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ABSTRACT
The Variational Bayes (VB) approach is used as a one-step ap-
proximation for Bayesian filtering. It requires the availability
of moments of the free-form distributional optimizers. The
latter may have intractable functional forms. In this contribu-
tion, we replace these by appropriate fixed-form distributions
yielding the required moments. We address two scenarios of
this Restricted VB (RVB) approximation. For the first sce-
nario, an application in identification of HMMs is given. In
the second, the fixed-form distribution is generated via Par-
ticle Filtering (PF). It is shown that a new approximation of
Rao-Blackwellized particle filtering is obtained in this sce-
nario of RVB. Its performance is assessed for a simple non-
linear model.

1. THE VB APPROXIMATION

The VB approximation is a deterministic free-form optimiza-
tion technique. It was first used in off-line inference prob-
lems [1] and extended to on-line inference of time-invariant
parameters in [2]. The use of VB in Bayesian filtering was
first discussed in [3]. The key theory is now reviewed.

Theorem 1 (Variational Bayes (VB)) Let f (θ|D) be the pos-
terior distribution of multivariate parameter, θ = [θ′1, θ

′
2]
′,

and f̆ (θ|D) be an approximate distribution restricted to the
set of conditionally independent distributions

f̆ (θ|D) = f̆ (θ1, θ2|D) = f̆ (θ1|D) f̆ (θ2|D) . (1)

The minimum of the Kullback-Leibler divergence

f̃ (θ|D) = arg min
f̆(·)

KL
(
f̆ (θ|D) ||f (θ|D)

)
, (2)

is reached for

f̃ (θi|D) ∝ exp
(
Ef̃(θ/i|D) [ln (f (θ, D))]

)
, i = 1, 2, (3)

where θ/i denotes the complement of θi in θ. We will refer to
f̃ (θ|D) (7) as the VB-approximation, and f̃ (θi|D) (3) as the
VB-marginals.

The above theorem provides a powerful tool for approxima-
tion of joint pdfs in separable form [3]:

ln f (θ1, θ2, D) = g (θ1, D)′ h (θ2, D) . (4)

Here, g (θ1, D) and h (θ2, D) are finite-dimensional vectors
of compatible dimension. Using (4) in (3),

f̃ (θ1|D) ∝ exp
(
g (θ1, D)′ ̂h (θ2, D)

)
, (5)

where ĥ(·) = Ef̃(θ2|D) [h (·)] are the VB-moments for θ2, and
similarly for θ1. An Iterative VB (IVB) [3] moment-swapping
algorithm is implied. In many non-linear cases of g and/or h,
the VB-marginals (3) are non-standard in form, and so the
required VB-moments are difficult to evaluate. In this contri-
bution, we aim to replace any such non-standard VB-marginal
with a tractable alternative, as follows.

Corollary 1 (of Theorem 1: Restricted VB) Let f̆ (θ|D) be
a conditionally-independent approximation of f (θ|D) of the
kind

f̆ (θ|D) = f̆ (θ1, θ2|D) = f̆ (θ1|D) f (θ2|D) , (6)

where f (θ2|D) is a fixed-form distribution. Then, the mini-
mal KL divergence (2), under (6), is reached for

f̃ (θ1|D) ∝ exp
(
Ef(θ2|D) [ln (f (θ, D))]

)
. (7)

f (θ2|D) needs to be chosen judiciously, such that its moments—
required in (7)—are available. These moments are substituted
just once, without the need for IVB cycles. Some standard
distributional approximation methods may be interpreted as
special cases of RVB; e.g. (i) certainty equivalence, where
f ≡ δ(θ2 − θ̂2), in which case (7) becomes the conditional,
f

(
θ1|D, θ̂2

)
; and (ii) the Quasi-Bayes (QB) approximation,

where f ≡ f (θ2|D), the exact marginal, if available [3].

2. BAYESIAN FILTERING

Consider the following model structure

dt ∼ f (dt|θt) , θt ∼ f (θt|θt−1) , (8)

where θt is known as the state variable. By Bayesian Filtering
(BF), we mean the recursive evaluation of the filtering dis-
tribution f (θt|Dt) using Bayes’ rule. Dt = [d1, . . . , dt] de-
notes the history of observations. The computational flowchart
of BF is displayed in Fig. 1. BF is analytically tractable if (i)



f(θt−1|Dt−1) ×

f(θt|θt−1, Dt−1)

f(θt, θt−1|Dt−1)

f(dt|θt, Dt−1)

B
∫

dθt−1 f(θt|Dt)
f(θt, θt−1|Dt) Scenario II

Scenario I

Fig. 1. Two possible points (‘scenarios’) for VB approximation are indicated in a computational flowchart of exact Bayesian
filtering. × denotes multiplication, B a Bayes’ rule step, and

∫
d· marginalization over the indicated variable.

marginalization over θt−1 is analytically tractable, and (ii) the
resulting marginal distribution, f (θt|Dt), is in the same form
as the previous step, f (θt−1|Dt−1), so that the procedure can
be iterated. We call this condition conjugacy in the BF con-
text. (i) and (ii) are satisfied only for a very limited class of
models.

2.1. Particle Filtering

Particle filtering (PF) [4] refers to a range of techniques for
generating an empirical approximation of f (Θt|Dt) via im-
portance sampling:

f̃ (Θt|Dt) =
∑n

i=1w
(i)
t δ(Θt −Θ(i)

t ), w
(i)
t ∝

f
(
Θ(i)

t |Dt

)
q
(
Θ(i)

t |Dt

)
(9)

Here, Θt = [θ1, . . . , θt] is the state trajectory, Θ(i)
t , i =

1, . . . , n are random samples drawn from an appropriately
chosen importance function, q (Θt|Dt), and w

(i)
t are the im-

portance weights.
In the Rao-Blackwellized PF (RBwPF), the state variable

is partitioned as θt = [θ1,t, θ2,t]. An empirical approximation
of the marginal is then sought:

f̃ (Θ2,t|Dt) =
∑n

i=1w
(i)
t δ(Θ2,t −Θ(i)

2,t) (10)

w
(i)
t ∝

f
(
dt|θ(i)

2,t

)
f

(
θ
(i)
2,t|θ

(i)
2,t−1

)
q
(
θ
(i)
2,t|Dt,Θ

(i)
2,t−1

) w
(i)
t−1. (11)

The numerator of (11) requires integration over θ1,t−1. Hence,
RBwPF is feasible if there exists a partition of the state vari-
able allowing this integration to be performed analytically.
From (10), the implied approximation of the other marginal
is

f̃ (θ1,t|Dt) =
∑n

i=1w
(i)
t f

(
θ1,t|Dt,Θ

(i)
2,t

)
. (12)

3. VARIATIONAL BAYESIAN FILTERING (VBF)

VB provides the possibility for deterministic approximation
of the filtering distribution [3]. We now examine two scenar-
ios for its application, as indicated in Fig. 1.
Scenario I of VBF: If marginalization over θt−1 (Fig. 1) is
intractable, it can be replaced by VB-marginalization. This is
achieved by forcing conditional independence between θt and

θt−1 in f(θt, θt−1|Dt) (Fig 1). The joint distribution needed
in (3) is:

f (dt, θt, θt−1|Dt−1) =

f (dt|θt, Dt−1) f (θt|θt−1) f̃ (θt−1|Dt−1) . (13)

Application of Theorem 1 to (13) yields VB-marginals in the
form of two parallel Bayes’ rule updates:

f̃ (θt|Dt) ∝ f (dt|θt, Dt−1) f̃ (θt|Dt−1) , (14)

f̃ (θt−1|Dt) ∝ f̃ (dt|θt−1, Dt−1) f̃ (θt−1|Dt−1) . (15)

The following approximate distributions are involved:

f̃ (θt|Dt−1) ∝ exp
{

Ef̃(θt−1|Dt)
[ln f (θt|θt−1)]

}
, (16)

f̃ (dt|θt−1, Dt−1) ∝ exp
{

Ef̃(θt|Dt)
[ln f (θt|θt−1)]

}
. (17)

From (16), the form of f̃ (θt|Dt−1) is determined by the form
of the time-invariant parameter evolution model. Hence, one
application of Bayes’ rule (14) yields the same functional
form at each time, satisfying the condition of conjugacy [3].
Scenario II of VBF: Consider the case where marginalization
over θt−1 is tractable (Fig 1), but yields a filtering distribu-
tion, f (θt|Dt), in a form different from that at t−1, violating
conjugacy. However, if the VB approximation is then used to
force conditional independence with respect to the partition
θt = [θ1,t, θ2,t], these VB-marginals may be invariant, restor-
ing conjugacy.

4. RESTRICTED VB IN BAYESIAN FILTERING

We now employ the RVB approximation (Corollary 1) for the
two scenarios of VBF outlined in the previous section. Note,
however, that there are many choices for the fixed distribution,
f(·), and that the final decision will depend on the particular
model structure (8).

4.1. Scenario I

The moments of f̃ (θt−1|Dt) (15) required in (16) may be
intractable. An obvious fixed-form replacement of this distri-
bution is the VB-filtering distribution from the previous step:

f (θt−1|Dt) ≡ f̃ (θt−1|Dt−1) . (18)

The VB-filtering distribution is then obtained without itera-
tions, by substituting moments of f̃ (θt−1|Dt−1) via (16), and
the result into (14).



4.2. Scenario II: RVB+PF

For the first time, we propose a stochastic approximation as
the fixed-form distribution (Corollary 1):

f (θ2,t|Dt) =
∑n

i=1w
(i)
t δ(θ2,t − θ

(i)
2,t). (19)

Following the standard RBwBF approach of Section 2.1, the
particle weights are approximated as

w
(i)
t ∝ f̃

(
dt|θ(i)

2,t

)
f
(
θ
(i)
2,t|θ

(i)
2,t−1

)
w

(i)
t−1/q

(
θ
(i)
2,t|Dt,Θ

(i)
2,t−1

)
.

(20)
f̃ (dt|θ2,t) =

∫
f (dt|θt) f̃ (θ1,t|Dt−1) dθ1,t. (21)

which is obtained from (9) using (i) the assumption of in-
dependent observation models for θ1,t and θ2,t, and (ii) VB-
marginals f̃(θt−1|Dt−1) in place of exact marginals f(θt−1|Dt−1).

Hence, the VB-marginal, f̃ (θ1,t|Dt), must be tractable.
From (4) and (19), it is given by

f̃ (θ1,t|Dt) ∝ exp
(
g (θ1,t)

′ ∑n
i=1w

(i)
t h

(
θ
(i)
2,t, Dt

))
. (22)

In the sequel, we will call this the RVB+PF approximation.

Remark 1 The computational flow of RBwPF and RVB+PF
differ in the following respects: (i) RBwPF requires analyti-
cal marginalization of the whole trajectory Θ1,t−1 (i.e. conju-
gacy at each step (Section 2)), while RVB+PF is tractable at
every step if the one-step marginalization in (21) is tractable
(i.e. conjugacy is not required); and (ii) one set of sufficient
statistics is stored for each particle, Θ(i)

2,t, in RBwPF (12),
while one set of sufficient statistics is used for all the samples
θ
(i)
2,t in RVB+PF (22).

Remark 2 The proposed RVB+PF scheme generalizes the
Modified RBwPF method (MRBwPF) proposed in [5], where
f (θ1,t|Dt) was approximated by certainty equivalence; i.e.

f̃ (θ1,t|Dt) ∝ exp
(
g (θ1,t)

′
h

(∑n
i=1w

(i)
t θ

(i)
2,t, Dt

))
, (23)

and f (dt|Dt−1, θ2,t) in (20) was approximated using sam-
pling. In the simulations which follow, we will use MRBwPF
with (20) for easier comparison. Results using the sampling-
based approximation for w

(i)
t [5] are very similar.

5. SIMULATION STUDIES

5.1. Inference of HMM with Unknown Transition Matrix

Consider a HMM with the following two constituents: (i)
a first-order Markov chain on the unobserved discrete (la-
bel) variable lt, with c possible states and time-variant un-
known transition matrix Tt ∈ <c×c; and (ii) a set of c known
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Fig. 2. Performance of competing algorithms for rapidly-
varying Tt (κtrue = 80).

class-conditional observation models, as arises in classifica-
tion. The problem of inferring lt can be formalized as a task
of Bayesian filtering as follows:

lt ∼Mult (Ttlt−1) , Tt ∼ DiTt (κTt−1 + 1c,c) ,

dt ∼f1 (dt)
l1,t × . . .× fc (dt)

lc,t .

Here, scalar parameter κ governs variance of Tt. For high
values of κ, the variance of the Dirichlet distribution is very
tight allowing only slow evolution of Tt, while low values of
κ allow faster evolution of Tt.

Under Scenario I (Section 3), the VB-approximation yields:

f̃ (lt|Dt) = Mult (αt) , f̃ (Tt|Dt) = DiTt
(Qt) , (24)

f̃ (lt−1|Dt) = Mult (βt) , f̃ (Tt−1|Dt) ∝ exp (q (Tt−1)) ,

where shaping parameters αt, Qt, βt are omitted for brevity.
q (Tt−1) is a complicated function, and so the moments of
f̃ (Tt−1|Dt) are analytically intractable. Therefore, we make
the RVB assignment (18),

f (Tt−1|Dt) ≡ f̃ (Tt−1|Dt−1) ,

which is Dirichlet (24).
A Monte Carlo study (100 runs) was undertaken, in or-

der to compare (i) this RVB approach with (ii) (full) VB (i.e.
(24), with numerical evaluation of f̃ (Tt−1|Dt) on a grid of
100×100 points), and with (iii) a particle filter with 100 par-
ticles (PF100) (Figure 2). Performance was defined in terms
of the average number of misclassified labels in 1000 data
samples. The RVB scheme is computationally cheaper than
the competing methods, yet offers good performance even for
rapid variations of Tt (Figure 2). For slowly varying Tt (high
κ), the RVB performance is comparable to VB.

5.2. Performance of RVB+PF (Scenario II)

Consider the following model:

f (xt|xt−1) = N (Axt−1, Q) ,

f (Ct|Ct−1) = N (arctan (Ct−1) , P ) ,

f (dt|xt, Ct) = N (C ′
txt, R) .



Essentially, this is a standard linear-Gaussian model with un-
known non-stationary Ct, for which a non-linear evolution
model is defined. Here, integration over xt−1 is possible us-
ing standard Kalman Filtering (KF) theory, yielding the fol-
lowing conditional posterior of xt:

f (xt|Dt, Ct) = Nxt|Ct

(
µt,Ω−1

t

)
, (25)

Ωt =
(
Q + AΩ−1

t−1A
′)−1

+ C ′
tR

−1Ct,

µt = Ω−1
t

[(
Q + AΩ−1

t−1A
′)−1

Aµt−1 + C ′
tR

−1dt

]
.

This is written in terms of precision matrix Ωt for analytical
convenience. Exact integration over Ct−1 is intractable. A
Rao-Blackwellized PF is obtained using (10)–(11) with as-
signments θ1,t = xt and θ2,t = Ct.

Since the log of (25) can be written as g (xt) h (Ct, Dt)
(4), it is amenable to RVB+PF approximation (Section 4.2).
The resulting VB-marginal, f̃ (xt|Dt) is Gaussian, i.e. in the
form of (25), with assignments

Ωt =
(
Q + AΩ−1

t−1A
′)−1

+ E
[
C ′

tR
−1Ct

]
, (26)

µt = Ω−1
t

[(
Q + AΩ−1

t−1A
′)−1

Aµt−1 + Ĉt

′
R−1dt

]
.

where Ĉt =
∑n

i=1 w
(i)
t C

(i)
t . (26) is again in standard KF

form, except for the term

E
[
C ′

tR
−1Ct

]
=

∑n
i=1w

(i)
t C

(i)
t

′R−1C
(i)
t . (27)

Thus the matrix inversion lemma cannot be easily applied and
the implementation is less efficient than for standard KF.

MRBwPF (Remark 2) also yields a result in the form of
(26), with (27) replaced by Ĉt

′
R−1Ĉt. This has the following

consequences: (i) MRBwPF can use KF without any modifi-
cation, while implementation of RVB+PF typically requires
modification of KF; (ii) MRBwPF uses a certainty-equivalent
estimate of Ct, while RVB+PF uses the second non-central
moment (27), encoding information about its uncertainty.

A scalar system with one-dimensional state and output
was simulated with parameters A = 1, Q = 0.5, P = 0.1,
R = 0.5. The aim is to illustrate the effect of propaga-
tion of higher moments (27) within the KF scheme. Hence,
we use exactly the same particle filter on Ct—i.e. the same
importance function and re-sampling scheme—for all tested
methods. The performance was assessed via the value of the
posterior distribution of Xt at the simulated value. Variants
of f̃(xt|Dt)—obtained from (25) via, respectively, RBwPF
(12), RVB+PF (22), and MRBwPF (23)—are displayed in
Table 1. These numbers are obtained by averaging over 100
simulation runs for each tested setting. Similar behaviour was
observed for other noise levels and numbers of particles.

Both RVB+PF and MRBwPF perform significantly worse
than RBwPF but at much lower computational cost, since they
require only one step of KF per time-step, in contrast to n

number of data RBwPF RVB+PF MRBPF scale
100 -0.37 -2.58 -2.68 ×103

1000 -0.58 -3.43 -3.44 ×105

Table 1. Results of MC studies displayed via log of the pos-
terior distribution of Xt, evaluated at the simulated value (the
greater the mantissa, the better the result).

Kalman updates for RBwPF. RVB+PF slightly outperforms
MRBwPF but at the price of evaluation of the second-order
moment (27) and the numerical overhead of incorporating this
into the KF (26).

6. CONCLUSION

The VB approximation in Bayesian filtering is constrained by
the need to evaluate moments of the resulting VB-marginals,
which is difficult to ensure. If at least one of the VB-marginals
is tractable, the method can be combined with other approxi-
mations via the Restricted VB (RVB) approach. In this paper,
we have presented two possible Scenarios for the use of VB
in Bayesian filtering, and for each Scenario one possible RVB
scheme to overcome the intractability of VB-marginals. The
first Scenario enforced conditional independence between the
current and one-step-delayed state variable, and it is expected
to work well for extensions of discrete hidden Markov mod-
els. The second Scenario enforced conditional independence
in the posterior distribution at each time, t. In this Scenario,
particle filtering was used to generate the fixed-form distribu-
tion. This yielded a new variant of Rao-Blackwellized par-
ticle filters, generalizing previous heuristically-motivated ap-
proximations. The new RVB-based particle filter is expected
to offer a computationally far cheaper scheme than standard
Rao-Blackwellized particle filters.
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