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Recapitulation

> how to sample a general Gaussian using N(0,1)?
» what optimizes Variational Bayes?
» generative model of PCA? linear model D = AX,



Previous models

=0 a=2 B=3

) p(s) = iG(ao,Bo)
(%) plmls) = A(.s)
p(yi|m75) = N(m,s)

» Observations x; are sampled from Gaussian with unknown mean and
variance.

» We have some prior information about the mean and variance



Approximation via Variational Bayes

marginal

—p(m|x1,x2)
q(mix1,x2)

p(m,s|x1=5x2=4, 4=0,a=0.001,3=0.001,6=5

marginal
:

—p(slx1,x2)
—q(sIx1.x2)




Divergence minimization

We seek best approximation of intractable distribution p(x) in the chosen
class of parametric functions, g(x|6), such that

0" = argmin D(p, q),

where D(p, q) is a statistical divergence.
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Divergence minimization

We seek best approximation of intractable distribution p(x) in the chosen
class of parametric functions, g(x|6), such that

0" = argmin D(p, q),
where D(p, q) is a statistical divergence.
Different results for different choices of: i) (@), and ii) D.

Variational Bayes:
1. conditional independence g(f1, 62) = q(61)q(62),
2. (reverse) Kullback-Leibler. KL(g||p) # KL(p||q)



Kullback Leibler divergence

Measure of divergence between two probability densities

KL(qllp) = Eq (log Z)

(o) o)

also known as relative/free entropy

KL(ql|p) = E4 (log q) — E4 (log p)

Not a metric!

with properties:
1. KL(ql[p) = O,
2. KL(qllp) =0, <= q=p



Variational Bayes

Is a divergence minimization technique with

q* = argmin KL(q||p) = arg min E, <Iog q>
q q p
q(m,s) = q(mly1, y2)a(sly1, y2)-

which allows free-form optimization.



Variational Bayes

Is a divergence minimization technique with

q* = argmin KL(q||p) = arg min E, <Iog q>
q q p
q(m,s) = q(mly1, y2)a(sly1, y2)-

which allows free-form optimization.
Result:

q(m|y1,y2) X exp (Eq(s) [Iog P()/L Y2, m, 5)])
q(sly1, y2) o< exp (Eg(my [log p(y1, y2, m, s)])

which is a set of implicit functions.
> Proportionality above allows to use p(y1, y2, m,s) in place of
p(m,sly1, y2)
» Variational EM algorithm (E-E algorithm).



E-step: m

Proxy distribution

q(m) = Eq(s)(log P(}’1,Y27 m,s))

using
1 l(m_y1)2 l(m—yz)2 l(m—ﬂ)z
p(y17y27m’5) X s s+l <_2 s B 2 s - 2 ¢
1(m—y)* 1(m=—y)* 1(m—p)?
log p(y1, y2,m, s) o< (a0 +2) log s — 53— — 5 == — 5
1 2 2 1 (m_u)2
oc—EE(f) [((m—y) +(m*y2)]*§ "




E-step: s

Proxy distribution

q(s) = Eqm)(log p(y1, y2, m, s))

using
11 L(m=—y)® 1(m—y) 1(m—p)’ fo
p(ys,y2,m,s) o< — eXP( 2 s 2 s 2 ¢ s
1(m—y)? 1(m—y)? 1(m-p? B
ng(y1:y2zm7 5) (ao + ) ogs 2 s 2 s 2 ¢ s

E 0y (108 P(11,)) = —(00 +2) log's — 2-Egiry [(m — 2 + (m — yo)7] — &

1
= —(ao+2)logs — 2—5Eq(m) [(m2 —2my1 + y22 m? - 2yom + y22]

q(s) = iG (o, B),
a=ay+1,
B = 0.5E(m*) — E(m)(y1 + y2) + 0.5(y2 + y3) + fo



Toy: Variational Bayes

Factors:

1 2\ ! 1 2\ !
"(’"):N(’”?(w@) (5+252)-(5+3) )

q(s) = iG (a0 + 1, E(m?) — E(m)(y1 + y2) + 0.5(y7 + y3) + fo)

with

E(m?) — E(m)(y1 + y2) + 0.5(y2 + ¥3) + fo
ag+1 ’

(1. 2\ oty
o= (5+3) (6+25%)

which needs to be (lterated).



Direct optimization of KL

Is a divergence minimization technique with

q" = argmin KL(g||p) = arg min E, (Iog q)
q q p

q(m,s) = q(mly1, y2)q(s|y1, y2)-
Q(m|}/17}/2) = N(Nm7am)
a(sly1, y2) = iG(as, Bs)

Solving task:

[ O 0%, B = arg min_ Eg (Iog q) ,
P

HmyTm, s, Bs

using general purpose black-box optimizer (SGD).



Loss function

KL(9]lP) = Eqpq, (|og q(mlx)q(slx))

p(m, s|x)
= Eg,.q, (log g(m|x) + log q(s|x) — log p(x, m, s) + log p(x)) ,
= —H(q(m|x)) — H(q(s|x)) — E(log p(x, m, s)) + log p(x)

Where

EmeS (log p(X’ m, 5)) =

L(m—y)? 1(m=—y)* 1(m—p3? Bl
Eqmqs {_(O‘0+2)|085—2 S 3 S 5 ) e

= — (a0 + 2)Eq (logs) — Eq <Bso)

1
- Eqs (25) Eq(m) [(m2 - 2my1 + }/12 + m2 - 2)/2”7 + }/22]

1
= 5 Fatm) [m”* —2mpu+ 4?]



Loss function Il

Using moments

Eq, (M) = pim Eqm(mz) = N?n + ‘712117
1 s
Eal)= 5 Eq.(log's) = log § — (a)

we obtain all components of KL:

Equa, (log p(x, m.s)) = — (a0 +2) (log e — ¥(a)) — BZ%

yi+y3

12 + 02 — m(y1 + y2) + 5

ﬁs
- i [ + 0 — 2ptmp + 117

H(a(m}x)) = log(2reo?)
Hi(a(slx)) =o +1og (T(0)) — (o + 1) (a)




KL and ELBO

Bayes rule for “data” x and “parameters” z:

p(zlx) = ”f;’xj), p() = [ plxl2)p()ez

Approximation
pz]x) ~ q(z]x)
Divergence:

KL (alp) = £ (1og 2220 ) g, (10g 920001 )

= Eq (log q(z|x) + log p(x) — log p(x, 2)) ,
= —H(a(z|x)) — Eq(log p(x, 2)) + log p(x)
The normalization p(x) can either:

> neglected for minimization of the KL (constant).
> lower bounded (evidence lower bound):

log p(x) = H(q(z|x)) + Eq(log p(x, 2)) + KL(ql|p)
> H(q(zlx)) + Eq(log p(x, 2)) = L(a(zlx))



KL minimization

Variational Bayes:
» Free-form: g(m,s) =~ q(s)q(m) where forms of g() are identified

» mean field Variational Bayes

ELBO:
» Direct: g(m,s) is chosen by designer.
» conditionally independent g(m)g(s) (same results)
» they can be conditioned g(m|s)q(s)
> often slower optimization (tuning SGD)
>

allows non-linear transformations



Reparametrization trick

Variational Bayes requires knowledge of the moments ¢, = N (iim, om)
Eq(m) = fim Eq,(m*) = p5y + o7,

in general we may encounter moments, e.g. E(log m?).
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Reparametrization trick

Variational Bayes requires knowledge of the moments ¢, = N (iim, om)
Eq(m) = fim Eq,(m*) = p5y + o7,

in general we may encounter moments, e.g. E(log m?).
Approach: Monte Carlo

Eq(m(f(m)) = & S £(m®D), m ~ g(m)

For g(m) = N (jtm, om) we can approximate, m() =y, + oel?)

Eq(m)(f(m)) =~ % Zy:lf(m(i)) = % Z:,'V=1f(ﬂm + Ume(i))
= Ep(e)(f(:um =+ Gme))

» Exact for large N (GD).
> Unbiased estimate for low N, even N =1 (SGD).
> Variance reduction (decreasing learning rate, iterative averaging)



Density estimation

» We have: samples X = {xy,...x,}
» We seek: probability density p(x) from which they were generated
» ideally such that we can generate artificial samples



Density estimation

» We have: samples X = {x1,...x,}
» We seek: probability density p(x) from which they were generated
» ideally such that we can generate artificial samples

Examples (Mixture):

Density model is a mixture with parameters a3 ..., axk, p1, .-,k and
Yi,..., XK.

» maximum likelihood estimate by gradient descent

» EM algorithm (coordinate descent on negative ELBO)



Generative model

Mixture model?
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Mixture model?
True generative model:

z ~ N(0,1),
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Generative model

Mixture model?
True generative model:

z ~ N(0,1),

X1 V4
o) = L] rone

Class of models:

z~N(0,/)
x ~ N(fy(2),0l),

Marginal
p(x[0) = / p(x|z, 0)p(2)dz

Find . Maximum (marginal)
likelihood.

16

14

12

10+t -

Empirical density




Generative models

Flow models:
x = fo(2), p(z) =N(0,1)

using transformation of
coordinates

p(x) = pa(F1(x)) ]

Ox

> only invertible
transformations f

» equal dimension of z and x

> exact optimization of

of, (%) '

Autoencoders:

x = fo(z) +oe, p.(z) =N(0,1)
p(e) = N(0,1)

with
p(x) = / p(x|2)p(2)dz.

» z can have arbitrary
dimension

» no need for inversion of f,

> no analytical solution of p(x)



Variational Autoencoder [Kingma, Welling, 2014]

Generative model
x=f(2)+oe,  pD)=NO.D.  ple)=N(O.1)
with
p() = [ plxlz)p(2)dz ~ L(a(z}).
With choices:
a(zlx) = N (s (x), diag(e (x)2)),

> fy(z) is a neural network

> 11y(x), 0(x), is a neural network



Variational Autoencoder [Kingma, Welling, 2014]

Elaborate:
p(x10,%) ~Eq(zpx) (Iog Zj:))) alz|x) <Iog q|( )|P§z)>
«) (log p(x]2)) + Eq(z/x) ('Og (( ))

|x
(z1x) (log p(x2)) + KL (q(zx)[|p(2))
Recall that x = fy(z) + oe, p(x|z) = N(fy(2), 1)
Eq(z\x) (|ng(X|Z)) = _(X - f(Z)) /J
KL (a(z[x)I1p(2)) = Y _(—2log(o(x)) + ou(x)* + py(x)?)

yielding optimization (with reparametrization trick)

0%, " = argming Z ((xi — folpy(x) + Uw(x,-)e,-)2) + KL
i€l

which is known as autoencoder structure in NN. (for oy, = 0, KL=0)



Linear model

We have analyzed such model
x=Az+e,
with analytical solution p(x) = N(0,AAT + /). We can also compute

plzlx) =



Linear model

We have analyzed such model
x=Az+e,
with analytical solution p(x) = N(0,AAT + /). We can also compute

pzlx) = N((ATA)TIATx, (ATA) )

In ELBO, need to choose approximation:
q(z|x) = N(Bx, diag(8?)).
Then VAE is:

A*,B*,B" =argminagp Y [071 1% — A(Bx; + B o &)
i€eT

43 (~2lo8(8) + 87 + (By)?)|



Explicit density of VAE (reduced dimensions)
Approximation of:
p() = [ plxlz)p(z)dz ~ L(a(z})),

» Simple approximation:

p(x|z = g(x)) = / p(x]2)6(z — g(x))dz

» No noise
p) = puel)) | 250

» Orthogonal approximation

x=f(Z)+¢€

where f(z') and €’ are orthogonal.

Then
81‘*1(2’)

AT

p(x) = N (Z']0,1) ‘ N(x — f(Z'),o°1).




0.5

0.0

Exactp(z)




Variational Autoencoder

> Scales well with dimension (unlike GMM)

» Many extensions
> two stage vae [Dai&Wipf,2019]: x = f,(z), z = fu(w)
> First stage (x = f;(z)) only reduces dimension dim(z) < dim(x)
» Second stage (z = f,(w)) models distribution p(w) = N(0, /)

> Allows to generate artificial samples of complex distributions

» Competes with GANs ( without probabilistic density).



Disentanglement
Original problem of linear source separation is rotation
X =AZ = (AT)(T'2),

Sometimes we want the sources to have a meaning (Bart-Lisa).

zl

OOOQOO
4 - e 0| |EE
clalalAlA|A

Typically we assume that we have a partial information (observation) u
such that

u=h(z)
and we want to learn the state variables that correspond to the meaning.

[Mita, Filippone, Michi, 2020] Learning Optimal Conditional Priors For
Disentangled Representations.



