Blind Source Separation

Václav Šmídl

April 7, 2025

Recapitulation

- 1. Model-based development:
 - ▶ modelling assumptions ⇒ estimation method
 - ► Gaussian Mixture ⇒ GMM method (via the EM algorithm)
 - ► Linear combination with Gaussian noise ⇒ OLS
 - ▶ mixture of linear models ⇒ custom algorithm

Recapitulation

- 1. Model-based development:
 - ▶ modelling assumptions ⇒ estimation method
 - ▶ Gaussian Mixture ⇒ GMM method (via the EM algorithm)
 - ▶ Linear combination with Gaussian noise ⇒ OLS
 - ightharpoonup mixture of linear models \Longrightarrow custom algorithm
- 2. Method-based development
 - ightharpoonup PCA \Longrightarrow FA \Longrightarrow BSS

Matrix Least Squares

Consider two least squares problem

$$y_1 = X\theta_1$$
 $y_2 = X\theta_2$ $Y = X\Theta$

with solutions

Matrix Least Squares

Consider two least squares problem

$$y_1 = X\theta_1$$
 $y_2 = X\theta_2$ $Y = X\Theta$

with solutions

$$\hat{\theta}_1 = (X^T X)^{-1} X^T y_1$$

$$\hat{\theta}_2 = (X^T X)^{-1} X^T y_2$$

$$\hat{\Theta} = (X^T X)^{-1} X^T Y$$

Matrix Least Squares

Consider two least squares problem

$$y_1 = X\theta_1$$
 $y_2 = X\theta_2$ $Y = X\Theta$

with solutions

$$\hat{\theta}_1 = (X^T X)^{-1} X^T y_1$$

$$\hat{\theta}_2 = (X^T X)^{-1} X^T y_2$$

$$\hat{\Theta} = (X^T X)^{-1} X^T Y$$

In probabilities, matrix Normal distribution

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \end{bmatrix}, \begin{bmatrix} (X^TX)^{-1} & 0 \\ 0 & (X^TX)^{-1} \end{bmatrix} \right) <=>\Theta = \mathcal{N} \left(\hat{\Theta}, I \otimes (X^TX)^{-1} \right)$$

Blind source separation – image sequence

2 sources

Blind source separation – image sequence

- 2 sources
- weights:

Bart	1	0.8	0.6	0.4	0.2	0
Lisa	0	0.2	0.4	0.6	0.8	1

Medical imaging

- number of sources?
- source images
- time activity of the source

Mathematical description

Linear model of $p \times n$ matrix

$$x_i = Az_i + e_i, i = 1..n$$

where

A is the $p \times r$ matrix of source images, $r < \min(n, p)$

Z is the $n \times r$ matrix of time activities,

E is the $p \times n$ noise matrix (Gaussian)

The case of known Z: least squares

Consider decomposition $X = AZ^{\top}$

$$\underline{x}_j = \underline{a}_j Z^{\top} \implies \underline{x}_j^{\top} = Z \underline{a}_j^{\top},$$

for known D, X the estimate of A is

$$\underline{\hat{a}}_j^{\top} = (Z^{\top}Z)^{-1}Z^{\top}\underline{x}_j^{\top}, \quad \Sigma_{a_j} = (Z^{\top}Z)^{-1},$$

The case of known Z: least squares

Consider decomposition $X = AZ^{\top}$

$$\underline{x}_j = \underline{a}_j Z^{\top} \implies \underline{x}_j^{\top} = Z \underline{a}_j^{\top},$$

for known D, X the estimate of A is

$$\underline{\hat{a}}_j^\top = (Z^\top Z)^{-1} Z^\top \underline{x}_j^\top, \quad \Sigma_{a_j} = (Z^\top Z)^{-1},$$

In matrices

$$\hat{A} = XZ(Z^TZ)^{-1}, \quad p(A) = \mathcal{N}(\hat{Z}, I, \Sigma_{a_j}) = \prod_j \mathcal{N}(\hat{\underline{a}}_j, \Sigma_{a_j}),$$

where $\mathcal{N}(\hat{A}, I, \Sigma_{a_j})$, is *matrix normal distribution*, with row and column covariance matrices.

Useful expectation

$$\mathsf{E}(A^TA) = \sum_{j=1}^{p} \underline{a}_j \underline{a}_j^T = \sum_{j=1}^{p} \left(\underline{\hat{a}}_j \underline{\hat{a}}_j^T + \Sigma_{a_j} \right) = \hat{A}^T \hat{A} + p \Sigma_{a_j}$$

Source Separation

Model

$$X = AZ^T + E$$
,

Both images A and time activities X are **unknown**!

Source Separation

Model

$$X = AZ^T + E$$
,

Both images A and time activities X are **unknown**!

Issue: ambiguity

$$AZ^{T} = ATT^{-1}Z^{T}$$

$$(AT)(T^{-1}Z^{T}) = \overline{AZ}^{T}$$

matrix T includes both scaling and rotation.

Solution: additional constraints.

Principal component analysis

Consider n, p-dimensional vectors x_i , i = 1, ... n, and their covariance matrix

$$S = \frac{1}{n} \sum (x_i - \overline{x})(x_i - \overline{x})^T.$$

Then r-dimensional vectors z_i ,

$$z_i = U(:, 1:r)^T x_i,$$
 $S = U \Lambda U^T,$

has maximum variance from all possible projections to r dimensions. U are eigenvectors of S sorted with decreasing eigenvalue.

Matrix SVD approach:

$$X \stackrel{\text{svd}}{=} USV,$$

$$= \underbrace{(US)}_{\hat{A}} \underbrace{(V)}_{\hat{Z}^T}$$

Application to sequences of images

- Popular decades ago for speed of computation,
- Requires to find the rotation matrix T,
- ► Can we do better?
 - Independent Component Analysis (higher order moments)?
 - Structural priors
 - Non-negative matrix factorization

Probabilistic PCA [Tipping, Bishop, 1999]

Consider model:

$$p(x_i|A, z_i, \sigma) = \mathcal{N}(Az_i, \sigma I_p),$$
 $p(z_i) = \mathcal{N}(0, I_r),$

Marginalization of $p(x_i, z_i | A, \sigma)$ over z_i (lesson 1) yields

Probabilistic PCA [Tipping, Bishop, 1999]

Consider model:

$$p(x_i|A, z_i, \sigma) = \mathcal{N}(Az_i, \sigma I_p),$$
 $p(z_i) = \mathcal{N}(0, I_r),$

Marginalization of $p(x_i, z_i | A, \sigma)$ over z_i (lesson 1) yields

$$p(x_i|A,\sigma) = \mathcal{N}(0,C), \qquad p(X|A,\sigma) = \prod_i \mathcal{N}(0,C)$$
$$C = AA^T + \sigma I_p,$$

The likelihood is

$$\begin{split} \rho(X|A,\sigma) &\propto \prod_{i} |C|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}x_{i}^{\top}C^{-1}x_{i}\right) \propto |C|^{-\frac{n}{2}} \exp\left(-\frac{1}{2} \text{tr}(C^{-1}\sum_{i} x_{i}x_{i}^{\top})\right) \\ &\propto |C|^{-\frac{n}{2}} \exp\left(-\frac{1}{2} \text{tr}(C^{-1}XX^{\top})\right) \end{split}$$

Maximum Likelihood

Maximum likelihood

$$p(X|A,\sigma) \propto \left|AA^T + \sigma I_p\right|^{-\frac{n}{2}} \exp\left(-\frac{1}{2} \mathrm{tr}((AA^T + \sigma I_p)^{-1}XX^\top)\right)$$

for \hat{A} and $\hat{\sigma}$ for given r:

$$\hat{A} = U_{1:r}(\Lambda_{1:r} - \hat{\sigma}I)^{\frac{1}{2}}, \qquad \qquad \hat{\sigma} = \frac{1}{d-r}\sum_{i=r+1}^{n}\lambda_i,$$

where $S = U\Lambda U^T$ is eigen-decomposition of $S = \sum x_i x_i^T$.

distinction from PCA: subtraction of the noise

Image Sequence (PET)

▶ no plateau

Alternative: EM algorithm

Maximize

$$p(Z|X) \propto \int p(X|A,Z)p(A)dA$$

where

$$p(A) = \mathcal{N}(0, I, I) \propto \exp\left(-\frac{1}{2} \text{tr} \left(A I_r A^T I_p\right)\right),$$

Joint model

$$\log p(A, X|Z) = -\frac{1}{2}\sigma^{-1}\operatorname{tr}(X - AZ^{T})^{T}(X - AZ^{T})$$
$$-\frac{1}{2}\operatorname{tr}(AI_{r}A^{T}I_{p})$$

Conditional $p(A|X, Z, \sigma)$ for known Z and σ

$$p(A|Z,X,\sigma) = \mathcal{N}(\hat{A},I,\Sigma_A)$$
$$\hat{A} = XZ(Z^TZ + \sigma I)^{-1}, \qquad \Sigma_A = (\sigma^{-1}Z^TZ + I)^{-1}$$

The EM algorithm

Standard form for

E-step (over
$$A$$
): $q(X|X^{(j)}) = \int \log p(X, A|Z)p(A|Z^{(j)}, X)dA$
M-step (of Z): $Z^{(j+1)} = \arg \max_{\theta} q(Z|Z^{(j)})$

The $q(Z|Z^{(j)})$ factor is:

$$\log \rho(A, Z, X) = -\frac{1}{2}\sigma^{-1} \operatorname{tr}(X - AZ^{T})^{T}(X - AZ^{T}) - \frac{1}{2}\operatorname{tr}(AI_{r}A^{T}I_{p})$$

$$= -\frac{1}{2}\sigma^{-1}\operatorname{tr}(X^{T}X - ZA^{T}X - DAZ^{T} + ZA^{T}AZ^{T} + A^{T}A\sigma)$$

$$q(Z|Z^{(j)}) = \mathsf{E}_{A}\left\{-\frac{1}{2}\sigma^{-1}\operatorname{tr}(X^{T}X - ZA^{T}X - DAZ^{T} + ZA^{T}AZ^{T})\right\}$$

$$= -\frac{1}{2}\sigma^{-1}\operatorname{tr}\left(X^{T}X - Z\hat{A}^{T}X - X^{T}\hat{A}Z^{T} + Z(\hat{A}^{T}\hat{A} + p\Sigma_{A})Z^{T}\right)$$

$$\propto \mathcal{N}(\hat{Z}, \Sigma_{Z}),$$

$$\hat{Z} = X^{T}\hat{A}(\hat{A}^{T}\hat{A} + p\Sigma_{A})^{-1}.$$

Iterate two least squares problems:

1.
$$\hat{A} = XZ(Z^TZ + \sigma I)^{-1}, \Sigma_A = (\sigma^{-1}Z^TZ + I)^{-1}$$

2.
$$\hat{Z} = X^T \hat{A} (\hat{A}^T \hat{A} + p \Sigma_A)^{-1}$$

Iterate two least squares problems:

1.
$$\hat{A} = XZ(Z^TZ + \sigma I)^{-1}, \Sigma_A = (\sigma^{-1}Z^TZ + I)^{-1}$$

2.
$$\hat{Z} = X^T \hat{A} (\hat{A}^T \hat{A} + \rho \Sigma_A)^{-1}$$

If you initialize at orthogonal solution $\hat{A} = U_{1:r}\Lambda_{1:r}$ it will be operating only on λ s.

Converges to orthogonal solution even from random start

Iterate two least squares problems:

1.
$$\hat{A} = XZ(Z^TZ + \sigma I)^{-1}, \Sigma_A = (\sigma^{-1}Z^TZ + I)^{-1}$$

2.
$$\hat{Z} = X^T \hat{A} (\hat{A}^T \hat{A} + p \Sigma_A)^{-1}$$

- Converges to orthogonal solution even from random start
- ▶ Included prior on $p(A) = \mathcal{N}(0, I, I)$,
- ▶ Why I do not care about variance of the prior, λI ?

Iterate two least squares problems:

1.
$$\hat{A} = XZ(Z^TZ + \sigma I)^{-1}, \Sigma_A = (\sigma^{-1}Z^TZ + I)^{-1}$$

2.
$$\hat{Z} = X^T \hat{A} (\hat{A}^T \hat{A} + p \Sigma_A)^{-1}$$

- Converges to orthogonal solution even from random start
- ▶ Included prior on $p(A) = \mathcal{N}(0, I, I)$,
- ▶ Why I do not care about variance of the prior, λI ?
 - ▶ ambiguity $AZ^T = ATT^{-1}Z^T$

Iterate two least squares problems:

1.
$$\hat{A} = XZ(Z^TZ + \sigma I)^{-1}, \Sigma_A = (\sigma^{-1}Z^TZ + I)^{-1}$$

2.
$$\hat{Z} = X^T \hat{A} (\hat{A}^T \hat{A} + p \Sigma_A)^{-1}$$

- Converges to orthogonal solution even from random start
- ▶ Included prior on $p(A) = \mathcal{N}(0, I, I)$,
- ▶ Why I do not care about variance of the prior, λI ?
 - ightharpoonup ambiguity $AZ^T = ATT^{-1}Z^T$
- We can incorporate many more assumptions!
 - positivity
 - $P(A) = \mathcal{N}(0, I, \operatorname{diag}(\alpha))$

Positivity constraint on Z

What if we impose prior
$$p(Z_{i,j}) = \begin{cases} 1 & \text{if } Z_{i,j} > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Positivity constraint on Z

```
What if we impose prior p(Z_{i,j}) = \begin{cases} 1 & \text{if } Z_{i,j} > 0 \\ 0 & \text{otherwise.} \end{cases}
E-step (over A): q(Z|Z^{(j)}) = \int \log p(X,A,Z)p(A|Z^{(j)},X)dAs.t. Z_{i,j} > 0, \forall i,j
M-step (of Z): Z^{(j+1)} = \arg \max_{\theta} q(Z|Z^{(j)})
```

Positivity constraint on Z

What if we impose prior
$$p(Z_{i,j}) = \begin{cases} 1 & \text{if } Z_{i,j} > 0 \\ 0 & \text{otherwise.} \end{cases}$$

E-step (over A):
$$q(Z|Z^{(j)}) = \int \log p(X, A, Z)p(A|Z^{(j)}, X)dA$$
s.t. $Z_{i,j} > 0, \forall i, j$

M-step (of Z): $Z^{(j+1)} = \arg \max_{\theta} q(Z|Z^{(j)})$ s.t. $Z_{i,j} > 0, \forall i,j$ Recall the g function:

$$q(Z|Z^{(j)}) = \mathcal{N}(\hat{Z}, \Sigma_Z), \quad \hat{Z} = X^T \hat{A}(\hat{A}^T \hat{A} + p\Sigma_A)^{-1},$$

With additional constraint we obtain truncated Normal distribution Extreme $\hat{\hat{Z}}$ is $\hat{\hat{Z}}_{i,j} = \begin{cases} \hat{Z}_{i,j} & \text{if } \hat{Z}_{i,j} > 0 \\ 0 & \text{otherwise} \end{cases}$

Positivity constraint on A

What if we impose prior $p(A_{i,j}) = t\mathcal{N}(0, I, I, [0, \infty])$

Positivity constraint on A

What if we impose prior $p(A_{i,j}) = t\mathcal{N}(0, I, I, [0, \infty])$

$$q(Z|Z^{(j)}) = \mathsf{E}_{A} \left\{ -\frac{1}{2} \sigma^{-1} \mathsf{tr} \left(X^{T} X - Z A^{T} X - X A Z^{T} + Z A^{T} A Z^{T} \right) \right\}$$

Positivity constraint on A

What if we impose prior $p(A_{i,j}) = t\mathcal{N}(0, I, I, [0, \infty])$

$$q(Z|Z^{(j)}) = \mathsf{E}_{A}\left\{-\frac{1}{2}\sigma^{-1}\mathsf{tr}\left(X^{T}X - ZA^{T}X - XAZ^{T} + ZA^{T}AZ^{T}\right)\right\}$$

 $\mathsf{E}(A) pprox \tilde{A}_{i,j} = \mathcal{N}(\hat{A}, I, \mathsf{diag}(\Sigma_A))$ product of univariate tN. Moments of $t\mathcal{N}(\hat{a}, \sigma_a)$ are

$$\begin{aligned} \mathsf{E}(a) &= \hat{a} + \frac{\phi(\alpha) - \phi(\beta)}{Z_a}, \\ \mathsf{E}(a^2) &= \sigma_a^2 \left\{ 1 + \frac{\alpha\phi(\alpha) - \beta\phi(\beta)}{Z_a} \right\} \end{aligned}$$

where
$$\alpha = \frac{-\hat{\mathbf{a}}}{\sqrt{\sigma_a}}$$
, $\beta = \infty$, $\phi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/s)$, $Z = \Phi(\beta) - \Phi(\alpha)$, $\Phi(x) = \frac{1}{2}(1 + \operatorname{erf}(x))$.

Variational Bayes for PCA

Bayes rule

$$p(A, Z|X) \propto p(X|A, Z)p(A)p(Z)$$

where

$$p(A) = \mathcal{N}(0, I, I) \propto \exp\left(-\frac{1}{2} \operatorname{tr}\left(A I_r A^T I_p\right)\right),$$

$$p(Z) = \mathcal{N}(0, I, I) \propto \exp\left(-\frac{1}{2} \omega_Z \operatorname{tr}(Z I_r Z^T I_n)\right)$$

we can no longer have both variances one.

Variational Bayes for PCA

Bayes rule

$$p(A, Z|X) \propto p(X|A, Z)p(A)p(Z)$$

where

$$p(A) = \mathcal{N}(0, I, I) \propto \exp\left(-\frac{1}{2} \operatorname{tr}\left(A I_r A^T I_p\right)\right),$$

$$p(Z) = \mathcal{N}(0, I, I) \propto \exp\left(-\frac{1}{2} \omega_Z \operatorname{tr}(Z I_r Z^T I_n)\right)$$

we can no longer have both variances one.

$$q(A,Z) \approx q(A)q(Z)$$

Yields:

1.
$$\hat{A} = X\hat{Z}(\hat{Z}^T\hat{Z} + n\Sigma_Z + I)^{-1}, \Sigma_A = (Z^TZ + n\Sigma_Z + I)^{-1}$$

2.
$$\hat{Z} = X^T \hat{A} (\hat{A}^T \hat{A} + p \Sigma_A + \omega_Z I)^{-1}, \Sigma_Z = (\hat{A}^T \hat{A} + p \Sigma_A + \omega_Z I)^{-1},$$

In practice we need to estimate precision of data $\omega_{X},\,\omega_{Z}$ needing expectations

$$\mathsf{E}_{A,Z}\left(XA^TAX^T\right)$$

Toy matrix decomposition

Consider 1×1 matrix d, decomposed

$$p(d|a,x) = \mathcal{N}(ax, r_e),$$

Find a, x.

Toy matrix decomposition

Consider 1×1 matrix d, decomposed

$$p(d|a,x) = \mathcal{N}(ax, r_e),$$

Find a, x.

Toy matrix decomposition

Consider 1×1 matrix d, decomposed

$$p(d|a,x) = \mathcal{N}(ax, r_e),$$

$$p(x) = \mathcal{N}(0, r_x),$$

$$p(a) = \mathcal{N}(0, r_a)$$

Toy maximum likelihood

Joint distribution:

$$\log p(d, a, x) \propto -\frac{1}{2r_e}(d - ax)^2 - \frac{1}{2r_a}a^2 - \frac{1}{2r_x}x^2$$

Find

$$\hat{x}, \hat{a} = \arg\max_{a,x} (\log p(d, a, x))$$

For $d < \frac{r_e}{\sqrt{r_a r_x}}$,

$$\hat{x}=0,\hat{a}=0,$$

For $d \geq \frac{r_e}{\sqrt{r_a r_x}}$,

$$\hat{x} = \pm \left(d\sqrt{\frac{r_x}{r_a}} - \frac{r_e}{r_a} \right)^{\frac{1}{2}}, \qquad \hat{a} = \pm \left(d\sqrt{\frac{r_a}{r_x}} - \frac{r_e}{r_x} \right)^{\frac{1}{2}}.$$

Note that the product of the maxima is

$$\hat{a}\hat{x}=d-\frac{r_e}{\sqrt{r_ar_x}}.$$

Marginal likelihood (PPCA)

Joint distribution:

$$\log p(d, a, x) \propto -\frac{1}{2r_e}(d - ax)^2 - \frac{1}{2r_a}a^2 - \frac{1}{2r_x}x^2$$

Marginal

$$\begin{split} p(a|d) &\propto \int p(d,a,x) dx \\ &\propto \exp(-\frac{1}{2}d^2(a^2r_x+r_e)^{-1})\sqrt{r_er_x}(a^2r_x+r_e)^{-\frac{1}{2}}, \end{split}$$

with maximum:

$$\hat{a} = egin{cases} rac{\sqrt{d^2 - r_e}}{\sqrt{r_x}} & ext{if } d^2 > r_e, \ 0 & ext{otherwise}, \end{cases}$$

Variational Bayes

Joint distribution:

$$\log p(d, a, x) \propto -\frac{1}{2r_e}(d - ax)^2 - \frac{1}{2r_a}a^2 - \frac{1}{2r_x}x^2$$

Factor q(a|d)

$$\begin{split} p(a|d) &\propto \exp\left(\mathsf{E}_{x}\left[-\frac{1}{2r_{e}}(d-ax)^{2} - \frac{1}{2r_{a}}a^{2}\right]\right) \\ &= \mathcal{N}(\hat{a}, \sigma_{a}), \\ \hat{a} &= \sigma_{a}d \left\langle x \right\rangle r_{e}^{-1}, \quad \sigma_{a}^{-1} = \left\langle a^{2} \right\rangle r_{e}^{-1} + r_{a}^{-1} \end{split}$$

Factor q(x|d)

$$\begin{split} \rho(a|d) &\propto \exp\left(\mathsf{E}_{x}\left[-\frac{1}{2r_{e}}(d-ax)^{2} - \frac{1}{2r_{a}}a^{2}\right]\right) \\ &= \mathcal{N}(\hat{a},\sigma_{a}), \\ \hat{a} &= \sigma_{a}d\left\langle x\right\rangle r_{e}^{-1}, \quad \sigma_{a}^{-1} = \left\langle a^{2}\right\rangle r_{e}^{-1} + r_{a}^{-1} \end{split}$$

Convergence of VB

- 1. compute \hat{a}, σ_a , and $\langle a \rangle = \hat{a}, \langle a^2 \rangle = \hat{a}^2 + \sigma_a$,
- 2. compute \hat{x}, σ_x , and $\langle x \rangle = \hat{x}, \langle x^2 \rangle = \hat{x}^2 + \sigma_x$,

Positive support

What if we are interested only in the positive solution?

Positive support

What if we are interested only in the positive solution?

$$p(d|a,x) = \mathcal{N}(ax, r_e),$$

$$p(x) = t\mathcal{N}(0, r_x, \langle 0, \infty \rangle) \propto \mathcal{N}(0, r_x)\chi(x > 0),$$

$$p(a) = t\mathcal{N}(0, r_a, \langle 0, \infty \rangle) \propto \mathcal{N}(0, r_a)\chi(a > 0),$$

Non-negative Matrix Factorization (NMF)

Extensions: Multivariate PCA

1. Automatic Relevance Determination (#of factors):

$$p(A) = \mathcal{N}(0, I, \operatorname{diag}(\alpha)),$$

2. Automatic Relevance Determination (#pixels):

$$p(\operatorname{vec}(A)) = \mathcal{N}(0, \operatorname{diag}(\alpha)),$$

where α

3. many more

Sparse Non-negative Matrix Factorization (SNMF)

Assignment

Matrix factorization	points
EM or VB, Bart-Lisa	8
+ positive support	+2

BSS with deconvolution

Time-activity curves for brain imaging are results of convolution.

Model of the curve

$$x = b * w = Bw,$$
 $B = \begin{pmatrix} b_1 & 0 & 0 & 0 \\ b_2 & b_1 & 0 & 0 \\ \dots & b_2 & b_1 & 0 \\ b_n & \dots & b_2 & b_1 \end{pmatrix}$

Unknows are b and w. Kernel is sparse.

BSS with deconvolution

(a) out-of-focus blur

Mathematical model:

$$d = Ax + e$$

where

d is the observed (blured) image,

x is the original (true) image,

A is the convolution matrix,

e is the measurement (model) error

Find: x, A, var(e)

unknown

Mathematical model:

$$d = Ax + e$$

where

d is the observed (blured) image,

x is the original (true) image,

A is the convolution matrix,

e is the measurement (model) error

Find: x, A, var(e)

unknown

unknown kernel

Mathematical model:

$$d = Ax + e$$

where

d is the observed (blured) image,

x is the original (true) image,

A is the convolution matrix,

e is the measurement (model) error

unknown unknown kernel unknown variance

Find: x, A, var(e)

Model

- number of unknowns > 3× higher than number of observations
- ▶ ARD coefficients γ_H , γ_x , r_e ,
- approximations of the covariance matrices by diagonal

Results:

(a) out-of-focus blur

(b) blind deconvolution