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Recapitulation

1. Model-based development:
» modelling assumptions =—> estimation method
> Gaussian Mixture => GMM method (via the EM algorithm)
» Linear combination with Gaussian noise = OLS
» mixture of linear models = custom algorithm
2. Method-based development
» PCA = FA — BSS
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Matrix Least Squares

Consider two least squares problem
= Xt y2:Xt92 Y = X0

with solutions

~

91—(XTxy4XTn
)y = (XTX)"IXTy,
6=(X"X)"xTy

In probabilities, matrix Normal distribution

[Zj ~N ([Z} ’ [(X%{ a (XT(;OlD <=>0=N (61 (XX
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Blind source separation — image sequence

» 2 sources

> weights:
\Bart\1\0.8\0.6\0.4\0.2\0\
[Lisa [0]02]04]06]08]1]




Medical imaging

» number of sources?
» source images

> time activity of the source
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Mathematical description

Linear model of p x n matrix
Xji = AZ,' + €, i=1.n

where
A is the p x r matrix of source images, r < min(n, p)
Z is the n X r matrix of time activities,

E is the p x n noise matrix (Gaussian)

Z




The case of known Z: least squares

Consider decomposition X = AZ T

_ T T _ T
X; = ﬁjz = X; = Zﬁj ,

for known D, X the estimate of A is

3 =(Z'2)7'Z77x], T,=(Z"Z)7!



The case of known Z: least squares
Consider decomposition X = AZ T

_ T T _ T
X; = ﬁjz = X; = Zéj ,

for known D, X the estimate of A is
3 =(Z'2)7'Z77x, T.,=(Z2"Z2)7,

In matrices

A=XZ(ZT2)7', p(A)=N(Z,1,%,) = [[N(E,2,).
Jj
where N(/A4, I,X,), is matrix normal distribution, with row and column
covariance matrices.
Useful expectation
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Source Separation

Model
X=AZT +E,

Both images A and time activities X are unknown!



Source Separation

Model
X=AZT +E,

Both images A and time activities X are unknown!

Issue: ambiguity

AZT =  ATT1ZT

(ATY(T-1Z7) =AZ'

matrix T includes both scaling and rotation.

Solution: additional constraints.



Principal component analysis

Consider n, p-dimensional vectors x;,i = 1,...n, and their covariance
matrix 1
-~ AT
S= - Z(X,' —X)(x; —x)".
Then r-dimensional vectors z;,
S=UNUT,

1T
Zi = U(,]. : r) Xi,
has maximum variance from all possible projections to r dimensions. U
are eigenvectors of S sorted with decreasing eigenvalue.

Matrix SVD approach:

X ¥ usv,
= (US) (V)
——=

A ZT



Application to sequences of images

Clomstnioy

» Popular decades ago for speed of computation,

» Requires to find the rotation matrix T,

» Can we do better?
» Independent Component Analysis (higher order moments)?
> Structural priors
» Non-negative matrix factorization



Probabilistic PCA [Tipping, Bishop, 1999]

Consider model:
p(xi|A, zi,0) = N(Az,cl,), p(z) = N(0,1,),

Marginalization of p(x;, z;|A, o) over z; (lesson 1) yields



Probabilistic PCA [Tipping, Bishop, 1999]

Consider model:

p(xi|A, zi,0) = N(Az;, 0lp), p(zi) = N(0, 1),
Marginalization of p(x;, z;|A, o) over z; (lesson 1) yields
p(xi|A, o) = N(0, C), p(X|A, o) H/\/ (0, C)
C=AAT +ol,

The likelihood is

p(X|A, o) o<H|C| 2exp<><TC x,>o<|C| 2 exp (tr 12)(, )

x |C|7g exp (—;tr(ClXXT))



Maximum Likelihood

Maximum likelihood

_n 1
p(X|A o) o |AAT +al,| * exp <—2tr((AAT + alp)lXXT))
for Aand & for given r:

. 1 ) 1 “
A= Ur (M, — 812, b=g DN
i=r+1
where S = UAUT is eigen-decomposition of S = 3" x;x; .
» distinction from PCA: subtraction of the noise



Image Sequence (PET)

PET eigenvalues

eigenvalue

0 10 20 30 40
1p

» no plateau



Alternative: EM algorithm

Maximize
p(Z|X) x / p(X|A, Z)p(A)dA
where
1
p(A) = N0, 1, )  exp (—2tr (AIrATIp)> ,
Joint model

1
log p(A, X|Z) = —Ea_ltr(X —AZNYT(X - AZT)

1
-t (ALAT L)
Conditional p(A|X, Z,o) for known Z and o

p(AlZ,X,0) = N(A, 1, L)
A=XZ(ZTZ+0ol)t,  Ta=(c'ZTZ+1)7!



The EM algorithm

Standard form for
E-step (over A): q(X|XW) = [logp(X,A|Z)p(AZY), X)dA
M-step (of Z): ZU*tY) = argmaxy q(Z|Z1))
The q(Z|ZY) factor is:

1 1
log p(A, Z,X) = —Eo_ltr(X —AZNT(X - AZT) — Str (ALAT L)
1
= —50 tr (XTX = ZATX — DAZT + ZATAZT + AT Ao)
. 1
q(Z2|29) = Ex {—2altr (XTX —ZATX — DAZT + ZATAZT)}

1 , 5 -
= ol (XTX —ZATX —XTAZT + Z(ATA + pzA)zT)



Summary of the EM Algorithm

Iterate two least squares problems:

1L.A=XZ(ZTZ4ol) ", Za= (071272 + 1)1

2. Z=XTAATA+ pa)!
If you initialize at orthogonal solution A= Ui.,\q., it will be operating
only on As.
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Summary of the EM Algorithm

Iterate two least squares problems:
1L.A=XZ(ZTZ4ol) ", Za= (071272 + 1)1
2. Z=XTAATA+ pa)!
If you initialize at orthogonal solution A= Ui.,\q., it will be operating
only on As.
» Converges to orthogonal solution even from random start
» Included prior on p(A) = N (0,1, 1),
» Why | do not care about variance of the prior, AI?
> ambiguity AZT = ATT'1Z7
» We can incorporate many more assumptions!
> positivity
> p(A) = (0,1, diag(a))



Positivity constraint on Z

1 IfZ,’J >0

What if we impose prior p(Z;;) = {0 -
otherwise.



Positivity constraint on Z

1 ifZ,;>0
What if we impose prior p(Z; ;) = LN >
| 0 otherwise.
E-step (over A): q(Z|ZW)) = [log p(X, A, Z)p(A|ZV), X)dAs.t.
Zj>0,Vi,j

M-step (of Z): ZUtY = argmaxy q(Z|Z1))



Positivity constraint on Z

1 ifZ;>0
What if we impose prior p(Z;;) = {0 ! h S
otherwise.

E-step (over A): q(Z|ZW)) = [log p(X, A, Z)p(A|ZV), X)dAs.t.
Z,',j > 0,Vi,j

M-step (of Z): ZUtY) = argmaxg q(Z|ZY)) s.t. Z;; > 0,Vi,j
Recall the q function:

q(Z|1ZV) = N(Z,%7), Z=XTAATA+pLa)?,
With additional constraint werbtain truncated Normal distribution
Z,"j if Z,"j >0

Extreme Zis Z‘,j o otherwise



Positivity constraint on A

What if we impose prior p(A; ;) = tN (0,1, 1,[0, oo])



Positivity constraint on A
What if we impose prior p(A; ;) = tN (0,1, 1,[0, oo])
, 1
q(Z)2Y)) = Ex {—20_1tr (XTX —ZATX — XAZT + ZATAZT)}

0.5

‘ ‘ ‘ \"(1.1)
0.4 —— tN(1.1,[0.3])]]
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Positivity constraint on A
What if we impose prior p(A; ;) = tN (0,1, 1,[0, oo])
, 1
q(Z)2Y)) = Ex {—20_1tr (XTX —ZATX — XAZT + ZATAZT)}

0.5

\"(1.1)
0.4 — tN(1.,1,[0.3])]

L L
-2 -1 0 1 2 3 4

Z i

- a;(a)z:ﬁqb(ﬁ) |




Variational Bayes for PCA

Bayes rule
P(A, Z|X) x p(X|A, Z)p(A)p(Z)

where
p(A) = N(0,1,1) o exp (—;tr (A/,AU,,)) :
p(Z) = N(0,1,1) x exp (—;wztr(ZI,ZT/,,)>

we can no longer have both variances one.



Variational Bayes for PCA

Bayes rule
P(A, Z|X) x p(X|A, Z)p(A)p(Z)

where
p(A) = N(0,1,1) o exp (—;tr (A/,AU,,)) ,
p(Z) = N(0,1,1) o exp (—;wztr(ZI,ZT/,,)>
we can no longer have both variances one.

q(A, Z) = q(A)q(2)

Yields:

1. A=XZ(ZTZ4+nEz+ 1)V Ea=(ZTZ 4+ nEz+ 1)1

2. Z=XTAATA+pSp+wzl) 1,57 = (ATA+ pEa+wzl)
In practice we need to estimate precision of data wx, wz needing

expectations
Eaz (XATAXT)



Toy matrix decomposition

Consider 1 x 1 matrix d, decomposed
p(d|a, x) = N(ax, re),

Find a, x.



Toy matrix decomposition

Consider 1 x 1 matrix d, decomposed

p(d|a,x) = N(ax; re),

Find a, x.

=1|x,a)
[oXe]
ToLp

f(d




Toy matrix decomposition

Consider 1 x 1 matrix d, decomposed

p(d|a, x)
p(x)

N(ax,re),
N(0,ry),

p(a) = N(0,r.)




Toy maximum likelihood

Joint distribution:

1 1 1
Find
%, 4 = argmax(log p(d, a, x))
a,x
For d < \/;7
%=0,5=0,
For d > \/:er

Note that the product of the maxima is

le

NGR

ax =d—




Marginal likelihood (PPCA)

Joint distribution:

1
| ——(d - L
ogp(d, a,x) x 2re(d ax) 2raa 2rXX

Marginal

p(ald) oc/p(d7 a, x)dx
1
o exp(—§d2(a2rx + re)_l),/rerx(a2rx +re)”

with maximum:

d2—r. .
Tf lfd2 > fe,

0 otherwise,

W
Il

NI=



Variational Bayes

Joint distribution:

Factor g(x|d)



Convergence of VB

1. compute 3,0,, and (a) = 3, (a?

2. compute X, 0y, and (x) = &, <x2> =




Positive support

What if we are interested only in the positive solution?



Positive support

What if we are interested only in the positive solution?

p(d|a,x) = N(ax, re),
p(x) = tN(0, ry, (0,00)) o N(0, r)x(x >0
p(a) = tN(0, ra, (0,00)) oc N(0, ra)x(a > 0),

~—

5
4
05 . . . . 3if -\
0a N(1,1) o \
El — tN(1,1,[0,3))]
2
_ o3t ,
z
= 02h i 4
0.1
0 0

-2 -1 0 1 2 3 4 0 1 2 3 4 5



Non-negative Matrix Factorization (NMF)
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Extensions: Multivariate PCA

1. Automatic Relevance Determination (#of factors):
p(A) = N(0, /, diag(c)),
2. Automatic Relevance Determination (#pixels):
p(vec(A)) = N(0, diag()),

where «

3. many more



Sparse Non-negative Matrix Factorization (SNMF)

%10
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Assignment

Matrix factorization | [ points |

EM or VB, Bart-Lisa 8
+ positive support +2




BSS with deconvolution

Time-activity curves for brain imaging are results of convolution.

Time-activity curve Input function Convolution kernel

Model of the curve

by 0 0 O

_ _ _ b b 0 0
x = b*w = Bw, B = b b O
b, b b

Unknows are b and w. Kernel is sparse.



BSS with deconvolution

BCMS S-BSS-vecDC S-BSS-DW
Tissue Image TAC Tissue Image TAC Tissue Image TAC
0.3 0.3 0.3
202 202 202
] = =
< o < o1 <01
0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Image no. Image no. Image no.
202 202 202
= = =
£ 01 Q 204 /\ <01
0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Image no. Image no. Image no.
202 202 202
> = >
<201 201 <01
0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Image no. Image no. Image no.
0.3 0.3 0.3
202 202 202
> = >
201 201 <201
0 . 0l Mo 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Image no. Image no. Image no.



Image deconvolution

(a) out-of-focus blur



Image deconvolution

Mathematical model:
d=Ax+e
where
is the observed (blured) image,
is the original (true) image, unknown

is the convolution matrix,

o > X Q

is the measurement (model) error
Find: x, A, var(e)



Image deconvolution

Mathematical model:

d=Ax+e
where
d is the observed (blured) image,
x is the original (true) image, unknown
A is the convolution matrix, unknown kernel
e

is the measurement (model) error
Find: x, A, var(e)



Image deconvolution

Mathematical model:

d=Ax+e
where
is the observed (blured) image,
is the original (true) image,

is the convolution matrix,

o > X Q

is the measurement (model) error
Find: x, A, var(e)

unknown
unknown kernel

unknown variance



Model

» number of unknowns > 3x
higher than number of
D e observations
\ » ARD coefficients vy, Vx, re,
“ » approximations of the

covariance matrices by

diagonal



Results:

(a) out-of-focus blur (b) blind deconvolution



