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ABSTRACT

Linear state-space model with uniformly distributed innova-
tions is considered. Its state and parameters are estimated
under hard physical bounds. Off-line maximum a posteriori
probability estimation reduces to linear programming. No ap-
proximation is required for sole estimation of either model
parameters or states. The noise bounds are estimated in both
cases. The algorithm is extended to: (i) on-line mode by es-
timating within a sliding window, and (ii) joint state and pa-
rameter estimation. This approach may be used as a start-
ing point for full Bayesian treatment of distributions with re-
stricted support.

1. INTRODUCTION

Statistically inclined research concentrates naturally on stoch-
astic features of the modeled systems and evaluated estimates.
However, practically oriented engineers are more concerned
with bounds on parameters and states. Respecting uncertain
physical bounds is a challenging problem. A range of ap-
proaches to it has been published, including unknown-but-
bounded methodology [1] or elliptical approximations [2] to
name a few. They often intentionally avoid statistical as-
pects in order to focus on bounds. This dominating focus re-
stricts their use. Here, we respect both uncertainty and phys-
ical bounds by exploiting Bayesian approach. Hard physical
bounds are modeled by restricted support of the correspond-
ing joint probability density function (pdf).

We show that off-line evaluation of maximum a posteri-
ori probability (MAP) estimate of linear state-space model
with uniform distributions of innovations reduces to linear
programming (LP). This observation is a starting point for
extensions of the approach for more complex models. As a
first step, we propose the use of sliding-window for on-line
estimation. By swapping between state and parameter esti-
mations, joint parameter and state estimation is obtained. The
use of Taylor expansion for approximation of products of un-
knowns solves also the joint parameter and state estimation.

Throughout, ≡ means equality by definition; x̊ length of
the vector x; vectors are always columns; ′ denotes transposi-
tion; x, u, y are unobserved state, known input and observed
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output of the system, respectively; entries of the state, input
and output are real, i.e. x ∈ <x̊, u ∈ <ů, y ∈ <ẙ; the sub-
script t ∈ {0, 1, 2, . . .} labels discrete time; the sequence of
states (xt, xt−1, . . . , . . . , xk), k ≤ t is ordered into the vec-
tor xk:t ≡ [x′

t, x
′
t−1, . . . , x

′
k]′; non-numerical subscripts are

placed to the left of the basic symbol; x, x are lower and up-
per bound on x, respectively (they are used entry-wise).

2. LINEAR UNIFORM STATE-SPACE MODEL

We consider the standard linear state-space model

xt = Axt−1 + But + xet, yt = Cxt + Dut + yet, (1)

known from Kalman filtering (KF) theory [3]. The involved
time-invariant matrices A, B, C, D have appropriate dimen-
sions. Unlike in the KF case, the distributions of vector inno-
vations xet and yet are assumed to be uniform

f ( xet) = U (0, xr) , f ( yet) = U (0, yr) . (2)

Here, U (µ, xr) denotes uniform pdf on the box with the cen-
ter µ and half-width of the support interval xr.

The unknown entries of A,B, C, D are collected into Θ.
Equations (1) together with the assumptions (2) define the

linear uniform state-space model (LU). This model comple-
ments its classical Gaussian counterpart and provides the fol-
lowing advantages: (i) it respects natural bounds on stochastic
disturbances, (ii) it allows estimation of the innovation range
(unlike KF), and (iii) it allows—without excessive computa-
tional demands—to respect hard, physically justified, prior
bounds on model parameters and states. Moreover, the pres-
ence of finite hard bounds makes the approximate extensions
of basic estimation algorithms (such as joint parameter and
state estimation) more robust.

3. OFF-LINE ESTIMATION

Here, the joint posterior pdf of states and parameters is de-
rived. Then, its maximization is converted into a standard
formulation of linear programming (LP).

3.1. Posterior pdf

We assume that the generator of the inputs u1:t ≡ [u′
t, . . . , u

′
1]
′

meets natural conditions of control [4]. They formalize as-



sumption that information about unknown quantities for gen-
erating ut can only be extracted from the observed data d1:t−1,
where dt = (yt, ut). Then, for a given initial state x0, half-
widths xr, yr and parameters Θ, the joint pdf of data and the
state trajectory x1:t of the LU model is

f
(
d1:t, x1:t

∣∣x0,
xr, yr, Θ

)
∝

n∏
i=1

xr−t
i

m∏
j=1

yr−t
j χ(S). (3)

χ(S) is the indicator of the support S; ∝ denotes equality up
to a constant factor. The convex set S is given by inequalities,

− xr ≤ xτ −Axτ−1 −Buτ ≤ xr (4)
− yr ≤ yτ − Cxτ −Duτ ≤ yr,

where τ = 1, 2, . . . , t. Bayesian estimation of x0,
xr, yr re-

quires to complement the conditional pdf (3) by a prior pdf
f (x0,

xr, yr|Θ). For known Θ, it can be chosen as uniform
pdf on support S0 defined by inequalities

S0 = {x0 ≤ x0 ≤ x0, 0 < xr ≤ xr, 0 < yr ≤ yr} . (5)

The bounds x0, x0 etc. determine support of the prior pdf.
For unknown Θ, the uniform prior pdf f (x0,

xr, yr, Θ) is
chosen on the set (5) extended by conditions Θ ≤ Θ ≤ Θ.

For fixed observations, d1:t, and uniform prior (5), the ex-
pression (3)—on support S∩S0—is proportional to posterior
pdf. Due to the power −t, it is sharply peaked at lower bounds
on xr and yr. Moreover, the number of vertices of the sup-
port is proportional to the number of data. The proportionality
factor may be large for realistic systems. Consequently, eval-
uation of moments of this pdf is computationally demanding.
This motivates our focus on MAP estimation of all unknowns.

3.2. MAP estimation via LP

Without loss of generality, we assume that elements of xr and
yr are (significantly) smaller than 1. Under this assumption,
the negative logarithm of the posterior pdf can be approxi-
mated by sum of elements of xr and yr on the convex, lin-
early restricted set S ∩ S0. If the inequalities (4) are linear in
the unknowns, the MAP estimation is equivalent to the prob-
lem of linear programing (LP) and can be solved by any of
the available algorithms. This condition is satisfied if either
(i) parameters Θ, or (ii) states x1:t, are known. Note that con-
vexity of the set S ∩ S0 is determined by choice of the prior
bounds (5). LP will fail if these are chosen too restrictive.

In this Section, we derive solutions to both cases men-
tioned above, i.e. (i) estimation of states x1:t, and xr, yr,
given Θ, and (ii) estimation of parameters Θ and xr, yr, given
the state x1:t. Solutions are presented in the standard form of
linear programming used by Matlab function linprog, i.e.

Find a vector X such that J ≡ C′X → min
while AX ≤ B, X ≤ X ≤ X, (6)

where known matrices and vectors A, B, C, X, X will be
derived for each case.

3.3. Estimation of the state and the noise bounds

In the case of known parameters Θ, the unknowns are the state
x1:t and the noise bounds xr, yr. Hence, the vector X of (6)
is defined as follows:

X =

 x0:t

xr
yr

 . (7)

The matrices A, B, C, X, X will be defined using the fol-
lowing conventions:

M(α,β) is a matrix with α rows and β columns.

I(α) is the square identity matrix of the order α

0(α,β) is zero matrix of given dimensions.

K ≡ [−1 1]′ is a repeatedly used vector.

1(α), 0(α) are column vectors of ones, and zeros, respec-
tively, both of length α.

Kronecker product G(α,β)⊗H ≡

 G11H . . . G1βH
...

...
Gα1H . . . GαβH

.

Operator Rcol(M) extends a matrix M(α,β) by the zero ma-
trix 0(α,col) from the right, Rcol(M) ≡ [M,0(α,col)].

Operator Lcol(M) extends a matrix M(α,β) by the zero ma-
trix 0(α,col) from the left, Lcol(M) ≡ [0(α,col),M ].

col(M) stacks the rows of the matrix M into a column vec-
tor.

Using these definitions, the set (4) can be written in the form
of (6) as follows:

C′ ≡ [0′
((t+1)x̊,1),1

′
(̊x+ẙ)], (8)

A =
[
A11 A12
A21 A22

]
, B =

[
B1′ B2′

]′
, with

A11 = Rx̊(I(t) ⊗K ⊗ I(̊x))− Lx̊(I(t) ⊗K ⊗A), (9)
A12 = −1(2t) ⊗Rẙ(I(̊x)),
A21 = Rx̊(I(t) ⊗K ⊗ C),
A22 = −1(2t) ⊗ Lx̊(I(ẙ)),

B1 =
[
I(t) ⊗K ⊗B

]
u1:t,

B2 = −
[
I(t) ⊗K ⊗D

]
u1:t +

[
I(t) ⊗K ⊗ I(ẙ)

]
y1:t.

Similarly, the set S0 (5) is represented by the following as-
signments:

X =


−∞× 1(2t̊x,1)

x0

0(̊x,1)

0(ẙ,1)

, X =


∞× 1(2t̊x,1)

x0
xr
yr

. (10)



3.4. Estimation of the parameters and the noise bounds

In the case of known state trajectory x1:t, the unknowns are
parameters A, B, C, D and half-widths xr, yr. This case
may arise in situations with directly measurable state. More-
over, these results will be needed for joint estimation of state
and unknown parameters which will be addressed in the next
Section. The unknowns form the vector X of the standard LP
form (6) as follows:

X ≡ [col(A)′, col(B)′, col(C)′, col(D)′, xr′, yr′]′ . (11)

Using the introduced conventions, the following assign-
ments transform the set S (4) into the standard form (6):

C ≡ [0′
(̊xx̊+x̊ů+x̊ẙ+ůẙ,1),1

′
(̊x+ẙ,1)]

′,

A ≡
[
A11 A12 A13
A21 A22 A23

]
, B =

[
B1′ B2′

]′
,

A11 ≡

 I(̊x) ⊗K ⊗ x′
t−1 I(̊x) ⊗K ⊗ u′

t
...

...
I(̊x) ⊗K ⊗ x′

0 I(̊x) ⊗K ⊗ u′
1

 , (12)

A12 ≡ 0(2t̊x,̊xẙ+ẙů), A13 ≡ −1(2t) ⊗Rẙ(I(̊x)),

A21 ≡ 0(2tẙ,̊x2+x̊ů), A23 ≡ −1(2t) ⊗ Lx̊(I(ẙ)) ,

A22 ≡

 I(ẙ) ⊗K ⊗ x′
t I(ẙ) ⊗K ⊗ u′

t
...

...
I(ẙ) ⊗K ⊗ x′

1 I(ẙ) ⊗K ⊗ u′
1

 ,

B1 = x1:t ⊗K, B2 =
[
I(t) ⊗K ⊗ I(ẙ)

]
y1:t.

4. ON-LINE ESTIMATION

Standard Bayesian filtering and smoothing with a fixed lag
∂ ≥ 0 integrates out from the posterior pdf the superflu-
ous state xt−∂−1 in each time step, t. However, with in-
creasing t, this operation yields increasingly complex sup-
port of the posterior pdf and soon becomes intractable. The
unknown-but-bounded approaches [1, 2] face this problem
by a recursive construction of simple (typically outer) ap-
proximation of the support. In order to avoid these approx-
imations, we propose to use a sliding window of length ∂
and apply LP in order to find MAP estimate of the states
xt−∂:t ≡ [x′

t, . . . , x
′
t−∂ ]′ on the intersection of sets S and

S0 considered for τ = t − ∂, . . . , t. This approximates the
limited-memory filter of Jazwinski [3] and provides an attrac-
tive alternative to forgetting. In this context, we relax the as-
sumptions of previous Section, i.e. the necessary knowledge
of either the state, or parameters Θ. However, this relaxation
violates the assumptions of LP and further approximations
are needed to restore tractability. In this Section, we outline
two possible approaches (i) heuristically motivated technique
based on swapping of techniques from Sections 3.3 and 3.4,
and (ii) linearization of the inequalities around the last point
estimates.

4.1. Swapping-based joint estimation

The idea of this approach is to estimate the state x1:t using
technique from Section 3.3, with parameters Θ fixed at their
last point estimates. The resulting estimates of states, x̂t−∂:t

are subsequently used in technique from Section 3.4 to ob-
tain new estimates of the parameters Θ. Initial values of the
estimates can be found in off-line mode using, for instance,
a subspace method [5] or sampling methods, e.g. [6]. It is
practically important that the estimates of the noise bounds
can be very inaccurate. Performance of this approach will be
illustrated on a simple example.

4.2. Expansion-based joint estimation

Linearization of non-linear equations at point estimates is com-
mon idea, used in various extensions of KF. It could be ap-
plied to inequalities (4) using approximations of the following
kind:

Axτ ≈ Âtxτ +Ax̂τ |t− Âtx̂τ |t, τ ∈ {t−∂, t+1−∂ . . . , t}.
(13)

where Ât, x̂τ |t are newest available estimates of parameters
and states, respectively. Using equivalent expansion for Cxτ ,
the resulting inequalities can—once again—be transformed
in the standard form of LP (6). The exact assignments are
omitted for brevity. The resulting algorithms has two princi-
pal distinctions from extended KF; (i) the algorithm updates
estimates of the whole window of length ∂ hence, more so-
phisticated approaches (such as moving average of point es-
timates) can be used to improve quality of the points of ex-
pansion Ât, x̂τ |t in (13); and (ii) the realistic hard bounds on
the estimated quantities reduce the umbiguity of the model
(arising from estimating a product of two unknowns). From
these distinctions we conjecture that the estimation is better
conditioned and more robust than extended KF. Simulation
experiments support this conjecture.

5. ILLUSTRATIVE EXAMPLE

Consider a single-input single-output LU system (1) with two-
dimensional state, parameters

A =
[

1 0.5
−0.5 0

]
, B =

[
1
3

]
, C = 1′

(2), D = 0(1,1),

(14)
and noise half-widths (2)

xr = 0.1× 1(2),
yr = 0.1. (15)

The system was driven by white zero-mean uniform noise
with half-width 0.5 and 120 data samples were recorded.

The on-line swapping-based joint parameter and state es-
timation (Section 4.1) was used with window length ∂ = 5,
and prior distribution (5) restricted by the following bounds:
(i) on individual entries of Θ, the bounds were set 30% above



and below the actual simulated value, with the exception of
A2,2 = 0 which was set to A2,2 = 0.3, and A2,2 = −0.3; (ii)
upper bounds on half-widths are set to xr = yr = 1, and are
automatically extended when LP fails, see remark in Section
3.2; and (iii) bounds ±5 on all entries of the window, xt−∂:t.

The results of estimation are displayed in Figures 1–3 via
trajectories of the simulated states and their estimates (Fig.
1), estimates of the matrix A (Fig. 2), and of the estimates of
half-width xr, yr (Fig. 3). The presented experiments serve
for illustration only. Our current experience can be summa-
rized as follows:

– Individual state or parameter estimation (Section 3) works
very well. Occasionally, it is necessary to increase upper
bounds on noise half-widths to achieve tractability.

– Performance of the joint parameter and state estimation
strongly depends on the quality of initial estimates.

– The quality of state estimates may outperform the qual-
ity of parameter estimates (or vice versa) when estimated jointly.
The example demonstrates this effect.

– The use of a finite window serves as forgetting, hence
no convergence of the parameter estimates is to be expected.

–The chosen memory length ∂ = 5 seems to have an opti-
mal value: the estimation performance deteriorates when the
used value deviates from it in both directions.
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Fig. 1. MAP state estimates (dashed line) and simulated val-
ues (full line).

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

Fig. 2. MAP estimates of the entries of the matrix A (dashed
line) and simulated values (full line)
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Fig. 3. MAP estimates of the half-widths xr, (top and middle)
and yr (bottom), true values are xr = 0.1×1(2) and yr = 0.1

6. CONCLUDING REMARKS

The proposed approach opens a way for on-line parameter
and state estimation for a class of non-uniform distributions
with restricted support as well as for Bayesian filtering of non-
linear systems. The directly feasible cases are those in which
linear programming is replaced by convex one. Moreover, the
outer approximation of the support by ellipsoids or by union
of boxes may serve as a good preliminary step for an efficient
sampling-based estimation.

The main current contributions, we see, are: (i) intro-
duction of LP as a complement to usual least-square type
paradigm; (ii) feasible care about hard bounds of estimated
quantities (iii) joint estimation of parameters, state, and noise
bounds; (iv) parameter tracking via windowing the joint esti-
mation; (v) feasibility of large-scale problems.
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