Image Fusion: Principles, Methods, and Applications

Tutorial EUSIPCO 2007

Lecture Notes

Jan Flusser, Filip Šroubek, and Barbara Zitová

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Pod vodárenskou věží 4, 182 08 Prague 8, Czech Republic E-mail: {flusser,sroubekf,zitova}@utia.cas.cz

Introduction

The term *fusion* means in general an approach to extraction of information acquired in several domains. The goal of *image fusion* (IF) is to integrate complementary multisensor, multitemporal and/or multiview information into one new image containing information the quality of which cannot be achieved otherwise. The term quality, its meaning and measurement depend on the particular application.

Image fusion has been used in many application areas. In remote sensing and in astronomy, multisensor fusion is used to achieve high spatial and spectral resolutions by combining images from two sensors, one of which has high spatial resolution and the other one high spectral resolution. Numerous fusion applications have appeared in medical imaging like simultaneous evaluation of CT, MRI, and/or PET images. Plenty of applications which use multisensor fusion of visible and infrared images have appeared in military, security, and surveillance areas. In the case of multiview fusion, a set of images of the same scene taken by the same sensor but from different viewpoints is fused to obtain an image with higher resolution than the sensor normally provides or to recover the 3D representation of the scene. The multitemporal approach recognizes two different aims. Images of the same scene are acquired at different times either to find and evaluate changes in the scene or to obtain a less degraded image of the scene. The former aim is common in medical imaging, especially in change detection of organs and tumors, and in remote sensing for monitoring land or forest exploitation. The acquisition period is usually months or years. The latter aim requires the different measurements to be much closer to each other, typically in the scale of seconds, and possibly under different conditions.

The list of applications mentioned above illustrates the diversity of problems we face when fusing images. It is impossible to design a universal method applicable to all image fusion tasks. Every method should take into account not only the fusion purpose and the characteristics of individual sensors, but also particular imaging conditions, imaging geometry, noise corruption, required accuracy and application-dependent data properties.

Tutorial structure

In this tutorial we categorize the IF methods according to the data entering the fusion and according to the fusion purpose. We distinguish the following categories.

- *Multiview fusion* of images from the same modality and taken at the same time but from different view-points.
- *Multimodal fusion* of images coming from different sensors (visible and infrared, CT and NMR, or panchromatic and multispectral satellite images).
- *Multitemporal fusion* of images taken at different times in order to detect changes between them or to synthesize realistic images of objects which were not photographed in a desired time.
- *Multifocus fusion* of images of a 3D scene taken repeatedly with various focal length.
- *Fusion for image restoration*. Fusion two or more images of the same scene and modality, each of them blurred and noisy, may lead to a deblurred and denoised image. Multichannel deconvolution is a typical representative of this category. This approach can be extended to superresolution fusion, where input blurred images of low spatial resolution are fused to provide us a high-resolution image.

In each category, the fusion consists of two basic stages: image registration, which brings the input images to spatial alignment, and combining the image functions (intensities, colors, etc) in the area of frame overlap. Image registration works usually in four steps.

- *Feature detection*. Salient and distinctive objects (corners, line intersections, edges, contours, closed-boundary regions, etc.) are manually or, preferably, automatically detected. For further processing, these features can be represented by their point representatives (distinctive points, line endings, centers of gravity), called in the literature *control points*.
- *Feature matching*. In this step, the correspondence between the features detected in the sensed image and those detected in the reference image is established. Various feature descriptors and similarity measures along with spatial relationships among the features are used for that purpose.

- *Transform model estimation*. The type and parameters of the so-called *mapping functions*, aligning the sensed image with the reference image, are estimated. The parameters of the mapping functions are computed by means of the established feature correspondence.
- *Image resampling and transformation*. The sensed image is transformed by means of the mapping functions. Image values in non-integer coordinates are estimated by an appropriate interpolation technique.

We present a survey of traditional and up-to-date registration and fusion methods and demonstrate their performance by practical experiments from various application areas.

Special attention is paid to fusion for image restoration, because this group is extremely important for producers and users of low-resolution imaging devices such as mobile phones, camcorders, web cameras, and security and surveillance cameras.

Supplementary reading

- Šroubek F., Flusser J., and Cristobal G., "Multiframe Blind Deconvolution Coupled with Frame Registration and Resolution Enhancement", in: *Blind Image Deconvolution: Theory and Applications*, Campisi P. and Egiazarian K. eds., CRC Press, 2007.
- Šroubek F., Flusser J., and Zitová B., "Image Fusion: A Powerful Tool for Object Identification", in: *Imaging for Detection and Identification*, (Byrnes J. ed.), pp. 107-128, Springer, 2006
- Šroubek F. and Flusser J., "Fusion of Blurred Images", in: *Multi-Sensor Image Fusion and Its Applications*, Blum R. and Liu Z. eds., CRC Press, Signal Processing and Communications Series, vol. 25, pp. 423-449, 2005
- Zitová B. and Flusser J., "Image Registration Methods: A Survey", *Image and Vision Computing*, vol. 21, pp. 977-1000, 2003,

Handouts

Image Fusion Principles, Methods, and Applications

Jan Flusser, Filip Šroubek, and Barbara Zitová

Institute of Information Theory and Automation Prague, Czech Republic

Image Fusion

Input: Several images of the same scene

Output: One image of higher quality

The definition of "quality" depends on the particular application area

Basic fusion strategy

- Acquisition of different images
- Image-to-image registration
- The fusion itself (combining the images together)

Multimodal Fusion

- Images of different modalities: PET, CT, MRI, visible, infrared, ultraviolet, etc.
- Goal: to decrease the amount of data, to emphasize band-specific information

Images with different areas in focus

MC Blind Deconvolution
 System of integral equations (ill-posed, underdetermined)
$z_k(x) = (h_k * u)(x) + n_k(x)$
 Energy minimization problem (well-posed)
$E(u, \{h_i\}) = rac{1}{2} \sum_{i=1}^{K} \ h_i * u - z_i\ ^2 + \lambda Q(u) + \gamma R(\{h_i\}),$

Alternating minimizations of E(u, {h_i}) over u and h_i input: blurred images and estimation of PSF size output: reconstructed image and PSFs

Webcam images

LR input frame

Superresolution image (2x)

IMAGE REGISTRATION

IMAGE REGISTRATION

methodology

feature detection feature matching transform model estimation image resampling and transformation accuracy evaluation

trends and future

THODOLOGY:	IMAGE REGISTRATION
Overlaying two scene	or more images of the same
Different imagi	ing conditions
Geometric nori	nalization of the image
Preprocessing o image analysis	of the images entering systems

METHODOLOGY:	IMAGE REGISTRATION
Main application	on categories
1. Different vie	wpoints - multiview
2. Different tin	nes - multitemporal
3. Differet mod	lalities - multimodal
4. Scene to mo	del registration

METHODOLOGY:

IMAGE REGISTRATION

Four basic steps of image registration

- 1. Feature detection
- 2. Feature matching
- 3. Transform model estimation
- 4. Image resampling and transformation

FEATURE DETECTION

Distinctive and detectable objects

Physical interpretability

Frequently spread over the image

Enough common elements in all images

Robust to degradations

FEATURE DETECTION

Area-based methods - windows

Feature-based methods (higher level info)

- distinctive points
- corners
- lines
- closed-boundary regions
- invariant regions

FEATURE DETECT	ΓΙΟΝ	POINTS AND CORNER
distinctive points	- line inte	ersections
	- max cui	rvature points
	- inflectio	on points
	- centers	of gravity
	- local ext	trema of wavelet transform
corners	- image de	erivatives
		(Kitchen-Rosenfled, Harris)
	- intuitive	approaches (Smith-Brady)

FEAT	URE DETECTION	LINES AND REGIONS
lines	- line segments (roads - contours	s, anatomic structures)
	- edge detectors (Car	nny, Maar, wavelets)
regio	ns - closed- boundary o	bjects (lakes, fields, shadows)
	- level sets	
	- segmentation met	thods
invar	iant regions with respe	ct to assumed degradation
	scale - virtual circles (Alhichri & Kamel)
	affine - based on Harri	s and edges (Tuytelaars&V Gool)
	affina _ maximally stab	le extremal regions (Matas et al.)

FEATURE MATCHING

Area-based methods

similarity measures calculated directly from the image graylevels

image correlation, image differences phase correlation, mutual information, ...

Feature-based methods

symbolic description of the features matching in the feature space (classification)

Fourier shift theorem

if f(x) is shifted by *a* to f(x-a)

- FT magnitude stays constant
- phase is shifted by $-2\pi a\omega$

shift parameter – spectral comparison of images

FEATURE MATCHINGPHASE CORRELATIONshift solved, what about rotation and change of scale ?log-polar transform $r = [(x-x_c)^2 + (y-y_c)^2]^{1/2}$
 $\theta = tan^{-1}((y-y_c) / (x-x_c))$ log
 $R = \frac{(n_r-1)log(r/r_{min})}{log(r_{max}/r_{min})}$

$$\mathbf{W} = \mathbf{n}_{\mathbf{w}} \boldsymbol{\theta} / (2\pi)$$

Property of G.Wolberg and S.Zokai

FEATURE MATCHING

RTS PHASE CORRELATION

Rotation, translation, change of scale

 $FT[f(x-a)](\omega) = exp(-2 \pi ia\omega)FT[f(x)](\omega)$ $FT[f_{rotated}](\omega) = FT[f]_{rotated}(\omega)$ $FT[f(ax)](\omega) = |a|^{-1}FT[f(x)](\omega/a)$

 $FT \rightarrow | | \rightarrow log-polar \rightarrow FT \rightarrow phase correlation$

 π - amplitude periodicity - > 2 angles dynamics - log(abs(FT)+1)
 discrete problems

FEATURE MATCHING	MUTUAL INFORMATION
Entropy function	$H(X) = -\sum_{x} p(x) \log p(x)$
Joint entropy	$H(X,Y) = -\sum_{x} \sum_{y} p(x,y) \log p(x,y)$
Mutual infomation	I(X;Y) = H(X) + H(Y) - H(X,Y)

Entropy	measure of uncertainty
Mutual information	reduction in the uncertainty of X due to the knowledge of Y
Maximization of MI	measure <i>mutual agreement</i> between object models

Detected features	- points, lines, regions
Invariants descript	ion
	- intensity of close neighborhood
	- geometrical descriptors (MBR, etc.)
	- spatial distribution of other features
	- angles of intersecting lines
	- shape vectors
	- moment invariants

FEATURE N	MATCHING	FEATURE SPACE MATCHING	
relaxation methods – consistent labeling problem solution			
	iterative rec	computation of matching score	
	based on	- match quality	
		- agreement with neighbors	
		- descriptors can be included	
RANSAC	- random sa	mple consensus algorithm	
	- robust fitt	ing of models, many data outliers	
	- follows sin	npler distance matching	
	- refinemen	t of correspondences	

TRANSFORM MODEL ESTIMATION

Global functions

similarity, affine, projective transform low-order polynomials

Local functions

piecewise affine, piecewise cubic thin-plate splines radial basis functions

TRANSFORM MODEL ESTIMATION

Affine transform

$$x' = a_0 + a_1 x + a_2 y$$
$$y' = b_0 + b_1 x + b_2 y$$

Projective transform

$$x' = (a_0 + a_1x + a_2y) / (1 + c_1x + c_2y)$$

$$y' = (b_0 + b_1x + b_2y) / (1 + c_1x + c_2y)$$

translation $[\Delta x, \Delta y]$	rotation ϕ	uniform scalings
$\begin{array}{l} x' &=\\ y' &=\\ \end{array}$	$s (x * \cos \varphi - y *$ $s (x * \sin \varphi + y *$ $s \cos \varphi = a, s \sin \varphi =$	$f(x) = sin \varphi + \Delta x$ $f(x) = cos \varphi + \Delta y$ f(x) = b
$\min \left(\Sigma_{i=1} \left\{ \left[x_{i} \right]^{2} - (ax) \right\} \right)$	$(x_i - by_i) - \Delta x]^2 + [y_i]^2$	$-(bx_i + ay_i) - \Delta y]^2\})$
$ \begin{array}{c} \Sigma(x_i^2 + y_i^2) & \theta \\ \theta & \Sigma(x_i^2 + y_i^2) \end{array} $	$ \begin{array}{c c} \Sigma x_i & \Sigma y_i \\ -\Sigma y_i & \Sigma x_i \\ N & 0 \end{array} a $	$= \begin{bmatrix} \Sigma(x_i x_i - y_i y_i) \\ \Sigma(y_i x_i - x_i y_i) \\ \Sigma x_i \end{bmatrix}$

TRANSFORM MODEL ESTIMATION - PIECEWISE TRANSFORM

TRANSFORM MODEL ESTIMATION UNIFIED APPROACH

Choices for	$\min J(f) = a E(f) + b R(f)$
E(f) =	$\Sigma (x_i' - f(x_v y_i))^2$
<i>R(f)</i>	>=0 L(f)
a << b	least-square fit, f from the null-space of L
<i>a</i> >> <i>b</i>	"smooth" interpolation

TRANSFORM MODEL ESTIMATION OTHER REGISTRATIONS

Elastic registration

- not parametric models
- "rubber sheet" approach

Fluid registration

- viscous fluid model to control transformation
- reference image thick fluid flowing to match

Diffusion-based registration

Optical flow registration

trade-off between accuracy and computational complexity

IMAGE RESAMPLING AND TRANSFORMATIONInterpolation nearest neighborbilinearbicubicImplementation1-D convolution $f(x_o,k) = \Sigma d(I,k).c(i-x_0)$ $f(x_o, y_0) = \Sigma f(x_0, j).c(j-y_0)$ ideal c(x) = k.sinc(kx)

ACCURACY EVALUATION	

Localization error	 displacement of features due to detection method
Matching error	 false matches ensured by robust matching (hybrid) consistency check, cross-validation
Alignment error	 difference between model and reality mean square error test point error (excluded points) comparison ("gold standard")

APPLICATIONS

Different viewpoints

Different times (change detection)

Different sensors/modalities

Scene to model registration

PUBLICATIONS

Papers

- L. G. Brown, A survey of image registration techniques, ACM Computing Surveys, 24:326-376, 1992
- B. Zitová and J. Flusser, Image registration methods: a survey, Image and vision computing, 21(11): 977-1000, 2003

Books

- A. Goshtasby, 2-D and 3-D Image Registration, Wiley Publishers, New York, April 2005
- J. Hajnal, D.Hawkes, and D. Hill, Medical Image registration, CRC Press, 2001
- J. Modersitzki , Numerical Methods for Image Registration, Oxford University Press, 2004
- K. Rohr, Landmark-Based Image Analysis Using Geometric and Intensity Models, Kluwer Academic Publishers, Dordrecht Boston, London 2001