Bayesian Non-linear Regression: Gradient
Approach

Vaclav Smidl

May 4, 2022

Recapitulation

Monte Carlo methods

» MCMC
> HMC

Properties:
» convergence to the true solution

> simplicity

» correlation

Least Squares

Linear regression:

= X0 + e,

Minimize

Ze,z:eTe:(y—XQ)T(y—XG)

Dy = Xx0)"(y— x0)) = 0

700 y =

%(ﬂy —0"XTy—y"X0+07X7X0) =0

X™X0=XTy

Analytical:

0=(XTX)"1XxTy.

For large 6, conjugate gradients.

Gradient Descent:

Gradient descent (GD, 1st order):

0= in L
arg(rgnelg

ék+1 = ék — OZVQ,C
Ok = O — a(XT X0k — XTy)

Very many cheap (GPU)
iterations.

ra

Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a+ bx + cx? + dx3 =[1,x,x%,x7]0
y = aexp(cx) + bexp(dx) = [exp(cx), exp(dx)]0

Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a+ bx + cx? + dx3 =[1,x,x%,x7]0
y = aexp(cx) + bexp(dx) = [exp(cx), exp(dx)]0

What if the exponent decay of bi-exponential is not known? Common in
functional medical imaging.

Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a+ bx + cx? + dx3 =[1,x,x%,x7]0
y = aexp(cx) + bexp(dx) = [exp(cx), exp(dx)]0

What if the exponent decay of bi-exponential is not known? Common in
functional medical imaging.

Include them in optimization,
0 = [a, b, c, d], of least-squares

6=argmind (y; — f(x))°

f(x) = aexp(cx;) — bexp(dx;)

and run GD (or other
optimization) .
» Run in Matlab cftoolbox.

Interpretation point of view

Without knowing it, the biologist used a neural network.
yi = aexp(cx;) — bexp(dx;)

Specifically Multi-layer perceptron (MLP), with 2-layers, and 2 hidden
units.

Interpretation point of view

Without knowing it, the biologist used a neural network.
yi = aexp(cx;) — bexp(dx;)

Specifically Multi-layer perceptron (MLP), with 2-layers, and 2 hidden
units.

1. exp activation function: b
X, O———W;

Activation

Function

z; = exp(w,ix), i = 1,2 {7 O, =Pl

2. linear activation function:

2
y = § W2 iZ;
i=1

MLP is a regression that learns
basis functions from the datal!

X, O——> W,

» known as “dense” layers now.

Neural networks

Feed forward NN: hidden units

V4l :O'l(W1X+b1),
22:02(W221+b2),...
= 0y (WmZm + bm) + €

YK

' outputs

with vector-valued

— activation functions o;j(),
— weights w;

— biases b;.

For Gaussian noise, maximum log-likelihood is

n

0=argminL(x,y,0), L=e"e=)Y (yi—o1(woa(---)+ b1))*.

i=1
MSE (mean square error) loss function with unknowns
0= [Wlabla W2ab27"'7]-

Neural networks

Feed forward NN: hidden units

V4l :O'l(W1X+b1),
22:02(W221+b2),...
= 0y (WmZm + bm) + €

YK

' outputs

with vector-valued

— activation functions o;j(),
— weights w;

— biases b;.

For Gaussian noise, maximum log-likelihood is

n

0=argminL(x,y,0), L=e"e=)Y (yi—o1(woa(---)+ b1))*.

i=1
MSE (mean square error) loss function with unknowns
0 = [wy, by, wa, by, ...,]. Gradient descent method

Hr+) — 40 v (i),

where 7 is the (small) learning rate.

Example

Trivial NN with one hidden layer:

6
yi= Z wa,; tanh(wy ;X +by)+ b2,
i=1

tanh activation function on
hidden layer and linear activation
function on output.
Training by GD:

1. random initialization,

2. 50000 steps,

3. rate n = 0.001,
Main issue: reliability, slow
convergence,...

-0.5

0.8

0.6

0.4

0.2

10

Faster gradient descent

In general, gradient descent
requires O(1/€) steps

S Tmax gradient descent

2L(L{(6) - £{(67)) e

where L is the Lipschitz constant
of L, for convex function.

I;Vear\rlyrl:;all rrnretrhtrJd
Heavy-ball (momentum): accumulate velocity
G0+ = (1) — v L(07)) + B(O) — Hr1))y

has theoretical asymptotic number of steps O(1/+/e).

» Nesterov: theoretically the fastest first-order method. Tuning: n, 8
(via L?)

Second-order: Newton method

Optimize: A
0 = argmingL(6)

using Taylor expansion
1
L0 + h) = £(0T)+vLET)h + EhTHl;(Qk)h
where Hz(0) = V2L(0).

We wish that 01 = 0(7) + h is an optimum, i.e. V4L(0x +h) =0 :

VLO)+ He(0)h=0 < h=-— (Hﬁ(o(ﬂ)) vL(OD)

yielding

o0+ =9 — H (9w L(e).
with theoretical asymptotic number of steps O(log(loge)). (Expensive
steps!)

Approximation of the Hessian: LBFGS.

Example: Newton for OLS

Gradient descent (GD, 1st order):

0 = arg 2’1€I8 L
ék+1 = ék — OZV@E
ék+1 = ék+1 — Ot(XTXHk — XTy)
Very many cheap (GPU)
iterations.

e

Example: Newton for OLS

Gradient descent (GD, 1st order):

0 = arg 2’1€I8 L
ék+1 = ék — OZV@E
ék+1 = ék+1 — Ot(XTXHk — XTy)
Very many cheap (GPU)
iterations.

Newton's method (2nd order):

ék+1 = ék - H(;1V9£

i1 =0 — (XTX)"H(XT X — XTy)
= (XTX)"1(XTy)

One expensive iteration.
Infeasible in high dimensions

/

\’<(2x1 Xo
optimal point

e

Stochastic Gradient Descent

Original loss function

n

L(y,x,0) = Z(Yi — o1 (wioa () + b))?.

i=1

is replaced by:

EN(y,X,Q) = Z (vi—o1(wioa () + bl))2-

ieT
where Z C {1,...,n},|Z] < n. For random samples of indeces
ji=1...m B
VG‘C(ya X, 9) =E (V‘C(ya X, 9))
yielding

) — 90) — i (™),

Stochastic Gradient Descent

Deterministic gradient:

Stochastic gradient: will converge only if n, — 0.

For constant 7, it “walks” around optima.

Adaptive Learning Rate SGD

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

He(0) ~ diag(y/Fr11),
rria=r;+ [Vf(é(”)} 2

accumulates all values from the beginning (infinite window) .

Adaptive Learning Rate SGD
AdaGrad (Duchi, 2011) method uses estimate of the Hessian
He(8) ~ diag(/rrsa),
rria=r;+ [Vf(é(”)} 2
accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

Hg(é) ~ diag(\/rr11),
Fro1=pre+(1-p) [vﬁ(é“))] 2

Adaptive Learning Rate SGD

AdaGrad (Duchi, 2011) method uses estimate of the Hessian
He(0) ~ diag(y/Fr11),
Frp1=1r; + [Vf(é(”)} 2
accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

Hg(é) ~ diag(\/rr11),
Fro1=pre+(1-p) [vﬁ(é“))] 2

ADAM (Kingma&:Ba, 2014) combines adaptive rate with adaptive
momentum

Adaptive Learning Rate SGD
AdaGrad (Duchi, 2011) method uses estimate of the Hessian
He(8) ~ diag(/rrsa),
rria=r;+ [Vf(é(”)} 2
accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

Hg(é) ~ diag(\/rr11),
Fro1=pre+(1-p) [vﬁ(é“))] 2

ADAM (Kingma&:Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Adaptive Learning Rate SGD

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

He(0) ~ diag(y/Fr11),
rria=r;+ [Vf(é(”)} 2

accumulates all values from the beginning (infinite window) .
RMSProp (Hinton, 2012) methods adds forgetting

Hg(é) ~ diag(\/rr11),
Fro1=pre+(1-p) [vﬁ(é“))] 2

ADAM (Kingma&:Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Controversy: adaptation can help but can also harm convergence

Deep Learning

probability?
— CAR
— TRUCK
— van
' E — BICYCLE
- FULLY
~ INPUT CONVOLUTION + RELU POCLING CONVOLUTION + RELU POOLING FLATTEN CONMECTED SOFTMAX
HIDDEN LAYERS CLASSIFICATION

» Large networks with many layers

» Special layers that allow to compute gradients
» Training by a first-order methods

» Excellent at supervised tasks (regression)

Can we trust the result?

0.8

0.6

0.4

10

0.8

0.6

0.4

0.2

-0.2

-0.4

-10

10

Can we trust the result?

0.8

0.6

0.4

0.8

0.6

0.4

0.2

10

-0.2

-0.4

-0.2
-0.4

0.8

0.6

0.4

0.2

12

0.8
0.6
0.4
0.2

(=}

-10

10

The i.i.d. assumption

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

>t

-10

of test and train data

1.00)

g

The i.i.d. assumption of test

1

0.8

0.6

0.4

0.2

0

-0.2

and train data

1.00)

g

1

0.8

0.6

0.4

0.2

0

-0.2

1.00)

g

The i.i.d. assumption of test and train data

‘*H- + 1. +“|-

LR

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

Epistemic uncertainty:

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:
» randomness,
» dice (alea) throwing
» “cannot” be reduced
» common in many models

Epistemic uncertainty:

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

» randomness,

» dice (alea) throwing

» “cannot” be reduced

» common in many models

Epistemic uncertainty:

» lack of knowledge,
» systematic model insufficiency,
» can be reduced.
» handled by Bayesian approaches
» neural network parameters have posterior
distributions

Posterior distribution of the weights

Replace parameter estimate 6 by p(6). Harder than with linear models:

Posterior distribution of the weights
Replace parameter estimate 6 by p(6). Harder than with linear models:

Laplace build covariance around 4, (MacKay, 1992):

p(0) ~ N(6,%), ¥ = (-VVliogp(%)) %,

Posterior distribution of the weights
Replace parameter estimate 6 by p(6). Harder than with linear models:

Laplace build covariance around 4, (MacKay, 1992):

p(0) ~ N(6,%), ¥ = (-VVliogp(%)) %,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

» golden standard for posterior estimates

» computationally expensive

Posterior distribution of the weights
Replace parameter estimate 6 by p(6). Harder than with linear models:

Laplace build covariance around 4, (MacKay, 1992):

p(0) ~ N(6,%), ¥ = (-VVliogp(%)) %,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

» golden standard for posterior estimates

» computationally expensive

Langevin Dynamics (Welling, Teh, 2011):
plr+1) — g(7) _ nv[(é(r)) +e, e ~N(O,nl),

where € and 7 needs to be carefully balanced. (Asymptotic proof of
acceptance rate=1).

Laplace

% data
—NN

0.8

0.6

0.4

0.2

0

-0.2

-0.4
-10 -5 0 5 10

max+0.1std max-+std

-0.4 -8

Laplace Il

12

1

0.8

0.6

0.4

0.2

0

-0.2

% data
NN

-0.4
-10

max+0.1std

-10 -5 0

10

10

max-+std

X data
—NN

Langevin MCMC (tweaked)

Hamiltonian Monte Carlo

Maximum likelihood Average prediction of 500 HMC

p(y|x,) 1

u}
o)
I
i
it

Dropout MC

Standard Network Model:

zi=o;(Wix+b), i=1:m-1,

= 02 (Wmzm + bm),

Dropout Network Model:

zi=o0; (Wi (& ox)+ br),
=02 (Wm(&m © zm) + bm)

where &; are vectors of zeros and ones sampled from Bernouli distribution.

Works also for Gaussian distribution, can be explained by Variational
Inference.

> Dropout is an approximation of GP (Gal, Ghahramani, 2016),
» Deep Neural Networks as Gaussian Processes (Lee, et. al. 2018).

SGD is Approximate Bayesian Inference

SDG is a discretization of approximation of random walk model

. 1
VL(9) ~ VL) + N N(0,C(6))

If the loss function can be approximated by quadratic function
1
L£(0) = 5(9TA9,
then posterior factor g(#) = N (6, ¥) satisfies:

YA+ AT = Lc(9).

S
Minimizing KL to p(6) yields (Mandt, Hoffman, Blei, 2017):
25 dim(# 2§
* = m ter((:)), or H* = WC*I, (matrix learning rate)

Can be used to tune learning rate using

CG=01-k)C1+ mTcov(VCN).

Sad story: Large scale comparison

Various methods were compared in (Ovadia, et. al 2019):

07 -
X
06 -
05 -
| Method
0.2 - EEEEEE Vanilla N Dropout
3 a 5

Accuracy
o o
S

B TempScalng [N LLDropout

-
0.1 -
2 BN Ensemble [— e
[T} 0.0 T v T
g Test 1 2
E 035
= Method
S 0 m—vanila E— Dropout
025 . MEEEEE TempScalng [N LLDropout
E— Ensemble) LLsw
020 -
w
Y
woas -
0.10 -
0.05 -
000 - — h) ' ' '
Test 1 2 3 4 5

Shift intensity

The winner is ensemble: parallel run of NN from different starts.

Landscape of Deep networks

Hypothesis (Fort et. al. 2019): The probability of weights in networks is
multimodal:

Ensembles indentify different modes

but ignore local uncertainty and might
Variational methods capture not pick the best point from each mode
local uncertainty around a mode

Space of solutions Tenbtine
raming

Assignment (10pt)

» Create a 1d regression problem with missing data

» Train neural network for minimum loss

» Try one of the Bayesian approaches

>

vvyyvyy

Laplace,
Dropout
Ensemble
Langevin
HMC...

