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Recapitulation

Monte Carlo methods

» MCMC
> HMC

Properties:
» convergence to the true solution

> simplicity

» correlation



Least Squares

Linear regression:

= X0 + e,

Minimize

Ze,z:eTe:(y—XQ)T(y—XG)

Dy = Xx0)"(y— x0)) = 0

700 y =

%(ﬂy —0"XTy—y"X0+07X7X0) =0

X™X0=XTy

Analytical:

0=(XTX)"1XxTy.

For large 6, conjugate gradients.



Gradient Descent:

Gradient descent (GD, 1st order):

0= in L
arg(rgnelg

ék+1 = ék — OZVQ,C
Ok = O — a(XT X0k — XTy)

Very many cheap (GPU)
iterations.

ra



Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a+ bx + cx? + dx3 =[1,x,x%,x7]0
y = aexp(cx) + bexp(dx) = [exp(cx), exp(dx)]0
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Beyond Linear Regression

Linear regression can fit arbitrary combination of known basis functions:

y = a+ bx + cx? + dx3 =[1,x,x%,x7]0
y = aexp(cx) + bexp(dx) = [exp(cx), exp(dx)]0

What if the exponent decay of bi-exponential is not known? Common in
functional medical imaging.

Include them in optimization,
0 = [a, b, c, d], of least-squares

6=argmind  (y; — f(x))°

f(x) = aexp(cx;) — bexp(dx;)

and run GD (or other
optimization) .
» Run in Matlab cftoolbox.



Interpretation point of view

Without knowing it, the biologist used a neural network.
yi = aexp(cx;) — bexp(dx;)
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Interpretation point of view

Without knowing it, the biologist used a neural network.
yi = aexp(cx;) — bexp(dx;)

Specifically Multi-layer perceptron (MLP), with 2-layers, and 2 hidden
units.

1. exp activation function: b
X, O———W;

Activation

Function

z; = exp(w,ix), i = 1,2 {7 O, =Pl

2. linear activation function:

2
y = § W2 iZ;
i=1

MLP is a regression that learns
basis functions from the datal!

X, O——> W,

» known as “dense” layers now.



Neural networks

Feed forward NN: hidden units

V4l :O'l(W1X+b1),
22:02(W221+b2),...
= 0y (WmZm + bm) + €

YK

' outputs

with vector-valued

— activation functions o;j(),
— weights w;

— biases b;.

For Gaussian noise, maximum log-likelihood is

n

0=argminL(x,y,0), L=e"e=)Y (yi—o1(woa(---)+ b1))*.

i=1
MSE (mean square error) loss function with unknowns
0= [Wlabla W2ab27"'7]-



Neural networks

Feed forward NN: hidden units

V4l :O'l(W1X+b1),
22:02(W221+b2),...
= 0y (WmZm + bm) + €

YK

' outputs

with vector-valued

— activation functions o;j(),
— weights w;

— biases b;.

For Gaussian noise, maximum log-likelihood is

n

0=argminL(x,y,0), L=e"e=)Y (yi—o1(woa(---)+ b1))*.

i=1
MSE (mean square error) loss function with unknowns
0 = [wy, by, wa, by, ...,]. Gradient descent method

Hr+) — 40 v (i),

where 7 is the (small) learning rate.



Example

Trivial NN with one hidden layer:

6
yi= Z wa,; tanh(wy ;X +by )+ b2,
i=1

tanh activation function on
hidden layer and linear activation
function on output.
Training by GD:

1. random initialization,

2. 50000 steps,

3. rate n = 0.001,
Main issue: reliability, slow
convergence,...
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Faster gradient descent

In general, gradient descent
requires O(1/€) steps

S Tmax gradient descent

2L(L{(6) - £{(67)) e

where L is the Lipschitz constant
of L, for convex function.

I;Vear\rlyrl:;all rrnretrhtrJd
Heavy-ball (momentum): accumulate velocity
G0+ = (1) — v L(07)) + B(O) — Hr1))y

has theoretical asymptotic number of steps O(1/+/e).

» Nesterov: theoretically the fastest first-order method. Tuning: n, 8
(via L?)



Second-order: Newton method

Optimize: A
0 = argmingL(6)

using Taylor expansion
1
L0 + h) = £(0T)+vLET)h + EhTHl;(Qk)h
where Hz(0) = V2L(0).

We wish that 01 = 0(7) + h is an optimum, i.e. V4L(0x +h) =0 :

VLO)+ He(0)h=0 < h=-— (Hﬁ(o(ﬂ)) vL(OD)

yielding

o0+ =9 — H (9w L(e).
with theoretical asymptotic number of steps O(log(loge)). (Expensive
steps!)

Approximation of the Hessian: LBFGS.



Example: Newton for OLS

Gradient descent (GD, 1st order):

0 = arg 2’1€I8 L
ék+1 = ék — OZV@E
ék+1 = ék+1 — Ot(XTXHk — XTy)
Very many cheap (GPU)
iterations.
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Example: Newton for OLS

Gradient descent (GD, 1st order):

0 = arg 2’1€I8 L
ék+1 = ék — OZV@E
ék+1 = ék+1 — Ot(XTXHk — XTy)
Very many cheap (GPU)
iterations.

Newton's method (2nd order):

ék+1 = ék - H(;1V9£

i1 =0 — (XTX)"H(XT X — XTy)
= (XTX)"1(XTy)

One expensive iteration.
Infeasible in high dimensions

/

\’<(2x1 Xo
optimal point

e



Stochastic Gradient Descent

Original loss function

n

L(y,x,0) = Z(Yi — o1 (wioa () + b))?.

i=1

is replaced by:

EN(y,X,Q) = Z (vi—o1(wioa () + bl))2-

ieT
where Z C {1,...,n},|Z] < n. For random samples of indeces
ji=1...m B
VG‘C(ya X, 9) =E (V‘C(ya X, 9))
yielding

) — 90) — i (™),



Stochastic Gradient Descent

Deterministic gradient:

Stochastic gradient: will converge only if n, — 0.

For constant 7, it “walks” around optima.



Adaptive Learning Rate SGD

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

He(0) ~ diag(y/Fr11),
rria=r;+ [Vf(é(”)} 2

accumulates all values from the beginning (infinite window) .
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Adaptive Learning Rate SGD

AdaGrad (Duchi, 2011) method uses estimate of the Hessian

He(0) ~ diag(y/Fr11),
rria=r;+ [Vf(é(”)} 2

accumulates all values from the beginning (infinite window) .
RMSProp (Hinton, 2012) methods adds forgetting

Hg(é) ~ diag(\/rr11),
Fro1=pre+(1-p) [vﬁ(é“))] 2

ADAM (Kingma&:Ba, 2014) combines adaptive rate with adaptive
momentum

Bayesian filtering (Aichison, 2018) explains ADAM, as an extended
state in Kalman filter.

Controversy: adaptation can help but can also harm convergence



Deep Learning

probability?
— CAR
— TRUCK
— van
' E — BICYCLE
- FULLY
~ INPUT CONVOLUTION + RELU POCLING CONVOLUTION + RELU  POOLING FLATTEN CONMECTED SOFTMAX
HIDDEN LAYERS CLASSIFICATION

» Large networks with many layers

» Special layers that allow to compute gradients
» Training by a first-order methods

» Excellent at supervised tasks (regression)



Can we trust the result?
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The i.i.d. assumption
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Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

Epistemic uncertainty:
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Two kinds of uncertainty

Uncertainty is a general term for many phenomena. Distinct types:

Aleatoric uncertainty:

» randomness,

» dice (alea) throwing

» “cannot” be reduced

» common in many models

Epistemic uncertainty:

» lack of knowledge,
» systematic model insufficiency,
» can be reduced.
» handled by Bayesian approaches
» neural network parameters have posterior
distributions



Posterior distribution of the weights

Replace parameter estimate 6 by p(6). Harder than with linear models:



Posterior distribution of the weights
Replace parameter estimate 6 by p(6). Harder than with linear models:

Laplace build covariance around 4, (MacKay, 1992):

p(0) ~ N(6,%), ¥ = (-VVliogp(%)) %,



Posterior distribution of the weights
Replace parameter estimate 6 by p(6). Harder than with linear models:

Laplace build covariance around 4, (MacKay, 1992):

p(0) ~ N(6,%), ¥ = (-VVliogp(%)) %,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

» golden standard for posterior estimates

» computationally expensive



Posterior distribution of the weights
Replace parameter estimate 6 by p(6). Harder than with linear models:

Laplace build covariance around 4, (MacKay, 1992):

p(0) ~ N(6,%), ¥ = (-VVliogp(%)) %,

HMC (Metropolis Hastings) uses gradient for solving Hamiltonian ODE

» golden standard for posterior estimates

» computationally expensive

Langevin Dynamics (Welling, Teh, 2011):
plr+1) — g(7) _ nv[(é(r)) +e, e ~N(O,nl),

where € and 7 needs to be carefully balanced. (Asymptotic proof of
acceptance rate=1).



Laplace
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Laplace Il
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Langevin MCMC (tweaked)




Hamiltonian Monte Carlo

Maximum likelihood Average prediction of 500 HMC

p(y|x, ) 1

u}
o)
I
i
it




Dropout MC

Standard Network Model:

zi=o;(Wix+b), i=1:m-1,

= 02 (Wmzm + bm),

Dropout Network Model:

zi=o0; (Wi (& ox)+ br),
=02 (Wm(&m © zm) + bm)

where &; are vectors of zeros and ones sampled from Bernouli distribution.

Works also for Gaussian distribution, can be explained by Variational
Inference.

> Dropout is an approximation of GP (Gal, Ghahramani, 2016),
» Deep Neural Networks as Gaussian Processes (Lee, et. al. 2018).



SGD is Approximate Bayesian Inference

SDG is a discretization of approximation of random walk model

. 1
VL(9) ~ VL) + N N(0,C(6))

If the loss function can be approximated by quadratic function
1
L£(0) = 5(9TA9,
then posterior factor g(#) = N (6, ¥) satisfies:

YA+ AT = Lc(9).

S
Minimizing KL to p(6) yields (Mandt, Hoffman, Blei, 2017):
25 dim(# 2§
* = m ter((:)), or H* = WC*I, (matrix learning rate)

Can be used to tune learning rate using

CG=01-k)C1+ mTcov(VCN).



Sad story: Large scale comparison

Various methods were compared in (Ovadia, et. al 2019):

07 -
X
06 -
05 -
| Method
0.2 - EEEEEE Vanilla N Dropout
3 a 5

Accuracy
o o
S

B TempScalng [N LLDropout

-
0.1 -
2 BN Ensemble [— e
[T} 0.0 T v T
g Test 1 2
E 035
= Method
S 0 m—vanila E— Dropout
025 . MEEEEE TempScalng [N LLDropout
E— Ensemble ) LLsw
020 -
w
Y
woas -
0.10 -
0.05 -
000 - — h ) ' ' '
Test 1 2 3 4 5

Shift intensity

The winner is ensemble: parallel run of NN from different starts.



Landscape of Deep networks

Hypothesis (Fort et. al. 2019): The probability of weights in networks is
multimodal:

Ensembles indentify different modes

but ignore local uncertainty and might
Variational methods capture not pick the best point from each mode
local uncertainty around a mode

Space of solutions Tenbtine
raming



Assignment (10pt)

» Create a 1d regression problem with missing data

» Train neural network for minimum loss

» Try one of the Bayesian approaches

>

vvyyvyy

Laplace,
Dropout
Ensemble
Langevin
HMC...



