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Abstract. The use of traditional moment invariants is limited to a cer-
tain set of simple geometric transforms, such as rotation, scaling and
affine transform. This paper presents a novel concept of so-called im-
plicit moment invariants, which enable us to recognize objects under a
broader set of geometric deformations.

1 Introduction

Recognition of objects and patterns that are deformed in various ways has been
a goal of much recent research. There are basically three major approaches to
this problem – full search, image normalization, and invariant descriptors. The
approach using invariant descriptors appears to be the most promising one and
has been used extensively. Its basic idea is to describe the object by a set of
features which are not sensitive to particular deformations and which provide
enough discrimination power to distinguish among objects belonging to different
classes.

In 2D object recognition, various moment invariants have become classical and
frequently used shape descriptors during last forty years. Even if they suffer from
some intrinsic limitations (the most important of which is their globalness, which
prevents them from being used for recognition of occluded objects), they often
serve as the ”first-choice descriptors” and as a reference method for evaluation
of the performance of other shape descriptors.

All moment invariants ever studied (see for instance [1,2,3,4]) are so-called
explicit invariants. An explicit invariant is a functional (let us denote it as E)
acting on the space of image functions which does not change its value if the
image f undergoes certain deformation τ from the set of admissible deforma-
tions, i.e. which satisfies the condition E(f) = E(τ(f)) for any image f . There
have been described many systems of explicit moment invariants with respect to
rotation, scaling, affine transform, contrast changes, and linear filtering. How-
ever, there are several classes of image deformations which occur frequently in
practice but explicit moment invariants with respect to them are not known or
even have been proven they cannot exist. Such typical examples are projective
transform, cylindrical and spherical projections, quadratic transform, and other
polynomial transforms of the image coordinates.

To overcome this, we propose in this paper a new concept of implicit in-
variants. Implicit invariant I is a functional defined on image pairs such that
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I(f, τ(f)) = 0 for any image f and deformation τ . According to this definition,
explicit invariants are just particular cases of implicit invariants. Clearly, if an
explicit invariant exists, we can set I(f, g) = E(f) − E(g). As we show later on
in the paper, there are many types of image deformations where explicit mo-
ment invariants do not exist while implicit moment invariants do. In those cases,
implicit invariants can be used as features for object recognition.

Unlike explicit invariants, implicit invariants do not provide description of a
single image because they are always defined for a pair of images. For recognition
purposes this is not a drawback. We consider I(f, g) to be a ”distance measure”
(even if it does not exhibit all properties of a metric) between f and g factorized
by τ and we can, for each database template gi, calculate the value of I(f, gi)
and then to classify f according to the minimum.

2 General Moments

Definition 1. Let p0, p1, . . . , pn−1, . . . be some basis functions defined on a
bounded D ⊂ RI N and let f be an image function having a finite integral. By a
general moment of f we understand the functional

μj(f) =
∫

D

f(x)pj(x)dx.

If N = 1 and pj(x) = xj , we speak about standard moments.
Using a matrix notation we can write

p(x) =

⎛
⎜⎜⎝

p0(x)
p1(x)

...
pn−1(x)

⎞
⎟⎟⎠ and μ(f) =

⎛
⎜⎜⎝

μ0(f)
μ1(f)

...
μn−1(f)

⎞
⎟⎟⎠ . (1)

Let r : D → D̃ be a transformation of the domain D into D̃ and let f̃ : D̃ → RI
be another image function which satisfies

f̃(r(x)) = f(x) (2)

for x ∈ D and f(x̃) = 0 for x̃ ∈ D̃/r(D). (This means that image f̃ is a spatially
deformed version of f .)

We are interested in the relation between the moments μ(f) and the moments

μ̃(f̃) =
∫

r(D)
f̃(x̃)p̃(x̃)dx̃ =

∫
D̃

f̃(x̃)p̃(x̃)dx̃

of the transformed function with respect to some other ñ basis functions

p̃(x̃) = ( p̃0(x̃) p̃1(x̃) . . . p̃ñ−1(x̃) )T

defined on D̃. We can now formulate the following Theorem.
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Theorem 1. Denote by Jr(x) the Jacobian of the transform function r. If

p̃(r(x))|Jr(x)| = Ap(x) (3)

for some ñ × n matrix A then
μ̃ = Aμ . (4)

The power of this theorem depends on our ability to choose the basis functions
so that we can, for a given transform r, express the left-hand side of (3) in terms
of the basis functions p and thus construct the matrix A. This is always possible
for a polynomial r by choosing polynomial bases p(x) and p̃(x̃).

3 Implicit Moment Invariants

Let us assume that the transformation r depends on a finite number, say m,
m < ñ, parameters a = (a1, . . . , am). Traditional explicit moment invariants
with respect to r can be obtained in two steps.

(a) Eliminate a = (a1, . . . , am) from the system (4). This leaves us ñ − m equa-
tions which depend only on the two sets of general moments (and on the
choice of basis functions, of course). We call it a reduced system.

(b) Re-write these equations equivalently in the form

qj(μ̃(f̃)) = qj(μ(f)) , j = 1, . . . , ñ − m (5)

for some functions qj . Then the explicit moment invariants are E(f) =
qj(μ(f)).

However, for some transforms (quadratic, cubic, etc.) we may not be able
to perform the second step – finding the explicit forms qj . Introducing implicit
invariants can overcome this drawback.

The reduced system in step (a) is independent of the particular transfor-
mation. For classifying of an object, we traditionally compare the values of its
descriptors (explicit moment invariants) with those of the database images, that
is we look for such database image, which satisfy equations (5). However, it is
equivalent to checking for which database image the above reduced system is
satisfied.

So we can, in case we are not able to find explicit moment invariants in the
form (5), use this system as a set of implicit invariants. In other words, the
images are classified according to the error with which the system is satisfied.

We will demonstrate the above idea of implicit moment invariants on a 1D
example using standard powers as basis functions. Consider the transform

r(x) = x + ax2,

where a ∈ (0, 1/2〉, which maps interval D = 〈−1, 1〉 on interval D̃ = 〈a−1, a+1〉.
Let us show two implicit invariants. Since m = 1 (one-parameter transform), we
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need ñ = 3 and n = 6. The Jacobian is Jr(x) = 1+2ax and for standard powers
for both p and p̃ we would get

A =

⎛
⎝ 1 2a 0 0 0 0

0 1 3a 2a2 0 0
0 0 1 4a 5a2 2a3

⎞
⎠ .

However, now we have to evaluate the moments of the transformed signal over
the domain D̃ which depends on the unknown parameter a. This problem is
resolved by choosing a shifted power basis

p̃j(x̃) = (x̃ − a)j , j = 0, 1, . . . ñ − 1

as we have then, after the shift of variable x̃ = x̂ + a,

μ̃j(f̃) =
∫ a+1

a−1
f̃(x̃)(x̃ − a)jdx̃ =

∫ 1

−1
f̃(x̂ + a)x̂jdx̂

which is now independent of a as f̂(x̂) = f̃(x̂ + a) has domain 〈−1, 1〉. For this
basis p̃ we obtain a different transform matrix

A =

⎛
⎝ 1 2a 0 0 0 0

−a 1 − 2a 3a 2a2 0 0
a2 2a(a2 − 1) 1 − 6a2 4a(1 − a2) 5a2 2a3

⎞
⎠

and the first of equations (4) gives

a =
μ̃0 − μ0

2μ1

while the two reduced equations rewrite, after substitution, as

2μ2
1(μ̃1 − μ1) = μ1(3μ2 − μ̃0)(μ̃0 − μ0) + μ3(μ̃0 − μ0)2

4μ3
1(μ̃2 − μ2) = 4μ2

1(2μ3 − μ1)(μ̃0 − μ0) + μ1(5μ4 + μ̃0 − 6μ2)(μ̃0 − μ0)2

+(μ5 − 2μ3)(μ̃0 − μ0)3 . (6)

In the example above it was straightforward to derive the transform matrix
A for simple transformation r and a small number of invariants. For numeri-
cal reasons, this intuitive approach cannot be used for higher-order polynomial
transform r and/or for more invariants. To obtain numerically stable method it
is important to use suitable polynomial bases, such as orthogonal polynomials,
without using their expansions into standard (monomial) powers. Our imple-
mentation is based on the representation of polynomial bases by matrices with
a special structure [5]. This representation allows to evaluate the polynomials
efficiently by means of recurrent relations.

4 Implementation of the Implicit Invariants

Depending on r, the elimination of the m parameters of the transformation
function from the ñ equations of (4) to obtain a parameter-free reduced system
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may require numerical solving of nonlinear equations. This may be undesirable
or impossible. Even the simple transform r used in the experimental section
would lead to cubic equations in terms of its parameters. Obtaining a neat
reduced system may be very difficult. Furthermore, even if successful, we create
an unbalanced method – we have demanded some of the equations in (4) to hold
exactly and use the accuracy in the resulting system as a matching criterion
to find the transformed image. We therefore propose another implementation
of the implicit invariants. Instead of eliminating the parameters, we calculate
the ”uniform best fit” from all equations in (4). For a given set of values of the
moments μ and μ̃, we find values of the m parameters to satisfy (4) as best as
possible in �2 norm; the error of this fit then becomes the value of the respective
implicit invariant.

Our actual implementation of the recognition by implicit invariants can be
described as follows.

(a) Given is a library (database) of images gj(x, y), j = 1, . . . , L, and a deformed
image f̃(x̃, ỹ) which is assumed to have been obtained by a transform of a
known polynomial form r(x, y, a) with unknown values of m parameters a.

(b) Choose the appropriate domains, polynomial bases p and p̃, and the recur-
rence matrices for evaluation of the polynomials.

(c) Derive a program to evaluate the matrix A(a). This critical error-prone step
is performed by a symbolic algorithmic procedure which produces the pro-
gram used then in numerical calculations. This step is performed only once
for the given task. (It has to be repeated only if we change the polynomial
bases or the form of transform r(x, y, a), which basically means only if we
move to another application).

(d) Calculate the moments μ(gj) of all library images gj(x, y).
(e) Calculate the moments μ̃(f̃) of the deformed image f̃(x̃, ỹ).
(f) For all j = 1, . . . , L calculate, using an optimizer, the values of the implicit

invariant
I(f̃ , gj) = min

a
‖μ̃(f̃) − A(a)μ(gj)‖

and denote
M = min

j
I(f̃ , gj).

The norm used here should be weighted, for example relatively to the com-
ponents corresponding to the same degree.

(g) The identified image is gk for which I(f̃ , gk) = M ; the ratios I(f̃ ,gj)
I(f̃ ,gk)

, j �= k,
may be used as confidence measures of the identification.

5 Numerical Experiments

As we have shown earlier, the implicit moment invariants can be constructed
for a very broad class of image transforms including all polynomial transforms.
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Here we will demonstrate the implementation and the power of the method on
images transformed by the following function

(
x̃
ỹ

)
= r(x, y) =

(
ax + by + c(ax + by)2

−bx + ay

)
, (7)

which is a rotation with scaling (parameters a and b) followed by a quadratic
deformation in the x̃ direction (parameter c). We have chosen this particular
transform for our tests for the following reasons:

– It is general enough to approximate many real-life situations, for instance
deformations caused by the fact that the photographed object was drawn/
printed on a spherical or cylindrical surfaces like bottles and balls.

– It is sometimes used by web designers to warp images in order to reach
desirable visual effect. Very often this is an unauthorized act violating the
copyright. It is important for the copyright owners to have a tool how to
identify such images.

– Explicit invariants to this kind of transforms cannot exist because they do
not preserve the moment orders and do not form a group.

The first experiment was aimed to test the discriminative power of the implicit
invariants and to demonstrate that they can be used as shape descriptors for
recognition of distorted real objects This test was done on a standard benchmark
database ALOI [6].

We took 100 ALOI images and deformed each of them by the warping model
(7) (see Fig. 1 for some examples). The coefficients of the deformations were
generated randomly; c from a range of admissible values and the rotation angle
from (−40◦, 40◦), both with uniform distribution. Each deformed image was
then classified against the undistorted database by three different methods: by
implicit invariants according to minimal norm, by the Hu’s rotation moment
invariants [1] according to minimum distance, and by affine moment invariants
(AMI) [2] also using the minimum-distance rule. In all three cases, six invariants
were used. The last two methods were selected for a comparison because they are
similar to the new technique in their nature (all of them are based on moments)
and because they are traditional, well-established reference methods in pattern
recognition.

We run the whole experiment several times with different deformation para-
meters. In each run the recognition rate we achieved was 99 or 100% for the
implicit invariants, from 43 to 47% for the rotation invariants, and from 34 to
40% for the AMI’s. These results illustrate two important facts. First, the im-
plicit invariants can serve as an efficient tool for object recognition in case when
the object deformation corresponds to the assumed model. Secondly, in case of
nonlinear distortions the implicit invariants significantly outperform both rota-
tion as well as affine moment invariants, which corresponds to our theoretical
expectation. In case when only rotation is present, all three methods are equiv-
alent. To illustrate this, we run the experiment once again but we fixed c = 0.
Then the recognition rate of all three methods was 100%.
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Fig. 1. The original images from the ALOI database (top) and their deformed versions
(bottom)

The second experiment was done on real images taken in our lab. It illustrates
good performance and high recognition power of the implicit invariants even in
the case where theoretical assumptions about the degradation are not fulfilled.

With a standard digital camera (Olympus C-5050), we took a photo of letters
printed on a label which was glued to a bottle, see Fig. 2(a). The letters were
organized in a 4 × 3 mesh with “A”s, “B”s, “V”s and “X”s each printed three
times in a row. After a simple segmentation, the letters were labeled from left to
right A1, A2, A3, B1, . . . , V1,. . . ,X1, X2, and X3. Due to the curvature of the
bottle surface, the letters appear distorted in the horizontal direction and the
distortion grows to the right. A1 does not exhibit any visible distortion while
A3 is the most distorted one and likewise for the other three letters. The task
was to recognize (classify) these letters against a database containing the full
English alphabet (26 undistorted letters of the same font).

In an ”ideal” case when the camera is in infinity the image distortion can be
described by orthogonal projection of the cylinder onto a plane, i.e.(

x̃
ỹ

)
=

(
r sin(x

r )
y

)
,

where r is the bottle radius, x, y are the coordinates on the bottle surface and
x̃, ỹ are the coordinates on the acquired images. In our case the object-to-camera
distance was finite, so small perspective effect appears in addition to the above
model. We assume the actual image deformation can be approximated by a
quadratic polynomial in x direction. Although it is clear that such approximation
cannot be very accurate, we will demonstrate that it is accurate enough for our
purpose.

We classified all deformed letters by means of implicit invariants in the same
way as in the previous experiment and also by the Hu’s moment invariants. The
table in Fig 2(b) summarizes the classification results of both methods. Implicit
invariants provided a perfect recognition rate as all deformed letters were classi-
fied correctly with high minimum confidence (see the definition in (g), Section 4).
It might be a bit surprise if one considers the very rough approximation of the
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A1 A2 A3 B1 B2 B3 V1 V2 V3 X1 X2 X3

Imp-inv. A A A B B B V V V X X X
confidence 65 29 15 64 186 69 96 62 80 35 98 19
Hu-inv. A Y N B S S V G N X X I

(a) (b)

Fig. 2. (a) Letters captured by a standard digital camera exhibit distortion due to
the cylindrical shape of the bottle. (b) Classification of four letters (each having three
different degrees of distortion) by implicit invariants (first row) with confidence in the
second row, and classification by Hu’s invariants (third row).

transformation model made above. It indicates some degree of robustness of the
implicit invariants to the type of the image deformation. Hu’s moment invariants
classified correctly only the letters without any quadratic deformation (A1, B1,
V1, X1) and failed in other cases, which is in agreement with the theory.
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