[53]
Legend: U - unknown, i.e. to be inferred.

K - known a priori.

* methods differ in prior distributions imposed an

Figure 3.1.Table of established linear models
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3.1. Bayesian Methods for Linear Models

with symmetric, positive definite precision matfixe RP*P. Recursive Bayesian identification

is available in[[16], using the principle of conjugacy. The model can be extended while pre-
serving conjugacy to cases of a known transformation of the system output, and non-stationary
parameters, as will be discussed in Sedfiof 3.2.

A popular extension of the AR model is via state-space modelling. In the state-space model,
x; is considered unknown but modelled by another linear maodel [59]. Hence, we consider the
state-space model to be bi-linear. In general, full analytical recursive Bayesian identification of
parameters of the state-space model cannot be achieved. An approximate Bayesian inference of
the parameters of the state-space model, using the VB approximation, was presented in [60].

Generalized AR Models (GAR) are extensions of the AR model to allow a mixture type naise [46],
C
f (et‘nzu’e7a) = Zaz-/\/ (“2791_1) )
=1

with @ = {Q1,...,Q}, e = 11, ..., 1te), anda = [a, ..., a.]" being the mixture weights.
An approximate Bayesian identification was presented_in [46], using the VB approximation.
However, recursive identification was not achieved.

AutoRegressive Moving Average Models (ARMA) are AR models with correlated noise. The
noise distribution is then

[ (B19,C) = N (0,0, 07 @ [B(C)] ),

with parameterization extended via a symmetric positive definite matrix;) € ®"*", where
C € <! is formed by the coefficients of the orderMoving Average (MA) part of the model
[61]. Full Bayesian identification is achieveddf is known [61]. Bayesian identification for

unknownC was addressed ih [62], using mixture-based methods and Quasi-Bayes (QB) approx-
imation [25].

Probabilistic PCA (PPCA) s a probabilistic formulation of the Principal Component Analysis (PCA)
method. The model assumes a Normal distribution of noise:

f (E) =N (Op,n,w_ljp X In) .

Its MAP inference was published in_[63], and extended to full Bayesian inferencé in [7] using a
VB approximation.

Factor Analysis (FA) is a classical model for addressing the signal separation problem [47].8Both
and X are assumed to be unknown, anet min (p, n) is typically assumed to be known. There
may be various restrictions ot or X. The noise is normally distributed,

f(E)=N(0,,,9"'®1,), (3.6)
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with positive definite matrixX? assumedliagonal The inference is traditionally done via the
ML approach|[47]. The Bayesian solution was studied_in [50] and evaluated using an MCMC
approximation([64]. The Variational Bayes approximation was published in [4].

Independent Component Analysis (ICA)  is a new, popular model for addressing the signal sepa-
ration problem. The noise is typically considered to be zero, héneefully modelled byA X
with » = p. The signal-noise separation is achieved with respect to columdAsapid rows of
X respectively. Separation of and X is achieved by imposing priors (typically non-Normal)
on columnsa; of parameterd. An iterative MAP estimation was published in [52]. Bayesian
identification was considered in [33] using a VB approximation.

Independent Factor Analysis is an extension of the ICA idea to include the noise model of Factor
Analysis [3.6). The product X is modelled in the same way as for ICA. An iterative MAP
estimation was published in [53].

The above list of methods is by no means exhaustive. Further extensions of model assumptions can be
(and indeed are being) made to extend modelling capability of the basic linear model. The resulting
inference schemes naturally involve more parameters, thus increasing the number of samples which
must be generated by MCMC, or the number of iterations in prospective EM or VEM algorithms.

In this thesis, our concern is with computational tractability of the VB distributional approximation.
For better understanding of the problem, we start with simple models such as (i) the AutoRegressive
(AR) model, and (ii) Principal Component Analysis (PCA). Both models enjoy, under certain modelling
restrictions, analytically tractable inference. Relaxation of these restrictions leads to a loss of analytical
tractability, which has to be restored via further approximations. Successful application of VB approx-
imation has been reported for (i) mixture-based extension of an AR pracess [46], and (i) Bayesian
identification of the PPCA model with unknown rank?]. Both methods use the VEM algorithm (Al-
gorithm[2.2) for evaluation of the parameter inference. We seek a simplification of the inference method
(or re-parameterization of the model), yielding results comparable to these VEM-based solutions but at
significantly lower computational cost.

3.2. The Multivariate AutoRegressive (AR) Model

Linear AR processes are widely applied in filteribgl[65], speech analysis [66], spectrum analysis [67],
control [68], etc. The main advantage of the model is analytical tractability which results in compu-
tationally efficient and stable estimation algorithms. However, its underlying assumptions (i.e. linear
combination of measured values, and Gaussian distribution for the residue) are rarely met in practice.
Physical models, typically requiring complex non-linear modelling, may be used to fit the observed
data. Attempts to extend the AR model itself have also been made [46, 69]. However, these solutions
are computationally expensive and thus unsuitable for processing of large amounts of data or for on-line
(real-time) evaluation. Typically, therefore, AR models continue to be used even in these cases.

In this Section, we study an extension to the AR model that preserves its analytical tractability, al-
lowing fast on-line estimation of the model. Of particular concern is the study of numerically tractable
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3.2. The Multivariate AutoRegressive (AR) Model

recursive algorithms. Recursive estimation algorithms are widely used for on-line control applications
[58], and for adaptive filtering [40]. Computational simplicity is a key requirement for real-time adap-
tive estimation. In off-line cases, the emphasis on computational issues and recursive methods can also
pay off, for example in the off-line processing of massive datasets [31].

3.2.1. Bayesian Inference of the AR model

As outlined in Sectiof 3]2, the AR model is a special case of the recursive linear fnoglel (3.3) with the
noise distributed as

fled) = N(0,,Q7"). (3.7)

The noise vectors;, e, are independent far# 7. Q € RP*P is an unknown positive definite matrix.
Parameters, 2 are considered time-invariant, and so the observation prdcesgs (3.3) is stationary. This
assumption will be relaxed in Sectipn 3J2.3.
Regressotr; is assumed to be known, i.e. it may contain any observed variables orktigeim
transformations. Formally,
xt =g (Di—1,Wr), (3.8)

where auxiliary variablel;, may contain any known variables, such as a measured external (exoge-
nous) signal, time variable, for time-variant systems, etc.
The model described above is rather general. For better intuition we list a few special cases:

1. Univariate autoregressive (AR) model:
d = apdi_y, + e, (3.9)
k=1

wherex; = g (Dy—1) = [dt—1,...,ds—]. This is illustrated on Figurge 3.2 (left) in standard
signal flow graph form.

2. The ARX model, i.e. AR with exogenous observed input In this case, the model becomes
dy = Z apdi—i, + Z ARWi—fpmt1 T €t (3.10)
k=1 k=m+1

The external inputy;, can be seen as a time-variant auxiliary varialdfg, and the transformation
set,g = [g1,...,9:], is defined as:

di—; i=1,....m
Tit = Gi (Dy—1, Wy) :{ o

Wi—igmt1 t=m+1,...,r

Remark 3.1 (Order of an AR model) The choice of g (D;) does not imply that the regressor must

contain all historical values. Such a formulation would not be tractable. Typically, only a finite length
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Yd;t
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Figure 3.2.:Signal flow graphs of the AR (left) and EAR (right) models.
of historical data is used: x; = g (dy—1,d;—2,...,d;—4). The maximum delay, g, of an observation

used in the regression will be called the order It follows that (3.3)) is valid only fort > q. Specifically,
for the univariate AR model (3.9) ¢ = r.

Remark 3.2 (Classical approach)In the classical literature, a univariate case is usually considered,
i.e. p = 1. The classical solution to this problem is based on the prediction-error criterion. The pre-
dictor is a Wiener filter with unknown coefficients. Parameter estimates are obtained by solution of the
normal equationsTwo principal approaches to its solution are the covariance and correlation methods
respectively [45]. There are many techniques for the numerical solution of these equations, including

recursive ones, such as the Recursive Least Squares (RLS) algorithm [5§]].

The problem of Bayesian inference is to find posterior distributions of the unknown, real parafeters,
andA, of this model. Combinind (3}3), and (B.7) we obtain the conditional distribution of observations,
d;.

fdi]A Q) =N (A, Q71 (3.11)

Inference of the unknown parametérsnd A follows from Bayes' rule:

f (AaQ‘DtaXt) X f (dt‘AaﬁaXt—l) f (A7Q’Dt—let) . (312)

The model[(3.11) belongs to the exponential family, and so both a conjugate prior and sufficient
statistics are available (Sectipn 2]1.2). The conjugate distribution of parametelrs Tor (3.11) is of the
Normal-Wishart VW) type [10]:

1

Q2¥ 1

NWaao (Viv) = CN’W‘(VV) exXp {—29 [—1p, AJV [, A],} ’ (3.13)
1 —5w—r
Orw (Vyv) = FP(Q(V—T—I—p—f—l)) |A| 5 ( +pt1) o
’Vaa’—o.Sp 20.5p(u+p+1)ﬂ_%7 (314)
V. 744
V o= Vdd Vad C A= Vg — VI Vil Vaa, (3.15)
ad aa
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with V44 being thep x p upper-left sub-block of matri¥. V, v are the sufficient statistics &f W4 q (-).
I, (3v) is the Multi-Gamma function

p
T, <;u) = r1p(P—D) HF {; (v—3j+ 1)} ;
j=1
with T" (-) baing the Gamma function [71].

In this Section, we are concerned with on-line identification, i.e. we evaluate distributioh (3.13) at
each timet > ¢. We will distinguish statistics at each time moment by subséripe. V;, v;. If the
variable already has a subscript, this time index will be separated from it by a semi-color;£.9.

The statistics of the conjugate prior distributidry, 19, are chosen to reflect our initial knowledge
of parameters. If we do not have any preference, we use a very flat (non-comsdiakiistribution.
Typically Vy = 1, ., where anct is a small positive scalar. We chooge> r — 2 in order that the
normalizing constanf (3.14) be finite.

Substituting[(3.111) intd (3.12) and invokir{g (3] 13) at titme1, then the posterior distribution at time
t>qis

(A, QDy, Xi) = NWaa (Vi, 1), (3.16)
d,] [d,z i
v = w_1+[ t} N S T ) (3.17)
Tt .
i=q+1
v = ra+l=1vy+(t—q). (3.18)
Here,
d d
w= ' |= ' : (3.19)
Ty g (D1, W),
is the extended regression vector. The outer produef; will be called adyadin this thesis. The
history of the extended regressor will be denotedvby= [y1,...,y:]. Since the recursion begins at

t =q+ 1, V, andy, are chosen to b&, = 1, andv, = vy. This is equivalent to choosing the
distribution on parameters to be stationary fiox ¢ < ¢, of the form given by prior. Finally, from
(3.18), note; acts as a counter of incoming data samples.

Remark 3.3 (Moments of the distribution) Note, from Appendix[A.2, that the mean values of poste-
rior distribution (3.13]) are

A = VigiVaas (3.20)

~ 1

Q = — AL 3.21
¢ vi—r+p+1 " ( )

3.2.1.1. Computational Issues

The Bayesian posterior estimates presented above are closely related to approaches available in the
signal processing literature. Key properties are now summarized:
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1. (3.20){3.2]1)—evaluated via recursiops (3[17, B.18)—are algorithmically identical to the covari-
ance method [45], and are valid; > ¢, as derived.

2. V4 (3.15), [3.1F) is asymptotically Toeplitz, and o (3.20) becomes algorithmically the same as the
correlation method iff — co. Only then do the computational benefits of Toeplicity accrue to the
Bayesian approach, namely ease of updating and storageatfier then- (r + 1) /2 numbers.

While this simplification is popular in real-time applications such as audio processing [72], it is
unreliable fort small and/or for non-stationary data.

3. A numerically efficient solution tq (3.17), (3.R0) is based on the LD decomposition [73};i-e.
L, T.L;, whereL, is lower triangular and’; is diagonal. The update of the sufficient statistics
(3.17) is replaced by recursions @p andT; [74]. This approach is superior to accumulation of
the full matrixV; for the following reasons:

a) Compactnessall operation are performed on triangular matrices, e+ p) (r + p) /2
values, compared to- + p)? for full V;.

b) Computational Efficiencythe estimation update requiréls((r +p)2> operations in each
step to re-evaluaté,, T;, followed by evaluation of the normalizing coefficiept (3.14) with
complexity O (r + p) and finally evaluation off (3.20) with complexity ((r +p)2). In

contrast, operations (3..4) and (3.20) ar@o((r +p)3) for full matrix V;. Implementa-
tion of the update with full matri¥/; using the matrix inversion lemma_[16,158] is of the
same complexity as using the LD decomposition.

¢) Regularity elements off; are certain to be positive, which guarantees positive-definiteness
of V4. This property is unique to the LD decomposition.

3.2.1.2. Prediction

One of the main benefits of AR modelling of time series is its appropriatness for prediction of future
observations. The one-step-ahead predictive distribution is given by the ratio of normalizing coefficients
(3.14), aresult established in general for the exponential family in [10]. For the AR model:

-1 CNW (VZ + yt+1y£+1, vy + 1)

fdi1|Ye, @i 1) = (2m) vw (Vi)

L t>q. (3.22)

This is the Student-distribution withy, — r + p 4+ 1 degrees of freedom [16]. The mean value of this
distribution is readily found to be

E(di1Yy) = A =di, (3.23)
which is equal to the intuitively appealing result from classical theory [45].

3.2.1.3. Model Structure Determination

The structure of the regression model is determined by choice of the set of transformation functions
g (Di—1,Wy). This is the choice of the model designer. The problem of choice of the appropriate
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3.2. The Multivariate AutoRegressive (AR) Model

model is called model structure determination problem, treated in detailin [75]. We can assemble a
finite set of possibilitiesT = {g1,99,...,9.}, whereg; denotes theth possible choice of regressor
structure. It is then necessary to calculatedtposterioriprobabilities of all cases i&w. Using Bayes’

rule:

F(gilY2) o< f (Yong)|Yaq)»9i) F(gi),i=1,...,¢, (3.24)
whereY ;) = [yq(,»)ﬂ, . ,yt], andq(7) is the longest data memory with respectip across all
functionsg;.

From [3.22):

CNW (g)vyj)
H v (Vie1(gi), vj-1)

_% CNW (Vi (9i),ve) .
= (2m) v (Vo (g0),70) i=1...c (3.25)

Here, we use notatioli; (g;) to emphasize the fact that the statisfi¢s(3.17) are accumulated differ-
ently for each choice of the structuggin G. In situations where it is clear which structure was used to
obtain the statistics, we will use the simplified notatign

Note that [(3.24),[(3.25) engenders Ockham’s Razor since the involved determinant term]in (3.14)
penalizes candidates of greater complexity [13]. (8.24) provides a posterior inference for urkiown
G, going the way towards relaxing the former restriction on regression models that the transformations

f (Yogo) Yoy, 9:) =

be known.

3.2.2. The Extended AutoRegressive (EAR) Model

In this section, we review the widest cass of models for which the algorithms in Sgciion 3.2 remain valid.
The favourable algorithmic properties for the AR model are based on the elegant recursive fofm (3.17),
(3-18) of theN' W sufficient statisticq (3.13), and so this feature must be conserved under any extension.
We note that the posterior distribution remaixi$V if the extended regressay;, is constructed from

Ya;t gd (D, Wy)
= ’ = =g (D¢, W 3.26
Yt [ ; ] [ gz (Di—1, Wy) ] g (D, Wy), ( )

as compared tg (3.19). Hergy; denotes transformed daid, corresponding to the model

Yar = AiBt+Q_%6t, (3.27)
dt = g;l (ytathhWt)- (328)

This model structure is illustrated in Figdre 3.2 (right), see page 26. The distribution of observations is
now obtained by transformation ¢f (3]11):

F(di|A, QY1) = |, (de)| N (— Ay, Q1) (3.29)
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where J; is the Jacobian of transformati@y (-) ); ie.Jy (dy) = ‘3% € RP*P. This creates an
additional restriction thag4 () be a differentiable one-to-one (bijective) mapping for each setting of
W,. Moreover,gq4 (-) ) must explicitly be a function af; in order that/; # 0. This ensures the
necessary uncertainty propagation frento d; (Figure[3.2 (right)). In conclusion, Bayesian estimation
with this model is, by design, of the same form as for the AR mqdel|3[13)}(3.18).

The EAR model clas$ (3.29) includes the following important cases [16]:

1. An AR process with bijective known non-linear transformation of observatiahs= 7(y;).
The transformatiory is then defined as the inverse of this non-lineariy:(-) = 7! (-), and

9z (-) = T ().

2. The ARMA model with aknownMA part, i.e. an AR model driven by coloured noise of known
covariance matrix. Transformatignis then the necessary pre-whitening filter on the collored
innovations. This process has a numerically efficient recursive identification [61].

3. The incremental AR process with the regression defined on increments of the measurement pro-
cess.

Both prediction and model structure identification must be adjusted for the observation nodel (3.29).
The marginal predictive distribution becomes, fr¢m (B.22),

Vi ! 1
F(desr[Ve, @orn) = [Tt (dosr)| (%)_% CNW ( t + Yt+1Yp g, Ve + )’
CNW (Wayt)

and model structure identification is adjusted frgm (B.25) u$ing{3.30), as follows:

(3.30)

t
_t—q(4)
f (Dog@|Dyiyrg) = @m)~ =2 [ 175(d))l
Jj=q(i)+1

% (VJ (9:) >Vj)
Cvw (Vi—1(gi) s vj-1)’

L@ Qo (Vilg) ) T ;
4 Ji(d;)|, i=1,...,c(3.31
v (Vo (gi) s o) qu;[)+1| AN c.( )

= (2m)

Remark 3.4 (Linear transformations) Note that iff Jacobian J; is independent of d; (i.e. iff
ga (+) (3.27) is a linear transformation), then @) implies that the expected prediction is

dis1=g5" <—tht+1) ; (3.32)

in analogy with (3.23)). Moreover, if the transformation g4 (-) constitutes a simple scaling (i.e. Ya; =
ady, so that J; = «), this is further simplified to:

dip1 = — A0t (3.33)
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3.2.3. Modelling Time-Varying Parameters of Non-Stationary AR Models Using
Forgetting

The assumption of constant parameter values is rarely met in practice. In many applications, however, a
complete model of parameter variations is not known. The problem is then under-determined, obviating
the full Bayesian solution and leading to many heuristic techniques. The standard batch (off-line)
algorithm uses windowing [76]. Alternatively, the concept of forgetting [77] is used in adaptive signal
processing [78] and recursive estimation/[58].

3.2.3.1. Explicit Modelling of Parameter Evolution

Non-stationarity of the parameters is handled by modeling- [A, ;] as a new random variable
for each timet. Then, the observation model (3|1¥)(d;|6:, Y:—1, ) , does not update the posterior
distribution of parameters at tinte- 1, f (6;_1|Y;—1) . This can be overcome by the explicit modelling
of parameter evolution by a pdf(6;|6;—1, Y;—1) . The joint distribution is then

[, 0011, Yi—1) = [ (de|0r, Y1) f (04|01, Yi—1) - (3.34)
The update of parameter distributions Via (3.34),
f (0, 001[Y2) o< f (e, 0|01, Ye—1) [ (Or—1]Ye-1) (3.35)

causes proliferation of random variables, in that a new random varaldeintroduced at each step.
Hence, the parameter distributions at timesdt — 1 have different functional forms, violating conju-
gacy. Therefore, computationally efficient on-line identification cannot be achieved.

6,1 can be eliminated fron (3.85) by marginalization:

f(9t|Yt) X f(dt|9t,Yt—1,93t)f('9t|n—1), (3.36)

f(OcYe1) = ; f(0110—1,Yi1) f (0r—1|Yi—1) dOs—1. (3.37)

The choice of the parameter evolution modéb; |0;_1,Y;_1) is discussed ir [79]. Integration of (3/37)
is feasible, for example, for a random-walk process

/ (9t’9t71, S) = N(etflvs)v (3.38)

whereS is a covariance matrix of dimensiop$2p + r) xp (2p + r), chosera priori. In many practical
situations, we may not have any guide about how to chésand wrong choice may lead to poor
performance of the identification.

3.2.3.2. Modelling of Time-varying Parameters via Forgetting

As an alternative approach, the technique of forgetting was suggested in [79]. There, the explicit model
of parameter evolutior] (3.84), and the subsequent integration (3.37), are replaced via a probabilistic
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operator:
FONYio1,80) o< [f (Ora Y1), )% % Fo (B4 Yin) " (3.39)

The notationf (-),, indicates the replacement of the argumentfdf) by 6;, wheret; is the time-
variant unknown parameter set at timef (-) is a chosen alternative distribution, expressing auxiliary
knowledge about; at timet. Coefficients;, 0 < ¢, < 1is known as the forgetting factor. Frofn (3]39),
the limits are interpreted as follows:

for ¢, = 1. prior information, at time, about the new variablg, is identical to the posterior @f;_;
att — 1:
JOc]Yi1, ¢1) = f(0—1]Yi-1)g, -

This is consistent with the choigge = 6;_1, i.e. the time-invariant parameter assumption.

for ¢; = 0: prior information, at time, about the new variablg is chosen as the alternative distribu-
tion:
FOYio1, ) = f (6] Yi—1).

This is consistent with the choice of independence betweandd; 1, i.e.
(0,0 1]Yi—1) = f(0d]Yi1) [ (Or—1]Y31).

The forgetting factor is typically considered as fixed and it is chosen by the designer of the model. The
choise of¢; close tol models slowly varying parameters. The choisebptlose to0 models rapidly
varying parameters.

We require [(3.39) to be conjugate to the observation m¢del]|(3.11), i.e. belong Ad)damily
(3.13). TheN' W family is closed under the convex combining (i.e. geometric meai) in|(3.39) yielding
another member of the same family. Therefore, Ah/ distribution with parameter®, 7 is used as
the alternativef (-). It is typically chosen as a flat distribution, e.g. with the same parameter values as
the prior: V = V,7 = 1. Substituting|(3.39) and (3.1L1) intp (3]12) yields the following recursive
update of the\V' WV statistics:

f(AL QY = NWao (Vi,u), (3.40)
Vi = ¢Vici+yyi+(1—¢)V, (3.41)
v = i1+ 14+ (1—9¢4)7. (3.42)

When¢; = 1, the update is identical to the stationary equatipns [[3.17,3.18).
For the caséd) = 0,19 = 0, and¢, = ¢ constant, the method is known asponential forgetting
becauseg (3.41) implies a sum of dyads weighted by a discrete exponential sequence,

t

Vi = ) i+, (3.43)
i=q+1
t

vo= > ¢4 (3.44)
i=p+1
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This interpretation is helpful, since it provides an intuitive choicegfoas follows.

Remark 3.5 (Intuitive choice of forgetting factor) Here, we compare the exponential forgetting tech-
nique with the windowing approach. First, we identity a stationary AR model on the observation win-
dow of h samples. We assume that the prior was chosen as regular, i.e. vy > q. Then the degrees of
freedom of the posterior distribution is from (3.18):

vp=h—q+ 1. (3.45)

Second, we identity a non-stationary AR model using exponential forgetting withv = vy, ¢ < 1.

This time, we assume that the identification is done on-line, i.e. based on large number of samples.

Then, from (3.44):
1-— ¢t7q + t—o0 1 + (3 46)
= — — — . .
143 1_ ¢ 140 1_ 1240
Equating 343) and (46):
h—q—1 1
=—=1——. 3.47

The interpretation of this choice of ¢ is that it yields Bayesian posterior estimates for Ay and

which—under both scenarios—have an equal number of degrees of freedom in their uncertainty.

3.3. Probabilistic Principal Component Analysis (PPCA)

Principal Component Analysis (PCA) is one of the classical data analysis tools for dimensionality reduc-
tion. It is used in many application areas including data compression, de-noising, pattern recognition,
shape analysis and spectral analysis. For an overview of its usé, see [80]. A typical example in DSP is
spectral analysis [1] or functional analysis of dynamic image daia [81].

Probabilistic Principal Component Analysis (PPCA)I[63] is a special case of the linear modlel (3.1),
(3.2), with the following assumptions:

Myy = AX', r<min(p,n), (3.48)
FEW) = N (Opmw Lo, (3.49)

where scalaw > 0 denotes precision, and other symbols have their usual meaning (§ection 3.1), i.e.
D e R, A€ R, X € R, E € R, and M,y € RP*". Note that|(3.48) is a special case of
) with restrictionr < min (p, n) and usingX’, instead ofX, for notational simplicity in the sequel.

The restriction on rank;, implies thatrank (M(r)) = r, which is explicitly denoted by subscripf/,.,.

The original model of[[63] contains an extra parametemodelling a common mean value for the
columns,m;, of M,. In this work, we do not impose the restriction of common mean value, i.e. we
assume that the common mean value 0, ;. This issue is further discussed in Secfior] 6.5.

Model (3.1), complemented bl (3149), (3.49), yields:

f(DIA, X, w,r) =N (AX', ', ® L) . (3.50)
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Inference of the parameters of the modlel (B.50) is now reviewed.

3.3.1. Maximum Likelihood Inference

The maximum[(3.50), viewed as a function4fX andw, but with givenr (i.e. the likelihood function)
is reached for

~ R n
My = UrpLrrpVip, & = ppip. (3.51)
i=r+1°'D,i
Here,U,.p, andV,.p are the first- columns of the matricelSp, andVp respectively, obtained from the
SVD [73]

D =UpLpV. (352)

L, ,.p is ther x r upper-left sub-block of matriX.p.

Remark 3.6 (Rotational ambiguity) ML estimates of A and X in (3.48)), using (3.51)), are not unique,
because exhibits multiplicative degeneracy; i.e.:

My = AX' = (AT) (T’lff’) — AX', (3.53)

for any invertible matrix, T € R"*". This is known as rotational ambiguityin the factor analysis
Iiterature |47].

The method of Principal Component Analysis (PCA) was originally developed without any explicit
noise model([82]. Correspondence of PCA to ML estimatfon (3.51) of the PPCA njode] (3.50) was
shown later[[47, 48]. We briefly review the connection betwéen [3.51) and the classical PCA now.

The classical method of Principal Component Analysis (PCA) is concerned with projectigns of
dimensional vectord;, i = 1, ..., n, into anr-dimensional subspace. Optimality of the projection was
studied from both a maximum variation [83], and least squares [82] point-of-view. In both cases, the
optimal solution leads to eigen-decomposition of the sample covariance matrix

1

S:n—l

DD' = UAU', (3.54)

whereA = diag (\) is a matrix of eigenvalues &, andU is the matrix of associated eigenvectors.
The columnsau;, : = 1,...,r of U corresponding to the largest eigenvaligs\; > Xo... > A, form
a basis for the optimal projection sub-space.

Consider the following decomposition of the ML estimate (B.51) of the linear mpdel (3.50)

A = UT‘;D? X = LT,T;DW;D' (355)
From [3.52), it follows that

DD' = UpLpVhVpLpUy, = UpLpLpUp. (3.56)
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Hence, comparing (3.54) with (3/56), and using (B.55), the following equalities hold:

Az, (3.57)

NI

A = Ur;D = UT;7 Lp= (n - 1)
Equalities|[(3.5]7) formalize the relation between PCA and ML estimation of the PPCA model.

Remark 3.7 (Ad hocchoice of rank,r) Rank r has been assumed to be known a priori. If this is not

the case, many heuristic methods for selection of r exist [80]. One is based on asymptotic properties of
the noise. Specifically, from (3.1)), (3.49):

Er (DD') = Eg(MM')+ MEg (E') +Eg(E)M' +Eg (EE'), (3.58)
= MM +nw ',

Using the SVD decomposition, MM’ = Uy L%, U}, and noting the equality, Up;U},; = I,,, then, from

(3.38), 3.59):
lim UpL3Up = Uy L3 Upy + nw Uy Uy, (3.59)

n—oo

It follows that lim,, .., Ups = Up, and that

2o +nwt i<,
wM - (3.60)

o
1D — 1 .
nw- 1>,

Hence, the index, %, for which the singular values l;.p, 1 > i are constant is considered to be an estimate
of rank r. In finite samples, however, (3.60) holds only approximately. The estimate can be chosen
by visual examination of the graphed singular values [80], looking for the characteristick ‘knee’ in the

graph. In finite samples, it follows from (3.60):

1 Z nw L, (3.61)

= 7“+1

2
E :li;D
=1

Q

%

Z 2+ pnw™, (3.62)

From ordering of singular values, l1,p > lo.p > ... > l,.p, it follows that [,,.p <3 r+1 Zl . Z D

Hence, using 4 , we assign an upper bound on w, namelyl p < nw ~1. From ( , it follows that
P2

iz1lip > prw™ 1, forming a lower bound on w. This leads to the following choice of interval for &:

LI P (3.63)

Zf:l li2;D l;2;;D
3.3.2. Maximum A Posteriori Inference

An alternative inference of parameters of the PPCA mddel[3.50) do not maximize directly the like-
lihood (3.50), but complemenf (3]50) by a Gaussian prioronf (X) = N (0,,,I. ® I,) and
marginalize overX [48,[47]. The resulting maximum of the marginal likelihood, conditioned-by
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is then reached fab given by [3.51) and
Ar = UrD (Lg,r;D - djillr) R. (364)

Here,U,.p, L, ,.p are given by[(3.52), an& € R™*" is any orthogonal (i.e. rotation) matrix. In this
case, indeterminacy of the model is reduced from an arbitrary invertible fia@»%3) to an orthogonal
matrix R. This reduction is a direct consequence of the restriction imposed on the model via the prior
onX.

3.3.3. Variational Bayes Inference

Bayesian inference of the parameters of the PPCA m¢del|(3.50) was considered in [7], using a VB
approximation (Sectiop 2.3.4). The observation mofel {3.50) was complemented by the following
priors:

f(A) = N(0p,,[,@T71), (3.65)

f(X) = NOpp, I ® 1), (3.66)

(UZ‘QO)ﬂO) = g(aoaﬁO)v 1= 17"'5T7 (367)

f(@ldo,p0) = G (Yo,p0), (3.68)

whereY € R is a diagonal matrix of hyper-parametei,= diag (v), v = [v1,...,v,], and

ap, Bo, Yo, po are known scalar parameters. Complemenfing [3.50) by]|(3[65)}(3.68) the joint likelihood
is:
f(D, A, X, T, wlag, Bo, Vo, po,7) = N (AX,w ', ® I) (3.69)
N (0, I, @ Y YN 0y, Ir @ I,)
G (a0, 60)]" G (Yo, po) -

The posterior distribution of the model parameters is then obtained using Bayes' rule:

f(D,A X, T w|r)
f(DIr) '

fAX, T, wD,r)= (3.70)

Here, conditioning by, 5y, Yo, po, was dropped for brevity. Exact posterior inference frm (3.70) is
not available.

Corollary 3.1 (Corollary 1 of Theorem [2.3]) Consider the following conditionally independent factorization:

F(A X, Y, wlD,r) = f(A|D,r) f (X|D,r) f(X|D,r) f (w|D,r). (3.71)
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Usin and (3.71)) in Theorem|2.1| the VB-marginals in (3.71|) are found as follows:
g g

fAID,7) = N(ua, I, ®34), (3.72)
f(X|D,r) = N(ux,2x®1L), (3.73)
f(vi]D,r) = G(ay,B), i=1,...,7 (3.74)
fwID,r) = G(3,p), (3.75)
with the following VB-statistics:
pa = GDX'Sy, (3.76)
o~ ~\ —1
S4 = (anzx FOXX + T) , (3.77)
ux = OXxAD, (3.78)
~ o~ -1
Sy = (apz A+ OAA+ IT) : (3.79)
o = ao—l—g, i=1,...,r (3.80)
1 N
G = 0o+ 5 (pEA;i,i + agai) , t=1,...,m (381)
9 = 9o+ %, (3.82)
1 ~— N/
po= potgtr ((D - AX) (D - AX) ) : (3.83)
1 ~ o~ ~
+507! (pz AX'X 4 pnSaSy + nEXA’A> .

In , notation a; denotes the ith column of matrix A, so that A = [ay,...,ay). }L X’, v; and &
denote the expectation with respect to the VB marginals (3.72)—(3.73), so that the associated moments
are: A = 1A, X = nx,U; = %, and O = %. The VB-statistics—i4, $ 4, pix, Lx, @ = |ag, ..., o],
B =1[B1,...,0) .V, and p—are evaluated via the VEM algorithm (Algorithm .

Remark 3.8 (Automatic Rank Determination (ARD) Property of VPCA) The VB-statistics o and
B can be used for rank selection. It is observed that for some values of the index, i, the posterior
expected values U; = «;/3; converge to the prior value U; — «p/fy. This can be explained via
prior domination, i.e. the observed data are not informative in those dimensions. Therefore, the rank
is determined as the number of vU; that are significantly different from the prior value c/By. This
observation will be called the as Automatic Rank Determination property (ARDE

Remark 3.9 (Laplace approximation) Estimation of the rank of the PPCA model via the Laplace
approximation (Section[2.2.2) was published in [84]. There, the parameter A was restricted by orthogo-
nality constraints A’ A = I,.. The parameter X was treated in the same way as in the VB approximation

above, i.e. as a matrix random value with prior (3.66).

!In the machine learning community, it is known as the Automatic Relevance Determination property. In our case, however,
the relevance is with respect to the unknown rank.
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3.4. Functional Analysis of Medical Image Sequences (FAMIS)

Functional analysis of dynamic image data (i.e. sequences of images) is an established area in medical
imaging. Its aim is to visualize physiological function of biological organs in living creatures. The
physiological function is typically measured by volume of a physiological liquid involved in the process.
This liquid is marked by a contrast material (e.g. radiotracer) and a sequence of pictures is taken. The
key assumption is that there is no relative movement between the camera (e.g. scintigraphic) and the
imaged tissues. Under this assumption, the problem can be modelled as a special case of the linear
model [3.1),[(3.R). The model is closely related to the FA mdde] (3.6). The problem is described in [81]
as Factor Analysis of Medical Image Sequences (FAMIS), a nomenclature we will adopt, and review
briefly in this Section. Functional analysis is an example of the linear model where parameters have a
physical meaning. Therefore, naming conventions used in this area are rather specific. We will follow
these conventions, but the general conventions for linear models will be used when the models are
discussed in a wider context.

3.4.1. Physiological Model

The task is to analyze the sequencenoimages taken at times = 1,...,n. Each image stored
column wise as a-dimensional vector of observatiods, while the whole sequence forms the matrix
D € RP*", Itis assumed that each image in the sequence is formed from a linear combinatianof
images of the physiological organs. Formally,

,

di =Y ajzjy+e, (3.84)

7j=1
wherea;, j = 1,...,r are the underlying images of the physiological organs, known aatiter
images andx;.; is the weight assigned to thih factor image at tim¢. The vector of weights; =
[2j.1,-..,2;x] is known as thdactor curveor theactivity curveof the jth factor image. The product
ajm;- is known as thgth factor. Vectore; models the observation noise.
The main application area of functional analysis is in nuclear medicine. In this context, additional

restrictions arise. Each pixel of the observation image is acquired as a count of radioactive particles.
This has the following consequences:

1. all pixels aggregated in the matri®, are positive. The factor imaged, are interpreted as
observations of isolated physiological organs, hencegfbare also assumed to be non-negative.
The factor curvesX, are interpreted as the variable activity of the associated factor images,
which, at each time, acts to multiply each pixel by the same amount. Thereforextiseare
assumed to be non-negative:

S
<
<
v
L

~

|
\_I'—‘

cop, g=1,...,r, (3.85)

xlmj 2 O7i:17"~7r7j:1,...7n.
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2. the observed data are known to be Poisson-distributed:

f(diy) = Po (Z ai;jxj,t) L i=1,...,p,j=1,...,n. (3.86)
j=1

However, inference of model parameters with this distribution is analytically intractable.

Analysis of the sequence is traditionally decomposed in sub-problems which are solved independently.
The basic steps are [81]: (i) data pre-processing, (ii) orthogonal analysis, and (iii) oblique analysis.

3.4.2. Data pre-processing

The aim of the pre-processing step was to transform the data model into the PPCA[model (3.50). The
first task is to approximate the intractable Poisson distribution by a suitable replacement. The problem
has been studied theoretically [85,] 86] B7, 88], and it was concluded that, asymptotically, the data
distribution may be approximated by a Gaussian:

F(DIA, X, Q. Q) =N (AX, 0 0 Q). (3.87)

where AX’ models the mean value of the signal, dngl € RP*P, Q,, € R"*" are positive-definite
precision matrices.[ (3.87) implies the following additive decompositibn= AX + E, hence it is
another case of the linear cla3.(3.2). If the covariance maﬁj;deanngl are knowna priori,
the data may be pre-processed as follows:

Sl

DOZ. (3.88)

Dol

D=0

1 1 1 ~
Here,Q; denotes the matrix square-rdef ), = , [73]. Then,D can be modelled by the proba-
bilistic PCA model[(3.5D)

~ 1 1
f (DyA, X,Q,, Qn) — N <95 AX'O2, 1, @ In> ,

using elementary properties of the matrix Normal distribution (Appepdix A.1, equatioh (A.3)). The
whitening operatior] (3.88) is known in the factor analysis literaturgca$ing.
The optimal scaling for the Poisson distributipn (3.86) is knownarsespondence analy§i89]:
. d; ;
dij = J . (3.89)
(ke dig - 2oy dig)

This corresponds to choosing diagonal matrices,

N

Q, = diag(D1,1) ", (3.90)
0, = diag(D'11,)",

in the asymptotic mode] (3.87), whef2is the observation matrix.
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Appropriatness of the correspondence analysis for the medical sequences was experimentally com-
pared with othead hocscaling techniques in [90].

3.4.3. Orthogonal analysis

Following the pre-processing, the transformed datamay be modelled using the PPCA mo.88).
From now on, it is assured that the dafa, has been pre-processed in this way (i.e. we drop the tilde
fro notational conventions). Next, the problem is to find a low rank representatioh bé. to infer
parametersd and X. Traditionally, inference ofA and X is addressed using the ML approach, as
reviewed in Sectiop 3]3. However, this approach is not sufficient as it does not provide a solution to the
following problems:

Number of relevant factors:  the ML solution is available only if the number of relevant factors,
r, IS knowna priori. Various methods for selection ef—based on both ad-hoc and formal
criteria—are available_[80]. However, the problem is typically neglected in functional analysis
as it is assumed thatmay be reasonably guessed from bhelogical knowledge. However, this
assumption is valid only for healthy organs. If the organs are damaged, the number of factors in
the sequence can increase significantly, and indeed, become a key indicator in the diagnostics of
disease states.

Rotation: the probabilistic PCA model does not impose restrictions of positivity on its parameters.
The ML solution,A and X, is confined only to the sub-space spanned by the columnaggf
(3.53) (Remark 316). Uniqueness of the solution is assured if the parardeaedX are orthog-
onal matrices, this will be studied in Sectjon 6]3.1.

It is assumed that the optimal positive-constrained solution is found close tedimensional sub-
space inferred by the ML solution (3]53). Therefore, in this step, the orthogonal solutioh (3.55) is
evaluated and rotation towards the physiological factors is addressed in the next step.

3.4.4. Oblique analysis

In this step, the physiologically restricted solution is being searched close to the optimal sub-space

(3.53), identified in the previous step. Physiological restrictions of a general nature may be imposed,

such as positivity (Sectidn 3.4.1). Alternatively, specific biological knowledge may be used to rotate to

valid physiological factors [87]. Extensive discussion on these restrictions can be found in [91].
Uniqueness of decompositidn (B.2) under the assumption of positivityasfd X (3.85) was studied

in [92]. It was concluded that the decomposition is unique if there exists at least onezpixeh each

factor imagega;, for which all corresponding pixels in the remaining factor images are equal to zero:

Vi=1,...,r,di: ai;j>O:>ai;k:O,szl,...,r,kséj.

This assumption is known asmple structure An algorithm for rotation of the orthogonal estimates
towards valid physiological factors was published inl [91], by exploiting this uniqueness property.
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3.4.5. The FAMIS model

The name “factor analysis” usually denotes the method of inference of paramgtéfsandw of the
model [3.50). Therefore, we denofe (3.50) as the factor analysis model. In the same spirit, we define
the FAMIS model now.

The basic model used for functional analysis is the probabilistic PCA|(3.50) with additional assump-
tion on the noise[ (3.87) and positivity of all elements4fand X. These extensions are handled
independently as pre-processing (Sedfion B.4.2) and oblique analysis ($ectipn 3.4.4) respectively. This
can be summarized in a unified model as

f(DIA, X, Qp, ) = N (AX, 0, @ ) (3.91)

where the covariance matric€s,, (2, are considered known. However, this is rarely true in practice.
The presented method—i.e. scaling (3.90)—is optimal for a large number, oo, of samples. We
seek a solution that is optimal in finite number of samples.

Hence, we now consider covariance matric@s,and(2,,, asunknownparameters with diagonal
structureQ), = diag (wp) , wip > 0,7 =1,...,p, andQ,, = diag (w,), win >0,1=1,...,n.

This has the following consequences:

e The measured data are corrupted by additional artefacts that are considered as noise from med-
ical point-of-view. The relaxation of knowf,,, ©2,, allows these artefacts to be captured, and
modelled as noise. This should lead to a better signal and noise separation.

e The assumption of diagonality is similar to that of the Factor Analysis (FA) m¢dgl (3.6). In
consequence, inference of the FA model parameters yields a signal and noise separation in such
a form that the correlated part of the data is taken as the signal, and the uncorrelated part as the
noisé| [47].

¢ |dentification of the model with unrestricted precision matrices is not feasible because the number
of parameters is then higher than number of available data. The introduced restriction ( covariance
in the form of Kronecker product and diagonality) keeps the number of estimated parameters well
below the number of available data.

e Approprietness of the method may be compared with the asymptotic fesult (3.90). If the under-
lying assumptions are valid, the expected valupands2,, should be similar tg (3.90).

Inference of model parameters jn (3.91) is, again, analytically intractable.

3.5. Open problems

In this Chapter, we have presented a review of linear models. Special cases of the linear model—of con-
cern in this thesis—were reviewed in detail. Namely, the AutoRegressive (AR) model ($ection 3.2), the

2This may not be appropriate for some applications in medical imaging. In such cases, other restrictions on the precision
matrices?,,, and(2,, must be introduced.
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Probabilistic PCA (PPCA) model (Sectipn B.3), and the Factor Analysis for Medical Image Sequences
(FAMIS) model (Sectionj 3]4). For these models, a numerically efficient inference of parameters is
available under the following restrictive assumptions, respectively:

AR model: the full Bayesian inference is available under assumptions of: (i) known transformation
of the system output (Sectign 3.p.2), and (i) stationary or slowly-varying parameters (Section
B.2.3).

PPCA model: computationally efficient inference is achieved for the ML and MAP inferences under
the assumption of known rank (Sectjon|3.3). The approximate Bayesian inference of the PPCA
model (Sectiof 3.3]3) is computationally expensive.

FAMIS model: in order to achieve tractability, the parameter inference is done in three steps (Section
[3.4): (i) data pre-processing, (ii) orthogonal analysis, and (iii) oblique analysis. The Bayesian
solution is available only for the orthogonal analysis, which is identical to the PPCA problem. The
remaining two steps, and indeed the overall problem, has not been addressed from the Bayesian
perspective yet.

The aim of this thesis is to relax the above mentioned restrictions and derive numerically tractable
inference algorithms for parameter identification in each case. We study the following special cases:

Unknown observation transformation (AR): The parameter inference is analytically tractable if
the transformatiory is known (Sectiofi 3.2]2). Note that modelling of the observation transfor-
mationg via an additional linear model is known as the state-space appriodach [58]. In our forth-
coming approach, we do not impose any modejoWe seek a numerically efficient inference
algorithm for the model with an unknown

Non-stationary parameters (AR):  can be modelled by means of the forgetting operator (Section
[3.39). The technique of forgetting itself is an optimized approximation of the intractable model
involving posterior distributiorf (8| D;_1) and alternativef (8| D;) [79]. The analytical solution
is preserved if the forgetting factas;, is known at each time a priori. Typically, it is chosen as
time-invariant known constagt, = ¢. This is appropriate only for processes with slowly varying
parameters. We seek a numerically efficient inference algorithm for the model with an unknown
¢¢. This would greatly extend the tracking abilities of the inference algorithm for non-stationary
AR processes with rapid variations of parameters.

Inference of rank (PPCA): (i.e. number of relevant principal components) is not provided by the
ML approach. It can be obtained using Variational Bayes approximate inference for the PPCA
model (VPCA) (Sectiofi 3.3/3). The computational load of the VPCA algorithm is, however,
much higher than that associated with the ML or MAP solution. Moreover, VPCA provides only
a point estimate of the rank. In this case, we seek a numerically efficient Bayesian inference of
all posterior densities, including distribution for the rank.
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Unknown scaling and rank (FAMIS):  the standard solution is based on assumptions of (i) known
scaling for the pre-processing step, and (ii) known rank (number of relevant factors) for the or-
thogonal analysis step. The second assumption have been already relaxed since orthogonal anal-
ysis is achieved using (Probabilistic) PCA. However, the chosen VB approximation allows to
develop a joint identification procedure for the whole model.

For each of these problems we will derive: (i) an analytical analysis of the correct Bayesian solution and
justification of the VB approximation; (ii) a Variational Bayesian inference; (iii) a numerically efficient
inference algorithm (or, at least, a discussion of this topic); and (iv) experiments on simulated or real-
life data. In general, progress in all these tasks will be achieved using the ‘gateway’ of the Variational
Bayes (VB) approximation.
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Chapter 4.

Mixture-Based Extension of the EAR (MEAR)
model

The Extended AutoRegressive model was introduced in S€ctior} 3.2.2. The model was designed to ex-
tend modelling abilities of the AR model (Sectjon|3.2). This is achieved under the assumption of known
and stationary transformatign In this Chapter, we relax this assumption using a probabilistic mixture
approach. Our approach is similar to those in [46, 62]. OUr aim is to achieve recursive identification of
the EAR model parameterd, €2, for a wide class of transformations and distortions.

4.1. The MEAR Model

Following the Bayesian methodology, we treat the unkntime-varianttransformationg;, as a prob-
ability entity, ~;, drawn from a spaceg, of candidates. The conditional distributidn (3.29) is then
replaced by the marginal

F(d|A, QD) = /g F(de] A, 2, Do) f (el A, 2, Dyy) de, (4.1)

where, tacitally, a continuous space is assumed. Evaluation of this distribution is usually prohibitive
because the space may be extremely rich (recall that the EAR model allows for arbitrary, smooth,
non-linear functions with dynamics (Section 3]2.2)). The challenge is to restrict the @@axkreach
algorithmically affordable complexity. We assume tfainay be partitioned into a finite humber,of
disjoint subsets:

G = U Gi. (4.2)
i=1

Moreover, we assume that the partition can be designed to ensure that effects of all filters in any one
subsetg;, are very similar. This requirement is summarized in the following conditional independence

property for (3.2P):

f(di]A, Q. Di_1,v: € Gi) = f(di|A,Q, Dy_1,9i), (4.3)
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

whereg; € G, is a representative transformation in the sulgseSubstituting[(4.3) intd (4]1), it follows
that:

f(di]A, QD) =~ ZC:O@ (A,Q,De1) f(de|A, Q, Di—1, 9i) (4.4)
;f (di|A,Q,Dy_1,G), (4.5)
where
0 (A, Q. Diy) = /g_f(vtyA,Q,Dt_l)d%, (4.6)
G = {g;,izl,...,c}. 4.7

(4.4) is a probabilistic mixture with componenfs(d;| A, 2, D;_1, g;), with respective weights; (A, 2, D;_1)
which are data- and, thus, time-dependent. Note, trivially, that

f(dt‘AugaDt—l) - f(dt|A7QrDt—177 € g) .
Then, from[(4.4):
f(dt’Aagathlaﬁy S g) ~ f(dt‘AaﬂathlaG) .

Hence, approximation (4.4) is valid iff the s6tis chosen to satisfy certainty equivalencel[20]. |(4.7)
constitutes dilter-bankdesigned in such a way as to meet this certainty equivalence requirement.

The integral[(4.6) can be evaluated only if the partitihris available explicitly. In many practical
cases, this will prove difficult to achieve. Therefore, we propose—following the Bayesian methodology—
to model the uncertain quantity; (4.4) by a probabilistic model. We introduce a labelling transforma-

tion:

1 Yt € g’u .

L () = =1,...,c (4.8)
0 Tt Qf gzv

That can be written in a vector form @$v;) = [l1 (%), .-l (). From [4.2), it follows that
l(v) €{er,...,e.}, where

e =06.(1)=1000G—-1),0i—-2),....,.0G—¢c)],i=1,...,c

Consideringg; as unknown, we can define a new random varidpte I (y;), with pdf:

£l = ei]") = Pr (v € Gi| / f (3el) de (4.9)

Note that the last term i (4.9) is in the form of the mixture wei¢ht|(4.6). Hence, Using (4.9), we can
assign
(07 (A, Q, Dt,1> = f (lt = ei]A, Q, thl, gl) . (410)

However, the weight (4.10) requires an explicit model of the sggceThis is prohibitive from
a computational point of view. Therefore, most of the literature on statistical mixtures (e.g. [25])
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approximates
f (lt|A797Dt—1) ~ f (lt’a) = Mult (C\’,) )

i.e. a multinomial distribution with time-invariant vector parameter= [y, ..., a.]'. This yields a
mixture model with stationary weights (A, 2, D;_1) = «;. This assumption is however, not realistic
for non-stationary processing. We address the problem as follows.

Proposition 4.1 (Markov weights) Variable l; constitutes a hidden field which we model via a first-

order Markov chain with transition matrix T' € [0,1]°¢ :

i (A, Q, D) ~ f (LT, l—1) = Mug, (Tl_1) HHt”l” 1 (4.11)
i=175=1

ie. Pr(l; = e;|T,l;_1 = ej) =t;;, the ijth element of T'. Muy, () denotes the multinomial distribu-

tion.

Recall, from Sectiop 3]2, that the Extended AR (EAR) model is an AR model on transformed data:

Ax; + Q_%et,

Yd;t
Ty = Jo (Dt—laWt)-

For algebraic simplicity, we have introduced an extended regregset, (yq.:, z:] = g (Di—1, Wy),
which is dependent on the transformatig(t). In this Chapter, the time-invariant transfromatigf(:)
was replaced by a filter-bar® = [g;, ..., g.]. The regressor corresponding to title transformation
will be denoted as follows:

Yir =gi (D1, Wy), i=1,...,c (4.12)

The history of the regressor—which is used mostly in contitioning part of the posterior pdfs—is adapted
toY, = [[y'u, b)Y Yl '}. Intuitively, it denotes the knowledge of all observed
data under all considered transformations.

Substituting[(4.1]1), intd (4}4), the observation model is

F(de] A, QT Y 1, Gl ) ZH“t YF(dilA, g0, G, (4.13)
=1 j=1

where the conditioning s&t, €2, Y;_1, G has been augmented Byl; ;.

4.2. Bayesian Formulation

Consider the joint distribution of the observatidnand the label;:

f (dtvlt‘A7Q7T7 }/;5—17G7lt—1) == f (dt|A7Q7}/t—17G7 lt) f (lf‘Tv lt—l) . (414)

Then, the marginal distribution of (4.]l4) ov&ris the observation moddl (4]13). Next, consider the
posterior distribution of model parameters [of (4.14) at time1, i.e. f (A, Q, T,l;_1|D;—1, G). This
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is updated by[(4.14) according to Bayes’ rule:
f (A7 Q) Tv lt7 lt—1|Y27 G) X f (A7 Qa T7 lt—1|}/t—17 G) f (dt7 lt|A7 Q) Tv lt—lv }/15—17 G) . (415)

The update introduces, at each step, an extra random varlgbldence, the parameter distributions
at timest andt¢ — 1 have different functional forms, violating conjugacy. Afteupdates; random
variables will have been generated, wifhpossible states. This scenario has been used in the off-line
casel[46], but it is unsuitable for on-line identification.

The exponential explosion of terms, described above, is overcome via the following conditional in-
dependence approximation of the posterior distribution at ti@el3):

FAQT L LY, G) = [ (AQTY,G) f (L|Y:) f (L |Yh), (4.16)

where thef (-) denote ‘wildcard’ approximating distribution. Usirg (4.16) at bo#nd¢ — 1 (i.e. for
the first two terms in5) respectively), we see thatl, Q, T'|Y;) is updated in the step from— 1
to ¢t independently of the label sequerigeavoiding the exponential explosion.

4.3. Variational Bayes (VB) Approximation

The conditional independende (4]16) is the underlying assumption of the VB approximation method
(Sectior] 2.2}4). In order to achieve conjugacy-based recursive identification, we seek a posterior dis-
tribution on parameters4,Q2, T, at timet¢ — 1 to be of the same form as at tinie The functional
optimization achieved by the VB approximation allows us to choose the posterior distribution conju-
gate to the VB-optimized observation model (Secfion 2.3.3).

4.3.1. VB-conjugate Prior

Let the distribution of model parameters at time 1 to be of the form[(4.16). It is updated by the
extended observation modgl (4] 14) to yield the posterior distribdtion|(4.15). Taking the logarithm of the
joint distribution, then

Inf(d, by A, QT LYoy, 2, G) = Zli,t lnf(dt|Aa97mi;tagi;t)"’le,tfllnti,j (4.17)
i=1 =1

+In f(A,Q,T|Yi1) +In f (L|Yie1) +In f (L1|Yiea) -
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Using Theoren 2]1 foif (4.17) with restrictiorjs (4.16), the VB-approximate distributioA,éh 7" is
found to be

FAQT)Y,) exp(ZE,t In f (de|A, Qyin,gia) + Y L1 Inty
i=1 j=1

o fAQTYo) []f(dlA Qi g™ [T ]t (4.19)
i=1 1=1j=1

The expected vaIudA§t of f (1,]Y;) and will be evaluated shortly. These approximate distributiords of
andl;_, are found in the form

fuy) = Flyo []n (4.20)
1=1

FU@al¥y) = FalVeon) [T mi (4.21)
=1

1
Nt — €Xp |:EA797Tlt—1 ( - 5“ (Q [—1p, A [yi,ty;,t] [_Ipﬂ‘l],)

+ Z ljt—11n tm‘) +1In | J; 4] ] ,

Jj=1

Kit = exp {Em (Z Lt 1ntm)] ;
j=1

wheren;;; andk;¢, i = 1,.. ., c are statistics of distributionp (420) and (4.21) respectively.
In order to achieve tractable recursive identification we want to choose approximate distributions
f(‘) to be closed under these VB updates (i.e. VB-conjugacy, S 2.3.3). We note the following:

o if f(A,Q, T|Y,_,)is chosen in the fornf (A4, Q|Y;_1) f (T|Y;_1)—i.e. with independence be-
tween the AR parameters, Q2 and weights/'—the approximate posterigr (4]19) is also indepen-
dent.

e parametersi, 2 are present in the VB-approximate observation mgdel[4.19), only via the condi-
tioning part of the distribution of daid,. This distribution is the product of Normal distributions
being therefore a Normal distribution. Heng&,4, Q|Y;_;) of the Normal-Wishart type is con-
jugate to it.

e parametefl’ is present in[(4.19), only via the product of multinomial distributions which is also a
multinomial distribution. Hencef (7'|Y;) of the Dirichlet type is conjugate to it.

e both f (I;|Y;_1) and f (1,1 |Y;_1) in (4.2d) and[(4.21) are self-replicating if they are chosen as
Multinomial.
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. f‘(lt|Yt_1) is, in fact, the prior distribution o#y, asl; was not considered in previous updates.
We choose it to be uniform o, ..., ¢], i.e. Muy, (¢ '1p1).

This VB-conjugate approximate distributign (4.16) is then of the form:

FAQT L | Vi,ve1,®1) = NWag (Viet,vi1) Dir (1)
Mult (C_l]_p’l) ]\IUlt_1 ('wt_l) . (422)

Here, VW4 q (Vi—1,14—1) is the Normal-Wishart distribution with statisti#$_; andv;; Dip (®;—1)
denotes the Dirichlet distribution with statistids_; € R°*¢, Appendix; andMug, | (we—1)
denotes the Multinomial distribution with statistias_; € Rc*1.

4.3.2. VB-optimized Posterior Distribution
Substituting[(4.2R) intd (4.15) yields the following joint distribution:

. il .
f(dtaltalt717A7Q7T|Y;‘/ = (Hf dt|A Q yztagzt ’t> HHt Sl DZT ((I)tfl)

i=1 i=1j=1
NWaa (Vicr,ve1) Muy, (¢ '1,1) Mug,_, (wy—1). (4.23)

Corollary 4.1 (Corollary 1 of Theorem [2.9]) Using and (4.23) in Theorem|2.1] the VB-optimal
form of is found via the following assignments:

F(AQY) = NMNWaqo(Vi,1r), (4.24)

f(TIY;) = Dip(d,), (4.25)

(lt\Y}) = Muy, (wy), (4.26)

f@alVy) = Mu, , (u), (4.27)

with VB-statistics
Vi = ‘/tfl‘f‘zz;',tyj,ty;,ta (4.28)
j=1
Vg = Vt_1+1, (429)
o = Py +lAtEf1v (4.30)

1 -~ / ~ o~
wiy o< |Jiy|exp [—§’y§7t [—Ipw‘l} Q2 |:_Ip7Aj| Yit

1 3 Con —
—5P Yi VaanYit + Z lj;t—1In ti,j:| (4.31)
7j=1
¢ ~ —
Uzt X wi;t_lzlj;tlntjﬂ- (4.32)

j=1

The constants of proportionality in (4.31), and (4.32) follow from normalizations, > %_; wj: = 1,
and ) 5_, uj; = 1, respectively. Moments of 1 e A= EAv;,v. (A) and Q= Eavi (),
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4.3. Variational Bayes (VB) Approximation

are given by (3.20) and (3.21) respectively. The moment of required for (4.31), (4.32), i.e.
hrl/tz\j = Eqjg, (Int; ), is given in Appendix namely 4 . The first moment of 4.2%) and

are ly = [wiy, ..., wee] and U1 = [ury, . . ., Uey] respectively.

Proof: Logarithm of the joint distributior{ (4.23) is:

lnf (dta lt> lt,l, Aa Q|aa }/t) — (433)
= Zli;t In f(de|A, Q,yit, git) + le;tfl Int; ; (4.34)
i=1 j=1

+InANWa 0 (Vier,ve—1) + InDiy (Pr—1) + In My, (w—1) ,

T 1 - -
= =3 In (27) + 3 In|Qf + ; lit |In|J;s| + ;lj;t_l Int; ;

c 1
3 ot [~ D A [sast] 1 A))]
=1
1 1
+§th1 In Q] —InCvw (Vie1, ve—1) — §Q [—1,, A V,_y [~ 1, A]

—In(p; (Pr-1) + Z Z Gije—1Int;; + Z lig—1Inwiy 1.
i=1 j=1 i=1
From Theoren 2|1, distributiong (4]24) afd (4.25) are obtained as proportional to exponential of the
expected value 03) ovg"P(lt|dt, Y:). As ) is linear inl; andl;_1, the expectation is just
a replacement of; by lAt andl; 1 by lAt_l Removing all terms independent df €2 from ) and
normalizing we obtain (4.24) with assignmerjts (4.28) and {4.29). Removing all terms independent of

T from (4.33) and normalizing, we obtain (4]25) with assignmient {4.30).
Distribution [4.26) is proportional to exponential of expected valug of [4.33) with respect to distri-

butions [[4.24) and (4.25). All terms independent,dfecome part of the normalizing constant, hence
(4.26) is obtained, via assignment

1 C
wig 0 exp |Eaomry, ., | —5tr (Q[=Ip, Al [Yi09i 4] (=1, AI') + D laIntiy | + 1| iy
j=1
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Using elementary properties of the(-) operator and the properties of the matrix Normal distribution

(AppendixA.1), namely (A]2):

wi;t X

1 C
| Jielexp |Eaq (Qyz,',t [—Ip, AV Q[~1,, A] yi,t) +> B,y (L) Er(Inty) |
! =

1, [ o -4 ¢
[Jilexp | Bao | —5%ie | o aaa | YT j;lj;tllnti,j ;
Ji' E — . PR i Liv 1lnt; ; ,
’ 7t\exp Q ( 2yz,t e A,QA—l-pVa;l’t y,t) +J§ git—111014 5

PPN

- )
il exp =5 uhe |1 A| @1 A] g

1 _ s
—3P Yi Vaan¥is + Lo tm} ;
j=1

prooving [4.31). The mean value pf (4] 26) follows trivially from the fact that all possible realizations of

l; are elementary basis functions. [ |
VB-statistics[(4.2B)+(4.32) can be evaluated via the standard VEM algorithm (Alg¢rithm 2.2). However,
as the VB approximation is applied to a single step, we need to iterate the solution for each step of the
on-line algorithm, as follows:

For each

end

collect data record;
assign initial valueé/;(o), yt(o), <I>§O), wt(o), uio), (e.g.Vt(O) =V;_, etc.)
iterate [(4.2B)+(4.32) using the VEM algorithm (Algorithm|2.2) until convergence is reached

at, say, thenth iteration.

assign the approximate statistics at timas: V; = V;(m), v = ut(m), o, = @Em), w; =
(m) (m)

w, U = Uy

This, of course, may prove impractical for applications requiring real-time processing, since the con-
vergence of step 3 is not guaranteed in a given number of operations. This problem can be addressed by
setting a thresholdh,,,,, on the maximum allowed number of iterations of the VEM algorithm, as sug-
gested, for example, in [35] where,,.x = 1. For time-invariant models, the algorithm asymptotically

(i.e. fort — oo) converges to the local Variational extreme, but, it does not hold for the time-varying
models. Alternatively, we can use the Restricted VB approximation (RVB) as introduced in Section
[2.2.5. We consider this next.
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4.4. Quasi-Bayes (QB) Approximation

4.4. Quasi-Bayes (QB) Approximation

In this Section, we derive an alternative identification algorithm using Restricted Variational Bayes
(RVB) (Sectior] 2.25). The RVB approximation requires all but one VB-marginal to be known. More-
over, the Quasi-Bayes (QB) approximation (Remark 2.4) use the analytical marginals of the true poste-
rior distribution. Here, we note th#{ is a dicrete variable witle < oo states, hence, marginalization

over this label field is analytically tractable.

4.4.1. Fixing the VB-marginal for the Label Field

Label variables in3), namely andl;_; together possesd possible states. Evaluation of
possibilities may be prohibitive for large Therefore, we make the following choice of fixed VB-
marginals in the RVB approximation (2]34):

FlaYy) = flalYimy), (4.35)
Fy) = / Zf (dy, A, QT U, by [Yior, @) ddyd AT, (4.36)
4, AT |

Hence, [(4.3b) was chosen as fixed at the previous time-data stef, arjd (4.36) was chosen as suggested

by Remark[(Z.}).
Marginal [4.36) of the joint distributior (4.23) ove, 2, T', d;, is a discrete distribution of the form

f(1]Y7) szt : (4.37)

Wherew; ; can be found via
wip = / Zwﬂ f(AQT L = e, dy Y1, @i, by = e;) dAdQdT
d,tAQT
x / ijt L (AQT L = e, di Vi1, @, b1 = e;) dAdQdT
thQT

= / [f (de| A, T, yi ) NWag (Viei, 1) +
di AQT

> wigDir (24-1) f (I = €| T, 11 = €;) |dAdQdT (4.38)
j=1
o Ovw (Vier + Uit i1 + 1) D wji1Cpi (digu—1 + 1) (4.39)
j=1

where(yyw (+) is given by [3.14) andp; (-) is given by [(A.20) in AppendiX A.20. The constant of
proportionality for [(4 ) is easily determlned from normahzano.B?),I@tl wip =1,
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

4.4.2. QB-optimal Posterior Distribution

The full updating algorithm follows from Corollafy 4.1, using the RVB approach (Cordllafy 2.1, Section
2.2.9).

Corollary 4.2 (Quasi-Bayes (QB) estimation of the MEAR model) Using with assignments (4.35),
and in Corollary[2.1] the RVB-optimal form of is found via the following assignments:

FAQY) = MW (V,w), (4.40)
f(TY:) = Di(®,), (4.41)
with statistics
V;S = V;f—l‘i‘zwi;tyi,ty;,tv (442)
=1
vy = l/t,1—|—1, (443)
Py = Py + ww_,. (4.44)

Proof: )) are of the same form .24) 4.25). Expected ditows form
). Substitutind; = w; andl; ; = w;_; from ) into )O) prov4.44)l

4.5. Viterbi-Like (VL) approximation

Note that the matri¥/; is updated:-times by a dyad weighted by corresponding weight. Dyadic
update is a rather expensive operation (Se€tion 3]2.1.1). In situations where onewygiglitominant,
it may be unnecessary to perform dyadic updates for the remainingdyads with low weights. This
motivates the followingd hocproposition.

Proposition 4.2 (Viterbi-like Algorithm) Further simplification of the QB algorithm may be achieved
using an even coarser approximation of the label-field distribution, namely certainty equivalence (Sec-
tion|2.2.1)):

fuyy = o(t-1). (4.45)
in place of . Here, I; is the MAP estimate from , ie.
I, = arg mlaxf(lt|Yt) . (4.46)
t

This corresponds to the choice of one ‘active’ model with index i; € {1,...,c}, such as I = e;,. The
idea is related to the Viterbi algorithm [93]. Replacing in the Corollary[4.2 by (4.45), we obtain
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Figure 4.1..The Recursive summed-dyad computational scheme for Quasi-Bayes identification of the
MEAR model. O.P. denotes outer product (dyad). For clarity, dependence ¢f Ed. (4.39) on
V;_1 andk;_1 is not shown.

the approximating distributions in the same form as (4.40)-(4.41)), but with statistics

Vi = Viei+ y,zt;tygt;ta (447)
vy = 11+ 1, (448)
(I)t = (I)t,1 + wt'wé_l. (449)

Note that the update of ® is computationally cheap. Weights wy are already available for evalu-
ation of (@.43)), hence, ®, is updated as in the QB algorithm (Corollary[4.2, equation (4.44)).

4.6. Inference with the MEAR model

4.6.1. Computational Issues

We have introduced three methods for recursive identification of the MEAR model:

1. Variational Bayes (VB) algorithm (Corollafy 4.1)

2. Quasi-Bayes (QB) algorithm (Corollary 4.2)

3. Viterbi-Like (VL) algorithm (Proposition 4]2)
The computational flow is the same for all algorithms involving updates of statigtics, ®;.

The recursive scheme for computation [of (4.42)-(4.44) via the QB algorithm is displayed in Figure
[4.7. The computational scheme for the VB algorithm is, in principle, the same, but the statigtics,

®; andV;, must be iterated in each time using the VEM algorithm. This is difficult to visualize. The
main points of interest are the weight evaluation, i.e. Eq. {4.39), and summation of dyads.

Weights are computed vig (4.81) for VB, and Ry (4]39) for the QB and VL algorithms. The operations
required for this step are:
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Table 4.1.Computational complexity of recursive identification algorithms for the MEAR Model.
| algorithm | computational complexity of one-step estimation \

VB m(2c+1) x O ((r +p)2)
QB 26XO<(T—|—p)2>—|—CXO(T—|—p)
Viterbi-like | (c+1) x O ((r+p)*) +¢x O (r+p)

m denotes number of iterations of the VEM algorithm (for VB only)
c is the number of components in the MEAR model
p andr are the dimensions of measured data and regressor, respectively

VB: (i) evaluation ofA, Q, Vaq.; (ii) evaluation of [(4.3[L)c-times. All operations in (i) and
each operation in (ii) are of complexity ((r +p)?). (Sectior] 3.2.1/1). Moreover, these
evaluations must be repeated &achstep of the Variational EM algorithm.

QB: (i) update ofl; c-times in the[(4.39), and (ii) evaluation of the corresponding normalization
constant[(4.39). Computational complexity of normalizatio®ig- + p).

VL: same as QB plus determination of maxifa (4.46).

This operation can be done in parallel for each condidate transformation in all cases.

Update of V; is done via dyadic updates (4]128), (4.42), dnd (4.47) for VB, QB, and VL respectively.

VB: LD update ofl%, c-times
QB: LD update ofl}, c-times
VL: one LD update of/;.

This operation must be done sequentially.

The overall computational complexity is summarized in Tablg 4.1.

The main drawback of the VB algorithm is that the number of iterationsof the VEM algorithm
at each step, is unknowna priori. For stationary processes, i#. = 6, it can be expected that with
growing number of data, the new data recdgdwill cause just a small shift in the expected values of
parameters. Hence, the VEM algorithm will converge fast@anghay be as low as: = 2 orm = 1.

Remark 4.1 The layout of the scheme (Figure [4.1) suggests a multiple model approach [94)]. This
similarity is not surprising, since the approximation used there is based on the principle of partitioning
195l], which is equivalent to the conditional independence assumption in this work. The MEAR
scheme, with its restrictions (namely a fixed filter bank (4.7)), represents a special case of the inter-
acting multiple model [|96]. Specifically, the interactive multiple model updates the covariance matrix
(corresponding to V;) at time t with a vector, this vector being a combination (interaction) of candidate
states. Hence, the covariance matrix is updated with a matrix of rank 1. This corresponds to the update
of V; by one dyad, as was the case for the Viterbi-like algorithm for the MEAR model. On the other
hand, matrix V; is updated in the VB and QB algorithms with a weighted sum of dyads. Hence, V; is
updated by a matrix of rank min (p + 1, ¢).
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4.6. Inference with the MEAR model

It is emphasized that the VB, QB and Viterbi-like algorithms are alternative strategies for collecting
the approximate statistidg, v, ®, in (4.23). All subsequent operations, namely prediction and model
structure determination, are determined by the form of the yielded posterior, whichgartiein all

three cases. Hence, these tasks can now be addressed in the following sections without reference to the
chosen approximation.

4.6.2. MEAR-based Prediction

The MEAR predictor can be found by marginalization, using (4.13) (replachygt + 1), (4.22) and
the chain rule:

Fdps|Vier, G) = / Fdior, A Q1. T LYooy, G) dadode. (4.50)
AQ L, T

which is a task similar td (4.36). The predictor is found as

Fdea|Yien, G) = aif (diga Ve i) (4.51)

i=1

which is a mixture of EAR predictor§ (3.30), weighted by the respective component weights

C
Cpi (¢iji—1 + 1)
v o 7 Cpi (b4 jst—1)

In typical signal processing applications, only moments of these distributions are of interest:
C
diy1 = Z iy,
i=1

wherecii,tﬂ is the prediction of each candidate, in special case it is give(3 (3.33). Note, in
general, that all non-central moments|of (4.51) can be obtained as this weighted algebraic mean of the
respective non-central moments of the candidates. However, this does not hold for the central moments
[o7].

4.6.3. MEAR Model with Non-stationary Parameters

In Sectior] 3.2.]3, we relaxed the assumption of stationarity of paramét€rdy means of a forgetting
operator [(3.39). The same can be done for the MEAR model with paramét€rsa, since A, Q
has the same distribution as in the AR model §htias Dirichlet distribution, which belongs to the
exponential family. Distributions oA, 2 andT" were chosen conditionally independent (Sedtion 4.3).
Hence, we choose distinct forgetting factats,y and¢p;, respectively. The prior at timeis then
chosen as

dNW [— _
FAL @ ailYy) = [ (A Qi) an,] [ (A YD) x

[ (T Vi) )2 [T (@) 27 (4.52)
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Wheref (A;, |Y;) andf (o |Y;) are alternative distributions chosen by the designer.

Replacing prior[(4.22) by (4.52), and choosiigA:, u|Y;) = NW (V,7), f (1Y) = Di (@),
stationary for all, then all foregoing algorithms maintain their structure, with the following modifica-
tion of the statistics update mechanism:

Viio= onvwViei + Zl:',tyi,ty;,t + (1= onw) Ve, (4.53)
i=1

vi = daywri-1+ 1+ (1= onw) 7, (4.54)

O = ¢pi®i + Ul + (1 — ép;) By (4.55)

This is the form for VB and QB variants. The required modification of the Viterbi-Like (VL) variant is
of the same kind.

4.6.4. MEAR Model Structure Determination

The key restriction of the MEAR model—namely, common AR parametefs (4.13)—implies that
all filter candidatesg; € G, must have the same dimensignt- r. The estimation of the MEAR model
does not provide inference of the model structure and additional treatment is required.
The likelihood of the whole data sefl);, can be obtained from the one-step-ahead predictor](4.51),
using the chain rule:
t
f(DingIDg G (@) o< [T f(dilYj-1,G (a))- (4.56)
J=q+1

From Bayes’ rule, we can evaluate the inference-f) as:

F(G (@) |Dy) < f (Dug| Do, G () £ (G () (4.57)

Note that the one-step-ahead predi.50) is based on the expected values of tie @belpf
the immediate consequences is that the trajecto@/ with respect ta must be recalculated for each
setting ofG (q).

4.7. Inference of an AR Model Robust to Outliers

One of the main limitations of the AR model is sensitivity of the estimates to outliers in measurements.

In this section, we analyse the problem of estimation of a scalaf (1) AR process[(3]9) of order

q = r, with observations corrupted by isolated outliers. An isolated outlier is not modelled by the AR
model because the outlier-affected observed value does not take part in the future regression. Instead
the process is autoregressiveriternal (i.e. not directly measured) variablg i.e.

Zt = Aa:t + w_%et, ry = [thl, e ,Zt,q]/, (458)
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4.7. Inference of an AR Model Robust to Outliers

which is observed via
di = z+&. (4.59)
Here,& denotes a possible outlier at timeMoreover, for ansolatedoutlier it holds that
Pr(&a; =06 #0)=1,i=1,...,q. (4.60)

The AR model is identified vig (A, w|D;) (3.12) (i.e.notvia f (A,w|Z;)) and so the outlier degrades
estimation iff it enters the extended regresgoe= [z, . .., z—4] (3.17).

4.7.1. Filter-Bank Design

Sincey; is of finite length, and since the outliers are isolated, it is easy to define a finite number of
mutually exclusive scenarios. Each of these scenarios can be captured via an EAR model and combined
together using the MEAR approach, as follows:

1. None of the values iny; is affected by an outlier, i.ed; ; = 2z_;,4 = 0,...q. The set of
transformationd (3.26)], (4.2) is then the singleton set:

gl = {g|yt = [dt7 dt—17 cevy dt—q]/} . (461)

2. The observed valuel;, is affected by an outlier, and so all delayed values are unaffected, given
assumption[(4.60); i.el;_; = %z, = 1,...q. For convenience, realization ¢f can be ex-
pressed as a multiple of realized valyevia unknown multiplier; > 0:

1

& = hw zes (4.62)
Then [4.58),[(4.59) can be rewritten as:
dt = AiEt + (1 + ht) w*%et, Ty = [dt—h . 7dt—q]/ .

This can now be transformed to the form

1 1
dy

1
- A ~%e,.
1 T Tt e

Therefore, the space of transformations in this case is

1
Gy = {g‘yt:htﬂ [dt,mﬂ/, 1<ht<oo}, (463)
parameterized by variablg. The Jacobian of alj € Gy is Jo = ﬁ

3. The observed value is not affected by an outlier, bétsteps-delayed observatioth,_ 5, k €
{1,...,q}, is. In this case, the transformation should replace this value by an appropriate AR
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process estimaté;_;. The set of transformations for eakh=1,... ¢ is then:
Grra = {glye = [di, ... di—g) + 0g41 (k+ 1) (Be—p — dei) Vax = pr (D1)},  (4.64)

whered, (i) = [0 (1 —i),...,6 (p—i)]. The elements ofj,.» are indexed by every possible
function, pi, denoting an estimator of unobserved quantjty, from dataD,. The Jacobian of
all possible transformationg € Gy1 2 iS Jg12 = 1.

We have described= ¢ + 2 different modes (partitionsy;;, of an ideal filter transforming observation
processd;, to a processy;, for which an AR modelis valid. For each of these partitions, a representative
candidate g;, should be chosef (4.3). The choice of candidate= G, is trivial. Choosingg, is
equivalent to choosing a known fixéd = h. Alternatively, if the variance of outliers is known to
vary significantly, we can splig, into finer subsets and choosecandidates with fixed valuds, <

he < ... < hy. The transformation set§y . », must each be represented by a funcigriefined with
respect to a known reconstruction (smoothing) filter. We have tested the algorithmdbosen as the
k-steps delayed valués_;. of the expected valug at timet, given D;:

4= Eulume, () f (I = €i| D1, G). (4.65)
=1

Using [3.38), expected value (4]31) of the Multinomial distributjon (§.26), and the fact;thatl;, for
alli=1,3,...,c, the reconstruction filter is

(&
Zr = dy Z Wyt + wQ;tfltmt_k. (4.66)
J=1,j7#2

Here, the Bayesian predictdr, (3]33) has been used to replace the outlier arising in scenario 2 above.

In our simulations, the interpolation strategy chosefyis, = px (D:) = px (D) (i.e. filtering).
This choice requires only one calculation ff ;, for eacht. Adopting the non-causal (smoothing)
choice,z,_; = pi (D;), would requireg calculations ofz;_j, for eacht, with, presumably, negligible
benefit over the causal (filtering) choise.

4.7.2. Simulation Study

A second-order stable AR model with parametérs- [1.85, —0.95)',w = 100, was simulated with a
random outlier on every 30th sample. The total number of samples wag00. A segment of the sim-
ulated data#(= 55, . .., 100) is displayed in Figurg 4]2 (dotted line) along with the reconstruction (solid
line) (4.66), and corrupted data (dots). Two outliers occurred during the displayed period: a ‘small’ out-
lier att = 60 and ‘big’ outlier att = 90. The MEAR model with four candidate transformationg+—
(4.61), G, (4.63) withh; = h = 10, Gz and G, (4.64) as derided in the previous Section—was used
for identification of the AR parameter$, w. The prior distribution was chosen A8V (Vj, 1) with
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Figure 4.2.Reconstruction of an AR(2) process corrupted by isolated outliers. Results for VB, QB,
and VL algorithms, respectively, are shown. There are outliers=a60 and¢ = 90.
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Figure 4.3.1dentification of an AR(2) process corrupted by isolated outlieeft: comparison of the
terminal moments of the posterior distribution4f Right: detail of left, boxed region.
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0.1 0 0

Vo = 0 0.001 0 andyy = 1. This choice of prior corresponds to point estimates with
0 0 0.001

A =10,0] (3.20), and = 10 (3.21).

Note that when an outlier occurs, all candidate filters are sequentially used, as seen ifj Figure 4.2
(middle and right columns). Thus, the outlier is removed from the estimation fornjulaé (4.28)-(4.30)
very effectively. We note that all considered algorithms—i.e. VB, QB, and VL—have performed well
when the ‘big’ outlier occurred. The estimated weights and reconstructed values are almost identical
across the procedures. However, when ‘small’ outlier occurred, the VB algorithm identified the weights
more accurately than the QB and VB algorithms.

The terminal—i.e.t = n—posterior distribution of4, (A.10) is illustrated (via the mean value and
2 standard deviation ellipse) for the various identification methods in the left (overall performance) and
right (detail) of Fig 4.B. In the left diagram, the scenarios are (i) AR identification of the AR process
corruptedby outliers (boxed); (ii) AR identification of the AR procasscorruptedoy outliers (boxed).

In the right, we zoom in on the boxed area surrounding (ii) above, revealing the three MEAR-based
identification scenarios: (iii) MEAR identification using the VB approximation; (iv) MEAR identifi-
cation using the QB approximation; (v) MEAR estimation using the Viterbi-like (VL) approximation.
Impressively, the MEAR-based strategies perform almost as well as the AR strategy with uncorrupted
data, which is displayed via the full line. The posterior uncertainty in the estimateappears, there-

fore, to be due to the AR process itself, with all deterious affects of the outlier process removed.

4.8. Inference of an AR Model Robust to Burst Noise

The previous example relied on outliers being isolafed {4.60), permitting the assumption that there is
only one outlier in the extended regresggr In such a case, additive decompositipn (#.59) allowed
successful MEAR modelling af, via a finite number( + 2) of candidates.

4.8.1. Filter-Bank Design for Burst Noise

A burst noise scenario, in contrast, requires more than one outlier to be considered in the regressor,
obviating the filter bank design in the previous example. To address this problem, we need to transform
the underlying scalar AR modgl (4]58) into state-space form [58]:

zii1 = Bzt kw Zey. (4.67)

62



4.8. Inference of an AR Model Robust to Burst Noise

We choose the model with state variable assignmest [dy, . . ., dt_q]’. Therefore:
i —a1 —ay —as --- —aq i i i
1 0 0o --- 0
B = 0 1 0o .- : , k=101, (4.68)
: .0 3
. 0o -~ 0 1 0 | | 0]
whereB € R7*9 andr € R7*!. The process with burst noise is modelled as
di = ¢z + hyw 26, (4.69)

wherec = [1,0,...,0]'e R*!, and¢; is NV (0, 1), independent oé;. hw™2 denotes the standard
deviation of the burst noise which is assumed strictly positive during any burst, and is zero otherwise.
Note that the autoregressive part of the mofdel (4.67] 4.68) is identical to the AR model in the previous
example. The key difference is in the corruption procgss [4.69) comparéd ¢ (4.59), (4.60). Once
again, we identify a finite number of mutually exclusive—but now non-exhaustive—scenarios that can
be modelled using an EAR process:

1. The current observatiody and the last; observationsgd;_1, . .., d;—, are all distortion-free; i.e.
hi =hi—1 = ... = hi—qg = 0. Formally,G; = {g|y: = z:}, a singleton set.
2. The measurements are all affected by burst noise; wé;set hy_1 = ... = hy_qy = h. The

state-space mod¢l (4]67,4.69) is now defined by the joint distribution:

4|0
,w :
0 A

(4.7Q) cannot be modelled directly as an EAR process because it contains unobserved state vector
z;. Using standard Kalman-filter theofy [16,/58], we can marginafize [4.70); i.e. we use the chain
rule ¢ times and integrate over the unobserved trajectory—namely {auer. . z; }— to obtain

the direct observation model:

Bz

'z

f(ze,di|la,w,z—1,h) = N ( (4.70)

f(dt\a,w,Dt_l,h) :N(aﬁt,w_lat) (471)
with moments defined recursively as follows:
oy = h + c'S’t,lc, (472)
Si = Si-1—0; " (Si—1e) (Si—1e), (4.73)
% = Bz 1+h'Sic(d— ' Bz), (4.74)
S, = rr'+BS,B. (4.75)
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(4.77) can be expressed as a valid EAR mddel {3.28),ahdo, are independent of the unknown
AR parametersA,w. Unfortunately, bothz; and o; are functions of matrixB and thus of

A. In order to obtain a valid EAR model, we replaBe= B (A) (4.68) in (4.74,4.75) by its
expected valueB; = B (At>, via (3.20). Then,(4.71) is a valid EAR model defined by the set
of transformations:

Go = {g Yt [dt,ﬁ”l J1<h< oo} , (4.76)

_1
=
with time-variant Jacobianj; = o, 1 (D;—1) evaluated, recursively usin72). The spgge
is parameterized by the unknovin

3. Cases 1) and 2) do not consider the situation whgrés not constant on a regression interval
k € [t — q,t] (i.e. atransitional phase). Complete modelling for all such a cases is too difficult,
and so these scenarios are ignored. However, our experiments suggest that this has little impact
on performance.

The final step is to define candidates to repreger{y; = G, is trivial). One candidate may be chosen

for G, if the variance of burst noise is reasonably well knavpriori. In other cases, we can partition

G- with respect to intervals af. Candidates are chosen as one element from each interval. The best
experimental results were achieved for multiple partitioningzgfwith at least one candidatg; =

g (h = Iy)in (4.78), wherey, is belowthe true value of;, and at least one candidatg, = g (h = h.,)

in (4.78) wheréh,, is abovethe true value oh. h; andh, can conveniently be chosen as the prior lower
and upper bounds, respectively, bnincreasing the number of candidates drawn fi@ngenerates a
richer set(, which better spans the subgkt This improves the quality of approximation.

4.8.2. Simulation Study

A non-stationaryAR(2) process was studied, with ., in the interval[—0.98, —1.8] (as displayed in
Figure[4.4 (top-right))az; = a2 = 0.98, w; = w = 100, andn = 200. Realizations are displayed in
Figure[4.4 (top-left, solid line). Far< 95, a1, is increasing, corresponding to faster signal variations.
Thereafter,a;.; decreases, yielding slower variations. These variations; gfdo not influence the
absolute value of the complex poles of the system, but only their polar angle. The process was corrupted
by two noise bursts (samples 50-80 and 130-180), with paranteters8 andh = 6 respectively
(4.69). Realizations of the burst noise process imposed on the simulated signal are displayed in Figure
[4.4 (top-left, dotted line).

The process was estimated using 3 filter candidates: namely the unity transformatiéh, along
with G5 (h = 5) andG2 (h = 10). Identification results, are displayed in the right column in Figure
[4.4 as follows: (i) simulated data, (ii) AR model fancorrupteddata, (iii) VB variant of the MEAR
model forcorrupteddata, (iv) QB variant of the MEAR model, (v) VL variant of the MEAR model.
Specifically, the95% Highest Posterior Density (HPD) interval, via (Al 13) and (A.15), of the marginal
Student-distribution ofa;.; andao,; respectively, is displayed. The process was identified using forget-
ting factors[(4.5R)nw = 0.92, ¢p; = 0.9, and non-comittal, stationary, alternati%é/V distribution,
f(A,w) = NWaq (V,7). Furthermore, the matrix parametdr, of the stationary, alternativ®i
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4.8. Inference of an AR Model Robust to Burst Noise
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Figure 4.4..Reconstruction and identification of a non-stationary AR(2) process corrupted by burst
noise, using KF variant of the MEAR model. In the final column, full lines denote sim-
ulated values of parameters, dashed lines denote posterior expected values, and dotted lines
denote uncertainty bounds.
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Figure 4.5..Reconstruction and identification of a non-stationary AR(2) process corrupted by burst
noise, using KF+LPF variant of the MEAR model. In the final column, full lines denote
simulated values of parameters, dashed lines denote posterior expected values, and dotted
lines denote uncertainty bounds.
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4.9. Application of the MEAR model in Speech Reconstruction

distribution, f (T') ), was chosen to be diagonally dominant with ones on the diagonal. This dis-
courages frequent transitions between filters.

Note that all methods (VB, QB and VL) achieved robust identification of the process parameters
during the first burst. As already notet},.,7 = 2, ..., ¢, (which denotes the reconstructed state vector
) with respect to thih filter), is correlated with4,_+, which may undermine the tracking of time-
varying AR parameters4;. In this case, each Kalman component predicts observations poorly, and
receives low weightsy,; andws; (4.31), in [4.58). This means that the first component—which does
not pre-process the data—has a significant weight, Clearly then, the Kalman components have not
spanned the space of necessary pre-processing transformations well, and need to be supplemented.

Extra filters can be ‘plugged in’ in a naive manner (in the sense thaintlagymprove the spanning
of the pre-processing space, but should simply be rejected, vig (4.31), if poorly designed). During the
second burst (Figuiie 4.4), the process is slowing down. Therefore, we have extended the bank of KF
filters by a simple arithmetic mean Low-Pass Filter (LPF) on the observed regressors:

1

Gs: yn= 3 (Tn + Tp—1 + xTp—2). (4.77)

(4.76) and[(4.77) yield EAR models with the same AR parameterization, and so they can be used
together in the MEAR filterbank. Reconstructed values for the KF variant are derived frorp (4.65):

3
Z = wl;tdt - Z wi;tAtﬁi,tv (4.78)
=2
using [3.2p). For the KF+LPF variant, the te##" (d; + d;_1 + d;_2) is added to[(4.78), where,,
is the estimated weight of the LPF componént (4.31), (4.53)-(4.55).

Identification and reconstruction of the process using the KF+LPF filter-bank is displayed in Figure
[4.5, in the same layout as Figyre}4.4. The distinction is most clearly seen in the final column of each.
During the second burst, the added LPF filter received high weights,Figure[4.5 (middle column).
Hence, identification of the parametéris improved during the second burst.

4.9. Application of the MEAR model in Speech Reconstruction

The MEAR filter-bank for the burst noise case (KF variant) was applied in the reconstruction of speech.
A ¢ = 4 MEAR model was used, involving; (y; = x;), G2 (h = 3), G2 (h = 6), G2 (h = 10). The
speech was modelled as AR with order 8 (3.9). The forgetting factor§ (4.52) wetary = ¢p; =
0.95. Once again, a diagonally-dominabtwas chosen fof (7).

During periods of silence in speech, statistjcs (#.53) are effectively not updated, creating difficulties
for adaptive identification. Therefore, we usdrfiormativestationary alternative distributioff,( 4, w),
of the VW type (3.13B) for the AR parameters [n (452). To elicit an appropriate density, we identify the
time-invariant alternative statistic¥], 7, using 1800 samples of unvoiced spee¢h{A, w) was then
flattened to reduce from 1800 to 2. This choice moderately influences the accumulating statistics at
each step, vid (4.%3). Specifically, after a long period of silence, the influence of data |n (4.53) becomes
negligible, andV; is reduced td/ .
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Three sections of thbbcnews.wav speech file, sampled at 11kHz, were corrupted by additive
noise. Since we are particularly interested in performance in non-stationary epochs, we have consid-
ered three transitional cases: (i) voiced-to-unvoiced transition corrupted by zero-mean, white, Gaussian
noise, with a realized Signal-to-Noise Ratio (SNR)-ef dB during the burst; (ii) an unvoiced-to-
voiced transition corrupted by zero-mean white uniform noise2atiB; and (iii) a silence-to-unvoiced
transition corrupted by a click of typ@25 cos (3t) exp (—0.3t), superimposed on the silence period.

Reconstructed values using VB, QB and VL methods respectively are displayed in[Fidure 4.6. All
three methods successfully suppressed the burst in the first two cases. In the third case, the click
was suppressed by all methods. However, the QB and VL methods also had the deteriorious effect of
suppressing the unvoiced speech.

4.10. Discussion

The MEAR model[(4.113) proposes a relatively rich extension of the classical AR model. It allows
transformations on regressors, which relates it to semi-physical modélling [98]. Being a mixture-based
extension, it is also related to the multiple model approach [94], to mixtures of AR processes [99], and
to the Generalized AR (i.e. GAR) approachl[46]. It must be remembered, though, that the MEAR
model is asingle AR model subject to an unknown transformation of observations. This is formalized
as a mixture withcommonAR parameters[ (4.13). There are two main consequences. Firstly, the
MEAR model is appropriate in cases where the transformation/distortion process is independent of the
underlying AR process. Secondly, the AR parameter infer¢nce (4.24) reqsiregesufficient statistic

matrix, V,, (4.28), updated via a linear combination«adyads, each calculated from one component in
turn.

The restriction to common AR parameterization across all components can easily be relaxed via
obvious changes to the recursive algoritfim (#.28)—{4.30). Each AR component would then experience
a local rank-1 update, and there would be no inter-component interaction. Such a model would be
over-parameterized, as each component would then have unknown AR paraameters unknown
transformatiory;, causing identification problems. The common AR parameterization in the MEAR
model overcomes this problem. It can be seen as a model-based regularization.

We have derived three variants of the identification algorithm: (i) Variational Bayes (VB), (ii) Quasi-
Bayes (QB), and (iii) Viterbi-Like (VL). The VB algorithm is the optimal in the sense of KL mini-
mization (Sectiof 2.2]4), while the QB and VL variants are computationally simpler methods derived
as approximations of the VB solution. All variants yield acceptable solutions in particular contexts, as
demonstrated in Section 4.9.

The statistics);, are updated by a structure of rankn the VB and QB variants as stated already.
This implies an interaction of regressors from each component, which appears to be a key benefit of the
MEAR model, since it allows a small number of candidate models to span a larger transformation space.
The concept of interaction between a finite set of components has been exploited in other techniques.
The Kalman-based Interacting Multiple Models (IMMS5) [94] linearly combine state vectors (i.e. cer-
tainty equivalents) evaluated using each filter, before using it in the Kalman updates. Again, however,
this corresponds to a rank-1 update in our framework as in the VL variant (Sectioh 4.6.1).
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4.10. Discussion

Figure 4.6.Reconstruction of three sections of thecnews.wav speech file. In the second row,
dash-dotted vertical lines delimit the beginning and end of each burst.
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Bayesian identification unifies all tasks of inference into a single, model-consistent framework. In the
burst noise example of Sectipn 4.8, the MEAR algorithm combines the pre-processing tasks (of burst
detection and signal reconstruction) with on-line identification. It is the dynamic wejght$ (4.31) which
balance the dyadic update contributed by each component at every siép (4.28). This contrasts with the
previously reported methods. For example/in [100], a Boolean detection decision is made concerning
presence of outliers. During a detected burst, a Kalman filter is used for reconstruction, and updating
of statistics is interrupted. In our approach, the updating of statistioavisrinterrupted. Components
which, in effect, pre-process noisy data, contribute dyads constructedifterad data. Furthermore,
exponential forgetting is used to handle time-varying AR parameters, in place of the extended Kalman
filter in [100Q]. In difficult cases, such as silence regions of speech, forgetting with informative alternative
distributions [(3.39) might be used, as it was in Sedtioh 4.9.

A Quasi-Bayes (QB)-based approximate update of sufficient statistics was employed in [62], for
estimating an ARMA model using a mixture-based extension (known as ARMMAX). The ARMMAX
model is a special case of the MEAR model, but with time-invariant component weights, instead of
(4.11), and with moving-average whitening filters as candidate transformdtions (3.26). The candidates,
G (4.7), used to represent the continuous multidimensional space of whitening filters, were designed
using a simplex method. This is an example of a technique for filter-bank design, which was achieved
at the price of loss of recursivity in the identification method.

In our work, we model the possible degradations of the AR process, and design the filteGbank,
(4.7), in an attempt to span all possibilities. The parallel architecture of the summed-dyad algorithm
(Figure[4.1) permits extra candidates to be ‘plugged in’ with ease, in order to supplement the set. We
saw in Sectiony 4]8, for instance, how this can improve identification. When the extra candidate is
not relevant, its contributing dyads are weighted by low component weighfs in (4.28), and become
negligible.
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Chapter 5.

Bayesian Inference of Non-stationary
AutoRegressive Models Using Time-variant
Forgetting

In Section] 3.23, we reviewed the Bayesian inference of non-stationary parameters of the AR model.

Analytical solution is available under the assumption of known forgetting fagtofhe value of¢ is

chosen by the designer and always represents a trade-off: kiglegs lower variance of estimates in

stationary scenarios, and lowg@mrovides better tracking ability during non-stationary epochs. Intu-

itively, we would like to develop ‘smart’ forgetting, one which keephkigh when the identified model

is in agreement with the observed data, and which decreasé&n incoming data do not correspond

to this model. This idea was studied in the context of window-based processing [101], and using a

gradient-based MAP approach [102]. The min-max criterion approach of adaptive forgetting was pro-

posed in[[108]. The idea has also been studied in the context of Recursive Least Squares (RLS) [104].
In this Chapter, we seek a joint Bayesian inference of the non-stationary AR parameters of the mul-

tivariate AR model in tandem with the time-variant forgetting factor. The method will be extended to

the MEAR model in Section 5.3. Progress in these areas is made possible via the VB-approximation of

Sectiorl 2.214.

5.1. Bayesian Formulation

Following the Bayesian methodology, we treat uncertairas a random variable. We seek a joint
identification of both); and¢;. From [3.11),[(3.39) the joint posterior distribution is then

I (O, 6e|Yr) o< f (di|0s, Y1, 2¢) f(0c]Yi1, b¢) f(de]Yi1), (5.1)
where the prior o, is uniform,Vt, in the intervald < ¢; < 1:
f(@e]Ye-1) =U ([0, 1]) . (5.2)

Note that[(5.]L) is conditionally independent of the previous paramétersand¢;_1, givenY;. This
is achieved via the forgetting operatpr (3.39) and the choice of frigr (5.2). Hence, the proliferation of
new random variables is avoided. Computationally feasible recursive identification is achieved if the
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5. BAYESIAN INFERENCE OF NON-STATIONARY AUTOREGRESSIVE MODELS USING
TIME-VARIANT FORGETTING

posterior distribution

[ (0r,04|Yy) = f (O] de, Y2) f (04]Y2), (5.3)

is chosen as conjugate with the observation mgdel|(3.29). This is possible for known forgetting, choos-
ing f (0¢|é¢, Yi—1) from AW family (Sectior] 3.28). However, this cannot be achieved for the joint

posterior [(5.B).

Therefore, we seek an approximate posterior in conditionally independent form:
(01 0|Y2) = F(0:[Y2) f (1]Y3) - (5.4)

5.2. Variational Bayes (VB) Approximation

The conditional independende (b.4) is the basic assumption of the Variational Bayes (VB) approxima-
tion method (Sectiop 2.2.4). In order to achieve recursive identification, we demand that the posterior
distribution on parameters at time- 1 be of the same form as that at timeT he functional optimization
achieved by the VB approximation allows us to choose the posterior distribution to be conjugate with
the VB-optimized observation model (Sectjon 2,3.3).

5.2.1. VB-conjugate Prior

Assume that the distribution of model parameters at timel is of the form [5.4). It is updated by the
observation mode[ (3.11) to yield a posterior distribution. Then, the logarithm of the joint distribution
is:

In f (0, ¢, di|Yi—1,2¢) = Inf(di|0, Y 1,2¢) + ¢4 lnf(et\y}fl) +
+ (1= ¢)In f (0:]Yi-1) —In¢ (¢y) . (5.5)
Here( (¢) is the ‘wildcard’ for normalizing constant of the forgetting operafor (8.39), which depends

on the form of the optimized distributiofi (4;|-). Using ) and4) in Theore@.l, the VB-
optimized form of[(5.4) is found in the following form:

F@lvi) o exp (Inf(dilfe, Yior, @) + dn f (Bi]Yi1) +
+(1-&)mF @) ),

o f(dt|9tath1,$t)f(Qt\thl)Z)t

(@YD) o exp (oo, (Inf (6Yer) —In

(A = (5.6)
(6 Ye1) ) =InC (6)) - (5.7)

| %l

Note that the VB-approximate updafe (5.6) is in the form the standard forgetting for the AR model
(Sectio), with the forgetting factor given by = Eg.|v; (#¢). Therefore, using results from
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5.2. Variational Bayes (VB) Approximation

Sectio, a conjugate update is possible if Kot |Y;_1 ), andf (6;|Y;_1), are of theN' W form:

f(9t|Yt—1) = NW (Vt—lv Vt—l) ) (58)
?(9t|Yt—1) = NW (Vt—l,vt—l) . (5.9)

5.2.2. VB-optimal Posterior Distribution

For the choice of priorg (58) anfl (.9), we can evaluate the ‘wildcard’ normalizing constant of the
forgetting operatoi (3.39), as

U CORAC (1 (v (@) —r+p+ 1)) [A ()| 2 rrHD

2
Vi (¢t)|—0.5p 90-5p(v(¢e)+p+1) .5 (5.10)
V(g) = ¢Vicr+ (1— ) Vi, (5.11)
V(o) = -1+ (1 — ) Upr. (5.12)

Equation ) defines a complicated functiowjnMoreover( (¢,) determines the approximate pos-
terior distributionf (¢,|Y;) via its logarithm in ). No standard distribution of this form is known to
us. Moreover, evaluation of momentsﬁt¢t|Yt), involving ), would be numerically intractable.
Therefore, we seek an approximationdip; ). We take advantage of the fact that it is computationally
simple to evaluate the normalizing coefficient of th&V distribution{xry (-) using LD decomposi-
tions (Sectiof 3.2.1]1). Hence, we evaluate (5.10) at the extrema of its support:

¢(0) = w(V,7), (5.13)
¢(1) = wwVie1,v-1). (5.14)

Using these, we will now approximafe (5]10) by interpolation betwegh andc (1).

Proposition 5.1 (Approximate Normalization of the Forgetting Operator) Let us choose the approx-
imation of (5.10) in the following form:

C(¢t) = exp (h1 + ha¢y) (5.15)

where h1 and hgy are unknown constants. Matching (5.15) at extrema (5.13), and (5.14) we obtain:

hl = In CNW (thbgt*l) ) (516)
hy = In (vw (Vier, 1) —In Qe (V, 7). (5.17)

Under this proposition, and using priofs (5.8), [5.9), the joint log-distribufion (5.5) is then approximated
by

Inf (0, de|Yio1,2) ~ InN (Azy, Q') + N Wag (Vier, vi—1) +
+ (1= ¢t) NWaa (Vi1,7i—1) + h1 + hady, (5.18)
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whereh; andhy are given by[(5.116) andl (5.1L7) respectively. Note that the chpice|(5.15) ensures that
(5.18) is linear inp,.

Corollary 5.1 (Corollary 3 of Theorem [2.7], Variational Extreme for time-variant forgetting) Using
(5.4) and (5.18)) in Theorem|2.1] the VB-optimal form of (5.4)) is found via the following assignments:

FOY) = NW(Vi,w), (5.19)
F(@Yy) =~ t€xp(b,[0,1]), (5.20)
with VB-statistics:
Vi = ¢iViii+ yry, + (1 - <$t> v, (5.21)
v = w1 +1+ (1 - ¢A5t> v, (5.22)
1 — 1 —
b = —5 W1 —7)ln|Q] - Sptr ((Vaat-1 — Vaa) Vaa)
—In Cvw (Vie1, 1) + In Qv (V, D)
1 — !~ ~
—5tr ((v,:_1 ~7) [—Ip,At} O, [—Ip,AtD . (5.23)

—

The required moments of the of the matrix Normal distribution , ;4\,5, ﬁt, In (€), and the first
moment of the truncated Exponential distribution | , at, are given in Appendix and Appendix

respectively.

Proof: (5.19), and the VB-statistic§ (5]21) arjd (5.22), follow frqm |5.6), using conjugacy of
Normal distribution with Normal-Wishart, and closure/g®V distributions under geometric mean.

(5.20) follows from [(5.7) evaluating the expected value in there, uging (5.8)] and (5.9)

—

- — 1
Ep, (In f (61[Yi-1) = In T (61]Yi-1)) = =5 (vi1 — 7) ]|
1 _
_ §E9t (tr (Vie1 = V) [=1p, A Q[ 1, Ad) )
1 — 1 —
= =5 (-1 =) In|Q| — optr ((Vaai-1 = Vaa) Vaas)

e, (tr (W V) [ [_zp,zt})) (5.24)

We have used elementary properties of the trace operator, and prdpeity (A.2) of the Matrix Normal
distribution were used. Moments, (), are given by|(A.1B), and (A.14) respectively. Truncation of the
VB-posterior of¢, to interval|0, 1] follows from prior restriction). [ |

The Variational Extremg (5.19), (5]20) can be found by iterating the implicit set of funcfions (5.21)—
(5.23) to convergence via the VEM algorithm (Algorithm|2.2).

Remark 5.1 (Numerical Simplification) In this case, it is difficult to find a numerical simplification
of the VEM algorithm. The Restricted VB (Corollary [2.1)) can be used. However, we cannot use the

Quasi-Bayes principle (Remark [2.4)), because exact marginal distributions are not tractable. Hence,
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5.3. Time-variant Forgetting for the MEAR model

instead we use a threshold for the number of iterations of the VEM algorithm. This was proposed in
[33], as on-line VB for models with time-invariant parameters, where the number of iterations can be
restricted to one. In our case, i.e. model with non-stationary parameters, one iteration per time step
is equivalent to standard forgetting with an initial guess for the forgetting factor. In order to achive an

improvement, we fix the number of steps at each VEM iteration to two.

Remark 5.2 (MAP solution via EM algorithm) The classical EM algorithm for MAP estimation is
similar to the Variational approximation, as described in Section[2.2.4 Specifically, the M-step involves
maximization of (3.5) with respect to ¢;. Note, however, that under Proposition (3.3 is linear in
¢, and so the maximum is reached at one of the boundaries, i.e. 0 or 1. Thus MAP estimation via EM

algorithm is possible only under a different approximation than that of Proposition|[5.1]

5.3. Time-variant Forgetting for the MEAR model

Identification of the MEAR model with non-stationary parameters was discussed in $ectipn 4.6.3, using
time-invariant forgetting factorginny andgp;. Note that the posterior distribution of the AR parame-
ters of the MEAR modelA and(2 (4.24), is inN'W form which was studied in the previous Section.
Hence, these results can be used for inference of an unknown forgetting fagiprfor the MEAR

model as follows:

f(@onwalYy) & t€xp (baw, [0,1]) , (5.25)

wherebany is given by [5.2B).

A time-variant forgetting factor of the Dirichlet distribution (4]2%)p; ¢, can be derived in a similar
manner to the one faprry .. Once again, the normalizing constant of the forgetting operator for the
Dirichlet distribution is not tractable. Hence, we invoke an approximation of the type in Proposition
5.1:

Cpi (9pit) = exp (h1 + ¢pitha) , (5.26)

where

hi = In(p; (D),
hy = In (pi (Pe—1) —In (p;i (D).

It is easy to verify that Theorefn 2.1, applied|to (4.23) extende{l by|(5.26), yields the following approx-
imate posterior:

f (ngz’,tht) ~ tgfL‘p (bDi’ [0’ 1]) ) (5-27)
bpi = —In (pi(P—1)+In (p; (D)
1 (& (& .
—5 2.0 (®iju1 — i) Erpy, (nti).
j=1i=1
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The posterior distributions of the MEAR model parametets§?, T, I, l;_1, are identical to@4)—
(4.27) with VB-statistics|(4.53)(4.55), but with fixed valueg;y and¢p;, replaced now by expected
values,ggNW;t anquSDZ-;t, from ) and7) respectively. This result is intuitively appealing.

It is necessary to mention that the Bayesian interpretation of forgetting [79] invokes a mixture-type
model. The first component is the posterior distribution at timel, and the second component is the
alternative distribution[(3.39). Hence, the forgetting factpiplays the same role as labigl These
differ in two respects:

e ¢, is a continuous variable on supp@t 1], whilel; is a discrete random variable wittpossible
states{ey, ..., e.}.

e each component of the MEAR model is an EAR mofel (8.29), which must be strictly data driven
(that being achieved via the requirement of a non-zero Jacobipn of (3.26) in $ecti¢pn 3.2.2). There
is no such condition on the alternative distribution in forgetting (3.39). Typically, alternative
distributions are chosen as non-committal priors, i.e. fixed antflat

Remark 5.3 Note that the update of the VB-statistics, V; (4.28), for the MEAR model havs the follow-
ing form:
Vt =V + wl;tVLt +...+ wc;tvc,t + ¢t (Vt—l - V) . (528)

We have introduced the notation V; ; = yivty;t. Note that the statistic at time t is, therefore, a weighted
linear combination of statistics from different sources: (i) expert knowledge, V, (ii) ¢ transformations
of the data source, w;,;V;4, and (iii) accumulated statistics from the past data, V;_1. The same is
composition can also be shown for the remaining statistics, ®;, v;. This structure is common in al-
gorithms for on-line identification of non-stationary models, however, all the weights are typically as-
sumed to be known In this Section, we have assumed that all weights involved in the update (5.28),
i.e. Wi, ..., We and ¢y, are unknown The resulting algorithm, balances, in effect, the contributions

being made by past data, current data, and expert knowledge. It achieves this on-line.

From [5.28), we note that, in effect, the alternative distribution is balanced with respect to components
in the MEAR model. Therefore, choice of the alternative distribution must be considered as a part of
the filter-bank design.

5.4. Inference of an AR process with Switching Parameters

This experiment is designed to verify the ability of time-variant forgetting to detect sudden changes in
parameters (changepoints) and to adjust the forgetting factor accordingly. A univariate second-order
stable AR model (i.ex; = [d;_1, d;_»]") with parameters) = 1, and

A [1.8,—0.98] if mod (¢,30) = mod (¢, 60)
[-0.29,—0.98] if mod (£,30) # mod (£, 60)

wheremod (¢, ) denotes the modulo function, i.e. remainder after division. The model was identified
via VB-posteriors[(5.19) andl (5.P0) using the VEM algorithm (Algorithm 2.2) to complete the asso-
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ciated VB-statistics[ (5.21)=(5.P3). In our simulation, we have chosen the alternative statistics to be

V = diag ([1,0.001,0.001]") , ¥ = 10, (5.29)

corresponding to the prior estimatds = [0, 0], var (a;) = var (a2) = 1000, wy = 0.1. The prior
distribution is chosen equal to the alternative distribution. The initial value of the forgetting factor was
s = 0.7. The full VEM algorithm was stopped wh%ﬁim) — $§m*”) < 0.001. The restricted VEM
algorithm was stopped after two steps. The results of identification are displayed in[Figure 5.1.

Note that the method—to within one time-step—correctly detects a change of parameters and esti-
mates the forgetting factor as low égs: 0.05 (att = 33), which achieves almost instant replacement
of statisticsV;, v; by alternative (prior) value¥’, 7. Thus, identification process is restarted. Note that
number of iterations of the VEM algorithm is significantly higher at the changepoint. Therefore, at
these points, the expected value of forgetting facz}?g,r,obtained using the restricted VEM algorithm
(RemarK 5.]1), remains too high compared to the converged value of the full VEM algorithm (Figure
[5.3)). For comparison, the results of identification with stationary forgettings 0.9, are displayed in
Figure[5.]1. The best parameter tracking is achieved using the VB posterior distributions evaluated via
VEM iterated to convergence. ldentification of the process using restricted VEM is accepttide
parameter variations are not too rapid.

5.5. Inference of a Stationary AR Process using Time Variant
Forgetting

The forgetting technique can be used even for on-line identification of stationary processes. In on-
line scenario, the early estimates are heavily dependent on the chosen prior distripgéipnyhich
can negatively influence the convergence of the identification algorithm. Therefore, vdisoosint
schedulesiave been proposed to overcome this problem [35].

We now compare the performance of our method with the discount schedule proposed_in of [35],
which can be seen as a heuristic choice of forgetting factor in the form

1

:1——7
& m(t—2)+m

(5.30)
wheren;, andn, area priori chosen constants. Note that— 1 ast — oo. The aim of this schedule
is to discount the influence of the (possibly wrong) prior statistics at the beginning of identification. As
the posterior becomes data-dominant, the forgetting factor approaches unity, resulting in standard AR
identification. The rate of forgetting is, however, chosen by the designer @adr-,. In our approach,
this rate is inferred from data.

A univariate second-order, stable, AR model (icg = [d;_1, d;—2]) with parameters! = [1.8, —0.98],w =
1, was simulated. The results of parameter identification using VB posterior distributions (Cdroljary 5.1)
are displayed in Figuije §.2. For comparison, identification using the discount factgr (5.30) was also un-
dertaken (Figurg 5]2), via standard AR identification with forgetting (Seftion|3.2.3), for the choise of
non-stationary forgetting factdr (5.,30) with = 7, = 1.
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TIME-VARIANT FORGETTING

Figure 5.1..Results of identification of a non-stationary process using time-variant forgetting. In sub-
figures (i)—(iii), full lines denote simulated values of parameters, dashed lines denote pos-
terior expected values, and dotted lines denote uncertainty bounds.
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5.5. Inference of a Stationary AR Process using Time Variant Forgetting

Figure 5.2.Results of identification of a stationary process using time-variant forgetting. In the second
sub-figure, full lines denote simulated values of parameters, dashed lines denote posterior
expected values, and dotted lines denote uncertainty bounds.
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5. BAYESIAN INFERENCE OF NON-STATIONARY AUTOREGRESSIVE MODELS USING
TIME-VARIANT FORGETTING

Note that fort < 15, the expected value of the unknown forgetting fact?gr,is very close to the
discount factor. However, as— oo theq?t does not converge to one but a smaller invariant value (in this
simulation,¢; ~ 0.92 for t > 20). This is a consequence of the stationary alternative distribufion,

Note that for stationary forgetting; = ¢ (Sectio), parameters of the alternative distribufion,
andr, are always present ik _1, 141 ), ). Hencdjim;_.. $t is determined by the chosen
alternativef (V, 7). The alternative statistics were chose5.29).

We believe that, in many practical applications, it is easier to choose a reasonable prior from expert
knowledge, than to tune the discount schedule, via parametesadn,. The latter must be done
experimentally, which may be time-consuming.

Note that number of iterations of the VEM algorithm is rather low (Figurg 5.2). Hence, the truncation
of VEM cycles (Remark 5]1) yields almost identical results to the full VB scheme, which achieves
convergence at each time-step. The results of the latter were not, therefore, shown in this experiment.

5.6. Discussion

The technique of forgetting is used in many estimation methods for non-stationary processes [58, 105],
with the forgetting factor considered to be time-invariant and known. Attempts to relax the assump-
tion of a priori known forgetting factor were made, especially for the Recursive Least Square (RLS)
algorithms [58]. The method presented(in [102] is the closest to our approach. It is a gradient-based
estimation of the forgetting factor for the RLS algorithm. We note the following differences:

e The RLS algorithm is based on the assumption of a Normal distribution of parameters. The
Bayesian interpretation of forgetting (Sect[on 3]2.3) can be applied to any class of posterior dis-
tributions that is closed under the geometric m¢an {3.39). This was demonstrated in [Seftion 5.3,
where we applied variable forgetting to the identification of the non-stationary parameters of the
Markov model.

¢ In our approach, we minimize the KL distance from the approximating to the true posterior dis-
tribution ateachtime ¢. This allows for rapid changes (i.e. switching) of the model parameters.
The criterion of asymptotic mean square error minimized in/[102] addresses slower variations of
parameters.

e The posterior inference of the forgetting factor (5.20) is sensitive to the chosen alternative pdf of
the parameters, vid andz in ). They play a similar role to the tuning parameteraiid3)
in [L02]. The alternative distribution can be chosen using the available expert knowledge of the
problem, via formal prior elicitation procedures [106]. The tuning parametefs of [102] must be
adjusted experimentally.

We have noted that the optimal posterior distribution of the forgetting factor is not tractable and it
must be approximated to achieve a numerically efficient identification algorithm (Prop¢sition 5.1). The
choice of approximation, of course, influences the quality of results of the inference algorithm. The
proposed approximation is simple and it may be inappropriate for certain tasks. Other approximations
might be investigated in such cases, to improve performance.
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Chapter 6.

Bayesian Treatment of Principal Component
Analysis

In this Chapter, we study the Bayesian inference of parameters of the Probabilistic PCA (PPCA) model

(Section[3.B). An approximate inference of the model, using the VB approximation, was reviewed

in Section 3.33. The parameters of the posterior distribution are evaluated via the VEM algorithm

(Algorithm [2.2), which is computationally intensive in the high-dimensional contents where PCA is

typically applied. In this Chapter, we new VB identification algorithms, which are significantly faster.
Recall, that the PPCA mod¢l (3]50) is

f(DIA, X, w,r) =N (AX', ' [, ® L) .

Hence, throughout the Chapter, we assume the identity covariance matrix of the additive noise. Results
achieved in this Chapter can also be used even for colored, Normal distributed nkisenofcovari-
ance matrix. In this case, the results are valid for a matrix of pre—procé?s). Identification for
the Factor Analysis model—i.e. the PPCA model witiknowncovariance—will be adressed in the
next Chapter.

The model is first studied at the lowest possible dimension, i.e. scalar variables, to gain insight
into the problem. Detailed analysis of thisy problemleads to (i) faster evaluation of the posteriors
for PPCA, and (ii) interest in the orthogonal parameterization of the PPCA model. The orthogonal
PPCA model is then proposed and its Bayesian inference is developed. Performance of both methods is
compared on simulated data. Application of the resulting algorithms to real data is deferred to Chapter
[7.

6.1. Toy Problem: Scalar Decompositions

In this Section, we reduce the model (3.50) to the simplest case. Reducing (3.50) to minimal dimensions,
i.e.p =n =r =1, we obtain a scalar model:

d=ax +e. (6.1)

Model (6.]) is clearly over-parameterized, with three unknown parametess ) for one measure-
ment,d. It expresses any additive/multiplicative decomposition of a real number. Separation of the
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6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

‘signal’, azx, from the ‘noise’,e, is not possible without further information, i.e. the moderl}(6.1) must
be regularized. Towards this end, let us assume that nassdistributed as\ (0, o). Then,

fdla,z,0.) = N(a$>ae)a (6.2)

whereo, is assumed to be known.

The likelihood function for this model fod = 1, 0. = 1 is displayed in the upper row of Figure
[6.3, in surface plot (left) and contour plot (right) froms. The maximum of the likelihood is reached
anywhere in the manifold defined by the signal estimate

dr = d. (6.3)

This illustrates the rotational ambiguity problem (3.53) of Sedtion 3.3. Further regularization is clearly
required.

6.1.1. Bayesian Formulation

It can also be appreciated from Figdre]|6.1 (upper-left), that volume under the likelihood function is
infinite. This means thaf (a, z|d, o) « f (d|a,z,0.) f (a,x) is improper (unnormalizeble) when the
parameter prioy (a, z) is itself improper (uniform irf?2). Prior-based regularization is clearly required

to achive a proper posterior distribution via Bayes’ rule. Under the assignment,

flaloa) = N(0,04), (6.4)
the posterior distribution is:
1(az —d)?> 1a® 122
f(a,z|d,0¢,04,04) x exp (—20_6 " 5o 20 ] (6.6)

(6.9) is displayed in the lower row of Figure B.1, foy = 10, 0, = 20, d = 1, 0. = 1. The model
is now regularized, with the consequence that the postérigr (6.6) is normalizable (proper) with point
maximizers (MAP estimates) as follows:

1. Ford > \/;%w,then

(6.7)

1
0 = i(d,/“““"”)? (6.8)
Oy Oy

Note that product of maxima is

IS
Il
H_
N\
SH
ST
IS] 8
\
B
IS )
N———
N]]

(6.9)
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6.1. Toy Problem: Scalar Decompositions
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Figure 6.1.1llustration of scaling ambiguity in the toy problenpper row: the likelihood function
f (dla,z, o) for d = 1 (dash-dotted line denotes manifold of maximiadwer row: pos-
terior pdf f (a,x|d, 04,04, 0¢) fOor d = 1, with priorso. = 1, o, = 10, 0, = 20. Cross
marks denote maxima.

From [6.9), the signal estimate has been shifted towards the coordinate origin compgareld to (6.3).
For the choicey, < 0. ando, < o, the prior strongly influences the posterior and is therefore

informative. For the choicer, > o. ando, > 0., the prior has negligible influence on the
posterior and can be considered as non-commital.

2. Ford < \/%,55:&:0.

Clearly, the quantityl = ﬁ constitutes an important inferential breakpoint. Bar d, a non-zero
signal is inferred, forl < d, the observation is considered to be purely noise.

6.1.2. Full Bayesian Solution

The posterior distributiori (6.6) is normalizable, but the normalizing constant cannot be expressed in
closed form. Integration of (6.6) overc R yields the following marginal distribution far:

1 1d%0, + a*oy + a2 9 9 _
f(ald,o¢,04,0) x 3 exp T2 o, (@or 1) [7‘(‘ Oa (a oz + 1)} , (6.10)

1
2
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6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

Figure 6.2.Analytical marginals (of distribution from Figufe 6.1y, = 1, o, = 10, 0, = 20, and
d =1 (left), d = 2 (right).

whose intergral ovet: is not available in closed form. Structural symmetry with respeatdndz in
(6.7) implies hat the marginal inference fohas the same form gs (6]10).
The maximum of the margindl (6.110) is reached for

1
—040z—20c+1/0a0z (060 +4d?) 2, a2
:]: %02 lf d > m =+ Oe¢,

. 0'2
0 1fd§\/aa;x+ae.

The same symboi;, is used to denote the (distinct) joifit (6.8) and marginal (6.11) MAP estimates. No
confusion will be encountered. Both cases[of (b.11), respectively, are demonstrated irf Figure 6.2, for
d =1 (left) andd = 2 (right).The curves were normalized by numerical integration.

a =

(6.11)

The only operation on the marginal posterior that can be evaluated analytically, is the maximum
(6.11). Most importantly, analytical normalization of the marginal posteriors is not available, and so
the moments of the posterior must be evaluated using numerical methods. Recall, that purpose of
this analysis is to understand the Bayesian inference of the multivariate PPCA modgl (3.50). The full
Bayesian solution presented in this section can, indeed, be extended into multivariaie case [50]. The
multivariate posterior distributions suffer the same difficulties as those of the toy problem: normaliza-
tion of the marginal posteriors and their moments must be evaluated using numerical methods, such as
MCMC (Sectiorf 2.2.6) [64]. Hence, we now seek an approximation of the posterior distribution using
a Variational Bayes approximation.

6.1.3. Variational Bayes (VB) Approximation

Corollary 6.1 (Corollary 4 of Theorem[2.7]) Consider the following conditionally independent factor-
ization of (6.6):

f(a,:v|d, 0-670—(170—%) = f(a]d, O’e,Ua,Ux) fu('ﬂda Ueaaaaam) . (612)
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6.1. Toy Problem: Scalar Decompositions

Then, using (6.12) and (6.6) in Theorem|[2.1] the VB-optimal form of via found in the following

assignments:

f(x‘d70'eao'aao'z) = N(§7 d)x)a
f(a‘d70-670-a70-36) = N(a7 ¢a)a

with VB-statistics
z = do.l¢.a, (6.13)
a = do, .z, (6.14)
br = (07" (¢ +aa)+o;) ", (6.15)
ba = (07 (b +20)+0,Y) . (6.16)

The VB-statistics—&, Z, ¢,, ¢,—can be found irclosed-formfrom (6.13)-(6.15). There are three
possible cases:

1. zero-signal inference:

r = 0, (6.17)
a = 0,
4
b = % ( 1+%—1),
20, Oe
e 4 av¥x
by = o ( | 4 Y000 _1>7
20, O¢
2. and 3. non-zero signal inference:
/o - %
d — Ve aYx _d e
g = g | F200) VEuOa —do , (6.18)
do,
_ L1
d2 —UVUe)VYalx —d e :
a - o+ ( 0') 040, g ’
do
Oe [Og )
¢ = — 5,80 (d&° —oc), (6.19)
Oe [Og 2
¢a = E O_—wsgn (d — O'e> .

Here,sgn (-) returns the sign of the argument.

From [6.19) we note, that extreme 2. and 3. is meaningful only ter, /.. However, [(6.1B) collapses
toz = 0 (i.e. to the zero-signal inference) for

- lo.+ \/06 (0e +40404) O
q— ~ /oo . 6.20
2 N et 2./04,0, ( )

85



6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

Figure 6.3..Comparison of Laplace and Variational Bayes approximations (for distributions in Figure
6.0). 0o =1, 0, = 10, 0, = 20, d = 2. Left: (Laplace approximation): full line
ellipse corresponds t®-standard-deviation boundary of the joint Normal approximation;
dashed line corresponds to product of Laplace marginal approximations (for comparison
with VB). Right: (Closed-form solution of the VB approximation): VB approximation for
the zero-signa[ (6.17) and non-zero-signal mofles [6.18) are shown.

Hence, ) denotes the VB-based breakpoint.dFord, a non-zero signal is inferred (case 2. and
3.), ford < d, the observation is considered to be purely noise.

These solutions are illustrated in Figlire]6.3 (right). This result illustrates a key consequence of the
VB approximation, namely, absence of any cross-correlation between variables, in direct consequence
of the conditional independece assumption. For comparison, the result of a Laplace approximation (Sec-
tion[2.2.2) is displayed in Figufe 6.3 (left). The Laplace approximation does model cross-correlation
between variables.

The availability of a closed-form VB solution is rare. Therefore, we have the opportunity to study
properties of the standard VEM algorithm in this case. Trajectory of the VEM iterations for mean values
of VB-posteriors[(6.1]7)[(6.17), are shown in Fig[re] 6.4,doe 2 (left) andd = 1 (right). These two
cases demonstrate the two distinct modes of solution of equafion$ (6.13)—(6.16). Though there are no
limiting conditions for the mode in origin, iterative algorithm typically converge to the positive (or
negative) solution fod > o.. This suggest that faf > o the zero-signal solution is a local extreme
of the KL distance.

These results, along with Colordry 6.1, suggest the following:

e The prior distribution is indispensable; as it regularizes the model, and necessary for yielding
finite VB statistics. With uniform priors, i.eo, — oo ando, — oo, hone of the derived
solutions is valid.

e From [6.18), the ratio of the posterior expected valuésis fixed by the priors.

e The inferential breakpointi—i.e. value ofd above which a non-zero signal is inferred—depends
on the product of,0, (6.20).
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6.1. Toy Problem: Scalar Decompositions

Figure 6.4.VB approximations of the toy problem parameter distributions, using the VEM algorithm.
Dashed line denote initial VB-posterior; full line denotes converged VB-posterior; trajec-
tory of the VB means is also illustrated,= 1, o, = 10, o, = 10. Left: (non-zero-signal
mode)d = 2. Right: (zero-signal-modej = 1.

Remark 6.1 (Alternative priors) The choice of priors in VPCA (3.63)), corresponds to the fol-

lowing choise of priors for the toy problem:

Og = 17 f(O'a‘Oé,,B) = g(&,ﬁ),

where o, is fixed, but o, is considered as unknown (i.e. random variable of G distribution with known
hyper-parameters «, (3) to be estimated jointly with other parameters. Using this prior structure for the
toy problem, closed-form VB-statististics can also be found. In fact, the closed form VB-statistics can

be found for many different choises. For example:

1. symmetric priors

f (O-a|a’ﬂ) = f(o'x’a’ﬁ) =g (O‘HB)7

2. fixed 0, and o, conditioned by precision w,
oz =1, f(oaw,a, 8) =G (o, fw).

This suggests, that an analytical solution may be achieved for a wider choice of multivariate priors.
This may be significant for the development of numerically efficient algorithms for of extended PPCA

models.

6.1.4. Non-Degenerate Parameterization for the Toy Problem

The inference problems encountered in previous Sections are consequence of degenerate parameteriza-
tion of the mean valuein = ax. In the multivariate case, this parameterization was used to model the
rank restriction inM,, 7 < min (n,p). In this scalar case, = p = r = 1. Hence, the multiplicative
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decomposition is not necessary, and we can work with a purely additive model:
d=m+e. (6.21)

Once again, we assume thatis Normally distributed:f (¢) = A (0,w), expressed via the precision
parameterw, for consistency with Sectidn 3.2. Identification/efunder the assumption of known
constitutes the trivial identification task of inferring the mean value of a Normal distribution with known
variancel[17]. The problem is well-posed, and no regularizing prior is needed.

We, therefore, analyze the more complicated problem, wldseunknown. Then, the observation
model [6.2]1) is a Normal distribution conditioned on an unknown mean value and precision. As such, it
is a special case of the regression model (Setign 3.1), for which a conjugate prior is available (Section

B-2)
f(m,w) =NW (Vo,1p) . (6.22)

We choose the prior statistics of (6/22) to g = diag ([e1,22]'), vo = €3, where scalars =
[e1,€2,€3]" can be chosen small to yield a flat—i.e. non-committal—pdf. The posterior distribution

is then
f(m,wld,e) = NW (Vo + [d, 1] [d, 1], 15+ 1) . (6.23)

From [6.21), and (6.22), the joint distribution is:

1 1 1
fld,mwle) = wa(l+es) exp <—2 (d—m)*w— imQ&?gw - 251w> . (6.24)

The posterior distribution is found using Bayes’ rule:

f(d,m,wle)
f (dle)
In this case, the analytical form of the posterfor (6.25) is ofAfigy (-) form (3.13), which is regular

and for which moments are available in Apperidix]A.2. Recall, fjlom {6.10), that this was not possible for
the degenerate PPCA decomposition. Hence, for comparison, we now proceed with VB approximation

of 625).

Consider the following conditional independent factorizatiorj of (6.25):

f(m,w|d, &) = (6.25)

f(m,wld) = f (m|d) f (w|d). (6.26)

Using [6.26) with [(6.25) in Theorein 2.1, the VB-optimal form [of (6.26) is found via the following
assignments:

fmld,e) = N (d(l o)t (14 ) Cfl) , (6.27)
fwlde) = G, (3 +es, % [(1 +eg)m2 — 2din + d® + 61]> . (6.28)
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6.1. Toy Problem: Scalar Decompositions

Figure 6.5.1llustration of the VB-posterior, [(6.27)-(6.28), for the scalar additive decomposition
(dashed contour). Full contour lines denote the exéxy posterior distribution|(6.25).

For this simple casef (m,w|d,e) = N, (-)G. (-) can be compared to the exact poster.23).
Graphical comparison faf = 1 is displayed in Figurg 6]5.
We note the following:

e the prior distribution[(6.22) can be chosen such that= €3 = 0, without loss of tractability.
This choice corresponds to a uniform (improper) prior on parametddence, in contrast to the
PPCA model[(6]1), the prior on the mean value has no regularizing role.

¢ the hyperparametet;, above has a regularizing effect. It is a hyper-parameter of the prior on
the precision parameter. Note that we are inferring from a single observation only, hence the
data does not contain any information about uncertainty and the inference must be regularized.

6.1.5. The Lessons Learnt

In this Section, we have studied scalar decomposition in an attempt to understand the nature of the
VPCA approximation for the PPCA model (Section 3/3.3). We have noticed the following, which
generates to the full multivariate context:

1. if the variance of the noise is known, the VB-statistics can be fourtdoged-form This elimi-
nates the need to evaluate VB-statistics via an iterative VEM algorithm;

2. inference of the modely = m + e, where the mean is not degenerativly poarameterized is
predictably much simpler. Moreover, the correct posterior distributions ahdw exhibits less
correlation than is the case efandx. Therefore, the conditional independece assumption of the
VB approximation is less intrusive in the former case. More formal analysis related to this issue
can be found in [84].

We will next explore these insights for the multivariate PPCA mddel {3.50).
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6.2. Fast Variational PCA (FVPCA)

In this Section, we study the VB-posterior for the PPCA problem reviewed in S¢ctiof 3.3.3. Notably,
we exploit the fact that VB-statistics for the associated toy problem (Selctipn 6.1) can be found in
closed form. The solution reviewed in Sectjon 3.3.3 uses the VEM algorithm which can be inefficient,
especially when poor initial conditions are chosen. Hence, we begin with consideration of initial values
for the VEM algorithm. Here, we use two simple ideas:

e the closer the initial value of the VB-statistics are to the optimal values, the faster the VEM
algorithm will converge,

o the MAP estimate of a parameter is typically not too far from its expected value. This is supported
by the fact that the approximate posterior distributins (3.72)+3.73) are of Normal-type for which
the mean and the maximum are identical.

Recall, that the maximum of the PPCA model (3.50) was reached for an orthogonal sglutign (3.51).
Hence, we expect that solution pf (3 76) will be very closg to (3.55).

Proposition 6.1 (Orthogonal solution of VPCA) Consider a special case of distributions of random
variables A and X, with restricted first and second moments. The first moments, A and X
(3.78), are formed from scaled singular vectors of the data matrix, D (3.52),

= UT‘;DKA7 (629)
= V.pKx, (6.30)

SIS

where K 4 = diag (ka) € R"*" and Kx = diag (kx) € R"™" denote matrix constants of proportion-
ality. The second moments (3.77), (3.79) are restricted to have a diagonal form:

Y4 = diag(oa), (6.31)
EX = diag(o-x). (632)

Then, evaluation of the VB-statistics (3.76)—(3.83), via the VEM algorithm initialized with values in

the form of (6.29)-(6.32), yields results also in the form of (6.29)—(6.32).

Proof: By induction: (i) the VEM algorithm is initialized in the form (6.29)—(6]32); (ii) substitut-
ing (6.29)(6.3R) intq[ (3.76)F-(3.B3) yields results in the forn of (6.29)—{6.32). [ |
Note that, under Propositipn 6.1, the distributiondodnd X are determined by the constants of propor-
tionality, k4 andkx, and variancesg 4 ando x, respectively. The iterative algorithm is then greatly
simplified, since we need only iterate on thedegrees of freedom constitutikgy, kx, o4, ando x
together, and not oA, X, 4, £x with 7 (p + n + 2r) degrees of freedom. Note that (3.76)—(3.83)
now involve products of diagonal matrices. Hence, we need only evaluate diagonal elements, using
identities of the kind

KAKX :diag(kAokX),
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whereo denotes Hadamard product. Equatigns (3.76)—[3.83) can now be re-formulated in efficient
diagonal form. Intuitively, the equation for the mean vajue (3.7§) is replaced by an equation for

its diagonalk 4, the equation for the covariance matr®, (3.77), is replaced by an equation for its
diagonalo 4, etc.

kA = (Dlr;DOkXoO'A, (633)
o4 = (Gnox +okxokx+0) ", (6.34)
kX = UAJO'XOkAol'r;Dv (635)
ox = (Gpoa+Bkaoka+1y,) ", (6.36)
o = a0+§, i=1,...,n, (6.37)
1 .
B = ﬁo+§(pa,4,i+ki,i), i=1,...,n, (6.38)
9 = 190+%, (6.39)
1
p = p0—|—§(/DlD—Ql;;D(kAka)—l—(kAka)/(kAka)),
1__
—{—§w l(po{4 (kx okx) + pno'yox + no'y (k:AokA)). (6.40)

Hence, equation§ (6.33)—(6]40) can be used as replacement far (3.76)—(3.83).

Note that elements of vectoes andk correspond in such a way that titb element of one vector
depends only on thi&h elements of the remaining vectors, e.g.

kai = Wlpikxioa;-

The only equation that makes them mutually dependeft is|(6.40), i.e. the expectediyalfie, If &
is known, the complexity of the problem is now reduced to the complexity of the toy problem (Section
[6.1), which is analytically tractable.

Proposition 6.2 Let the posterior expected value & of w be known. Then, equations (6.29)-(6.36)) have

an analytical solution with two modes:

the first one for lp ; < ﬁ%fm,

kai = 0, (6.41)
kx;, = 0 (6.42)
120+ —(n—p) fo — \/53@2 (n —p)* + 4Bonpl
ox,; =— — — s (643)
’ 2 n (1 — Bol)
1—ox,
oy = —t (6.44)
T X ipw
(a0 + 3p) (ox: — 1)
B, = 2 : (6.45)

(n(oxi—1)+p)oxo’
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and the second one forlp ; > \/M\/E\/l — Bolo,

Ga

kai = 22, (6.46)
(&3, — p) ks

kx; = , (6.47)
’ p (@K3,+1)

S _Okit1 (6.48)

AT (az%yi - p) ’ '
ox; = @Z%’i _ p> (6.49)

Glp,; (k3 + 1)
(a0 + 3p) (BK3: (1 = B6o) (0 — p) +Ip3) + -+ Bo*Th, )

P = = — , 6.50
’ Wki,i (p—n)—n+ wlzDﬂ. (6.50)

where the expression denoted as z2 for k 4 ; is too long and can be found in Appendix

Proof: evaluated using the symbolic software package, Maple. See Appehdix B for detailed
analysis. [ |

Conjecture 6.1 (Soft orthogonality constraints) Prior distributions on A and X , i.e. (3.63) and (3.66)),
were chosen with diagonal covariance matrices. This choice favours such matrices A and X whose
product A’A and X'X is a diagonal matrix. Hence, the Variational Extreme (Coro]lary converges
to posterior distributions with orthogonal mean value, even if the VEM algorithm was initialized with

non-orthogonal matrices.

Note that, using Propositign 6.2, the VEM algorithm can be greatly simplified. Substitiiting (6.41)—

(6.45) into [6.3B)+(6.38), the VB-statistics are determined up to the expected value of the precision
(6.40). The VB-statistics can be evaluated via a simplified VEM algorithm with one degree of freedom,

as follows:

Algorithm 6.1 (Fast VPCA)
1. SVD of the data matrix

2. Choose initial value of & a@ =

lp;p

3. Evaluate the breakpint point:

Ip= le—ﬁoa-
Vo

4. Splitlp into 1D = {ZDJ- < [D} and1? = {ZDJ- > [D}. In fact, the number of elements in IV
determines the ARD property, and thus r,,.

5. Evaluate solutions of mode 1, —, for 1V, and of mode 2, —, for1(?),

"This choice will be explained in Sectipn .4.
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6.3. Orthogonal Variational PCA (OVPCA)

6. Update estimate of 5(*) = %, using and 4 .

7. If difference of ") — 5(*=1) > threshold, go to 3.

Comparison with the standard model will be studied in Se¢tion 6.4.

6.3. Orthogonal Variational PCA (OVPCA)

In Section 3.B, we have shown that the ML estimation of parameteasd X of the PPCA model
suffers from rotational ambiguity (Remdrk B.6). It is a consequence of inappropriate modelling of low-
rank matrix),., which is clearly over-parameterized. This is a complication in the Bayesian treatment,
where the inference ol and X must be regularized via priors, as noted in Sedtion 5.1.1.
However, from an analytical point-of-view, the model contains redundant parameters. For example,
under the VB approximation, the posterior expected value of the mean,
Eax (M) = Eax (AX) = Up,pdiag (k.4 0 krix) Viip,

T

is found in the SVD form, but the singular values are found as element-wise product of two vkgtors,
andkx. Element-wise ratio of these two vectors is governed by the chosen priors. In this Section, we
re-parameterize the model in a more compact way.

6.3.1. Orthogonal Parameterization of the PPCA Model

A standard tool for dealing with reduced-rank matrices is the ‘economic’ Singular Value Decomposition
(SVD) [73]:
My = ALX". (6.51)

Since the rank of the matrix M, is knowrﬂ, we can restrict matrices} and X, to ®P*" andR"*"
respectively, with orthogonality restriction§ A = I, X'X = I,. Also L = diag(l) € R"*" is a
diagonal matrix of non-zersingular values] = [I1, . .. ,lr]’, ordered, without loss of generality, as

lh>l>...>1.>0. (6.52)

The decompositiorj (6.51) is unique, up to the sign ofittsingular vectors, (i.e. there a2é possible
decompositiong (6.51) satisfying the stated constraints, all equal to within a sign ambiguity).

Model (3.1), extended by (3.49), (6]51), yields:
f(DIA, L, X,w,r) =N (ALX', v ', ® I,) . (6.53)

To our knowledge, this model [107] has not been considered before in the literature. The maximum
likelihood estimates of the model parameters, conditioned by knoware given by

AﬁXA): D|A, L, X
(AL X.0)=ag max [(D|A.LX.w.r).

2At present we suppose it is known. This will be relaxed later.
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with assignments

A= UT‘;D7 f/ - Lr,r;Du X - Vr;Dy w= # (654)

i=r+1 l2D,z
Here,U,.p, andV,.p are the first- columns of the matrice§p, andVp of the SVD decomposition of
the data matrixD (3.52) respectively, andl, . p is ther x r upper-left sub-block of matrix.p.

6.3.2. Bayesian Formulation

The confinement, in the orthogonal model, ambiguity to only a sign-based ambiguity is an advantage
gained at the expense of orthogonal restrictions which are generally difficult to handle. Specifically,
parametersA and X are restricted to having orthonormal columns, i#A = I, and X'X = I,
respectively. Intuitively, each columny,i = 1. ..r, of A belongs to the unit hyperball indimensions,

i.e. a; € H,. Hence,A € Hy, the Cartesian product efp-dimensional unit hyperballs. However, the
requirement of orthogonality—i.ex,a; = 0, Vi # j—confines the space further. The orthonormally
constrained subses,, , C ‘H,, is known as the Stiefel manifold [108]. SpaSg, has finite area, which

will be denoted as (p, r):

o 3PT

aar(r=1) 1T (p—-j+1)} ’

T(p,7) = (6.55)

whereT (-) is the Gamma functiori_[71]. Both the prior and posterior distributions have a support
confined taS,, ..

We choose the priors oA and X to be the least informative, i.e. uniform &, andsS,, . respec-
tively:

FA) = 7,7 X (Spa) s (6.56)
FX) = 7(n,r) ' x(Sur)- (6.57)

There is no upper bound en > 0 (3.49). An appropriate prior is therefore (the improper) Jeffreys
prior on scale parameters [18]:

flw) o wh (6.58)

Suppose that the sum of squares of elemenfs f fixed, e.g.:

) dij =t (DD) =1. (6.59)
1=p j=n

This can easily be achieved in a pre-processing step.|(6.59) can be expressefl, uging (3.52), as:

p
tr (DD') =tr (UpLpLpUp) =Y 15, = 1.
1=1
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6.3. Orthogonal Variational PCA (OVPCA)

This implies an upper bound dn
T p
<y i, =1 (6.60)
=1 =1

This, together with[(6.52), confinégo the space

L’T:{l‘ll>l2>...>lr>0, Zz?gl}, (6.61)

=1
which is a section of a unit hyperball. Constra[nt (6.60) forms a full hypeftaliwith volume
r r
hy = 73T (5 + 1) . (6.62)

Positivity constraints restrict the allowed volume/tp/2”, and hyperplane$l; = [;, Vi,j=1...r}
partition the positive section of the hyperball intbsections with equal volume, only one of which
satisfies conditior] (6.52). Hence, the volume of the support|(6.61) is

2r (r!)’

Therefore, we choose the prior distributioniaie be non-committal—i.e. uniform—on suppdrt (6.61):

FO=ULy) =or X (Lr). (6.63)

Multiplying (6.53) by [6.56),[(6.57)[ (6.58) anfl (6]63), and using the chain rule of probability, we
obtain the joint distribution:

f(D,A L X, wr) = N(ALX, v 'I,® ;) x
e T (pr) T (nyr) Tt (6.64)

onsuppor{ A€ S, } x{le L} x{X €S,,} x {w>0}.
The posterior distribution is then obtained using Bayes'’ rule:

f (D’ A? L? X7w|,r)
f(Dlr)

Exact posterior inference fror (6]64) is not available.

fA L, X, w|D,r) =

(6.65)

6.3.3. Variational Bayes (VB) Approximation

Corollary 6.2 (Corollary 5 of Theorem [2.3) Consider the following conditionally-independent fac-
torization of (6.63)):

f(A, L, X,w|D,r) = f (A|D,r) f (X|D,r) f (L|D,7) f (w|D,7) (6.66)
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Using (6.64) and (6.66) in Theorem the VB-optimal form of (6.66) is found via the following

assignments:

f(AID,r) = M(Fy), (6.67)
f(X|D,r) = M(Fx), (6.68)
fAD,r) = tN (s’ L)), (6.69)
fw|D,7r) = G, p). (6.70)

Here, M (-) denotes the von Mises-Fisher distribution (i.e. normal distribution restricted on the Stiefel
manifold [108]). Their matrix parameters are F'4 € RP*" in , and Fx € R™™" in . tN
is the truncated Normal distribution with truncation points given by the lower and upper bounds of the
prior (6.83).

The VB-statistics of (6.67)—(6.70) are:

Fy = GDXL, (6.71)
Fy = GD'AL, (6.72)
w = diag™! (X"D’E), (6.73)
2 = oL, (6.74)
9 = %, (6.75)
o = %tr (DD’—QD)?EE’)+%17L (6.76)

o~ o~

These, in turn, are defined in terms of moments of distributions —, namely A, X, 1, I'l and
&. These are expressed via the SVD of parameters F 4 (6.71) and Fx (6.72):

Fy = UFALFAVIQA, (6.77)
Fx = Up,Lp, Vl/va (6.78)
with Ly, and Lp, both in R"*". Then,

A = Up,G(p,Lr,) Vi, (6.79)
X = UpyG(n,Lpy) Vi, (6.80)
z\ = Ht+sp (“’la S) ) (681)
U, = rs?+ uilA— sk (g, 8) , (6.82)
W = Q (6.83)

P

Moments of M (-) and tN (-)—from which (6.79)-(6.82) are derived—are reviewed in Appendices
and[A.4 respectively. Functions G (-, ), ¢ (-, "), and & (-, -) are also defined there.

Proof. Can be handled in the same way as proofs for the previous VB-related Corollaries. Itis an
easy but lengthy exercise in probability calculus. [ |
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Remark 6.2 (Approximate support for L) The correct distribution for I is
fAID,r)= tN (ﬂla 52[7"3 »Cr) ) (6.84)

i.e. a Normal distribution truncated on support, L, (6.61). However, the moments of distribution (6.84)
are difficult to evaluate, as L, forms a non-trivial section of the multivariate support. Therefore we
approximate the support L,. by its envelope L, ~ L,.. Note that is maximized ifly = lo = . ..

by, lrp1 = lpp2 = ... =l = 0. In this case SP 2=

tobel, = ros. Hence, 4 has a rectangular envelope:

rl? < 1, which defines an upper bound, I, < fr

ZT:{lyo<zi§?T:r%, z‘:1...7«}. (6.85)

is then approximated by . Note that L, is a rectangular area. Hence, can be written

as the product of univariate truncated Normal distributions, moments of which are known (Appendix
. The error of approximation is largest at the boundaries, l; = 1;, i # j, i,j € {1...r}, and is

negligible when no two l;’s are equal.

Once again, the general solution of the VEM algorithm (Algorifhn} 2.2) can be used. However, closer
analysis of equation$ (6.]71)—(6]83) reveals that the evaluation for our model can be simplified, as fol-
lows.

Proposition 6.3 (Orthogonal Variational PCA (OVPCA)) We search for a solution of A and
X in the space of scaled singular vectors of matrix D :

— UppKa, (6.86)
= V.pKx. (6.87)

Py

Up and Vp are given by . Ky = diag(ks) € R and Kx = diag(kx) € R™*" denote
constants of proportionality which must be determined. Then, each iteration using equations (6.71)-
(6.83) will not leave this space: i.e. (6.86) and (6.87) are true at each iteration step.

Proof: Consider theth iteration stept = 1,2,. .., where superscript) denotes the optimized
parameter values in this step. Assume that estimatés!), X(*-1), at the end of the previous sfep

are of the form[(6.86)[ (6.87); i.e.

-~

R S S S o) (89)

Hence, von Mises-Fisher parametéts and 'y are updated, at iteratioh) via (6.71) and[(6.72) re-
spectively:

FY = 50D (UpLpVh) Vep K VLD = 300, L, p KDL (6.89)
FY = oY (UpLpVp) UnpKY VL) =0, p Ly rp K VLY, (6.90)

3nitial conditions, i.e. at = 0, will be specified shortly.
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using [3.5). These are in the SVD formBf (6.77), andF'x (6.78) respectively, with assignments:

Up, = Unp, LY =60VL,pK¢ VY, Ve, =1, (6.91)
Upy = Vip, LY =0¢ VL, pk VLY, Vi =1, (6.92)

Substituting[(6.9[1) and (6.D2) into (6]80) ahd (6.79) respectively:

AY = U.pG (p,a<t—1>LT,T;DK§§*”E§t—1>) I, = U p KO, (6.93)

A(t) = ‘/'r,DG (n,@(t_l)Lr,r;DKg_l)Eg_l)> I?" = VerK.\(Xt)7

since function? (-, -), with diagonal matrix argument, returns also a diagonal matrix (Appéndix|A.5.2).
Therefore, new estimates remain of the same type|(6[86), (6.87) with assignments:

KY = G (p.o" VLK VLEY), (6.94)
KY = G(no“ VLK VL), (6.95)
|

Note that, under Propositi.3, the optimal valuesiadnd X are determined up to the constants

of proportionality,k 4 andkx. The iterative algorithm is then greatly simplified, since we need only
iterate on the2r degrees of freedom constituting 4, and K x together, and not orl and X with

r (p+n—51) degrees of freedom. To achieve this, we must, however, satisfy the requirement of
Propositior] 6.3, namely we must initialize the iterative scheme to s&fisfy| (6.86) anfl (6.87), using any
diagonal matriceg{ 4, and K x, with positive elements on their diagonals. In fact, féjf) = K§?) =

I,, (6.88) and[(6.87) are the ML solutiotis (6.54), and so an ML-initialized iteration is proposed, leading
finally to the Orthogonal Variational PCA (OVPCA) algorithm.

Note that:

e initialization via the ML solution guarantees fast convergence to the unique solution,[singe (6.64)
is likelihood-dominated by design.

e (6.71){6.8B) now involve products of diagonal matrices. Equations](6[73)}-(6.76)], (6.94), and

(6.95) can now be reformulated in efficient diagonal form.

The final OVPCA algorithm is as follows.

Algorithm 6.2 (OVPCA)
1. Initialize estimates using ML solution : ie. kff) = kg?) = 1,1, 100 — l..p, 50 =

pn
p

12
i=r+1'D,i
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6.3. Orthogonal Variational PCA (OVPCA)

2. Evaluate until convergence is reached:

Y = G (p 0t Dp okl ol (6.96)
Y = G (000 okl o)), (6.97)
w? = kYol ok Y, (6.98)
s® = (a@—l))_é, (6.99)
i = py +S(t71>¢<“§t—l>,s<t>>7 (6.100)

~ ! 2 !
l,l(t) _ (ugt—l)) i(t_1)+r(s(t—1)> _ -1, (Mgt—l)’s(t—l)) 1., (6.101)
-1
!/ o~ (t—
50 = ftpto —2 (K 0Tk ) 1p AV L ea02)

Remark 6.3 (Automatic Rank Determination (ARD) Property of the OVPCA algorithm) It is ob-
served that estimates of k4 ; and kx ; typically converge to zero for i > r,, for some empirical upper
bound r,,. A similar property was used as a rank selection criterion for the OVPCA algorithm (Remark

[3.8). There, the model order was chosen as ©* = r, [7].
Remark 6.4 Equations (6.96)—(6.98) are satisfied for
k:A:kX:/J,l:OT’l, (6103)

independently of data, i.e. independently of lp. The only parameter to be determined is w. Solution
(6. 103) is appropriate for data formed only by realizations of homogeneous Gaussian noise without any
signal, i.e. 7 = 0. This case will then be revealed by the ARD Property (Remark|[6.3), i.e. r,, will be
equal to zero. If the ARD Property yields a different estimate, i.e. r,, > 1, then solution is a
local maximum (or saddle point) and the true minimum of the KL distance has to be found by evaluation
of (2.28) for both cases.

With respect to the original PCA (3.57) (Sect{on|3.3), propositioh 6.3 reveals an interesting analytical
insight:

e Collinearity (6.86), [(6.87) of the posterior mean with the respective ML estimate (i.e. PCA)
means that uncertainty bounds dnare, in fact, uncertainty bounds on principal components

Ur,p, (see Appendik A.5]3).

e We noted2” cases of SVD decompositioh (6]51), distinct in terms of the signs of the singular
vectors. Note, however, that Proposit 6.3 separates posterior mean ﬁa@) andX
(6.87) into orthogonal and proportional parts. Only the latker &ndkx) are estimated using
the OVPCA algorithm (Algorithn@]Z). Since the functi@n(-, -) is confined to the interval
[0,1] (see Appendik A.5]2, Figufe G.1), estimated valuek pfandkx are always positive. In
other words, the VB solution is unimodal, as though approximating ongof the possible&”
modes. Due to symmetry of all modes, the solution is valid for all of them. This is important, as
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the all-mode distribution ofl is symmetric around the coordinate origin, which would consign
the posterior mean td = 0,,-. Note that this symmetry is also reflected in the VB equations

(6.96)6.10”) (Remaik §.4).

e As a consequence of the ARD Property (Renfark 6.3), the number of possible modes of the
approximate posterior distribution is reducefe.

6.3.4. Inference of Rank

In the foregoing, we assumed that the rankof the model[(6.51) was knowanpriori. If this is not the
case, then inference of this parameter can be made using Bayes'’ rule:

f(r[D) o< f(Dlr) f (r), (6.104)

where f (r) denotes the prior on, typically uniform onl1 < r < p. The marginal data posterior
f (D]r) can be approximated by a lower bound (Renfark 2.3)

W f(Dlr) ~ W f (D)~ KL(FOD.7)|F (61D.1))
:/ F(0|D) (1nf(D,9|r) “In (f(0|D,r)>> do. (6.105)
C)

The parameters ae = {A, L, X,w}, and f (D, 0) is given by |(6.64). The optimal approximation,
f(6|D, ), is the conditionally independent model, obtained via the VB framevjork|(6[67)1-(6.73):

f(A,L,X,w|D) = f(AD,r) f(LID,r) f (X|D,r) f (w|D,r). (6.106)

Substituting[(6.6]7)£(6.73) intp (6.106), afd (§.64) into (6]105), then (b.104) yields:

F (D) exp{ —%lnw +rn2+InD (g + 1) +1n (1) (6.107)

1 - -~
+§s_2 (uim — Uy — pyl + l’l)

+1n 0F1( FAFA> —w(kXolokA) Lo

1
2 ’4
1
+1In 0F1< 74FXF)(> —w(k:Xol kA> lr;D

+§;m ot ((2) " (=) ) et ((5v2) )|
—l—rln( ) 19+11np}

wherek 4, kx, p, lA s andw are the converged solutions of the OVPCA algorithm (Algori 6.2), and
F4 andFx are functions of these vi9) a.90) respectivelis the upper bound on suppait

(6.85) ofl.
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We note the following:

e One of the main algorithmic advantages of PCA is that a single evaluation peajenvectors,
i.e. U (3.59), provides with ease the PCA solution for any rank p, via the simple extraction of
the firstr columns,U;..p (3.53), ofUp. The OVPCA algorithm also enjoys this property, thanks
to the linear dependence of soluti¢n (6.86)@p (3.57). Furthermorey, observes the same
property. Therefore, in the OVPCA procedure, the optimal solution for given rank is obtained by
simple extraction o/,.p andV/..p, followed by iterations involving only scaling coefficienks,
andkx. Hencep x (p + n) values (those o/, andVp) are determined rank-independently via
the ML solution, and onlyr + 2 values (those ok 4, kx, i, 1, s and® together) are involved

in the rank-dependent iterations (§.96)—(6]102).

e As a consequence of the Automatic Rank Determination (ARD) property, Rémérk 6.3, values of
all parametersA, L, X, w, inferred by the OVPCA algorithm, are almost identical fop r,,.
Therefore, it is reasonable to evaluate the OVPCA parameters#$gs — 1 (we cannot use = p
becausep, is not valid [6.54)), and approximaté, ~ 4, 1, Vr > r, (and similarly forL, X
andw). This approximation can significantly reduce the number of runs of the OVPCA algorithm

required for evaluation of (r|D) (6.107).

e The explicit posterior distribution on, i.e. (6.10}), was not provided by previously published
approached [4,17]. In its place, the ARD propertytlodir algorithms was used to infer rank.
Since the OVPCA algorithm also possesses the ARD property (Rgmark 6.3), it will be used
for comparison with the formal Bayesian soluti¢n (6]107) in the simulation studies that follow

(Sectior] 6.4).

6.3.5. Moments of the Model Parameters

The Bayesian solution provides an approximate posterior distribution of all involved parareters (6.67)—
(6.70), and[(6.107). Moments and uncertainty bounds are then inferable from these distributions.

The first moments of all involved parameters have already been presé¢ntefl, [6.80)—(6.81) and (6.83),
since they are required by the OVPCA algorithm (Algorithm 6.2). The second non-central moment of
I—i.e. l'l—was also produced by the algorithm. Parameté Gamma distributeO), and so its
confidence intervals are therefore available.

The difficult task is to determine uncertainty bounds on orthogonal paramdtars] X, which are
von Mises-Fisher distributefl (6.67)), (6/68). To our knowledge, confidence intervals on this distribution
are not published. Therefore, we develop approximate uncertainty bounds in Append]|x A.5.3, using a
maximum entropy (i.e. Gaussian-based) approach. The pdf af ®**" is fully determined by the
r-dimensional vectoyx:

yx (X) = diag™! (Up, XV, ) = diag™" (V/.pX). (6.108)

Therefore, confidence intervals éhcan be mapped to confidence intervalggnby (6.108), as shown
in AppendiA.5.2. The idea is illustrated graphically o= 2 andr = 1 in Figure[6.6.
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—— space of X (thickness is proportional to pdf value)
- direction of pdf maximum, and also axis of y

X maximum of pdf
O  mean value

< —- example of projection Xy — Y

—— confidence interval on f(y)
--» projection of uncertainty bounds y — X

Figure 6.6.1llustration of properties of von-Mises-Fisher distributidh~ M (F), for X, F € R2*1,

Hence, lower and upper uncertainty bounds®gan be defined as follows:

- {X: yX(X):gX}, (6.109)

X
X = {X: yx(X) =9x}, (6.110)
using @p) andg, y given in Appendi@, being bounds to the approximating Gaussian distri-
bution ofyx (A.47). In other words, uncertainty boundls (6./.09)6rare those values oX that are
projected onto the boundary of the confidence intervayfor

SinceA has the same distributiod, and A, are analogous.

6.4. Simulation Studies

In this section, we study properties of the algorithms described above in the context of simulated data.
Artificial data were generated using model {3.2) fo= 10, n = 100, andr = 3. Simulated data are
displayed in Figuré 6]7. Three noise variances were considered: £)100, denoted as SIM1 (ii)

w = 25, (SIM2) and (iii)w = 10, (SIM3).

6.4.1. VPCA vs. FVPCA

In Sectior] 6.2, we have presented numerically efficient algorithm (FVPCA, Algofithm 6.1) for evalua-
tion of VB-statistics[(3.72)F(3.75) for Variational PCA (Corollary[3.1). A significant simplification of
the algorithm was achieved by confining the space of possible solution to an orthogonal subspace, as
formalized by Proposition 6].1. It is assumed that the chosen priors confine the space in such a way that
the solution is found within this orthogonal subspace (Conje€tufe 6.1). The purpose of this experiment
is to verify the validity of this Conjecture by simulation.

If Conjecturg 6.1L is true, then the posterior momefits (3.78) andi4 (3.78), converge to orthogonal
(butnot orthonormal) matrices for each possible initialization. A Monte Carlo study of 100 runs of the
original VPCA algorithm (Sectiop 3.3.3) was performed with random initial conditions. During the
iterations, we tested orthogonality of the expected values of matrixa the assignment

O (px) = ||ax"ix|]
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Figure 6.7..Simulated data used for testing of PCA-based inference method.
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— [ T /™

Figure 6.8.Monte Carlo study (100 trials) to illustrate convergence of the VPCA algorithm to an or-
thogonal solution.Left: initial values ofo (ux) (6.111). Middle: converged values of
o (px). Right: number of iterations required for convergence.

Table 6.1..Comparison of converged valuesiof obtained from VPCA and FVPCA algorithms.
y | VPCA, median| FVPCA |

kaa 9.989 9.985
kao 9.956 9.960
kas 8.385 8.386
where||A|| = [|ai;|], Vi, j, denotes absolute value of a matrix applied element-wise. A criterion of

diagonality is then
141,10 (1x) 1,1

17, diag™" (O (ux))’
i.e. the ratio of the sum of all elements ©f(..x ) over the sum of its diagonal elements. Obviously,
o (ux) = 1for adiagonal matrix, and(u.x) > 1 for a non-diagonal matrix; x . We stopped the VEM
algorithm foro (1x) < 1.01, i.e. when the absolute value of non-diagonal elements was less than one
percent of the diagonal elements.

In all simulated cases, this level was reached, though it took many iteration steps. Results are dis-
played in Figuré 6]8: histograms of the orthogonality criteron (6.111) for initial values of magrix
(left), and for its converged value (middle). The histogram of the number of iterations required to reach
the stopping rule is displayed in Figyre 6.8 (right). The middle picture seems to be redundant, since
levelo (nx) < 1.01 was used as the stopping rule. This criterion is, however, important for comparison
with the original proposal (threshold on moments.)f The Variational Extreme is reached with high
accuracy, even for non-orthogonal solutions (.é..x ) above the chosen threshold). However, further
iterations clearly push the solution towards the orthogonal one. This illustrates the flatness of the pos-
terior distribution (see illustration for the toy problem Fig[re] 6.2) and how expensive it is to iterate on
the full space.

For comparison, values @4 from VPCAY and FVPCA for the SIM1 data set are listed in Table
[6.1. Clearly, values ok 4 obtained by VPCA and FVPCA converge to the same values. Tables of the
remaining valuesky, o 4, o x) are not shown for conciseness.

Thus, we have demonstrated that the VPCA algorithm converges to the same values as FVPCA.
Hence, in subsequent studies, we will consider FVPCA as a replacement for VPCA.

o (ux) = (6.111)

“Values of VPCA are sorted here, since the method produces eleménisimfandom order.
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Figure 6.9.Posterior estimates), for the data set SIM2 with respect to different initial valdg®.

6.4.2. Initial conditions

Note that both algorithms, FVPCA and OVPCA, have to be initialized by expected valye.ef 5.
In this Section, we study sensitivity of both algorithms to this choice. From asymptotic properties of
PCA (Remark 3]7), we have a reasonable guess of the interval in which to seatch for

n ~
p w <

Unlp 25

(6.112)

We have tested initialization of both algorithms using values from the intgrval (6.112).

The posterior results for the data sets, SIM1 and SIM3, converged to the same value for all initial
conditions in interval[(6.112). However, for the data set SIM2, the results of both algorithm differ, as is
displayed in Figurg 6]9. Note that values of FVPCA are robust with respect to chosen initial conditions,
but OVPCA results have two different modes: (i) the first two values (almost identical with FVPCA),
and (ii) the majority of the interval, (very close to the simulated value). These two modes correspond
to different values of the ARD property. FVPCA estimatgs= 2, while OVPCA results are, = 3 or
r,, = 2 for different initializations[(6.9).

The basic idea of the VB approximation is minimization of the KL distance (Section| 2.2.4). Hence,
the value of the KL distancé (2.R5) for each mode can be used to choose the global minimum. In this
case, the highest value of KL distance typically corresponds to the mode with highest precision (i.e.
with the lowest variance). Hence, we choose to initialize the VEM algorithm with the upper bound

o0 =1 (6.113)
lp;D

6.4.3. Comparison of Methods for Inference of Rank

In this Section, we study the rank estimation properties of FVPCA and OVPCA. Note that results of
both methods depend only on singular vallig®of the data matrixd.

The true dimensionality of the simulated dataris= 3. Many heuristic methods for choice of the
number of relevant principal components are used in practi¢e [80]. These methods are valuable, since
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Figure 6.10.Ad hocmethods for rank estimation for simulated data with different variance of noise.
The methods of visual examination (Remprk| 3.7) is used for graphs of eigenvaldes

eig (DD') and cumulative variance (i.e. cumulative sum of eigenvaljes

Table 6.2..Rank selection for the simulated data usatghocmethods.

| | SIM1 | SIM2 | SIM3 |

visual inspection

3

2-3

2

cumulative variance

2-3

2

2

they provide an intuitive insight into the problem. For example, the eigenval{@§7) of the simulated
data, and the criterion of cumulative variation (i.e. cumulative sum of eigevalues) are displayed in Figure

6.10.

Note that the first two eigenvectors are dominant (first column), while the third one is relatively small
(it contains only 1% of total variation, see Figlire .10 (right)). In the first row, i.e. case SIM1, the third
eigenvalue is clearly distinct from the remaining ones. In the second case (SIM2), the difference is not
very obvious, and it is completely lost in the third row (SIM3). A subjectigehocchoice of dimen-
sionality using visual inspection (Remark[3.7) and the method of cumulative variance is summarized in

Table[6.2.

Next, we analyze the same data using formal methods. Results of FVPCA, OVPCA and Laplace
approximation (Remairk 3.9) are compared in Tabl¢ 6.3.
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Table 6.3..Comparison of formal rank selection methods for simulated data.
FVPCA OVPCA Laplace
ARD f(r|D),r= f(r|D),r =

2 3 4 ) 2 3 4 )

SIM1 3 3 0 982 17 0.1 0 82 13 2
SIM2 2 3 9% 35 02 0|70 25 3 05
SIM3 2 2 97 39 01 0|94 5 05 0.0

values off (r| D) notshown in the table are very close to zetd.001

Note that for high signal-to-noise ratio, all methods estimated the true dimensionality correctly. In
this case, data were simulated according to the model. We therefore regard the results of all methods to
be correct. The differences between posterior probabilities caused by different approximations are, in
this case, insignificant. The differences will, however, become important for real data.

6.4.4. Comparison of Moments

A direct comparison of parameter moments for both methods is not possible. Therefore, we seek such
a transformation of model parameters into a common, low dimensional, space in which it is possible

to compare FVPCA and OVPCA. Note that the signél, @), is (for both methods) a product

of parameters, posterior distributions of which are all conditionally independent. Hence, the expected

values (under different parameterization)idf,, is:

Erveca (M) = AX'=UpKaKxVip,
Eovrca (My)) = ALX' = UppKadiag () KxVip.

WhereK 4 of the FVPCA method (6.29) is different froii 4 of the OVPCA method (6.88). However,
no confusion can arise, since these quantities are always used independently in their own context, i.e. all
results related to FVPCA were evaluated usjng (6.29). Note that, for both methods, the expected values
of M, are determined by singular vectdrs.p andV;.p. This motivates us to intoduce a transformed
variable:

My = U/.pMyVip € R (6.114)

Using, linearity of expectations of the Matrix Normal distributign ((jA.3) Appemdix A.1) and invariance
of von-Mises-Fisher distribution under orthogonal transformation (Appgndix A.5), the expected values
of M), under both methods, are:

Ervrca (M(r)) = KaKx, (6.115)

Eovrca <M(,,)) = Kadiag (p) Kx.

All elements on the right-hand side above are all diagonal matrices. Therefore, we can compare perfor-
mance of FVPCA and OVPCA using moments of

Ky = diagfl (M(r)> = diagfl (U;;DM(T)V;;D) .
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We evaluate it separately for both methods.

FVPCA: Theith elementu, v, of p,; is:

Myt = Ui Zag vip, i=1,...,7 (6.116)

wherew;.p, vi;p, a;, ; denotes théth vector of matriced/p, Vp, A and X, respectively. The
first moment, i.e. expected values [of (6.[116), is then

!/

At = Efapixp) | @ip Za]a:j YD |

/ /
= U;p Zuj;ij;Avj;ij;X Vi;D;
i=1
= ki;Aki;X 1=1,...,m (6.117)

using [6.29). The second equality in (6.117) follows from orthogonality of singular vectors
u;u; = 0, ¢ # j. The second non-central moment is:

2

Wi = Efaip)fixip) wi;p Z%’«’B} Vi;D ; (6.118)
T 9 )
= Ejupixp | 2o [winas]” [zjvin] (6.119)
i=1

= D_Efap) (Wina;ajuin) Efx ) (vip®;ajvin)
j=1

= Z u;;D (Uj;AIp + kJQ';Auj;Du;';D) ui;D'Ug;D (Uj;XIn + k]Z;XUj;DU;‘;D) U;;p,
'
= (oua+kia) (oixIn+kx)+ > 0a05x, (6.120)
J=1,j#1

The result was achieved using properties of Matrix Normal distribution (Appéndjx A.1)—specifically
linearity of expectation| (A]3), and second momént {A.2)—and orthogonality of singular vectors
Ur;D andVr;D.

OVPCA: Theith elementfu, ; of pu; is:
iy =p | > Liaa | vip, i=1,...,r (6.121)

j=1
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The first moment, i.e. expected value[of (6]121), is then
st = Ejamiamion) | %o | Db | vio |,

! !
= uip [ Y Lujpk;av) pkix | vip,
j=1

= ligksakix i=1,...,r, (6.122)

using [6.86),[(6.87) and (6.81). The second non-central moment can be derived as follows:

2

Wi = Egamamio | o | 2obeiw | vin| ] (6.123)

2
= EBjapfun)fxip) Zl [wipa;)” [@fvin]” |
r ~
= DB (uipajajuip) Ef p) (vipzzjvin) . (6.124)
=1

here, we note that the second moment of the von-Mises-Fisher distribution is not available and
we have chosen to approximate it by a Gaussian using maximum entropy principle (Appendix
[A.5.3). Therefore, evaluation of the expected valueg in (6.124) is equivalent to derivations for the
FVPCA that follow after[(6.1119). Hence,

Wi = 2 (¢4 + kpa) (GixIn +kix) + > 2j¢jadjix, (6.125)
j=Lii

whereg;. 4 is a second moment of the von-Mises-Fiseher distribufion6.67), evaluatéd via (A.40),

Appendi{A.5.3.

The uncertainty bounds ga,; can be—for both methods—evaluated as 2-standard deviation interval,

i.e.
Aoyt = 24/ 1250 — A2 (6.126)

M T //’Zi;]\;[_‘_2 M2i;]\7[

=
I

i;]\7[

=
|

02
Mi;M

where [(6.11]7) and (6.1R0) are used for FVPCA, dnd (6.122) [and (6.122) are used for OVPCA. The
results are summarized in Table]6.4. Note that the spgge-on which we compare the methods—is
determined by singular vector&/(p andV;,p) of the data matrixD (3.52), which are not orthogonal

with singular vectors of the simulated sign#l,,. Hence, diagonal of the projected—v14)—
simulated signal contains non-zero values. These values should also be within uncertainty bounds

©.128).
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Table 6.4..Comparison of inference of the diagona|; of the transformed signal/ ), using
FVPCA and OVPCA.

FVPCA OVPCA
rownumber | simulated| p, o Bay Baar | By P P
1 0.825 | 0.780 0.806 0.833 0.793 0.811 0.829
2 0.492 | 0.469 0.495 0.521 0.481 0.499 0.517
3 0.038 | -0.001 0.000 0.0010.023 0.035 0.046
4 0.000 | -0.001 0.000 0.0010.000 0.000 0.004
5 0.003 | -0.001 0.000 0.0010.000 0.000 0.004
6 0.002 | -0.001 0.000 0.0010.000 0.000 0.004
7 0.000 | -0.001 0.000 0.0010.000 0.000 0.004
8 0.002 |-0.001 0.000 0.001 0.000 0.000 0.004
9 0.002 | -0.001 0.000 0.001 0.000 0.000 0.004

As may be seen of Tabfe 6.4, all projections of simulated values are within HPD regions for OVPCA.
For FVPCA, the projected values are outside of the HPD regions foR. The value,ug;M is outside
because of inaccurate estimationQf and those foi > 4 are outside because uncertainty bounds for
i > r, aretoo tight. Itis worth noticing that these uncertainty bounds are dependent on hyper-parameter,
Bo, which was chosen very low in this simulation. OVPCA has no corresponding hyper-parameter,
which—together with positivity constraints dr-yields more reliable results.

6.5. Discussion

In this Chapter, we have studied the Bayesian approach to Principal Component Analysis. Most of the
published solutions, e.d.l[[7, 50] were based on the Probabilistic PCA madel [48]. We have studied the
simplest case of this model in Sectjon 6]1.3, which we called the ‘toy problem’, and we compared the
approximations available using published methods. The insight gained from this study (§ection 6.1.5)
has been explored in the full multivariate model, yielding two distinct algorithms: (i) fast evaluation of
the VB-statistics of the VPCA (FVPCA algorithm) (Sect[on|6.2); and (ii) the Variational approximation
for the orthogonal parameterization (OVPCA) (Secfiorj 6.3). Both algorithms provides numerically
efficient inference of the corresponding model parameters. We note the following differences:

e The orthogonal mode@l) is a more compact parameterization of the dijpalas it does
not require any regularizing prior distributions to be elicited. On the other hand, for FVPCA,
the hyper-parameters coming from the priors must be used to regularize the model and find a
solution.

e The orthogonal parameterization of the signely,), is appropriate only if there are no other
constraints imposed on the decomposition. For example, orthogonal decomposition of the signal
under positivity constraints (Sectipn B.4) is not possible. Therefore, OVPCA can only be used for
the task of denoising.

e The OVPCA algorithm convergences faster (compared to the corresponding FVPCA algorithm)
and the stopping rule on increments of parameter estimatesiecgn be set close to the machine

110



6.5. Discussion

precision. Convergence of the FVPCA algorithm is slower and it is sensitive to the choice of the
stopping rule.

e The most numerically demanding operation in the FVPCA algorithm is evaluation of roots of
a guadratic function which is an operation well supported by standard software. The OVPCA
algorithm requires evaluations of hypergeometric functions of multivariate arguments, for which
a reliable solution is not available, and which must be approximated (as presented in Appendix

Q).

From a practical (user-oriented) point of view, the FVPCA and OVPCA algorithms are almost equiv-
alent. They yield comparable results (see Tablé 6.4) at comparable computational cost. The OVPCA
algorithm appears to be more reliable on data with low signal-to-noise ratio (Taple 6.4).

Although the orthogonal model (651) is a better parameterization—in the sense that it provides
model-based regularization of the problem—it is complicated to extend it further, e.g. for the noise
distribution as used in the factor analysis moflel|(3.6). Formulation of the problem is straightforward,
and so is the application of the Variational Bayes estimation method in this case. However, the resulting
posterior distributions are of the generalized Bingham typel[108], whose moments are not known to us.
This suggests that efficient numerical evaluation—possible for OVPCA—cannot be achieved for the
factor analysis model.

The original probabilistic PCA model [48] is based on the full factor analysis madel [47], which
explicitly includes a common non-zero mean value for the data colulhf$,) = p. This was not
considered as a part of the linear moglel|(3.2) in this thesis. Itis easy to introduce a common mean value
for applications where it is regarded as important, e.g. for mixtures of PCA model [109]. The model
(3.9) can be readily extended to contain the common mean value, as follows:

M=AX+ nlin,

with i € P!, The Variational Bayes (VB) approximation (Theo@ 2.1) for this model requires more
algebra, but is straightforward. However, Proposifion 6.1 is valid only for fixed estifnatence, the
VEM algorithm associated with this model has much higher computational complexity.
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Chapter 7.

Bayesian Modelling for Functional Analysis
of Medical Image Data

In this Chapter, we study the Bayesian inference of parameters of the FAMIS model introduced in
Section 3.4. The standard parameter inference method for this problem is achieved in three steps in
order to achieve computational tractability (Secfior] 3.4). One of the steps is PCA, studied in previous
Chapter. Hence, we now study application of the previous results in this context. The main concern of
this Chapter is, however, derivation of a unified identification method for the FAMIS model (Section
[3.4.8), using Variational Bayes (VB) method.

7.1. Bayesian Formulation

The FAMIS model|(3.9]1) is, in essence, an extension of the PPCA (3.50). We seek a Bayesian
inference of the model parametets X, w,, w,. Following the Bayesian methodology, we complement
the observation moddl (3.91) by priors on the model parameters.

Prior distributions on the precision matrices were chosen as follows:

P
f(@p|Op, pp) = Hg (Yisps Pisp) » (7.1)
i=1

f(wn|'l9napn)

H g (ﬁi;na pi;n) )
i=1

with vector hyper-parametety, = [V1,p, - -, Ipipls Pp = (P15 - - 5 Ppipls On = [P1:0, - -+, U], P =
[P1:n, - - - Pnn]. These parameters can be chosen to yield a non-committal prior. Alternatively, recall—
from Sectiori 3.4]2—that pre-processing methods were derived by studying assymptotic properties of
the noise. Hence, the assymptotic values can be used to elicit priors. These hyper-parameters can be
seen as ‘knobs’ to tune the method to suit clinical practice.

The parametersd and X, are modelled in the same way as those in Variational PCA, with the
additional restriction of positivity. Prior distributions (3|65) apd (3.66) then become

f(Av) = N (0, L, YT (RT)™), (7.2)
f(X) = tN(0ppn, I, @ I, (RT)™), (7.3)
f(UZ) = g(Q07BO)7 i = 17"'7T> (74)
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with hyper-parametel = diag (v) € R"*", designed for inference of rank via the ARD property

(Remark 3.8).
From [3.91),[(7.1)£(7]4), the joint distribution is
p

F(D,AX, 0, Qn0) = N (AX, 2 @) ]G Vip, pisp)
=1

H g (ﬁi;ny pi;n) tN (Opy”‘? IP ® T717 (éRJr)p’T)

=1
tN (Or,na Ir X Inv (§R+)T7n) g (Ck(), ﬁO) . (75)

The posterior distribution is then obtained using Bayes’ rule:

f(D, A, X,Qp,Q,v)
f (D)

f(A X, Q,,Q,,v|D) = (7.6)

Exact Bayesian inference of this model is not tractable.

7.2. Variational Bayes (VB) Approximation

Following the Variational approximation, we can find an approximate posterior inference under the
assumption of conditional independence, Thedrern 2.1.

Corollary 7.1 (Corollary 6 of Theorem[2.7]) Consider the following conditional independence factor-

ization of (7.6):
f(A7X7 QP7QH7U’D) = f(A‘D)f(X’D)f(QP‘D)f(Qn’D>f(U‘D) (7.7)

Then, using and in Theorem [2.1] the VB-optimal form of is found via the following
assignments:

f(vec(A)|D) = tN (ua,Xa, (R, (7.8)
f(vec(X)|D) = N (ux,Zx, (RT)"), (7.9)
fD) = T[] (i B), (7.10)
=1
p
f(wp’D) = Hg(ﬁi;papi;p% (7.11)
i=1
fwalD) = 119 @i, pim) (7.12)
=1
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with VB-statistics

pa = Savec (Qppﬁnf(’) , (7.13)
N4 = (EX|D (Xﬁ X’) ® Q, + diag (3) ® Ip)_l, (7.14)
px = Exvec (E’Qppﬁn) , (7.15)
Sy = (EA|D (A’ﬁpA @0+ 1, ® In)_l , (7.16)
@ = Ozo—l-%p, i=1,...,m
B = Bo+ %diag’1 (Eap (4'4)),
9, = Dop+ g
Py = popt gding(DQ,D —~ AXQ, D — DO, A+,
+Eap (AEX‘D <X§nX’) A’) ) (7.17)
9 = Jom+ g,
Pn = Pon+ %diag_l (D’ﬁpD —~ D'QAX — X'A'Q,D
+Ex|p (X’EA‘D (A’QPA) X) ) (7.18)

Posterior distributions of A and X are not of the matrix Normal distribution kind (Appendix .
Therefore, they are written in the form of the vec (-) operator (Appendix .

Proof: Can be handled in the same way as proofs for the previous VB-related Corollaries. Itis an
easy but lengthy exercise in probability calculus. [ |
Evaluation of moments of distributiorfs (V.8) and [7.9) is complicated for two reasons:

1. the VB-statistics involve evaluation of large matrices, é&.g.€ R""*"",
These matrices are block diagonal, hence all the operations involved in evaluatjon ¢f (7.13)-
(7.18) can be re-written in terms of blocks of these matrices. This operation is formally trivial but
rather lenghty. Therefore, it will be omitted in this text.

2. moments of the truncated Normal distribution of vector argument are not known to us. Therefore,
we approximate all involved moments 6{ A| D) and f (X |D) by moments of

FAID) = N (s ding (diag™ (T4)), (RF)"7),
FXID) = N (ux, diag (diag™" (2x)) . (RF)™"),
respectively. In effect, we neglect all covariances between elemerisaofd ditto forX.

The Variational Extreme can be found by iteratipg (7.13)—(7.18) to convergence via the VEM algorithm
(Algorithm[2.3).

115



7. BAYESIAN MODELLING FOR FUNCTIONAL ANALYSIS OF MEDICAL IMAGE DATA

7.3. Computational Simplifications

In principle, the mode[(7]5) is an extension of the PPCA mqdel[3.50) for (i) unknown precision matrix
of the noisef, ® 2, and (ii) positivity constraints (7}2), (7.3). These extensions results in a significant
increase in the computational complexity of the associated VEM algorithm, compared to the VEM
algorithm associated with VPCA (Sectipn [3.1). The main causes of this are as follows:

1. the structure of covariance matrices of the priprs|(7.2)] (7.3) is different from the covariance struc-
ture of the model[(3.91). Therefore, the covariance matriges,|(7.14] andl (7.16), of the posterior
pdfs, [7.8) and (7]9), are not in the advantageous Kronecker-product form.

2. positivity restrictions,[(7]2) andl (4.3), are not satisfied for the orthogonal soll{itior] (3.51). There-
fore, a simplification similar to Propositign 6.1 cannot be used. Moreover, no analytical result is
known to us that can be used to invoke the Restricted VB (Cordllaty 2.1).

The first problem may be addressed by choice of different priors. The choice of covariance matrix,
LT tin ), and/, ® I, in ), is intuitively appealing. It is a simple choice which imposes the
same prior on each pixel in the image, and, as a result, it acts as soft orthogonality constraint (Conjecture
[6.7). However, as we have shown in the analysis of the toy problem (Sgctijon 6.1), analytical solution
can be found for other choices of prior (Remiark 6.1), as follows.

Proposition 7.1 (Alternative priors) For the following choice of priors

fAv, Q) = N (0,9, @ T (RT)), (7.19)
F(XIQ) = tN (000, L@ Q" (RT)"), (7.20)

in place of (7.2)) and (7.3)) the VB approximation (Corollary([7.1)) yields the posterior results in the form
of (7.8)-(7-12), with VB-statistics and replaced by
. ~ -1
Sy = (EX|D (XQnX’> ® 0, + diag (3) ® Qp) : (7.21)

Sy (EA|D (A’ﬁpA) @0+ 1, ® ﬁn) - (7.22)

respectively. These can be written in Kronecker product form:

A

(EX|D (XﬁnX'> + diag (13))71 ® ﬁgl,
Ny = (EA|D (A’@A) + I,,)_1 ® Q!

Hence, the posterior distributions, (7.8) and (7.9), are, again, in the form of the (truncated) Matrix

Normal distribution:

FAID) = tN(MAﬁj@@—l,(éR*)p”), (7.23)

FXID) = N (x, @5 @ 0,1, (RF)™"), (7.24)
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with VB-statistics

pa = DQ,X'®,

b4 = Expp (XﬁnX’) + diag (9),
pux = ®FAQ,D,

®x = Eup (A’QPA)JrIT.

Note that the priors proposed in Proposition 7.1 are in the following mutually dependent form:

FAX 0, ) = (A1) £ (X[Q0) f(Dp) f(Q),

which is inconsistent with the assumption of conditional independence of posteriors as enforced by the
VB approximation[(7.J7). However, the covariance matrices of the pijiors|(7[19)] (7.20) were chosen to
reflect the structure of the covariance matrices arising from the observation model (as demonstrated by
operations[(7.14)[ (7.16)). Then, structure of the covariance matrices of the prigr (7.19) is similar to that
of the posterior](7.23), and the posterior is not prior-dominated.

Propositior] 7.1 reduces the amount of computation associated with the VEM algorithm. However,
no further analytical simplification can be made to decrease the number of iterations or number of
parameters required in iteratiofs (4.18)—(F.18). The main complication is the restriction of the support
of the posterior Normal distributionf (7]23), (7.24) to the%et

The VB-based identification of the FAMIS model is closely related to Independent Component Anal-
ysis (ICA). Specifically, FAMIS can be seen as a special caseisly ICA[110]. In fact, our linear
modelD = AX + E, (3.1) and[(3.R), is identical with that of ICA. In ICA4 is known as themixing
matrix and rows ofX are calledsources Therefore, any method concerning this model may be called
ICA. This broad meaning attached to ‘ICA makes cathegorical comparison rather difficult. However,
the main keyword of ICA is the worthdependent The method is typically defined in relation to the
classical signal separation methods of Principal Component Analysis (PCA) and Factor Analysis (FA)
[110]. In PCA and FA, the criteria used for signal separation are based on the sample covariance matrix
of the signal, i.e. on the second moment of its distribution. In ICA, the criterion for signal separation is
full statistical independence of sources, which corresponds to the assumption

f(xt) :Hf<xi;t)7 t= 1,...,TL, (725)

in our notation. Note that this assumption does not imply any particular functional form of the proba-
bility distributiorﬂ. Therefore, inference of parameters has to be adjusted for the chosen pdf. However,

a template algorithm was developped for maximume-likelihood (ML) estimation| [111], for which the
change of the pdf influences only one operation in the algorithm. Bayesian inference is, however, much
more complicated, and it is available only for a limited class of prior distributions. The solution for
Gaussian and truncated Gaussian priors was presented in this thesis ($ectipns 8.3]3 and 7.2). The solu-
tion for mixtures of Gaussian priors was presented_ in [33].

LIn fact, for Gausian distribution, the criteri25) is identical to that of PCA.
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From a computational point of view, the ICA method is currently receiving much attention and many
interesting results has been reported. For example, efficient evaluation of the traditional Maximum
Likelihood (ML) approach to ICA was achieved using fixed-point approximations [112]. Application
of these ideas in the context of the Variational Bayes (VB) approach may bring significant computational
savings.

Reduction of the computational cost for the VEM algorithm can also be achieved using heuristic
techniques. For example:

e the traditional three-step methods (Secfior} 3.4) can be used as a reasonable initial guess for the
VEM iterative algorithm.

o for fixed estimates of the covariance matrid§§and§n, evaluation of the remaining parameters
is somewhat simplified (in analogy to the simplification in Propositioh 6.2). It may be useful to
re-evaluateﬁp and(),, only once for every; steps of the VEM algorithm (e.g. = 10).

Thesead hocpropositions have not been extensively tested and are left for further study.

7.4. Experiments

In this Section, we study performance of the Bayesian inference of the FAMIS model on a sequence
of scintigraphic images of the chest. In this study, a radiotracer has been administered to the patient to
highlight the kidneys and bladder. In this context, we perform two experiments: (i) we test application
of Bayesian PCA in the orthogonal step of the standard approach (Sgctign 3.4.3), and (ii) we test the
performance of the proposed VB inference of the FAMIS model (Segction 3.4.5).

7.4.1. Comparison of Methods for Inference of Rank in Orthogonal Analysis

The advantage of Bayesian PCA over the standard PCA is an explicit estimation of the number of
relevant principal components (Sectjon 6/3.4). In this study, a scintigraphic dynamic image sequence
of the kidneys is considered. It contains= 120 images, each of siz& x 64. These were analyzed
using the standard approach, as follows:

Pre-processing:

e arectangular area pf= 525 pixels was chosen as the region of interest at the same location
in each image.

¢ data were scaled by the correspondence analysis m¢thofl (3.89), which is optimal for scinti-
graphic data [89].
Orthogonal analysis:

Bayesian methods of inference for the PPCA model (Seftion 6) were tested. The expected mean
value of both factor images and factor curves are identical with those obtained using standard
PCA. The methods differ only in the estimated rank of the data.
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Table 7.1..Comparison of rank selection methods for scintigraphic image data.

OVPCA OVPCA FVPCA Laplace
f(r|D) ARD Property| ARD Property f(r|D)
Pr (r = 17|D) = 0.0004 Pr (r = 47|D) = 0.067
Pr (r = 18|D) = 0.2761 s . _or Pr (r = 48|D) = 0.622
Pr (r = 19|D) = 0.7232 " " Pr (r = 49|D) = 0.195
Pr (r = 20|D) = 0.0002 Pr (r = 50|D) = 0.089

Note: where not listedf (r|D) < 3 x 10~7
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Figure 7.1..Cumulative percentage of total variation for scintigraphic data. For clarity, only the first 20
elements are shown out of a totalpf 120.

Oblique analysis: this was not tested.

For these data, we compare methods for selection of relevant principal components. The OVPCA-based
approximate posterior distribution of rarfk (6.107) and the ARD properties of both OVPCA (Remark
[6.3) and VPCA (Remark 3.8) infer significantly different optimal rank (Tabl¢ 7.1). For comparison,
we also inferred the rank of the data via (i) Laplace approximatioh [84], and (iixdheoccriterion
of cumulative percentage of total variation [80] (Figire| 7.1). Results are presented irj Table 7.1. For
method (ii),r = 5 was chosen.

It is difficult to compare performance of the methods since the true dimensionality is not known. From
a medical point of view, the number of physiological factors should be 4 or 5. This estimate is supported
by thead hoccriterion (Figurg 7.[L). From this perspective, the formal methods appear to over-estimate
significantly the number of relevant principal components (PCs). The reason for this can be understood
by reconstructing the data using the number of RCsecommended by each method (Tgble 7.2). Four
consecutive frames of the actual scintigraphic data are displayed in the first row. Though the signal-to-
noise ratio is poor, functional variation is visible in the central part of the left kidney and in the upper
part of the right kidney, which cannot be accounted for by noise. The same frames of the sequence,
reconstructed from = 5 PCs (Tablg 7]2, second row), fail to capture this functional information.
In contrast, the functional informatias apparent on the sequence reconstructed using the Bayesian
estimate—i.ex = 19 PCs—and, indeed, on sequences reconstructed using9 PCs, such as the
r = 45 choice suggested by the ARD Property of OVPCA (Tabl¢ 7.2, last row).
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Table 7.2..Reconstruction of scintigraphic data for different numbers of PCs
number of PCs used frames 48-51 of the dynamic image sequence

Original images« = 120) ‘ 1 'F ‘ ‘ ‘- ‘ 1-

Ad hoc criterion ¢ = 5) . 1 ' 1 ' ‘ ' 1

Maximum of f (r[D) (6207)| | @ || & W/l &£ W) £ %

(r=19)

ARD property ¢ = 45) ' 1 ' 1 ‘ ‘- ‘ 1

7.4.2. Variational FAMIS

The FAMIS model is, in principle, the PPCA modpl (3.50) extended for unknown precision of noise
(3.87), and restricted by positivity constrairjts (3.85). In the previous Section, the results of the PPCA
model were presented. The precision of the noise was assumed known via the correspondence analysis
@90).

Performance of the VEM algorithm for the FAMIS model (Corollary] 7.1) was tested on the same
data set used in Sectipn 7.1, i.e. the scintigraphic study of kidneys-ofl 20 images, each of size
64 x 64, with selected region of interest pf= 525 pixels. First, we performed two experiments with
a priori known precision matrices,, €2,,, corresponding to:

1. homogeneous noise: i.8,, = wi,, Q, = I,, (case ).

2. correspondence analysiS;, = diag (Dln,l)‘l, Q,, = diag (D’1p,1)_1 (case 2.
Note that this is the same pre-processing that was used in the standard analysis [(Section 7.4.1).

The results of these experiments are displayed in Fjgufe 7.2 (top-left) and (bottom-left) respectively.

Next, the VEM algorithm for the FAMIS model (Corollafy T.1) was used with non-committal prior
(9p = 9y = pn = pn = le — 10 x 1,1 (7.1)). The algorithm was initialized using the same options
as for the fixed matrices, i.e:

1. homogeneous noise: i.é};o) = wl, QSLO) = I, (case 3

2. correspondence analys@fgo) = diag (Dlml)_l, oY = diag (D’lp,l)_1 (case 4.

Results of these experiments are displayed in Figufe 7.2 (top-right) and (bottom-right) respectively.
This experiment with real data leads to the following conclusions:
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results with estimated precision (noise
results using fixed precision modelling strategy is used as initial conditign
of the VEM algorithm)

3 3

Y | 1

isotropic noise assumption

(case 1) (case 2)

£ W ¢

correspondence analysis results

(case 3) (case 4)

Figure 7.2.Expected posterior values of factor images and factor curves for four noise modelling strate-
gies.
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Figure 7.3..Comparison of the posterior expected value of of the precision matiggteft) and(,
(right), for different initializations.
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Number of relevant factors, r, estimated using the ARD property associated with the full model
(Corollary[7.]) is:¥ = 3 in case 3, and = 4 in all remaining cases (Figufe 7.2). This is much
smaller than the rank estimated using the PPCA model (Sdction 7.4.1). Moreover, it corresponds
to the value expected from the physiological knowledge, as discussed in $ectipn 7.4.1. This result
is achieved for all considered noise modelling strategies. Hence, this result was achieved due to
the imposition of the positivity constrain{s (3]85). This will be discussed in Sectipn 7.5.

Scaling is an important step in the analysis. We have tested the algorithm with both fixed and varible
scaling. We note the following:

« the expected value§),, and(,,, of the posterior pdf of the precision matricks (7.101), (7.12)
are similar for both cases of the initialization (cases 3 and 4), and is, in fact, close to the
correspondence analysis (3.89) (see Figurg 7.3). This is in agreement with the assumption
that the correspondence analysis is optimal for the scintigraphicldata [89].

e for cases 1 and 2—i.e. those with fixed precision matrices—the estimated factor curves
have sharp peaks at times= 25 andt = 37. This behaviour is not physiologically possi-
ble. These peaks are significantly reduced in cases with unknown (estimated) precision, i.e.
cases 3 and 4. Note that values of precisia,, in timest = 25 andt = 37, are estimated
significantly lower than those at other times (Figurg 7.3).

e inference of the posterior expected values of factors—i.e. imagdsurves—is sensitive
to the choice of initial conditions of the precision (cases 3 and 4). Note that the inferred
factor images in case 3 (FigUre 7.2, top-right) are close to those in case 1 (Fidure 7.2, top-
right). The similarity between factor images in cases 4 and 2 (F[gufe 7.2 bottom) is also
obvious. This suggests that there are many local minima of the KL distance, and the initial
conditions determine which one will be reached by the VEM algorithm.

It is hard to compare these results to state-of-the-art techniques, as the latter do not provide automatic
rank detemination nor variable scaling. The standard techniques also require a lot of tuning knobs.
Hence, for an experienced expert, it is possible to produce results similar to those presented in Figure
(7.2). For real data, there are no exact criteria of quality and so the judgement of the results is always
subjective.

The results of this experiment may be summarized as follows:

1. the number of relevant physiological factors selected by the VB inference corresponds to that
predicted by medical experts;

2. if the scaling is estimated, its posterior values are close to the theoretically optimal values for the
Poisson distribution. However, variable scaling models not only the Poisson errors but all rapid
(non-biological) changes, such as motion of the camera (or patient) during the study. Therefore,
it can significantly suppress artefacts caused by the motion.

3. the method is too sensitive to the choice of initial contitions. Further work on initial conditions
and convergence of the algorithm is required.
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7.5. Discussion

One of the unsolved problems relating to the standard solution of the FAMIS model is estimation of the
number of relevant principal components in orthogonal analysis (Séction 3.4.3). This problem can be
addressed using Bayesian PCA, as presented in Clapter 6. Therefore, we have tested the FVPCA and
OVPCA algorithms, in this Chapter, in the context of Functional Analysis of Medical Image Sequences
(FAMIS). We noted, in Sectioh 7.4.1, that both algorithms significantly overestimated the number of
relevant physiological factors. However, the VB inference of the unified FAMIS model (Séctioh 3.4.5)
yields physiologically acceptable results.

7.5.1. Model Matching

This last result can be explained by considering how each model is matched to the actual medical data.
The real scintigraphic data are composed of three elements:

D=M+N+FE.

M and E are the modelled element8/ being the rank-restricted mean valfie (3.48) with positivity
constraints[(3.85), an being the Normally-distributed white noige (3.49).is anunmodellednatrix

of non-Gaussian noise and physiological residuals. Inevitably, then, the OVPCA and FAMIS methods
provide estimates of the modelled parametéfsand E, corrupted by the residuald], as follows:

M = M+ Ny,

EF = E+ Ng.

Ny and Ny are method-dependent parts of the residual elemént, Ny + Ng.

If the criteria of separation are (i) rank-restriction with unknowyand (ii) Gaussianity of the noise,
then only a small part oiV fulfills (ii), but a large part ofV fulfills (i) as it has unknown rank. Con-
sequently, the rank;, is significantly over-estimated. However, if we now imposiied constraint,
namely (iii) positivity of the signalM (3.85), we can expect that only a small part/éffulfills (jii),
‘pushing’ the larger part oN into the noise estimaté;.

7.5.2. Consequence for Medical Applications

We have demonstrated experimentally that the joint Bayesian identification of the FAMIS model has
the following advantages over the standard approach:

1. identification of the noise distribution—via parameters and w,—is more accurate than the
standard scaling technique. Therefore, posterior estimates of the FAMIS model are less sensitive
to non-standard noise distributions, and are more reliable under low Signal-to-Noise Ratio (SNR).

2. identification of the number of relevant physiological factors yields realistic and reliable results.
No such method was available in the standard model; i.e., formerly, the number of relevant phys-
iological factors was either chosen constamiriori, or it was selected by a human expert.
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These results should, however, still be considered as preliminary. The method is not ready for appli-
cation in medical imaging as it has not been showed to meet high standards of reliability and accuracy
required in this area. The following problems must still be overcome:

e convergence of the algorithm is slow, and the overall computational cost is high (tens of minutes
of computation on a 1GHz machine, for analysis of 100 frames of &l8ex 128). Possible
approaches to this problem were discussed in Se[ction 7.3;

e the posterior estimates are sensitive to the chosen initial conditions. Extensive experimental stud-
ies will probably be needed to choose the best initialization of the method;

¢ the only restriction imposed on each factor in the FAMIS model was positivity. Hence, the poste-
rior estimates of the factor curves may contain sharp peaks (figure 7.2) which are not physiologi-
cally possible. A further restriction of the factors is needed, such as the imposition of smoothness
constraints on the factor curves [113].
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Chapter 8.

Conclusions

8.1. Discussion of the Work

The aim of this thesis was to extend the modelling capabilities of the linear model and to provide a
numerically efficient Bayesian inference of the model parameters. Four different extensions of special
cases of the linear model have been studied, each of them representing an important problem in Digital
Signal Processing (DSP). In each case, we have derived a novel identification algorithm and shown
its advantages over the existing techniques. In all cases, we have used the Variational Bayes (VB)
approximation (Section 2.3.4) to obtain the posterior distributions of model parameters.

We have shown that the VB approximation is particulary appropriate for identification of a non-
stationary process. A non-stationary process generates a new random variable at each time step. This
leads to proliferation of random variables and computational intractability in exact Bayesian identifica-
tion. The problem was circumvented by invoking the conditional independence assumption—which is
the central assumption of the VB approximation—and optimizing it using that same VB procedure.

One of the main concerns of the thesis was computational efficiency, as is appropriate for work in
DSP. We have shown that the the Variational EM (VEM) algorithm (Algorifhm 2.2)—i.e. the stan-
dard algorithm for evaluation of VB-statistics (which are the parameters of the VB-optimal posterior
distribution)—may be computationally inefficient. In special cases (Chppter 6), the solution of the VB
posterior distributions can be analytically simplified, yielding significantly faster identification algo-
rithms. Computationally faster algorithms may also be achieved by further approximations of the VB
method, such as the Restricted VB method (Corol[lary 2.1), of which Quasi-Bayes (QB) is a significant
example. Under these simplified procedures, we showed that significant computational savings could
be achieved at the price of only slight loss of accuracy.

We now discuss in more detail the key contributions of the work.

8.2. Key Contributions of the Thesis

Chapter 2] We reviewed the most common methods for approximation of Bayesian posterior distri-
butions. The main emphasis was on the Variational Bayes (VB) approximation (Theojem 2.1).
We introduced a Restricted VB approximation (Corollary] 2.1) which yields parameters of the
VB optimal posterior distribution in closed-form (closed-form solution for the non-restricted VB
approximation is rare, an iterative VEM procedure is almost always implied). We showed that the
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popular Quasi-Bayes (QB) approximation is a special case of this Restricted VB approximation
method.

Chapter 8] We reviewed the most important special cases of the linear model and their Bayesian
identification. Many well known multivariate methods—such as Factor Analysis (FA) or Prin-
cipal Component Analysis (PCA)—had already been re-derived in the literature using the linear
model. We showed that the method known as Factor Analysis of Medical Image Sequences
(FAMIS) can also be understood this way.

Chapter 4] We extended the AutoRegressive (AR) model to embrace unknown transformations of its
output. A tractable identification can be achieved only when there is a finite set of candidates.
What follows is the Mixture-based Extended AR model (MEAR). The MEAR model is a mixture
of AR components with common AR parameterization, each component modelling the AR pro-
cess with respect to one possible data transformation. These transformations can be interpreted as
a bank of filters, where each filter is used to pre-process the observed data. We have derived three
algorithms for Bayesian identification of the underlying AR parameters: (i) Variational Bayes
(VB), (ii) Quasi-Bayes (QB), and (iii) the Viterbi-Like (VL) algorithm. Each of these repre-
sents a different trade-off between numerical speed and accuracy. The VB algorithm is the most
accurate, and the VL is computationally the least expensive. We present applications of these
algorithms in identification of an AR process corrupted by outliers and burst noise respectively.
The burst noise scenario was then considered in the real-data context of speech reconstruction.

Chapter 5] We have relaxed the standard assumptioknafwnforgetting factor in on-line Bayesian
identification ofnon-stationaryAR processes. We derived an algorithm for on-line joint identifi-
cation of (i) the unknownime-variantforgetting factor and (ii) theon-stationaryparameters of
the AR process. We showed that the resulting identification algorithm improves the parameter-
tracking abilities of the standard fixed-forgetting Bayesian approach. This was demonstrated in
simulation. The derived algorithm constitutes a data-driven procedure for steering the forgetting
factor.

Later in Chapte[ |5, we also considered on-line identification of the MEAR model with time-
variant parameters and unknown time-variant forgetting. The resulting algorithm, balances, in
effect, the contributions being made by (i) past data (sufficient statistics), (ii) current data (dyadic
update), and (iii) expert knowledge (parameters of the alternative distribution). It achieves this
on-line.

Chapter 6] We derived two algorithms for Bayesian Principal Component Analysis (PCA). The first
one was based on a standard Probabilistic PCA (PPCA) model. We showed that the standard VEM
algorithm for evaluation of the VB-statistics can be analytically simplified. The computational
cost of the new algorithm—called Fast Variational PCA (FVPCA)—was, therefore, significantly
reduced.

We then introduced a newarthogona) parameterization of the PCA model and presented the
associated VB solution: Orthogonal Variational PCA (OVPCA). The model avoids modelling
ambiguities inherent in the PPCA model, and so no regularization via priors was needed. In
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consequence, identification of this orthogonal model is robust with respect to choice of the prior
distributions. Moreover, we were able to derive the posterior distribution of the model rank (i.e.
the number of relevant principal components).

Chapter 7] Bayesian identification of the Factor Analysis of Medical Image Sequences (FAMIS)

8.3.

model—introduced in Chaptpr 3.1—was achieved using VB approximation. We showed that the
Bayesian identification improves the standard certainty-equivalence-based method in two main
ways: (i) better identification of the noise properties is achieved, and (ii) automatic estimation of

the number of relevant physiological factors is possible. This is important in medical applications,

since it allows more reliable results to be achieved with data manifesting low Signal-to-Noise Ra-

tio (SNR). Furthermore, there is a reduced reliance on external information provided by medical

doctors and imaging experts.

Further work

8.3.1. Short Term Extensions

1.

In Sectiong 4.7 and 4.8, we used the MEAR model for identification of an AR process corrupted
by additive outliers and burst noise respectively. In both cases, the resulting filter-bank was
composed of linear filters. The MEAR model is, however, capable of dealing with non-linear dis-

tortions of data. It would be interesting to apply the MEAR model, for example, to an AR process

suffering a memoryless non-linear distortion, such as occurs frequently in audio applications. A
priority would be to design a suitable partitioning of the continuous space of distortions.

The standard VEM algorithm for evaluation of the VB-statistics is not guaranteed to converge in
a finite number of iterations. Therefore, in an on-line scenario, additional treatment is required to
achieve computational feasibility. For non-stationary forgetting (Sefctign 5.2), we used the simple
strategy of imposing a maximum allowable number of VEM iterations. We note that the space
of unknown forgetting factors is confined to the inter{@l1]. Therefore, more sophisticated
strategies could be proposed, for exploration of this finite scalar interval.

. Identification of an AR process using the non-stationary forgetting technique (Chppter 5) can be

easily applied in changepoint detection in noisy speech.

. Principal Component Analysis (PCA) is used as a standard data processing black-box in many

scientific areas. In DSP, it finds an interesting context in the area of sub-space methods and
spectral estimation, in algorithms such as MUSIC and ESPRIT [67]. Application of the results
achieved in Chaptgr] 6—namely, estimation of the numheof relevant principal components,

and uncertainty bounds fot, X, andr— is straightforward in these areas, and could potentially
bring significant added value.

In Sectiorj 7.B, we proposed various heuristic techniques for improving the numerical efficiency of
the VEM algorithm for the FAMIS model. Implementation of these techniques is straightforward
but time-consuming.
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8.3.2. Future Research Directions

The Variational Bayes (VB) approximation method was chosen as a trade-off between accuracy and
computational feasibility. It is not optimal from the statistical point of view (Sedtion P.2.4). Its key
advantage is that the approximate posterior distributions are available in analytical form, providing
computational feasibility. In some cases, such as on-line identification of mixture models, the statis-
tically optimal (Sectioni 2.2]3) approximation was shown to outperform the VB approximation [114].
Recent developments in mean field theary [34, 39] suggest that new, more accurate, approximations of
the allowed posteriors may be found. Computationally efficient evaluation of the resulting approxima-
tions is a future challenge for the DSP community. Potentially, it is an intriguing one, as new kinds of
computational algorithms and flow-of-control may be revealed.

Applicability of the MEAR model (Chaptdgr]|4) is limited by the assumption ofaapriori known
filter-bank. We showed that the filter-bank can be designed using analytical insight into the problem.
However, this approach can be used only for a limited set of problems, such as 1-D and discretized
function spaces. An automated approach would greatly extend applicability of the model. There has
already been an attempt at automated filter-bank selection using simplex méthods [62].

The VB-approximate posterior distribution of the time-variant forgetting factor in Chapter 5 was
found to be intractable. Thus, further approximation was needed to achieve a numerically tractable
solution (Propositiop 5]1). The impact of this approximation has not been fully explored in this thesis.
Also, performance of the method depends on the choice of alternative distribution ($ectipn 3.2.3), which
must be knowra priori. Further work on the treatment of the alternative distribution would greatly
enhance the applicability of the method in practice.

Preliminary experiments with the Bayesian identification of the FAMIS model (Chiapter 7) are very
promising. However, the list of problems that must be solved in order to apply this method in clinical
practice is extensive (Sectifn 7.3). For example, better physiological modelling, efficient numerical
implementation and robustness improvements need to be addressed. Ultimately, clinical studies using
this unified FAMIS framework are necessary.

The VB-based identification of the FAMIS model (Sectjon| 7.2) is closely related to the emerging
class of algorithms known as Independent Component Analysis (ICA) (Séctioh 3.2.1] Table 7.2). ICA
is a statistical technique for decomposing a complicated dataset into independent sub-parts. The FAMIS
model is, in fact, a special case of noisy ICA [110], with a non-stationary noise distribution. The ICA
method is currently receiving much attention in signal processing because of its flexibility and ability to
deal with non-linear models. Furthermore, numerically efficient evaluation of the traditional Maximum
Likelihood (ML) approachi([51] to ICA has been achieved using fixed-point approximations [112]. The
possible use of these approximations within the Variational Bayes (VB) approach may bring significant
computational savings in the future.
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Appendix A.

Required Probability Distributions

A.1. Matrix Normal distribution

We say matrixX has a matrix Normal distributiorf, (X) = NV (ux, X, ® £,), if the matrixX e RP>"
has the joint probability density

JX) = @) P2, T2 (S P exp (<050 {2 (X = ) (521) (X =)' }) s (AD)

whereX,, € #P*P andX,, € R"*" are symmetric, positive definite matrices.
The distribution has the following properties:

e firstmomentisEy (X) = px,

e second non-central moments are

Ex (XZX') = tr(Z5,) 5, + puxZily,
Ex (X'ZX) = tr(Z%) S0+ iy Zpux, (A.2)

whereZ is an arbitrary matrix of appropriate sizes respectively,

e For any matrice§’ € R°*P andD € R™* it holds:
f(CXD) =N (CuxD, C,C' ® D'S, D). (A.3)
e distribution ofvec (X) is again Normal with
f (vee (X)) = N (vee (x) , £ @ 5,).

Note that covariance matrix has changed the form compared to the matrix case. This notation is
helpful as it allows to store thegn x pn covariance matrix ip x p andn x n structures.

This convention greatly simplifies notation, e.g. if column®f matrix X are independently distributed
with the same Normal pdf

f@yme,. . xn) = [[N(1,8) = N(ux, 201, =f(X). (A.4)
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Moreover, linear transformation of matrix argumexit(A.3) preserves the decomposed form. This
allows all operations on moments &f being done using matrix algebra.

A.2. Normal-Wishart Distribution

The Normal-Wishart distribution of variabte= [A, Q2] has pdf

NWaa (V,v) = C/v::'(é‘:V) exp {—;Q [—1,, A]V [—1,, A]’} : (A.5)
with normalizing constant
Cvw (Viv) =T, (; (v—r+p+ 1)) A[7E@ D) | 1=05p 90 5p(p ) o f (A6)
and auxiliary values
= “;ZZ ;‘i‘j C A =Vag— V!VilVaa, (A7)

where ) denotes partitioning &f € RE+1)*x(P+1) into blocks andVgg is the upper left sub-block
of sizep x p.
Marginal distributions ofd and(2 are [16]:

FAQV,Y) = N (A, 0l v;;) , (A.8)
FQV,y) = W <”_72”1 2A1) , (A.9)
fAV,v) = St (A, 717A1 R Vau, n) : (A.10)
with auxiliary constants
A = vl (A.11)
= v—r+p+1 (A.12)

St denotes the matrix Studendistribution withr degrees of freedom, and’ denotes the Wishart
distribution [115].
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The moments of these distributions are:

Eao(A) =Ea(4) =
Eq(Q)=Q, =

ea((4-4) (4-4)) = SLoavad,

e ((2-9)) = 2

Eq(In|Q]) = ;Hzp(;(u—wp—j))

1 1
—51n|A\ + §pln2.

Here, conditioning by, » was dropped for simplicity.

A.3. Dirichlet Distribution

The Dirichlet distribution of the vector variabtehas pdf

f(alB) = Dia(B) = Cm 121 ™,
with vector parameteB = [31, (o, . . ., B]', normalizing constant
, _ I T (8)

wherey = >°¢_, 3;, and with first moment given by:
di = Ea"g(ai) = @, 1= 1,...,6.
Y
Expected value of the logarithm is

ma; = Eqg(Inas) =0 (8) — ¥ (7).

wherey (8) = £ InT ().
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A.4. Truncated Normal Distribution

The truncated normal distribution of scalar random variable defined as normal—with functional
form A (11, s*)—on a restricted suppout < = < b. Its pdf is

V2exp (-4 (55£)*)

b) = b A.23
f(x“s?a’ ) Sﬁ(erf (ﬁ) —el"f (Oé))X((a’ ])’ ( )
wherea = %4, 3 = 1;75 Moments of|(A.2B) are
r o= /’L_SSD(M7 S)v (A24)
22 = S+ pd— sk, s), (A.25)

with auxiliary functions:

L VR (<) —exp (—02)]
Pl = T Rl () et (420
V2 [b exp (—62) — aexp (—042)} .

F(pss) = VT (erf (B) — erf (o))

(A.26) and |(A.2}) with vector arguments—e ig(m, s)—are evaluated element-wise. Confidence in-
tervals for this distribution can also be obtained. However, for simplicity, we use the first two moments,
(A.24) and [(A.2b), to approximatg (A.R3) by a Gaussian. The Maximum Entropy (MaxEnt) principle
[116] ensures, that uncertainty bounds on the MaxEnt Gaussian approximatjion df (A.23), enclose the
uncertainty bounds of all distributions with the same first two moments. Hence,

max (a, —2\/;5—532> <z —Z < min (b,2\/;5—§:\2> : (A.28)

A.5. Von Mises-Fisher Matrix distribution

(A.27)

Moments of the von Mises-Fisher matrix distribution are now considered. Proofs of all unproven results
are available in [108].

A.5.1. Definition

The von Mises-Fisher probability density function of matrix random variable, ®P*™, restricted to
Z'7Z = I, is given by:

1

f(ZIF)=M(F) = Wexp(tr(f?z)), (A.29)
¢(p,FF') = 0F1<;p,iFF/)C(p,n), (A.30)
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A.5. Von Mises-Fisher Matrix distribution

where FF € RP*" is a matrix parameter of the same dimensionZaandp > n. ((p, FF’') is
the normalizing coefficienty 7} (-) denotes a hypergeometric function of matrix argumiént [117].
C (p,r) denotes the area of the relevant Stiefel manif®)g (6.53).

(A.29) is a Gaussian distribution with restrictiéghZ = I;, re-normalized oS, ,,. It is governed by
a single matrix parametdr. Consider the (economic) SVD decomposition

F =UpLpVy,

of the parameteF, whereUr € RP*", Ly € R, Vi € R*™. Then, maximum of (A.29) is reached
at
Z =UpV}. (A.31)

Flatness of the distribution is controlled By.. Whendiag (Lr) = 0,,; the distribution is uniform on
Sp.n [118]. Forlg; — oo, Vi = 1...n the distribution is a Dirac delta function 5t.
A.5.2. First Moment

LetY be the transformed variable
Y =UpZVp, (A.32)

It can be shown that (p, FF') = ¢ (p, L%). The pdf ofY is then:

1
fY|F) = ———~exp(tr(LpY))=——5<exp (lry), (A.33)
( ’ C(p,L%) ( (F )) C(p,L%) (F)
wherey = diag (Y'). Hence,
fYIF) o< f(yllr). (A.34)
First moment of[(A.3B) is given by [108]:
E(Y|Lp) = U, (A.35)
where¥ = diag (7)) is a diagonal matrix with diagonal:
. 1 1,
We will denote function[(A.36) as
Y = G@/lr), (A.37)

The mean value of the original random variallés then [119]:
E(Z) = UrVVr = UrG (p, Lr) VF, (A.38)

whereG (p7 LF) = dlag (G (p7 lF))
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A.5.3. Second Moment and Uncertainty Bounds

The second central moment of the transformed varigbtediag (Y') (A.33) is given by

E(yy' —E(y)E(y)) =2, (A.39)
with elements,
27‘7_8[}7'7@'8[}7"]' ol 2p’4 F ) Zaj— yeeay T .

Transformation[(A.3R) is one-to-one, with unit Jacobian. Hence, boundaries of confidence intervals on
variablesY and Z can be mutually mapped usi32). However, mappjng diag (Y') is many-
to-one, and s& — y is surjective. Conversion of second moments (and uncertainty bounggpaf

(via (A.37), [A.33)) is therefore available in implicit form only. For example, the upper bound subspace
of Z is expressible as follows:

Z ={Z| diag (UpZVr) =75},

wherey is an appropriately chosen upper boundyomhe lower boundZ, is similarly constructed via
a boundy.

It remains then, to choose appropriately bougdandy from @). Exact confidence intervals
for this multivariate distribution are not known to us. Therefore we use the first two monjents|, (A.35)
and [A.39), to approximat¢ (A.B3) by a Gaussian. The Maximum Entropy (MaxEnt) princCiple [116]
ensures, that uncertainty bounds on the MaxEnt Gaussian approximation df (A.33), enclose the uncer-
tainty bounds of all distributions with the same first two moments. Confidence intervals for the Gaussian
distribution, with momentg (A.36)] (A.40) are well known, e.g.

Pr (—2 & < (yi — W) < 2\/@) = 0.95, (A.41)

where); is given by [[A.36), and; by (A.40). Therefore, we choose

U= vi+2Ve (A.42)
Y = Yi—2Vén (A.43)
The required vector bounds are then constructeg as (71, . . ., 7, , and ditto fory. The geometric

relationship variable& andy is illustrated graphically fop = 2 andn = 1 in Figure[6.6.

A.6. Gamma Distribution

The Gamma distribution has pdf

a

Wxafl exp (—bx) x ([0, 00)), (A.44)

f(x‘% b) = g(a7 b) =
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A.7. Truncated Exponential Distribution

wherea > 0, andb > 0, andI’ (a) is the Gamma function [71] evaluatedaatlts first moment is:

S

r=_,

S

and the second central moment is:

A.7. Truncated Exponential Distribution

The Truncated Exponential Distribution has pdf

k
exp (kb) — exp (ka)

f(l“k‘, [a7b]) = exp(xk)x([a,b]),

wherea < b are boundaries of the support. Its first moment is

exp (bk) (1 — bk) — exp (ak) (1 — ak)
k (exp (ak) — exp (bk)) ’

/x\:

which is not defined fok = 0. Limit at this point is

. . a+b
limx = .
k—0 2

Which is not surprising, as the distribution becomes uniform on inteava).
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Appendix B.

Analytical Solution of Fast VPCA, Using
MAPLE

Here, we provide analytical solution of Fast VPCA as obtained using software package Maple. Hence,
we will present them as commented Maple code, i.e. equations are not numbered.

Initialize the Maple enviroment and invoke some basic assumptions.

restart;

assume (k[A]>0); assume(k[X]>0); assume(sigma[A]>0);
assume (sigma[X]>0); assume(b>0);

assume (omega>0) ; assume(n>0); assume(p>0);

assume (1d>0) ; assume (alpha>0) ;

vV V.V V V

Variational equations for Fast VPCA
> eql:=k[A]-omega*1[D]*k[X]*sigmalA]:
> eq2:=sigmalA] - 1/(omega*(n*sigma[X]+k[X]~2)+upsilon):
> eq3:=k[X]-omega*sigma[X]*k[A]=*1[D]:
> eq4:=sigma[X] - 1/(omegax(p*sigmal[A]+(k[A])~2)+1):
> eqb:=upsilon - (p)/(p*sigmal[A]l+k[A]~2+b):
> EQ:={eql,eq2,eq3,eq4,eq5};

P 1
—70- - )
poa+ka®+b * w(poa+ka®) +1

1

5 }
w(nox +kx°) +v
> S:=solve(EQ,{k[A],sigma[A],k[X],sigmal[X],upsilon}):

EQ = {kA—wle)(JA,U—

kx —woxkalp, o4 —

B.1. Closed-form Solution

The first mode (zero-centered):
> S1:=S[1];

139



B. ANALYTICAL SOLUTION OF FAST VPCA, USING MAPLE

(—n+n%l+p) %lw
S {v T yox = %1, ka=0, kx =0,

-1+ %1}
Y%lwp
%1 := RootOf((—n +bnw)_Z*+ (2n —bnw+bwp)_Z —n)

oA =

The second mode:
> 8§82:=S[2];

:—77 kA:%:l”U:

p—wlp? w%1% 4+ 1
S2 =S ox =— 5 5 ,0A 5
wip? (w%1” +1) w(p—wlp”)

(—nw %12 —n+w%12p+wlp2)nw/(%12bw2p—w%12p
— %1% bnw? + %12 W?ip? —bnw+ nw %1% +n + bw?1p?),
P (p—wlDQ)%l}

=

_ZD (w%12 + 1)
%1 := RootOf(_Z*nw?ip? 4+ (—p*w —bnw?p + 2% Ip? p+ bnw?lp?
+nw?lp? —W3ip* —bBIp?p+nwp+bw?p?) 22 —buwdip?

+pn—bnwp+bw?lp?p+bnw?ip?)

B.2. Determination of Acceptable Solutions

Note that solution of both modes depends on evaluation of forth order polynomial in variable _
However, it can be rewritten as second order polynomialdA. Roots of second order polynomials
are easy to evaluate, using formula:

> z=(-a[1l+sqrt(R))/(2*al2]); R:=a[1]~2-4*a[0]*a[2];

1—a1+\/§
==
2 a

R := a12 —4a0a2

An important limiting condition is then value of auxiliary variable R, which must be positive. We will
analyze this for both modes.

Zero-centered mode
In this mode, mean values are zero. It remains to make sure that variances are real and positive.

> a[2]:=(-n+b*n*omega): a[l]:=(2*n-b*n*omegat+bxomega*p): al[0]:=-n:
> R:=al[l]l~2-4*a[2]*a[0]:R:=collect(simplify(R),{b,omegal});
R:=(n?>-2pn+p?)w?b?> +4bnwp

Clearly, R is always positive, hence, roots are always real.

Values of the roots are then:
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B.2. Determination of Acceptable Solutions

> zl:=(-a[l]l+sqrt(R))/(2*al[2]);

o 1 -2n+bnw—-bwp+ Vabnwp +b02n2w? — 202 nw?p+ b2 w? p2
) —n+bnw
> z2:=(-al[1]-sqrt(R))/(2*a[2]);

) 1 —2n+bnw—bwp—/4bnwp+b2n2w? —2b2nw?p + b2 w? p?
22 = —

2 —n+bnw
> 1limit(z1,b=0);1limit (z2,b=0);

1
1

Note, that the roots evaluated above are, in fact, values.ofvhich has prior value set to 1. Not
surprisingly, the limit for very smab is one. The first root;1, approaching from above, the second
one,z2, from below. Note that sign of 4 depends ori—ox + 1), hence only the lower root?2, is
valid.

The second mode:

First, let us analyze roots of the polynomial, using the same formula as above.

> a[2] :=n*omega~3%1[D]"~2:
a[1] :=(n*omega*p-p~2*omega+2*omega”~2*1[D] ~2*p+n*omega”~2*1[D] ~2+b*n*ome
ga~3%1[D] ~2-omega~3+1[D] “4-b*nxomega~2*p-b*omega~3*1[D] ~2*p+b*omega~2%*
p~2):
a[0] :=n*p-b*omega~3*1[D] ~4-b*n*omega*p+b*omega~2*1[D] ~2*p+b*n*omega~2*
1[D]~2:

R:=a[1]~2-4*a[2]*a[0];

vV V. V V V

\Y

R:=(—pPw—-bnw?p+2w?lp?p+bnw’lp? + nw?lp? —wiip?
- bw3lD2p+nwp+bw2p2)2

—4Anw?lp? (pn —bw? Ipt —bnwp+bw?ip?p +bnw?ip?)
> sp:=solve({R},{1[D1});

sp:={lp = @}, {lp = —@}, {ip = @}, {lp = _@}’
fp = Y@ @wp—p —nt2yputbnw —2whypn)

D= v 3

fp = Y=o bwp—p =2 Jpntbnw = 2wh yp)

b= v 3

{0 _\/_W(_p_n—2W+bwp+bnw+2wbm)

b= " |2
{ZD:_\/_W(—p—n—2W+bwp+bnw+2wb\/ﬁ)}

Clearly only some of these are positive:
> simplify({sp[1,1],sp[5,1]1,sp[7,11});

0 _ WPV VI—wh _ VI-wb|p— V7| l :@}
D \@ y VD \@ y VD \@
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B. ANALYTICAL SOLUTION OF FAST VPCA, USING MAPLE

The first singular point is notable, as it is also singular point for values|ot x . Value ofip must be
higher than this limit.

x 10 x 10"

H

N

-5

|
n

R-value of roots
o
real part of roots

-10

0.5 1 1.5 0 0.5 1 1.5

I I

|
N

o

Figure B.1.:Analysis of singular points of roots of second mode solution of fast VPCA, singular points
are denoted by cross.

An example of R-value and both roots for certain numerical values is displayed in Figlire B.1. Hence,
the boundary for acceptable solution is at:

(Vn+p)vV1—-bw

Vw
For values lower than this bound, the second mode has no acceptable solution, and iterative algorithm
than converge to zero-centered solutions.

Ip =

Singular point of uspilon is:
> spu:=n+n*omega*Root0f (_Z~4*n*omega~3%1[D] ~2+(n*omega*p-p~2*omega+2*p*

omega~2*1[D] ~2+n*omega~2*1[D] ~2+b*n*omega~3*1[D] ~2-omega~3*1[D] ~4-b*n*
omega~2*p-bxomega~3+*1[D] ~2*p+b*xomega~2*p~2) *_Z~2+n*p-b*omega~3*1[D] ~4-
b*n*xomega*p+b*omega~2*1[D] ~2*p+b*n*omega~2*1 [D]~2) ~2-omega*Root0f (_Z"4
*n*omega~3*1[D] ~2+(n*omega*p-p~2*omega+2*promega~2+1 [D] ~2+n*omega~2*1 [
D] ~2+b*n*omega~3*1[D] ~2-omega~3*1[D] ~4-b*n*omega~2*p-b*omega~3*1[D] ~2x
ptb*omega~2*p~2)*_Z~2+n*p-b*omega~3*1[D] ~4-b*n*omega*p+b*omega~2+1[D] "
2*p+b*n*omega~2*1[D] ~2) ~2*p-omega*1[D] ~2:

solve(spu,{1[D]});

o =Y2}, ip=-Y2}, 1p=0)

vV V.V V V V V

\%

Clearly, it is the same singular point as 9§ ando x, and it is to be compared with the singular point
for R-value. However, we expect b to be chosen as small as possible, hence, we will consider

(vVn + vp)

Ip=-Y— V&
D \/E

to be the limit for acceptable solution of the second mode.

Roots of the polynomial are then:
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B.2. Determination of Acceptable Solutions

> zl:=(-al[l]l+sqrt(R))/(2*a[2]):
> z2:=(-al[1]-sqrt(R))/(2*al[2]):

With limits:

> 1limit(sqrt(z1)/1[D],1[D]=infinity);
1

NG

> 1limit(sqrt(z2)/1[D],1[D]=infinity);
0

We see, that the first root is assymptotically approaching,/n, which is intuitively appealing. The
second possible root is approaching zero quite rapidly.
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Appendix C.
Hypergeometric Functions

Numerical evaluation of the OVPCA algorithm requires evaluation of the following transformations of
the hypergeometric functiog; of matrix argument: (i) its natural logarithninf, for Bayesian rank
selection[(6.104), and (ii) the first derivative of the required for the first moment of the von Mises-
Fisher distribution[(A.36). Analytical closed form solutions are not known to us. Recently, a very good
approximation of F; of matrix argument was developed [120]. It is based on the Laplace approxima-
tion at the saddle point. It yields reliable results for use in (i). Unfortunately, the first derivatiueobf

this approximation for higher singular values, ilg>> 1, are greater than one, thus placing the corre-
sponding mean valug (y;|lr) (A.36) outside of the unit circle, which is not permissible (Figuré 6.6).
Therefore, we now develop an approximation which overcomes this difficulty, by first considering the
hypergeometric functiopF; of scalar argument.

C.1. Hypergeometric Function of Scalar Argument

The natural logarithmlf) of the hypergeometric functiog / (%p, isQ), of a scalar argument can be
expressed as

In 0F1<;p,is ) =InB (;p— 1,3) + (;p— 1) (In2—1In(s))+InT <;p> ) (C.1)

whereB denotes the modified Bessel function of the first kind [7[L]. (C.1) is plotted as a function of
in Figure[C.1 (left), forp = 5. The first two derivatives of (C]1):

d 11, B (3p,2s)
% ln 0F1 <2p, ZS > = ZW, (CZ)
d? 1 1 B (lp +1 25) B (lp 23) 2 B (lp 25)
In oF ( =p, = = 427 T g |2 22— 2"/ _(C.3
sz 0 1(2p,4s> B(3p—1,2s) B(3p—1,2s) sB(%p—1,2s)( )

The first derivative is illustrated in Figufe €.1 (right), for the same case 5. (C.2) can be expressed
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. 80 C\l:;; 1
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Figure C.1.:In o Fy (5, 1s2) of scalar argument (left), and-% (£ (5, $s2) (right).

as a continuous fraction expansion|[71]:

d 1 1 2 . S
I In oF1(2P, 15 > = ] . (C.4)

52
Si

N»—‘

o3

2

1+ s
(5+1)(3+2) [1+ ey

Furthermore [(C]3) can be expressed in termf of| (C.2) and, theriefofe (C.4). The evaluation of expansion
(C.4) converges very fast far< p. However, whers > p (says > 10p) the convergence is quite slow.
For larges, a more numerically efficient approximation is obtained via a Taylor expansign df (C.2) at

d 11 p—1 p—3
— InoF(=p-s?)=1-(E—= £ - ) ,
75 o 1<2p,4s> < 55 >exp< i >+0(5) (C.5)

Here,o (5) denotes elements of the serie in termsof. This expansion provides an excellent approx-

S — 0Q.

imation in the case > p.

C.2. Approximation of (F; of Matrix Argument by ([} of Scalar
Arguments

Consider the special case of the von Mises Fisher matrix distriblition|(A.29)Anith 1, zo] € RP*2,
and parameteF’ = [f1, f2] € RP*2, with added constraint that, f are mutually orthogonalf; f» =
0. Then, the marginal distribution ef; is [108]:

oFl( (r-1), i (Ip — z121) f2fé) exp (tr (f{zl)) . (C.6)

z1|F
fzlF) = oF1 (3p, s FF") C (p,1)

Note that maximum likelihood estimate ef (A.31), i.e.:
Z = argmzzimxf(Z|F) = f1i/\/ Fif1,

This is orthogonal tgfy, i.e. 2] f2 = 0, [108]. Therefore, the contribution of the quadratic term in the
argument of, £ in the numerator of (C|6) would be negligible for valueszgfaroundz;. Hence, we
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approximate

1 1 1 1
o1 <2 (r—1), 1 (I — z121) f2f§> ~ oF <2 (r—-1), 4f2f§> ; (C.7)
which will be satisfied wherf (z1|F) is not diffuse, i.e. whenf; — oo (see Sectioh A.5]1). Under
this approximation, the leading fraction in (C.6) is independent;pfand thus acts as a normalizing

coefficient. Distribution[(CJ6) is then of the von Mises-Fisher type, nanfiély, |[F) ~ f (z1|f1) =
M (f1) (A:29). Comparing the normalizing coefficient [n (€.6) with thatin (4.30) yields
1 1 1 1 1 1
oF <2p, 4F2F2/> ~ ol <2p> 4f1f{> oF (2 (p—1), 4f2f£> - (C.8)

Extending [(C.B) into higher dimension and using the chain rule of pdfs we obtain an approximation of
the following type:

11, u 11,
0F1 §p, ZLF ~ H OFI §p — 1 + 1, ZZF’Z . (Cg)
i=1
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