Bayesian Non-linear Regression: Gradient Approach

Václav Šmídl

May 4, 2022

Recapitulation

Monte Carlo methods

- ► MCMC
- ► HMC

Properties:

- convergence to the true solution
- simplicity
- correlation

Least Squares

Linear regression:

$$y = X\theta + e$$
,

Minimize

$$\sum_{i} e_{i}^{2} = \mathbf{e}^{T} \mathbf{e} = (\mathbf{y} - X\theta)^{T} (\mathbf{y} - X\theta)$$

$$\frac{d}{d\theta}((\mathbf{y} - X\theta)^T(\mathbf{y} - X\theta)) = 0$$

$$\frac{d}{d\theta}(\mathbf{y}^T\mathbf{y} - \theta^T X^T \mathbf{y} - \mathbf{y}^T X\theta + \theta^T X^T X\theta) = 0$$

$$X^T X\theta = X^T \mathbf{y}$$

Analytical:

$$\hat{\theta} = (X^T X)^{-1} X^T \mathbf{y}.$$

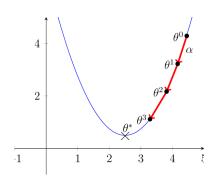
For large θ , conjugate gradients.

Gradient Descent:

Gradient descent (GD, 1st order):

$$\begin{split} \hat{\theta} &= \arg\min_{\theta \in \Theta} \mathcal{L} \\ \hat{\theta}_{k+1} &= \hat{\theta}_k - \alpha \nabla_{\theta} \mathcal{L} \\ \hat{\theta}_{k+1} &= \hat{\theta}_{k+1} - \alpha (\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta}_k - \boldsymbol{X}^T \mathbf{y}) \end{split}$$

Very many cheap (GPU) iterations.



Beyond Linear Regression

Linear regression can fit arbitrary combination of **known** basis functions:

$$y = a + bx + cx^{2} + dx^{3}$$

$$y = a \exp(cx) + b \exp(dx)$$

$$= [1, x, x^{2}, x^{3}]\theta$$

$$= [\exp(cx), \exp(dx)]\theta$$

Beyond Linear Regression

Linear regression can fit arbitrary combination of **known** basis functions:

$$y = a + bx + cx^{2} + dx^{3}$$

$$y = a \exp(cx) + b \exp(dx)$$

$$= [1, x, x^{2}, x^{3}]\theta$$

$$= [\exp(cx), \exp(dx)]\theta$$

What if the exponent decay of bi-exponential is not known? Common in functional medical imaging.

Beyond Linear Regression

Linear regression can fit arbitrary combination of **known** basis functions:

$$y = a + bx + cx^{2} + dx^{3}$$

$$y = a \exp(cx) + b \exp(dx)$$

$$= [1, x, x^{2}, x^{3}]\theta$$

$$= [\exp(cx), \exp(dx)]\theta$$

What if the exponent decay of bi-exponential is not known? Common in functional medical imaging.

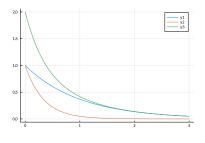
Include them in optimization, $\theta = [a, b, c, d]$, of least-squares

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} (y_i - f(x))^2$$

$$f(x) = a \exp(cx_i) - b \exp(dx_i)$$

and run GD (or other optimization).

Run in Matlab cftoolbox.



Interpretation point of view

Without knowing it, the biologist used a neural network.

$$y_i = a \exp(cx_i) - b \exp(dx_i)$$

Specifically Multi-layer perceptron (MLP), with 2-layers, and 2 hidden units.

Interpretation point of view

Without knowing it, the biologist used a neural network.

$$y_i = a \exp(cx_i) - b \exp(dx_i)$$

Specifically Multi-layer perceptron (MLP), with 2-layers, and 2 hidden units.

1. exp activation function:

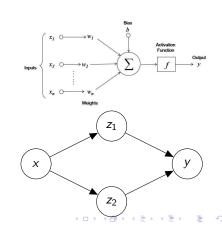
$$z_i = \exp(w_{1,i}x), i = 1, 2$$

2. linear activation function:

$$y = \sum_{i=1}^{2} w_{2,i} z_i$$

MLP is a regression that learns basis functions from the data!

known as "dense" layers now.



Neural networks

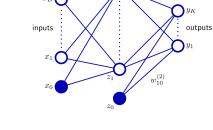
Feed forward NN:

$$z_1 = \sigma_1 (W_1 x + b_1),$$

 $z_2 = \sigma_2 (W_2 z_1 + b_2), ...$
 $y = \sigma_2 (w_m z_m + b_m) + e$

with vector-valued

- **activation** functions $\sigma_j()$,
- weights w_j
- biases b_i.



hidden units

For Gaussian noise, maximum log-likelihood is

$$\hat{\theta} = \arg\min \mathcal{L}(x, y, \theta), \quad \mathcal{L} = \boldsymbol{e}^T \boldsymbol{e} = \sum_{i=1}^n (y_i - \sigma_1 (w_1 \sigma_2 (\cdots) + b_1))^2.$$

MSE (mean square error) loss function with unknowns $\theta = [w_1, b_1, w_2, b_2, \dots,].$

Neural networks

Feed forward NN:

$$z_1 = \sigma_1 (W_1 x + b_1),$$

 $z_2 = \sigma_2 (W_2 z_1 + b_2), ...$
 $y = \sigma_2 (w_m z_m + b_m) + e$

with vector-valued

- **activation** functions $\sigma_j()$,
- weights w_i
- biases b_i .

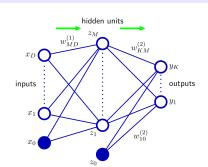
For Gaussian noise, maximum log-likelihood is

$$\hat{\theta} = \arg\min \mathcal{L}(x, y, \theta), \quad \mathcal{L} = \boldsymbol{e}^T \boldsymbol{e} = \sum_{i=1}^n (y_i - \sigma_1 (w_1 \sigma_2 (\cdots) + b_1))^2.$$

MSE (mean square error) loss function with unknowns $\theta = [w_1, b_1, w_2, b_2, \dots]$. Gradient descent method

$$\hat{\theta}^{(\tau+1)} = \hat{\theta}^{(\tau)} - \eta \nabla \mathcal{L}(\hat{\theta}^{(\tau)}),$$

where η is the (small) learning rate.



Example

Trivial NN with one hidden layer:

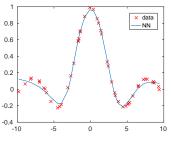
$$y_i = \sum_{i=1}^6 w_{2,i} \tanh(w_{1,j}x_i + b_{1,j}) + b_2,$$

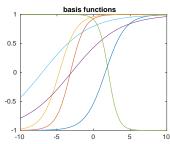
tanh activation function on hidden layer and linear activation function on output.

Training by GD:

- 1. random initialization,
- 2. 50000 steps,
- 3. rate $\eta = 0.001$,

Main issue: reliability, slow convergence,...



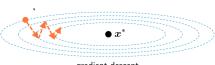


Faster gradient descent

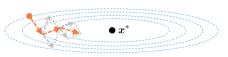
In general, gradient descent requires $O(1/\epsilon)$ steps

$$\frac{2L(\mathcal{L}\{(\hat{\theta}^{(0)}) - \mathcal{L}\{(\theta^*))}{\epsilon} \leq \tau_{\max}$$

where L is the Lipschitz constant of \mathcal{L} , for **convex** function.



gradient descent



heavy-ball method

Heavy-ball (momentum): accumulate velocity

$$\hat{\theta}^{(\tau+1)} = \hat{\theta}^{(\tau)} - \eta \nabla L(\hat{\theta}^{(\tau)}) + \beta(\hat{\theta}^{(\tau)} - \hat{\theta}^{(\tau-1)})$$

has theoretical asymptotic number of steps $O(1/\sqrt{\epsilon})$.

Nesterov: theoretically the fastest first-order method. Tuning: η, β (via L?)

Second-order: Newton method

Optimize:

$$\hat{ heta} = \mathop{\mathsf{arg}} \mathop{\mathsf{min}}_{ heta} \mathcal{L}(heta)$$

using Taylor expansion

$$\mathcal{L}(\boldsymbol{\theta}^{(\tau)} + \boldsymbol{h}) \approx \mathcal{L}(\boldsymbol{\theta}^{(\tau)}) + \nabla \mathcal{L}(\boldsymbol{\theta}^{(\tau)}) \boldsymbol{h} + \frac{1}{2} \boldsymbol{h}^\mathsf{T} H_{\mathcal{L}}(\boldsymbol{\theta}_k) \boldsymbol{h}$$

where $H_{\mathcal{L}}(\theta) = \nabla^2 \mathcal{L}(\theta)$.

We wish that $\theta^{(\tau+1)}=\theta^{(\tau)}+m{h}$ is an optimum, i.e. $abla_{m{h}}\mathcal{L}(heta_k+m{h})\equiv 0$:

$$\nabla \mathcal{L}(\theta^{(\tau)}) + H_{\mathcal{L}}(\theta^{(\tau)}) \boldsymbol{h} = 0 \quad \Leftrightarrow \quad \boldsymbol{h} = -\left(H_{\mathcal{L}}(\theta^{(\tau)})\right)^{-1} \nabla \mathcal{L}(\theta^{(\tau)})$$

yielding

$$\theta^{(\tau+1)} = \theta^{(\tau)} - \mathcal{H}_{\mathcal{L}}(\theta^{(\tau)})^{-1} \nabla \mathcal{L}(\theta^{(\tau)}).$$

with theoretical asymptotic number of steps $O(\log(\log \epsilon))$. (Expensive steps!)

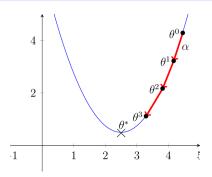
Approximation of the Hessian: LBFGS.

Example: Newton for OLS

Gradient descent (GD, 1st order):

$$\begin{split} \hat{\theta} &= \arg\min_{\theta \in \Theta} \mathcal{L} \\ \hat{\theta}_{k+1} &= \hat{\theta}_k - \alpha \nabla_{\theta} \mathcal{L} \\ \hat{\theta}_{k+1} &= \hat{\theta}_{k+1} - \alpha (\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta}_k - \boldsymbol{X}^T \mathbf{y}) \end{split}$$

Very many cheap (GPU) iterations.



Example: Newton for OLS

Gradient descent (GD, 1st order):

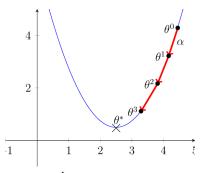
$$\begin{split} \hat{\theta} &= \arg\min_{\theta \in \Theta} \mathcal{L} \\ \hat{\theta}_{k+1} &= \hat{\theta}_k - \alpha \nabla_{\theta} \mathcal{L} \\ \hat{\theta}_{k+1} &= \hat{\theta}_{k+1} - \alpha (\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta}_k - \boldsymbol{X}^T \mathbf{y}) \end{split}$$

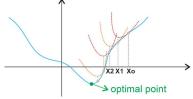
Very many cheap (GPU) iterations.

Newton's method (2nd order):

$$\begin{split} \hat{\theta}_{k+1} &= \hat{\theta}_k - H_{\theta}^{-1} \nabla_{\theta} \mathcal{L} \\ \hat{\theta}_{k+1} &= \hat{\theta}_k - (X^T X)^{-1} (X^T X \hat{\theta}_k - X^T \mathbf{y}) \\ &= (X^T X)^{-1} (X^T \mathbf{y}) \end{split}$$

One expensive iteration. Infeasible in high dimensions





Stochastic Gradient Descent

Original loss function

$$\mathcal{L}(y,x,\theta) = \sum_{i=1}^{n} (y_i - \sigma_1 (w_1 \sigma_2 (\cdots) + b_1))^2.$$

is replaced by:

$$\tilde{\mathcal{L}}(y, x, \theta) = \sum_{i \in \mathcal{I}} (y_i - \sigma_1 (w_1 \sigma_2 (\cdots) + b_1))^2.$$

where $\mathcal{I} \subset \{1, \dots, n\}, |\mathcal{I}| \ll n$. For random samples of indeces $j = 1, \dots m$,

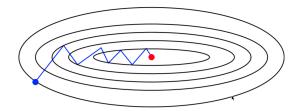
$$\nabla_{\theta} \mathcal{L}(y, x, \theta) = \mathsf{E}\left(\nabla \tilde{\mathcal{L}}(y, x, \theta)\right)$$

yielding

$$\hat{\theta}^{(\tau+1)} = \hat{\theta}^{(\tau)} - \eta \nabla \tilde{L}(\hat{\theta}^{(\tau)}),$$

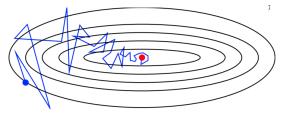
Stochastic Gradient Descent

Deterministic gradient:



Stochastic gradient: will converge only if $\eta_{\tau} \to 0$.

For constant η_{τ} it "walks" around optima.



AdaGrad (Duchi, 2011) method uses estimate of the Hessian

$$egin{aligned} \mathcal{H}_{\mathcal{L}}(\hat{ heta}) &pprox \operatorname{diag}(\sqrt{m{r}_{ au+1}}), \ m{r}_{ au+1} &= m{r}_{ au} + \left[
abla ilde{\mathcal{L}}(\hat{ heta}^{(au)})
ight].^2 \end{aligned}$$

accumulates all values from the beginning (infinite window) .

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

$$egin{aligned} \mathcal{H}_{\mathcal{L}}(\hat{ heta}) &pprox \operatorname{diag}(\sqrt{m{r}_{ au+1}}), \ m{r}_{ au+1} &= m{r}_{ au} + \left[
abla ilde{\mathcal{L}}(\hat{ heta}^{(au)})
ight].^2 \end{aligned}$$

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

$$egin{aligned} H_{\mathcal{L}}(\hat{ heta}) &pprox \mathrm{diag}(\sqrt{m{r}_{ au+1}}), \ m{r}_{ au+1} &=
ho m{r}_{ au} + (1-
ho) \left[
abla ilde{\mathcal{L}}(\hat{ heta}^{(au)})
ight].^2 \end{aligned}$$

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

$$egin{aligned} \mathcal{H}_{\mathcal{L}}(\hat{ heta}) &pprox \operatorname{diag}(\sqrt{m{r}_{ au+1}}), \ m{r}_{ au+1} &= m{r}_{ au} + \left[
abla ilde{\mathcal{L}}(\hat{ heta}^{(au)})
ight].^2 \end{aligned}$$

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

$$H_{\mathcal{L}}(\hat{\theta}) pprox \operatorname{diag}(\sqrt{r_{\tau+1}}),$$

$$r_{\tau+1} = \rho r_{\tau} + (1-\rho) \left[\nabla \tilde{\mathcal{L}}(\hat{\theta}^{(\tau)})\right].^{2}$$

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive momentum

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

$$egin{aligned} \mathcal{H}_{\mathcal{L}}(\hat{ heta}) &pprox \operatorname{diag}(\sqrt{m{r}_{ au+1}}), \ m{r}_{ au+1} &= m{r}_{ au} + \left[
abla ilde{\mathcal{L}}(\hat{ heta}^{(au)})
ight].^2 \end{aligned}$$

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

$$H_{\mathcal{L}}(\hat{\theta}) \approx \operatorname{diag}(\sqrt{r_{\tau+1}}),$$

 $r_{\tau+1} = \rho r_{\tau} + (1-\rho) \left[\nabla \tilde{\mathcal{L}}(\hat{\theta}^{(\tau)})\right].^{2}$

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended state in Kalman filter.

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

$$H_{\mathcal{L}}(\hat{ heta}) pprox ext{diag}(\sqrt{m{r}_{ au+1}}), \ m{r}_{ au+1} = m{r}_{ au} + \left[
abla ilde{\mathcal{L}}(\hat{ heta}^{(au)})
ight].^2$$

accumulates all values from the beginning (infinite window).

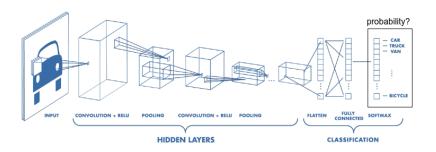
RMSProp (Hinton, 2012) methods adds forgetting

$$egin{aligned} H_{\mathcal{L}}(\hat{ heta}) &pprox \operatorname{diag}(\sqrt{m{r}_{ au+1}}), \ m{r}_{ au+1} &=
ho m{r}_{ au} + (1-
ho) \left[
abla ilde{\mathcal{L}}(\hat{ heta}^{(au)})
ight].^2 \end{aligned}$$

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive momentum

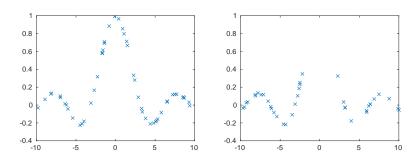
Bayesian filtering (Aichison, 2018) explains ADAM, as an extended state in Kalman filter.

Deep Learning

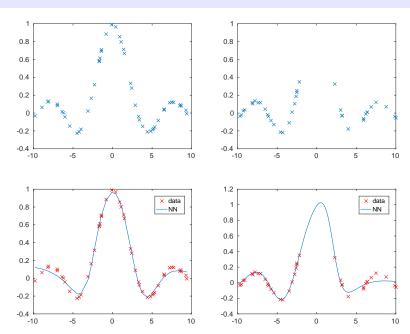


- Large networks with many layers
- Special layers that allow to compute gradients
- ► Training by a first-order methods
- ► Excellent at supervised tasks (regression)

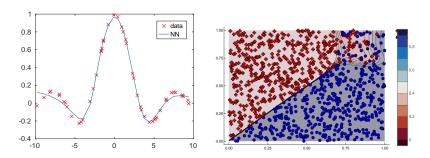
Can we trust the result?



Can we trust the result?

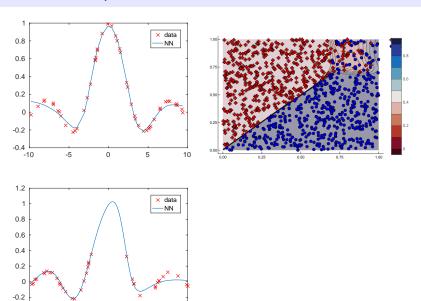


The i.i.d. assumption of test and train data

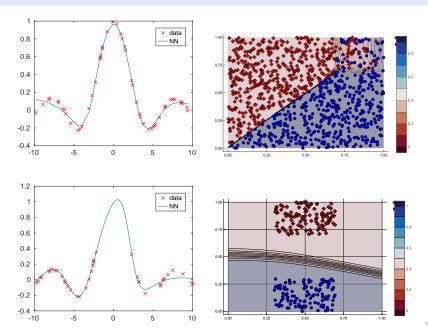


The i.i.d. assumption of test and train data

-0.4 L -10



The i.i.d. assumption of test and train data



Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

Epistemic uncertainty:

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

- randomness,
- dice (alea) throwing
- "cannot" be reduced
- common in many models

Epistemic uncertainty:

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

- randomness,
- dice (alea) throwing
- "cannot" be reduced
- common in many models

Epistemic uncertainty:

- lack of knowledge,
- systematic model insufficiency,
- can be reduced.
- handled by Bayesian approaches
 - neural network parameters have posterior distributions

Replace parameter estimate $\hat{\theta}$ by $p(\theta).$ Harder than with linear models:

Replace parameter estimate $\hat{\theta}$ by $p(\theta)$. Harder than with linear models:

Laplace build covariance around $\hat{\theta}$, (MacKay, 1992):

$$p(\theta) \approx \mathcal{N}(\hat{\theta}, \Sigma), \qquad \qquad \Sigma = (-\nabla \nabla \log p(\hat{x}))^{-1},$$

Replace parameter estimate $\hat{\theta}$ by $p(\theta)$. Harder than with linear models:

Laplace build covariance around $\hat{\theta}$, (MacKay, 1992):

$$p(\theta) \approx \mathcal{N}(\hat{\theta}, \Sigma),$$
 $\Sigma = (-\nabla \nabla \log p(\hat{x}))^{-1},$

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

- golden standard for posterior estimates
- computationally expensive

Replace parameter estimate $\hat{\theta}$ by $p(\theta)$. Harder than with linear models:

Laplace build covariance around $\hat{\theta}$, (MacKay, 1992):

$$p(\theta) \approx \mathcal{N}(\hat{\theta}, \Sigma), \qquad \qquad \Sigma = (-\nabla \nabla \log p(\hat{x}))^{-1},$$

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

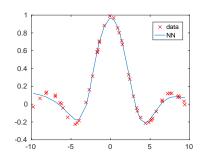
- golden standard for posterior estimates
- computationally expensive

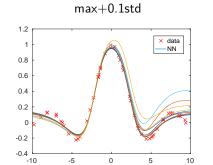
Langevin Dynamics (Welling, Teh, 2011):

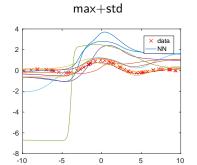
$$\hat{ heta}^{(au+1)} = \hat{ heta}^{(au)} - \eta
abla ilde{L}(\hat{ heta}^{(au)}) + e_t, \quad e_t \sim \mathcal{N}(0, \eta I),$$

where ϵ and η needs to be carefully balanced. (Asymptotic proof of acceptance rate=1).

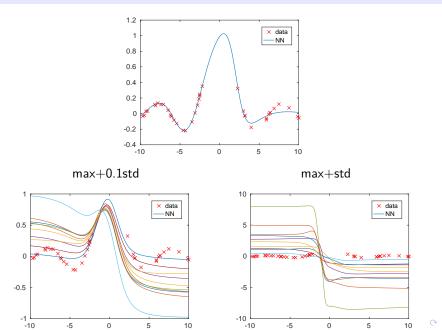
Laplace



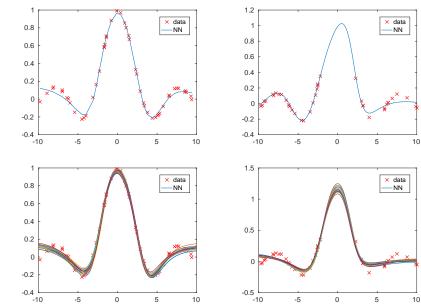




Laplace II



Langevin MCMC (tweaked)



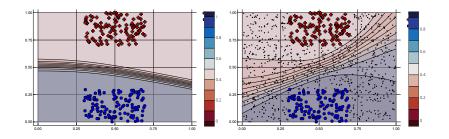
Hamiltonian Monte Carlo

Maximum likelihood

$$p(y|x,\hat{\theta})$$

Average prediction of 500 HMC

$$\frac{1}{N}\sum_{i=1}^{N}\rho(y|x,\theta^{(i)}),$$



Dropout MC

Standard Network Model:

$$z_i = \sigma_i (W_i x + b_i), \quad i = 1 : m - 1,$$

$$y = \sigma_2 (w_m z_m + b_m),$$

Dropout Network Model:

$$z_i = \sigma_i (W_i (\xi_i \circ x) + b_1),$$

$$y = \sigma_2 (w_m (\xi_m \circ z_m) + b_m)$$

where ξ_i are vectors of zeros and ones sampled from Bernouli distribution.

Works also for Gaussian distribution, can be explained by Variational Inference.

- Dropout is an approximation of GP (Gal, Ghahramani, 2016),
- Deep Neural Networks as Gaussian Processes (Lee, et. al. 2018).

SGD is Approximate Bayesian Inference

SDG is a discretization of approximation of random walk model

$$abla ilde{\mathcal{L}}(heta) pprox
abla \mathcal{L}(heta) + rac{1}{\sqrt{S}} \Delta, \qquad \Delta \sim \mathcal{N}(0, C(heta))$$

If the loss function can be approximated by quadratic function

$$\mathcal{L}(\theta) = \frac{1}{2}\theta^{\top} A \theta,$$

then posterior factor $q(\theta) = \mathcal{N}(\hat{\theta}, \Sigma)$ satisfies:

$$\Sigma A + A\Sigma = \frac{\eta}{S}C(\theta).$$

Minimizing KL to $p(\theta)$ yields (Mandt, Hoffman, Blei, 2017):

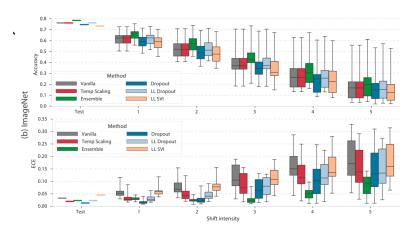
$$\eta^* = \frac{2S}{N} \frac{\dim(\theta)}{\operatorname{tr}(C)}, \text{ or } H^* = \frac{2S}{N} C^{-1}, \text{ (matrix learning rate)}$$

Can be used to tune learning rate using

$$C_{\tau} = (1 - \kappa_{\tau})C_{\tau-1} + \kappa_{\tau} \text{cov}(\nabla \tilde{\mathcal{L}}).$$

Sad story: Large scale comparison

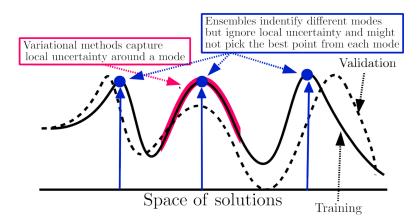
Various methods were compared in (Ovadia, et. al 2019):



The winner is ensemble: parallel run of NN from different starts.

Landscape of Deep networks

Hypothesis (Fort et. al. 2019): The probability of weights in networks is multimodal:



Assignment (10pt)

- ► Create a 1d regression problem with missing data
- ► Train neural network for minimum loss
- ► Try one of the Bayesian approaches
 - Laplace,
 - Dropout
 - Ensemble
 - Langevin
 - ► HMC...