Tools for Communication of Bayesian Agents

Vaclav Šmíd, Jan Kracík

Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic

12th October 2005
Outline

1. Introduction to Multi-agent Systems
 - Example: temperature control
 - Issues of multi-agent systems

2. Bayesian Decision Making
 - Adaptive Bayesian Decision-Maker
 - Towards Bayesian Agents
 - Key technologies

3. Merging of Ideal Pdfs
 - Merging of Ideal Pdfs - Problem Formulation
 - Solution

4. Conclusions
Example: temperature control

Fictitious room:

Task:
control the room temperature

reliably: failures,
adaptively: changes in the environment
Example: temperature control

Fictitious room:

Centralized control:
- optimization
- many possible scenarios
- poor scalability
- error sensitive
- poor reconfiguration
Example: temperature control

Fictitious room:

Agent control:

scalable: agents can be added

simple: few rules

cheap: agents in devices

expensive: communication

Industrial standard: Rockwell automation
Centralized vs. Decentralized Control

Centralized approach:
- Has a *consistent* theory of decision-making under uncertainty (Bayesian theory),
- Faces the “curse of dimensionality”, solution for complex problems is prohibitive,
- Re-design is not flexible enough and requires a lot of manpower,

Distributed Approach (Multi-agent):
- Complex problem is decomposed into local areas which are governed by autonomous agents,
- The agents communicate to each other to achieve overall coordination,
- It is difficult to assess the overall behaviour of the MAS, (game theory),
Centralized vs. Decentralized Control

Centralized approach:

- Has a consistent theory of decision-making under uncertainty (Bayesian theory),
- Faces the “curse of dimensionality”, solution for complex problems is prohibitive,
- Re-design is not flexible enough and requires a lot of manpower,

Proposal: take best of those worlds.

Distributed Approach (Multi-agent):

- Complex problem is decomposed into local areas which are governed by autonomous agents,
- The agents communicate to each other to achieve overall coordination,
- It is difficult to assess the overall behaviour of the MAS, (game theory),

Multiple Participant Decision Making = Bayesian Agents
Solid \textit{consistent} theory of making decisions under \textit{uncertainty}.

Decision-maker is using probability calculus:

\textbf{Model}: \(f(d(t), \Theta(t)) \), relation of data and parameters.

\textbf{Aim}: \(f(d(t), \Theta(t)) \), ideal distribution,

\textbf{Decision}: \(f(u_t|d(t)) \rightarrow u_t \), optimal decisions.
How to make a Bayesian Agent?

Making Bayesian decision-maker aware of each other

Communication exchange of information \Rightarrow better learning,

Cooperation exchange of aims (pdfs) \Rightarrow avoiding conflicts.
How to make a Bayesian Agent?

Making Bayesian decision-maker aware of each other

Communication exchange of information ⇒ better learning,

Cooperation exchange of aims (pdfs) ⇒ avoiding conflicts.

The task:
Formalization in terms of probability calculus and algorithmic solution.
Fully probabilistic design:

the aim of decision making is formalized in the form of ideal distribution,

\[f (d (t), \Theta (t)) . \]

- the loss function of divergence between the ideal and the true pdf.
 Advantage: **no need to exchange loss functions!**
- Optimal strategy is known: \(f (u_t|d(t)) = \int \int \int \ldots \)
- Allows for multi-criteria decision-making
- Solvable for Markov chains and Gaussian pdf, otherwise approximations.
Key technologies: Merging

Merging of probability distributions: (information fusion)
Key technologies: Merging

Merging of probability distributions: (information fusion)

![Graph](image-url)
Key technologies: Merging

Merging of probability distributions: (information fusion)

- various types of pdfs (Gauss, discrete, etc.),
- on different variables, of different type (marginalized, conditioned)
Projection:

- finding ‘nicer’ distribution, loosing as little information as possible
Example: Negotiation of temperature

Classical agents:

A1 (cooling): goal 15 °C
A2 (heating): goal 20 °C

scenarios:

1. non-cooperating agents: 18 °C, both are working on full steam,
2. fully cooperating agents: 18 °C, lower energy load.

Negotiation: mostly ad hoc methods
Example: Negotiation of temperature

Classical agents:

- **A1 (cooling):** goal 15 °C
- **A2 (heating):** goal 20 °C

Scenarios:

1. non-cooperating agents:
 18 °C, both are working on full steam,

2. fully cooperating agents:
 18 °C, lower energy load.

Negotiation: mostly ad hoc methods

Bayesian agents:

- **A1 (cooling):** $\mathcal{I}(T) = \mathcal{N}(15, 2)$
- **A2 (heating):** $\mathcal{I}(T) = \mathcal{N}(20, 6)$
Example: Negotiation of temperature

Bayesian agents:

A1 (cooling): \(\mathcal{N}(15, 2) \)
A2 (heating): \(\mathcal{N}(20, 6) \)

scenarios:

1. non-cooperating agents: same
2. fully cooperating agents:
 \(\mathcal{N}(17, 7) \), result of optimization.

Negotiation: faster convergence, lower communication load.
Problem Formulation

- vector random quantity
 \[x = (q_1, \ldots, q_N) \]
- \(n \) agents, ideal pdfs \(f_p(x_p) \)
- \(x_p \) – random vectors, entries from \(\{q_1, \ldots, q_N\} \)
- weights \(\alpha_p > 0, \sum_p \alpha_p = 1 \)
Problem Formulation

- Vector random quantity
 \[x = (q_1, \ldots, q_N) \]
- \(n \) agents, ideal pdfs \(f_p(x_p) \)
- \(x_p \) – random vectors, entries from \(\{q_1, \ldots, q_N\} \)
- Weights \(\alpha_p > 0, \sum_p \alpha_p = 1 \)

Common ideal pdf \(f(x) \)?
- How to define \(f(x) \)?
- How to find it?
- Practical issues
Common ideal pdf

\[f(x) \in \arg \min_{\tilde{f}} \sum_p \alpha_p D(f_p(x_p) \| \tilde{f}(x_p)) \]

\(D(\cdot \| \cdot) \) - Kullback-Leibler divergence
Solution

Common ideal pdf

\[f(x) \in \arg \min_{\tilde{f}} \sum_{p} \alpha_p D(f_p(x_p)||\tilde{f}(x_p)) \]

\[f(x) = \sum_{p} \alpha_p \frac{f(x)}{f(x_p)} f_p(x_p) \]

\(D(\cdot||\cdot) \) - Kullback-Leibler divergence
Approximation of Common Ideal Pdf

\[D(h) = \sum_p \alpha_p D(f_p(x_p) \mid \mid h(x_p)) \]

\[A(h) = \sum_p \alpha_p \frac{f(x)}{f(x_p)} f_p(x_p) \]
Approximation of Common Ideal Pdf

\[
\mathcal{D}(h) = \sum_p \alpha_p D(f_p(x_p) \| h(x_p))
\]

\[
A(h) = \sum_p \alpha_p \frac{f(x)}{f(x_p)} f_p(x_p)
\]

\[
\mathcal{D}(h) \geq \mathcal{D}(Ah) \quad \forall h
\]

\[
\mathcal{D}(h) = \mathcal{D}(Ah) \quad \text{iff } h \text{ is optimal}
\]

\[
\mathcal{D}(A^k h) \to \mathcal{D}(f)
\]
Practical Issues

- discrete quantities
 - directly usable
 - marginalization computationally expensive

Vaclav Šmídl, Jan Kracík
Practical Issues

- **discrete quantities**
 - directly usable
 - marginalization computationally expensive

- **continuous quantities**
 - approximations not in any reasonable class!
 - find optimal pdf f in a predefined class \mathcal{F}
 - we have an algorithm for \mathcal{F} being class of mixtures
Conclusions

The proposed method

- fulfills our requirements on ideal pdf fusion
 - independence on the ordering of sources
 - feasible for both discrete and continuous quantities
- fits well into other technologies in our framework
- will be implemented in Matlab toolbox MIXTOOLS 3000