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Abstract— Bayesian approach to decision-making is success-
fully applied in control theory for design of control strategy. The
approach is based on the assumption that only one decision-
maker is an active part of the system. This assumption was
recently relaxed yielding distributed Bayesian decision-making
theory. This extension is useful for large distributed systems
which intrinsically contains a lot of uncertainty. In this paper, we
apply the theory to distributed control of one example of such a
system, the surface traffic network in dense urban areas.

Index Terms— Bayesian decision-making, multi-agent systems,
fully probabilistic design, urban traffic control.

I. INTRODUCTION

In recent years, it becomes obvious that the traditional
centralized approach to control of large systems has reached
its limits. Decentralization of control and decision-making is
seen as the future direction of research in both academia and
industry [6], [2]. Many successful applications of distributed
control in classical sense, or modern multi-agent systems [15]
have been published. However, the available paradigms of
design of distributed control very often neglect uncertainty
in the controlled system, so that it is difficult to design
controllers for systems where uncertainty is intrinsic and so
significant that it can not be ignored. The rigorous Bayesian
theory of decision-making under uncertainty [3] could help
us to overcome this trouble. However, it is heavily based on
the assumption that only a single decision-maker exists in
the system, which corresponds to the centralized approach in
control theory. Recently, a series of papers attempts to offer an
extension of the Bayesian theory to the case many decision-
makers [1], resulting in decentralized stochastic control.

Surface traffic in dense urban areas is a typical example
of a system with both strong presence of uncertainty, and
the need for decentralized controllers. At present, most of
the traffic control systems works in isolation, processing only
local measurements to estimate traffic intensity and derive a
strategy of switching particular signals. These systems do not
take into account what is happening in their neighbourhood.
One reason of this situation is the inherent uncertainty how
these observations would augment our knowledge about the
local behaviour of traffic. In this paper, we show how Bayesian
distributed control can be used to address this problem using
an existing model of traffic flow.

In Section II, we present a brief summary of distributed
Bayesian decision-making followed by a list of probabilistic

operations that are needed for the implementation of the
theory. In Section III, we present the domain of traffic control
and define the models and operations that are required in order
to apply the theory. Preliminary results based on simulated data
are presented in Section IV.

II. DISTRIBUTED BAYESIAN DECISION-MAKING

Bayesian decision-making (DM) is based on the following
principle [3]: Incomplete knowledge and randomness have the
same operational consequences for decision-making. There-
fore, all unknown quantities are treated as random variables
and formulation of the problem and its solution are firmly
based within the framework of probability calculus.

Traditionally, the decision-maker is assumed to be the only
entity that intentionally influences the environment [3]. It
consists of a model of its environment, its individual aims, and
a pre-determined strategy of decision-making. The Bayesian
decision-maker is designed by the means of the Bayesian
theory, which results in probabilistic representation of all
the components, i.e. its model of the environment, aims and
strategy.

In distributed systems, the partial controller (decision-
maker) directly influences only a part of the environment,
i.e. its neighbourhood. Preoccupation of a controller with its
own aims and achieving them on its neighbourhood may lead
to undesired behaviour of the overall system. This can be
avoided only by communication between the decision-makers.
A decision-maker that is able to communicate with its neibours
will be called an agent, for its close relationship to an intelli-
gent agent in multi-agent systems [15]. Since communication
is not a part of the Bayesian decision-making theory, the
theory has to be extended for communication and negotiation
as operations on probability distributions. It was shown that
the technique of fully probabilistic design (FPD) [8] reduces
the task of agent cooperation into reporting and merging
of probability density functions [1]. In what follows, we
summarize (i) the tasks of an autonomous Bayesian agent, (ii)
the mechanism of cooperation between the Bayesian agents,
and (iii) the formal definition of probabilistic operations that
are needed for the implementation.

A. Standard Bayesian decision-making
An autonomous agent is not aware of presence of other

agents, hence, it is equivalent to the Bayesian decision-maker
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Fig. 1. Basic decision-making scenario with single decision-maker (au-
tonomous agent).

in standard theory [3], which is now shortly reviewed:
1) Model parametrization: Each agent must have its own

model of its neighbourhood. This model is necessary for
description of the dependence of the observed data, yt, on
the decisions, ut. The intrinsic uncertainty of the system is
modelled by internal variables Θt, see the illustration in Fig.
1. In the Bayesian paradigm, all models have the form of prob-
ability density functions (pdf ). Specifically, f

(
y1:t,Θ1:t, u1:t

)
is the most complete model of the system. Here, f(·) denotes
a pdf of its argument, and the notation y1:t is used to denote
the whole trajectory of observations y1:t = [y1, . . . , yt].

2) Learning: Improvement of agent’s knowledge of the
uncertain internal variables Θt is achieved by an operation
of probability calculus, which uses the observed data to
improve its belief in different values of the internal variables.
This operation is formalized as evaluation of the posterior
distribution of internal variables f

(
Θt|d1:t

)
.

3) Prediction: Since parametrization of the system via the
internal variables Θt is an artificial step, the prediction of
the future outputs of the system should not depend on the
chosen model structure. Hence, the predictor is evaluated in the
form of pdf relating the uncertain future outputs to the history
of observation f

(
yt+h|d1:t

)
, where h denotes the prediction

horizon.
4) Aim of decision-making: An agent’s strategy is designed

to achieve some desired performance. There are many ways
how to formalize a performance criterion. One possibility is to
use fully probabilistic criteria of performance, which uses an
ideal pdf, If

(
y1:t, u1:t

)
to evaluate desirability of the overall

performance. Intuitively, the maximum of this pdf is located
at the best possible performance, and each deviations from the
maximum has assigned a probability which indicate how much
is such a deviation acceptable. Zero probability is assigned to
a totally unacceptable (or physically impossible) behaviour.

5) Design of DM strategy: The final aim is to design the
decision-making (DM) strategy, i.e. a rule how to choose
actions ut based on the history of observations d1:t−1 and
the current observation yt. In classical control theory, this
rule is deterministic, however, the Bayesian approach yields
probabilistic form of the controller, i.e. pdf f

(
ut|yt, d

1:t−1
)
.

In practical applications, the actual action is chosen determin-

ut,[2]

yt,1 yt,4yt,3yt,2

y[out,1] = y[in,2] A2A1

Environment

ut,[1]

y[out,2] = y[in,1]

Fig. 2. Illustrative scheme of communication of two Bayesian agents, A1 and
A2. Agents can exchange information only about objects that are observed
by both of them, i.e. yt,2and yt,3 in this case. By design, we assume that A2

models yt,2 and gives up modelling yt,3, while A1 models yt,3 and does
not model yt,2. The missing models will be replaced by communication.

istically, e.g. as the expected value of this pdf.
This is only a brief summary of objects and operations that

will appear in the text. More details can be found in Section
II-D.

B. Communication and cooperation of agents

Distributed Bayesian decision-making extends the tradi-
tional Bayesian decision-maker—which performs the basic
operations of learning and design of DM strategy—by two
extra operations: (i) exchange of its models and aims with its
neighbours, and (ii) modifications of its own models or aims in
the light of the information received from its neighbours. From
many possible scenarios of cooperation of Bayesian agents [1],
we restrict our attention to the simplest scenario that is relevant
for the traffic control, i.e. a scenario where all the strategies of
cooperation and the level of trust between agents is prescribed
by the designer.

Decomposition of the overall system inbetween agents is
illustrated in Figure 2. Namely, we distinguish three main
categories of the observed data yt: (i) data that are modelled
by the agent—i.e. the agent is able to make predictions of
their future values—will be denoted y[out], (ii) data that are
not modelled by the agent—i.e. their predictions must be
supplied by the neighbouring agents—will be denoted y[in],
and finally (iii) data on which the predictions are not needed,
y[no]. In this paper, we suppose that these sets of data are
disjoint, i.e. yt =

[
y[in],t, y[out],t, y[no],t

]
. This assumption is

not necessary in general cases [1]. Naturally, communication
between agents A1 and A2 can be established only if the
modelled data of agent A1, y[out,1], contains elements that
are also present in the non-modelled data of agent A2, y[in,2],
i.e. y[out,1] ∪ y[in,2] 6= {0}.

C. On-line algorithm of a Bayesian agent

Each Bayesian agent iteratively performs the following
steps:
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1) Read: The observed data are read from the environment.
Moreover, the following information is read from the neigh-
bouring agents: (i) the predictive pdf of the non-modelled
data on horizon h, f(yt+1:t+h

[in] |d1:t), (ii) the ideal pdf of
the modelled data on the same horizon, If(yt+1:t+h

[out] ). Note
that these pdfs are created by composition of many lower-
dimensional pdfs from many agents. The notation f(·) is used
exclusively for the pdfs obtained from the neighbours.

2) Merge: The pdfs from the neighbours are used to modify
the model and aims of the agent. Since we assume that each
agent builds predictors of different variables, the obtained pre-
dictions are directly used, i.e. f(yt+1:t+h

[in] |·) ≡ f(yt+1:t+h
[in] |·).

However, the obtained ideal distributions represents the aims
of the neighbours which may contradict the individual aims of
the agent. Therefore, a compromise must be achieved by the
merging operation

If̃
(
yt+1:t+h
[out]

)
merge←− If

(
yt+1:t+h
[out]

)
, If

(
yt+1:t+h
[out]

)
. (1)

This operation is defined in Section II-D.4.
3) Learn: The observed data are used to increase the

knowledge about the environment. This step is identical to
the autonomous case, Section II-D.2.

4) Design of the DM strategy: FPD is performed in the
same fashion as for the autonomous case, however, the aim of
decision-making is defined by the merged ideals, If̃ (·).

5) Write: The designed DM strategy is used to select
a decision ut which will be written to the environment.
Moreover, communication to the neighbours is written into
the allocated space from where they can read it. Specifically,
predictions of the modelled data f(yt+1:t+h+1

[out] |d1:t), and the
desired ideal pdfs of the input data If(yt+1:t+h+1

[in] ) are written
there.

D. Necessary probability calculus for Bayesian agents

In this Section, we review mathematical operations that are
needed in order to implement the approach.

1) Model Parametrization: The most general probabilistic
model in Section II-A, is often simplified as follows:

f
(
y1:t,Θ1:t, u1:t

)
≡

t∏
τ=1

f
(
yτ |uτ ,Θτ , d1:τ−1

)
×

f
(
Θτ |uτ ,Θτ−1, d

1:τ−1
)
f
(
uτ |d1:τ−1

)
. (2)

This simplification is known as the state-space model, since
it is assumed that future behaviour of the system is fully
determined (up to random effects) by the input ut and the state
Θt, i.e. conditional independence between the observations in
different times is assumed. These three parts of the model have
specific roles in the whole approach and therefore specific
names: (i) the observation model, f

(
yt|ut,Θt, d

1:τ−1
)
, (ii)

the internal model, f
(
Θt|ut,Θt−1, d

1:τ−1
)
, and (iii) the

DM strategy, f
(
ut|d1:t−1

)
. Models (i) and (ii) are given by

the designer, however the DM strategy (iii) is a result of
optimization, Section II-D.3.

2) Learning via Bayesian filtering: The task of learning
is to evaluate the posterior distribution of the state Θt given
the observed data, f

(
Θt|d1:t

)
. This pdf can be computed

recursively as follows:

f(Θt|ut, d
1:t−1) =∫

f(Θt|ut,Θt−1, d
1:t−1)f(Θt−1|d1:t−1) dΘt−1, (3)

f(Θt|d1:t) ∝
f

(
yt|ut,Θt, d

1:t−1
)
f

(
Θt|ut, d

1:t−1
)

f (yt|ut, d1:t−1)
, (4)

f
(
yt|ut, d

1:t−1
)

=∫
f
(
yt|ut,Θt, d

1:t−1
)
f
(
Θt|ut, d

1:t−1
)
dΘt. (5)

In general, evaluation of the above pdfs is a complicated task,
which is often intractable and many approximate techniques
must be used [5]. In this text, we are concerned with con-
ceptual issues and we assume that all operations (3)–(5) are
tractable.

Equation (5) defines the one-step-ahead predictor. Prediction
of the whole trajectory is

f
(
yt+1:t+h|d1:t

)
=∫

f
(
yt+1:t+h,Θt:t+h, ut:t+h|d1:t

)
dΘt:t+hdut:t+h. (6)

3) Design of the DM strategy: The fully probabilistic
design of the DM strategy [8] is an alternative to the stan-
dard stochastic control design, which is formulated as the
minimization of an expected loss function with respect to all
possible decision-making strategies [4]. The key difference is
in specification of the decision-making aim in the form of an
ideal pdf of the closed loop. Then, the loss function is defined
as the Kullback-Leibler divergence between the actual and the
desired behaviour on the DM horizon. Formally,

L
(
f

(
ut|d1:t−1

)
, t + h

)
=

D
(
f

(
dt:t+h,Θt:t+h

) ∣∣∣∣ If
(
dt:t+h,Θt:t+h

) )
, (7)

where D (·||·) denotes the Kullback-Leibler divergence.
This approach has two major advantages: (i) the optimal

DM strategy is found in a closed form, and (ii) the aims of
individual agents can be communicated in the same form as
predictions, i.e. in the form of pdfs. The minimum of the loss
function (7) is evaluated recursively as follows:

f
(
ut|d1:t−1

)
= If(ut|d1:t−1)

exp[−ω(ut, d
1:t−1)]

γ(d1:t−1)
. (8)

Here, ω (·) and γ (·) are integral functions of all involved pdfs
(these are not presented here for brevity, see [8] for details).
The decisions are then generated using a simplified version of
stochastic dynamic programming [4].

4) Merging of pdfs: Merging is a probabilistic operation
for the fusion of knowledge from many pdfs into one, while
preserving as much information as possible [1]. In general,
this operation can be defined as an optimization problem with
Kullback-Leibler divergence as the criterion of optimality [9].
In this paper, we assume that y[in,1] = y[out,2] (Fig. 2), and thus
the merged pdfs are defined on the same variable ỹ ≡ yt+1:t+h

[out]
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(1). The merging operation is a specific variant of the general
scheme [9], with the criterion of optimality chosen as follows:

LM (f(ỹ)) = αD (f2(ỹ)||f(ỹ)) + (1−α) D (f1(ỹ)||f(ỹ)) . (9)

Here, the weight α ∈ 〈0, 1〉 is the level of importance of each
source (agent), and f(ỹ) is the optimized pdf. The merged
pdf, f̃(ỹ), is found by functional minimization or minimization
over a set of chosen parametric distributions. We will use the
latter approach for its computational simplicity. The family
of the target distribution is chosen as a specific pdf f(ỹ|Φ)
parameterized by a multivariate parameter Φ. Then, the the
merged pdf is fully determined by the parameter Φ̃, which is
the result of optimization,

Φ̃ = arg min
Φ

LM (f(ỹ|Φ)) . (10)

III. APPLICATION IN TRAFFIC CONTROL

In many cities, street networks cannot easily accommodate
the vast volume of traffic, which results in regular traffic
congestions. Efficient urban traffic control (UTC) mechanisms
can, in many cases, improve the situation and achieve higher
throughput of an urban transport network without changing
its topology. We will now just briefly outline some terms and
concepts of UTC. Interested readers can refer to any of the
existing monographs on this topic, e.g. [12].

In most cases, UTC is targeted on signalled intersections,
where the traffic is controlled by traffic signals. The sequence
of the traffic signal settings for an intersection is called a signal
plan. A signal plan cycle typically consist of several stages,
where one of the conflicting traffic flows has the green light
on and the others have to wait. The intersection controller is
an industrial micro-controller that selects the order of stages
and the stage lengths in attempt to maximize the possible
throughput of the intersection. It is usually connected to
traffic detectors (inductive loops, infra-red or video sensors)
providing measurements of some traffic quantities such as
the intensity of the traffic flow or the detector occupancy. In
areas with high traffic intensity, the intersection controllers
may be mutually interconnected in an attempt to optimize the
throughput of the whole traffic network.

The above mentioned approaches often use heuristics and/or
long-time statistics to derive the optimal control strategy. Our
proposal is to build the strategy adaptively in a collaborative
environment of “intelligent” traffic agents, where each agent
is responsible for one intersection. The task of our agents is to
agree on the overall traffic signal settings that would minimize
the time spent by vehicles inside the controlled region and thus
maximize the throughput of the network. The traffic agents are
designed using the theory of distributed Bayesian decision-
making, Section II. The general algorithm of Section II-C can
be directly used if we choose the following constituents: the
model pdfs (Section II-D.1), and the ideal pdfs (Section II-
D.3).

A. Probabilistic model of the traffic flow

Each agent receives measurements from detectors on its
intersection, specifically, the vector of intensities of traffic

1

Traffic
Agent

2

Traffic
Agent

u[1]

u[2]

y[in,2]y[out,1]

ξ[1]

ξ[2]

y[in,1] y[out,2]

Fig. 3. Illustration of information-distribution between the neighbouring
traffic agents. Both agents measure their y[in] and y[out]. Agent 1 is
responsible for prediction of y[out,1] and Agent 2 predicts development of
y[out,2].

flow, It, and the vector of detector occupancies, Ot. The
measurements related to the incoming flow will be denoted
y[in],t =

[
I[in],t, O[in],t

]
, and similarly for the outgoing flow,

y[out],t =
[
I[out],t, O[out],t

]
. A single detector can supply input

and output measurements for neighbouring agents, see Fig. 3.
However, as we said in Section II-B, only y[out,1]and y[out,2]are
modelled. Since the outgoing flow of one agent is the incoming
flow of another agent, the communication between the agents
is in terms of intensities and occupancies. The traffic flow is
modelled using a particle flow model [7]. This is a special
case of state-space model [10], where the state Θt consists of
the queue lengths ξt and some extra entries (see below).

The model is formalized by the following probabilistic
relations:

f(Θt|Θt−1, ut−1, y[in],t−1) =
tN (AtΘt−1 + Btut−1, Qt, 〈0,Θmax〉), (11)

f(y[out],t|Θt, ut, y[in],t−1) =
tN (CtΘt + Dtut, Rt, 〈0, ymax〉). (12)

Here, tN (µ,Σ, 〈xmin, xmax〉) denotes a Gaussian distribu-
tion with mean µ, variance Σ restricted on support interval
〈xmin, xmax〉, and ut are the current signal plan settings. The
‘mean value’ of the relations (11)–(12) is a linear combi-
nation of the state Θt and the signal plan settings ut. The
coefficients of the combination (matrices At, Bt, Ct, Dt) and
the ‘variances’ of the pdfs (matrices Qt, Rt) are composed
of the construction parameters of the intersections and are
functions of the observations of the incoming flow, e.g. At =
At(y[in],t−1) [7]. Moreover, since many entries of matrices
At, . . . , Dt, Qt, Rt are uncertain, these can be considered as
extra entries of the state Θt, yielding non-linear model of the
dynamics. Such non-linear model has better modelling capa-
bilities, however, it will cause major computational problems
for design of the DM strategy.

B. The aims in the form of ideal distributions

The global aim of our UTC approach is to minimize the
total time spend by cars in the network. It was shown that it
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is equivalent to minimization of the waiting queues ξt while
maximizing the output intensities I[out],t [11]. This aim can
be formalized in the form of pdfs as follows:

If(ξt) = tN (0, Vξ, 〈0, ξmax〉), (13)
If(I[out],t|ξt) = tN

(
I[out],max, VI[out],

〈
0, I[out],max

〉)
. (14)

Here ξmax denotes the maximum queue length allowed by
intersection construction. The ideal on the queue length, (13),
favours short queue lengths, since an estimate f (ξt) with
lower mean value is closer to the ideal. The ‘strength’ of the
request is governed by the variance Vξ; higher Vξ allows higher
deviation from the ideal value. Similarly for (14).

Since the maximization of outgoing intensities may be
counterproductive if the neighbouring agent is facing a conges-
tion, each agent also formulates its ideal pdf on its incoming
intensities, I[in],t, and negotiates it with its neighbours. At
present, we experiment with the following choice:

If(I[in],t|ξt) = tN
(
Iw (ξt) , VI[in],

〈
0, I[in],max

〉)
. (15)

The requested mean value Iw(ξt) decreases with increasing ξt,
and I[in],max is the maximum possible (saturated) intensity. In
order to communicate the ideal pdf (15) to the neighbour, it
must be conditioned only on the mutually known variables.
This can be easily achieved using the results of learning and
the operation of marginalization,

If(It+1:t+h
[in],t ) =

∫
If(It+1:t+h

[in],t |ξt+1:t+h
t )f(ξt+1:t+h

t |d1:t)dξt.

C. Evaluating the involved probabilistic operations

General forms of integral equations listed in Section II-D are
analytically tractable only for a limited range of models, such
as linear Gaussian (LG). However, neither the model (11)–
(12) nor the ideal distributions (13)–(15) of our application
have such form. The approximations that are necessary for
evaluation of the required distributions are outlined next.

1) Learning: In case of known coefficients At, . . . , Rt in
(11) and (12), the Bayesian learning is equivalent to the
well known Kalman filtering [5], with the resulting posterior
distributions in the Gaussian form,

f
(
Θt|d1:t

)
= N (µt,ΣΘ,t), (16)

where µt and ΣΘ,t are functions of data. However, the
presence of uncertain entries of these coefficients as well as
the restrictions on the pdf support violates the assumptions
of Kalman filter. Hence, we employ approximate methods for
solving non-linear filtering, such as piece-wise linearization,
divided difference and unscented filters [5]. In order to achieve
tractability of the subsequent operations, the posterior distri-
butions obtained by these non-linear techniques are projected
back into the Gaussian form (16).

2) Design of the DM strategy: Since both the model and
the ideals are represented as truncated Gaussian pdfs, we
expect that the results of FPD for non-truncated Gaussian [8]
can be used as a first approximation. In the LG case, FPD
is equivalent to the classical technique of linear quadratic
control. Specifically, this means that logarithm of the cost-
to-go function γ

(
d1:t

)
is quadratic, and the resulting control

law is a linear combination of the expected value of the state
variable Θt, i.e.

f
(
ut|d1:t

)
= N (Wµt,Σut) , (17)

where µt is from (16), and W and Σut are computed from the
coefficients of the model and the ideal pdfs. In the LG case,
the control action is chosen as the expected value of (17), i.e.
ut = Wµt.

In our application, we face two problems: (i) non-stationary
coefficients At, . . . , Rt with (possibly) unknown entries, and
(ii) distributions of disturbances in the form of truncated Gaus-
sians. The first problem is addressed by fixing the coefficients
at their expected values, using the communicated predictions
and the latest estimates of unknown parameters. The second
problem is addressed by approximating the truncated Gaussian
distribution by a non-truncated variant for most operations,
except for the final evaluation of the expected value of
(17). The expected value of (17) with restricted support is
ut = Wµt + ϕ(µt,Σut), where ϕ(·, ·) is a complex function
involving the error functions [14].

3) Merging: In this application, merging of the ideal pdfs
is of critical importance. For two Gaussian sources, f1 =
N (µ1,Σ1) and f2 = N (µ2,Σ2), the minimum of (9) can
be found using (10) under assignments Φ1 = [µ1,Σ1] and
Φ2 = [µ2,Σ2]. The merged pdf is f̃ = N

(
µ̃, Σ̃

)
, with

µ̃ = α1µ1 + α2µ2,

Σ̃ = α1Σ1 + α2Σ2 + α1α2 (µ1 − µ2) (µ1 − µ2)
′
. (18)

In the case of truncated Gaussian pdfs (14)–(15), direct
minimization of (9) is too complex. We use the following ap-
proximation: (i) ignoring the restricted support of the original
pdfs, we apply (18), (ii) we impose the supports of the sources
on the merged pdf. The error of this approximation is small
if the truncation occurs far from the mean-value-parameter, µ,
of both sources, but may get quite large if this parameter is
significantly outside of the support.

IV. IMPLEMENTATION

A. AIMSUN

An experimental system as the one described above can
not be directly deployed on the real intersection controllers.
As an intermediate step, we simulate some typical real-world
scenarios using the AIMSUN traffic micro-simulator [13]. This
simulator is able to conduct a true probabilistic simulation
of every single vehicle driving through some modelled road
network, and is commonly used to asses the consequences
of changes in the road network structure. Using advanced
features of AIMSUN programming interface, our prototype
controller (programmed in Matlab) is able to receive traffic
measurements from AIMSUN simulation and send the opti-
mized signal plan settings back. A snapshot of AIMSUN user
interface in the course of simulation is displayed in Figure 4.

B. Simulation results

Typical result of the learning phase of the on-line algorithm
is displayed in Figure 5. The estimated queue length ξt
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Fig. 4. User interface of the AIMSUN environment in the course of a
simulation run.
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(evaluated as the expected value of (16)) is compared with
the simulated queue length ξsim,t provided by the AIMSUN.
Note that ξt follows ξsim,t with two interesting anomalies:
At the beginning of the rush hours, the model tends to
underestimate the queues, while it severely overestimates the
queues in the evening. The reason of this behaviour may be
twofold: (i) the linear coefficients and the variance of (11)–
(12) are chosen from empirical rules [7], which may not
be accurate, and (ii) the learning of the non-linear model
of the internal variables involves approximations—such as
projections onto (16)—which are not globally optimal, i.e. the
error of approximation may be accumulated. At present, we
investigate both possibilities.

V. CONCLUSION

The work presented in this paper is one of the first applica-
tions of distributed Bayesian decision-making theory. We have

summarized all key objects and operations of Bayesian agents
in their general form. In order to apply the general algorithm,
specific choices of model families and parametrizations must
be made. The choice of the model structure is very important
since it determines if (i) the operations of Bayesian decision-
making are computationally tractable, and (ii) if they represent
a sufficiently rich description of reality. For the application in
traffic control, we have chosen linear models with truncated
Gaussian distribution of disturbances. This choice represents a
trade-off between tractability and accuracy, since the truncated
Gaussians can be approximated by non-truncated Gaussians
for which the probabilistic operations are analytically tractable.
Thus, the probabilistic operations needed in the traffic control
application can be approximated by modifications of the
classical algorithms. In the near future, we plan to compare
the described approach with some available alternatives.
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