
Bayesian Non-linear Regression: Gradient
Approach

Václav Šḿıdl

May 4, 2022

Recapitulation

Monte Carlo methods

I MCMC
I HMC

Properties:

I convergence to the true solution
I simplicity
I correlation

Least Squares

Linear regression:
y = Xθ + e,

Minimize ∑
i

e2
i = eT e = (y− Xθ)>(y− Xθ)

d
dθ ((y− Xθ)T (y− Xθ)) = 0

d
dθ (yT y− θT X T y− yT Xθ + θT X T Xθ) = 0

X T Xθ = X T y

Analytical:
θ̂ = (X T X)−1X T y.

For large θ, conjugate gradients.

Gradient Descent:

Gradient descent (GD, 1st order):

θ̂ = arg min
θ∈Θ
L

θ̂k+1 = θ̂k − α∇θL
θ̂k+1 = θ̂k+1 − α(X T Xθk − X T y)

Very many cheap (GPU)
iterations.

Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a + bx + cx2 + dx3 = [1, x , x2, x3]θ
y = a exp(cx) + b exp(dx) = [exp(cx), exp(dx)]θ

What if the exponent decay of bi-exponential is not known? Common in
functional medical imaging.

Include them in optimization,
θ = [a, b, c, d], of least-squares

θ̂ = arg min
θ

n∑
i=1

(yi − f (x))2

f (x) = a exp(cxi)− b exp(dxi)

and run GD (or other
optimization) .
I Run in Matlab cftoolbox.

Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a + bx + cx2 + dx3 = [1, x , x2, x3]θ
y = a exp(cx) + b exp(dx) = [exp(cx), exp(dx)]θ

What if the exponent decay of bi-exponential is not known? Common in
functional medical imaging.

Include them in optimization,
θ = [a, b, c, d], of least-squares

θ̂ = arg min
θ

n∑
i=1

(yi − f (x))2

f (x) = a exp(cxi)− b exp(dxi)

and run GD (or other
optimization) .
I Run in Matlab cftoolbox.

Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a + bx + cx2 + dx3 = [1, x , x2, x3]θ
y = a exp(cx) + b exp(dx) = [exp(cx), exp(dx)]θ

What if the exponent decay of bi-exponential is not known? Common in
functional medical imaging.

Include them in optimization,
θ = [a, b, c, d], of least-squares

θ̂ = arg min
θ

n∑
i=1

(yi − f (x))2

f (x) = a exp(cxi)− b exp(dxi)

and run GD (or other
optimization) .
I Run in Matlab cftoolbox.

Interpretation point of view
Without knowing it, the biologist used a neural network.

yi = a exp(cxi)− b exp(dxi)

Specifically Multi-layer perceptron (MLP), with 2-layers, and 2 hidden
units.

1. exp activation function:

zi = exp(w1,ix), i = 1, 2

2. linear activation function:

y =
2∑

i=1
w2,izi

MLP is a regression that learns
basis functions from the data!
I known as “dense” layers now.

x

z1

z2

y

Interpretation point of view
Without knowing it, the biologist used a neural network.

yi = a exp(cxi)− b exp(dxi)

Specifically Multi-layer perceptron (MLP), with 2-layers, and 2 hidden
units.

1. exp activation function:

zi = exp(w1,ix), i = 1, 2

2. linear activation function:

y =
2∑

i=1
w2,izi

MLP is a regression that learns
basis functions from the data!
I known as “dense” layers now.

x

z1

z2

y

Neural networks

Feed forward NN:

z1 = σ1 (W1x + b1) ,
z2 = σ2 (W2z1 + b2) , . . .
y = σ2 (wmzm + bm) + e

with vector-valued
– activation functions σj(),
– weights wj
– biases bi .

For Gaussian noise, maximum log-likelihood is

θ̂ = arg minL(x , y , θ), L = eT e =
n∑

i=1
(yi − σ1 (w1σ2 (· · ·) + b1))2

.

MSE (mean square error) loss function with unknowns
θ = [w1, b1,w2, b2, . . . ,].

Gradient descent method
θ̂(τ+1) = θ̂(τ) − η∇L(θ̂(τ)),

where η is the (small) learning rate.

Neural networks

Feed forward NN:

z1 = σ1 (W1x + b1) ,
z2 = σ2 (W2z1 + b2) , . . .
y = σ2 (wmzm + bm) + e

with vector-valued
– activation functions σj(),
– weights wj
– biases bi .

For Gaussian noise, maximum log-likelihood is

θ̂ = arg minL(x , y , θ), L = eT e =
n∑

i=1
(yi − σ1 (w1σ2 (· · ·) + b1))2

.

MSE (mean square error) loss function with unknowns
θ = [w1, b1,w2, b2, . . . ,]. Gradient descent method

θ̂(τ+1) = θ̂(τ) − η∇L(θ̂(τ)),
where η is the (small) learning rate.

Example

Trivial NN with one hidden layer:

yi =
6∑

i=1
w2,i tanh(w1,jxi +b1,j)+b2,

tanh activation function on
hidden layer and linear activation
function on output.
Training by GD:

1. random initialization,
2. 50000 steps,
3. rate η = 0.001,

Main issue: reliability, slow
convergence,...

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-1

-0.5

0

0.5

1
basis functions

Faster gradient descent
In general, gradient descent
requires O(1/ε) steps

2L(L{(θ̂(0))− L{(θ∗))
ε

≤ τmax

where L is the Lipschitz constant
of L, for convex function.

Heavy-ball (momentum): accumulate velocity

θ̂(τ+1) = θ̂(τ) − η∇L(θ̂(τ)) + β(θ̂(τ) − θ̂(τ−1))

has theoretical asymptotic number of steps O(1/
√
ε).

I Nesterov: theoretically the fastest first-order method. Tuning: η, β
(via L?)

Second-order: Newton method
Optimize:

θ̂ = arg minθL(θ)

using Taylor expansion

L(θ(τ) + h) ≈ L(θ(τ)) +∇L(θ(τ))h + 1
2hT HL(θk)h

where HL(θ) = ∇2L(θ).

We wish that θ(τ+1) = θ(τ) + h is an optimum, i.e. ∇hL(θk + h) ≡ 0 :

∇L(θ(τ)) + HL(θ(τ))h = 0 ⇔ h = −
(

HL(θ(τ))
)−1
∇L(θ(τ))

yielding
θ(τ+1) = θ(τ) − HL(θ(τ))−1∇L(θ(τ)).

with theoretical asymptotic number of steps O(log(log ε)). (Expensive
steps!)

Approximation of the Hessian: LBFGS.

Example: Newton for OLS

Gradient descent (GD, 1st order):

θ̂ = arg min
θ∈Θ
L

θ̂k+1 = θ̂k − α∇θL
θ̂k+1 = θ̂k+1 − α(X T Xθk − X T y)

Very many cheap (GPU)
iterations.

Newton’s method (2nd order):

θ̂k+1 = θ̂k − H−1
θ ∇θL

θ̂k+1 = θ̂k − (X T X)−1(X T X θ̂k − X T y)
= (X T X)−1(X T y)

One expensive iteration.
Infeasible in high dimensions

Example: Newton for OLS

Gradient descent (GD, 1st order):

θ̂ = arg min
θ∈Θ
L

θ̂k+1 = θ̂k − α∇θL
θ̂k+1 = θ̂k+1 − α(X T Xθk − X T y)

Very many cheap (GPU)
iterations.

Newton’s method (2nd order):

θ̂k+1 = θ̂k − H−1
θ ∇θL

θ̂k+1 = θ̂k − (X T X)−1(X T X θ̂k − X T y)
= (X T X)−1(X T y)

One expensive iteration.
Infeasible in high dimensions

Stochastic Gradient Descent

Original loss function

L(y , x , θ) =
n∑

i=1
(yi − σ1 (w1σ2 (· · ·) + b1))2

.

is replaced by:

L̃(y , x , θ) =
∑
i∈I

(yi − σ1 (w1σ2 (· · ·) + b1))2
.

where I ⊂ {1, . . . , n}, |I| � n. For random samples of indeces
j = 1, . . .m,

∇θL(y , x , θ) = E
(
∇L̃(y , x , θ)

)
yielding

θ̂(τ+1) = θ̂(τ) − η∇L̃(θ̂(τ)),

Stochastic Gradient Descent
Deterministic gradient:

Stochastic gradient: will converge only if ητ → 0.

For constant ητ it “walks” around optima.

Adaptive Learning Rate SGD
AdaGrad (Duchi, 2011) method uses estimate of the Hessian

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = rτ +
[
∇L̃(θ̂(τ))

]
.2

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = ρrτ + (1− ρ)
[
∇L̃(θ̂(τ))

]
.2

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Controversy: adaptation can help but can also harm convergence

Adaptive Learning Rate SGD
AdaGrad (Duchi, 2011) method uses estimate of the Hessian

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = rτ +
[
∇L̃(θ̂(τ))

]
.2

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = ρrτ + (1− ρ)
[
∇L̃(θ̂(τ))

]
.2

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Controversy: adaptation can help but can also harm convergence

Adaptive Learning Rate SGD
AdaGrad (Duchi, 2011) method uses estimate of the Hessian

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = rτ +
[
∇L̃(θ̂(τ))

]
.2

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = ρrτ + (1− ρ)
[
∇L̃(θ̂(τ))

]
.2

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Controversy: adaptation can help but can also harm convergence

Adaptive Learning Rate SGD
AdaGrad (Duchi, 2011) method uses estimate of the Hessian

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = rτ +
[
∇L̃(θ̂(τ))

]
.2

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = ρrτ + (1− ρ)
[
∇L̃(θ̂(τ))

]
.2

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Controversy: adaptation can help but can also harm convergence

Adaptive Learning Rate SGD
AdaGrad (Duchi, 2011) method uses estimate of the Hessian

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = rτ +
[
∇L̃(θ̂(τ))

]
.2

accumulates all values from the beginning (infinite window) .

RMSProp (Hinton, 2012) methods adds forgetting

HL(θ̂) ≈ diag(√rτ+1),

rτ+1 = ρrτ + (1− ρ)
[
∇L̃(θ̂(τ))

]
.2

ADAM (Kingma&Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Controversy: adaptation can help but can also harm convergence

Deep Learning

I Large networks with many layers
I Special layers that allow to compute gradients
I Training by a first-order methods
I Excellent at supervised tasks (regression)

Can we trust the result?

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

Can we trust the result?

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

The i.i.d. assumption of test and train data

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 y2

y3

0

0.2

0.4

0.6

0.8

1

The i.i.d. assumption of test and train data

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 y2

y3

0

0.2

0.4

0.6

0.8

1

The i.i.d. assumption of test and train data

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 y2

y3

0

0.2

0.4

0.6

0.8

1

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

I randomness,
I dice (alea) throwing
I “cannot” be reduced
I common in many models

Epistemic uncertainty:

I lack of knowledge,
I systematic model insufficiency,
I can be reduced.
I handled by Bayesian approaches

I neural network parameters have posterior
distributions

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:
I randomness,
I dice (alea) throwing
I “cannot” be reduced
I common in many models

Epistemic uncertainty:

I lack of knowledge,
I systematic model insufficiency,
I can be reduced.
I handled by Bayesian approaches

I neural network parameters have posterior
distributions

Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:
I randomness,
I dice (alea) throwing
I “cannot” be reduced
I common in many models

Epistemic uncertainty:
I lack of knowledge,
I systematic model insufficiency,
I can be reduced.
I handled by Bayesian approaches

I neural network parameters have posterior
distributions

Posterior distribution of the weights

Replace parameter estimate θ̂ by p(θ). Harder than with linear models:

Laplace build covariance around θ̂, (MacKay, 1992):

p(θ) ≈ N (θ̂,Σ), Σ = (−∇∇ log p(x̂))−1,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

I golden standard for posterior estimates
I computationally expensive

Langevin Dynamics (Welling, Teh, 2011):

θ̂(τ+1) = θ̂(τ) − η∇L̃(θ̂(τ)) + et , et ∼ N (0, ηI),

where ε and η needs to be carefully balanced. (Asymptotic proof of
acceptance rate=1).

Posterior distribution of the weights

Replace parameter estimate θ̂ by p(θ). Harder than with linear models:

Laplace build covariance around θ̂, (MacKay, 1992):

p(θ) ≈ N (θ̂,Σ), Σ = (−∇∇ log p(x̂))−1,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

I golden standard for posterior estimates
I computationally expensive

Langevin Dynamics (Welling, Teh, 2011):

θ̂(τ+1) = θ̂(τ) − η∇L̃(θ̂(τ)) + et , et ∼ N (0, ηI),

where ε and η needs to be carefully balanced. (Asymptotic proof of
acceptance rate=1).

Posterior distribution of the weights

Replace parameter estimate θ̂ by p(θ). Harder than with linear models:

Laplace build covariance around θ̂, (MacKay, 1992):

p(θ) ≈ N (θ̂,Σ), Σ = (−∇∇ log p(x̂))−1,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

I golden standard for posterior estimates
I computationally expensive

Langevin Dynamics (Welling, Teh, 2011):

θ̂(τ+1) = θ̂(τ) − η∇L̃(θ̂(τ)) + et , et ∼ N (0, ηI),

where ε and η needs to be carefully balanced. (Asymptotic proof of
acceptance rate=1).

Posterior distribution of the weights

Replace parameter estimate θ̂ by p(θ). Harder than with linear models:

Laplace build covariance around θ̂, (MacKay, 1992):

p(θ) ≈ N (θ̂,Σ), Σ = (−∇∇ log p(x̂))−1,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

I golden standard for posterior estimates
I computationally expensive

Langevin Dynamics (Welling, Teh, 2011):

θ̂(τ+1) = θ̂(τ) − η∇L̃(θ̂(τ)) + et , et ∼ N (0, ηI),

where ε and η needs to be carefully balanced. (Asymptotic proof of
acceptance rate=1).

Laplace

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

max+0.1std max+std

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

-10 -5 0 5 10
-8

-6

-4

-2

0

2

4

data
NN

Laplace II

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

max+0.1std max+std

-10 -5 0 5 10
-1

-0.5

0

0.5

1

data
NN

-10 -5 0 5 10
-10

-5

0

5

10

data
NN

Langevin MCMC (tweaked)

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

data
NN

-10 -5 0 5 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

data
NN

-10 -5 0 5 10
-0.5

0

0.5

1

1.5

data
NN

Hamiltonian Monte Carlo

Maximum likelihood

p(y |x , θ̂)

Average prediction of 500 HMC

1
N

N∑
i=1

p(y |x , θ(i)),

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 y2

y3

0

0.2

0.4

0.6

0.8

1

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 y1

y2

y3

0

0.2

0.4

0.6

0.8

Dropout MC

Standard Network Model:

zi = σi (Wix + bi) , i = 1 : m − 1,
y = σ2 (wmzm + bm) ,

Dropout Network Model:

zi = σi (Wi (ξi ◦ x) + b1) ,
y = σ2 (wm(ξm ◦ zm) + bm)

where ξi are vectors of zeros and ones sampled from Bernouli distribution.

Works also for Gaussian distribution, can be explained by Variational
Inference.

I Dropout is an approximation of GP (Gal, Ghahramani, 2016),
I Deep Neural Networks as Gaussian Processes (Lee, et. al. 2018).

SGD is Approximate Bayesian Inference
SDG is a discretization of approximation of random walk model

∇L̃(θ) ≈ ∇L(θ) + 1√
S

∆, ∆ ∼ N (0,C(θ))

If the loss function can be approximated by quadratic function

L(θ) = 1
2θ
>Aθ,

then posterior factor q(θ) = N (θ̂,Σ) satisfies:

ΣA + AΣ = η

S C(θ).

Minimizing KL to p(θ) yields (Mandt, Hoffman, Blei, 2017):

η∗ = 2S
N

dim(θ)
tr(C) , or H∗ = 2S

N C−1, (matrix learning rate)

Can be used to tune learning rate using

Cτ = (1− κτ)Cτ−1 + κτcov(∇L̃).

Sad story: Large scale comparison

Various methods were compared in (Ovadia, et. al 2019):

The winner is ensemble: parallel run of NN from different starts.

Landscape of Deep networks

Hypothesis (Fort et. al. 2019): The probability of weights in networks is
multimodal:

Assignment (10pt)

I Create a 1d regression problem with missing data
I Train neural network for minimum loss
I Try one of the Bayesian approaches

I Laplace,
I Dropout
I Ensemble
I Langevin
I HMC...

