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Abstract. Orthogonal and biorthogonal wavelets became very popular image processing tools but exhibit major
drawbacks, namely a poor resolution in orientation and the lack of translation invariance due to aliasing between
subbands. Alternative multiresolution transforms which specifically solve these drawbacks have been proposed. These
transforms are generally overcomplete and consequently offer large degrees of freedom in their design. At the same
time their optimization gets a challenging task. We propose here the construction of log-Gabor wavelet transforms
which allow exact reconstruction and strengthen the excellent mathematical properties of the Gabor filters. Two major
improvements on the previous Gabor wavelet schemes are proposed: first the highest frequency bands are covered
by narrowly localized oriented filters. Secondly, the set of filters cover uniformly the Fourier domain including the
highest and lowest frequencies and thus exact reconstruction is achieved using the same filters in both the direct and
the inverse transforms (which means that the transform is self-invertible). The present transform not only achieves
important mathematical properties, it also follows as much as possible the knowledge on the receptive field properties
of the simple cells of the Primary Visual Cortex (V1) and on the statistics of natural images. Compared to the state of
the art, the log-Gabor wavelets show excellent ability to segregate the image information (e.g. the contrast edges) from
spatially incoherent Gaussian noise by hard thresholding, and then to represent image features through a reduced set of
large magnitude coefficients. Such characteristics make the transform a promising tool for processing natural images.
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1. Introduction

After the development and rapid successes of the wavelet
transforms in image processing, alternative multiresolu-
tions have been proposed mainly for a better resolution in
orientation and for avoiding aliasing effects. Last fifteen
years oriented band-pass multiresolution transforms
have arisen with increased importance thanks to the
development of steerable pyramids (Simoncelli et al.,

1992), Gabor multiresolutions (Gross and Koch, 1995;
Nestares et al., 1998; Ro et al., 2001), complex-valued
wavelets (Gross and Koch, 1995; Kingsbury, 2001;
Portilla and Simoncelli, 2000), curvelets (Starck et al.,
2002) and contourlets (Do and Vetterli, 2005), to name
a few.

A Gabor function is a Gaussian multiplied by a com-
plex exponential. Thus, in the Fourier domain, it is a
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Gaussian shifted from the origin. Gabor functions gather
a number of interesting mathematical properties: first
they have a smooth and infinitely differentiable shape.
Second, their modulus are monomodal, i.e. they have no
side lobes neither in space nor in the Fourier domain.
Third, they are optimally joint-localized in space and fre-
quency (Gabor, 1946). For such good properties they have
been proposed as ideal functions for signal processing.

Similarly, 2D Gabor functions are highly jointly local-
ized in position, orientation and spatial frequency. Neu-
roscience studies have shown that the receptive fields of
simple cells of the Primary Visual Cortex (V1) of pri-
mates can be modelled by Gabor functions (Daugman,
1985; Marcelja, 1980). Considering natural vision as op-
timized by the millions of years of evolutionary pressure,
the recruitment of Gabor functions by V1 can be under-
stood as an additional argument in favor of their adequacy
for image processing.

Nevertheless Gabor functions present some impor-
tant drawbacks. First, it is not possible to build a
complete orthogonal basis of Gabor functions, there-
fore non-orthogonal bases have to be employed. Non-
orthogonality implies that exact reconstruction using the
same filters for analysis and synthesis will not be possi-
ble unless an overcomplete basis is considered. Secondly,
Gabors are bandpass filters, they are consequently inad-
equate for covering the lowest and highest frequencies.
Thirdly, it is particularly difficult to cover up the mid
frequencies with sufficient uniformity.

Gabor multiresolutions have been successfully used
for image analysis and applications where exact recon-
struction is not required, such as texture analysis (Clausi
and Jernigan, 2000; Ro et al., 2001), texture synthe-
sis (Portilla et al., 1996), edge/contour extraction (Heitger
et al., 1998; Kovesi, 2003; Grigorescu et al., 2003), or ob-
ject recognition (Pötzsch et al., 1996; Krüger, 2001). And,
even without exact reconstruction they have been shown
useful for image restoration applications (Cristóbal and
Navarro, 1994; Kovesi, 1999; Mingolla et al., 1999;
Christiansen, 2002). In parallel, different methods for
reconstruction improvement have been proposed to re-
cover the highest frequencies (Nestares et al., 1998), to
avoid excessive low-pass overlapping (Field, 1987), to
improve the reconstruction (Daugman, 1988; Lee, 1996)
or to cover more uniformly the Fourier domain (Gross
and Koch, 1995).

One of the important applications where oriented mul-
tiresolution schemes appeared to be particularly efficient
is image denoising. In this field (bi-)orthogonal wavelets
are themselves one of the most popular and optimal
tools (Donoho, 1995). Nevertheless it has been shown
that undecimated wavelets provide better results than
the critically sampled wavelets (Coifman and Donoho,
1995; Chang et al., 2000; Li and Orchard, 2000). Latter
works have shown the interest of redesigning the Fourier

domain tiling, particularly for increasing the number of
orientations (Starck et al., 2002; Do and Vetterli, 2005;
Portilla et al., 2003). Indeed the relaxation of the critical
sampling constraint provides high degrees of freedom in
the construction of the multiresolution scheme and it is
worth taking advantage of this additional flexibility for
choosing the filter shape, the bandwidths, the degree of
overlapping between filters, the number of orientations,
or for choosing complex-valued filters, etc. We propose
here a transform optimized not only on mathematical and
image processing criteria but also on biological vision,
perceptual quality and natural image statistic considera-
tions. The rationale for taking into account those addi-
tional criteria is: (1) the number of free parameters on
the filter shape and multiresolution arrangement is pro-
hibitive for a systematic study. (2) The Primary Visual
Cortex supposedly evolved towards an efficient and ro-
bust image processing system adapted to natural images.
Considering the important similarities between V1 sim-
ple cell characteristics and oriented multiresolution trans-
forms, we hypothesize that biological knowledge on V1
could serve as an useful guide for the choice of the free
parameters. Moreover as an interesting feedback, the im-
plementation of biologically inspired wavelet transforms
could help for the understanding of V1. (3) It is important
to provide good image quality from the human percep-
tual point of view because digital images are almost ex-
clusively used by humans. It would then be of great help
to construct methods limiting the appearance of percep-
tually salient artifacts. The similarity with the biological
models could serve such objective. (4) The multireso-
lution must be built according to the type of signal to
analyse. Here as we focus on natural images, studies on
their statistics can also be used as guidelines. Moreover
it is worth noting that there are direct relationships be-
tween receptive fields of V1 and statistics of natural im-
ages (Field, 1987; Olshausen and Field, 1996; Doi and
Lewicki, 2005).

Thus, we propose here an implementation of a mul-
tiresolution transform fulfilling the following constraints:
(1) an optimal localization in space, frequency and orien-
tation through the use of Gabor filters; (2) an augmented
number of orientations; (3) a resemblance to the receptive
field of V1 simple cells; (4) an exact reconstruction by
a self-invertible transform (the same transform functions
are used for the direct and inverse transforms) and (5)
complex-valued filters sensitive to both symmetric and
antisymmetric features. We pay special attention to the
different aspects of the multiresolution design and we
propose a series of solutions for improving the efficiency
of the Gabor wavelets scheme. In comparison with pre-
vious implementations of Gabor multiresolution (Gross
and Koch, 1995; Nestares et al., 1998; Ro et al., 2001;
Portilla et al., 1996), the most important novelties of the
present work consists in incorporating complex-valued
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oriented high-pass filters, and achieving the exact recon-
struction and self-invertibility properties.

The present paper fulfills two objectives: first to de-
scribe in detail in the Section 2 the proposed self-
invertible log-Gabor wavelet transform which we already
employed successfully in a variety of applications such
as denoising (Fischer et al., 2005; Redondo et al., 2005),
edge extraction (Fischer et al., 2005, in press), image
compression (Fischer et al., 2006, 2005, in press) and
image fusion (Redondo et al., in press), but whose imple-
mentation was incomplete or not described in detail in
those publications. Second to illustrate (in Section 3) the
efficiency of the method in an image denoising scenario.

2. Method

Let’s consider a n × n square image x of N = n2 pix-
els. The Gabor wavelets W consist in filtering the input
image x ∈ RN by a set of filters (Gr )r∈�. The band-
pass, high-pass and low-pass filters are described respec-
tively in Sections 2.1, 2.2 and 2.3. Direct and inverse
transforms are defined in Sections 2.4 and 2.5, respec-
tively. Section 2.6 describes the downsampling method
and Section 2.7 deals with the matrix notation. Meth-
ods for obtaining exact reconstruction are described in
Section 2.8.

2.1. Bandpass Log-Gabor Filters

Classical Gabor filters give rise to important difficul-
ties when implemented in multiresolution. Filters overlap
more importantly in the low frequencies than in the higher
ones yielding a non-uniform coverage of the Fourier do-
main. Moreover Gabor filters have not zero mean, they
are then affected by DC components. For those reasons
log-Gabor filters are used in the present implementation
instead of Gabor filters. The log-Gabor filters lack DC
components and can yield a fairly uniform coverage of
the frequency domain in an octave scale multiresolution
scheme (Field, 1987). The log-Gabor filters are defined in
the log-polar coordinates of the Fourier domain as Gaus-
sians shifted from the origin:
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where (ρ, θ ) are the log-polar coordinates (in log2 scale,
indicating the filters are organized in octave scales);

ns = 5 is the number of scales of the multiresolution
scheme and nt is the number of orientations (nt will range
between 3 to 20. 8 orientations will be used as a typi-
cal value). s ∈ {1, . . . , ns} and t ∈ {1, . . . , nt } indexes
the scale and the orientation of the filter, respectively;
(ρs, θ(s,t)) are the coordinates of the center of the filter;
and (σρ, σθ ) are the bandwidths in ρ and θ , common for
all filters.

It is highly justified here to consider the Fourier do-
main through the log-polar coordinates. Indeed in such
coordinate system, the octave distribution of the filters
constitutes a regular grid, the center of the filters defined
by Eq. (1) laying on an uniform hexagonal lattice. More-
over in such coordinates the filters are purely Gaussian
and their bandwidths are constant across orientations and
scales.

The filters defined by Eq. (1) cover only one side of
the Fourier domain (see Fig 1.(a). It is worth consid-
ering them in Fourier as the sum of a symmetric com-
ponent and an antisymmetric one. Thus, those compo-
nents sum their amplitude in one side of the Fourier do-
main and cancel themselves in the other side. This ex-
plains that in the spatial domain, the filters have both a
real part (with cosine shape due to the symmetric com-
ponent) and an imaginary part (with sine shape due to
the antisymmetric component). A single log-Gabor fil-
ter defined in Fourier by Eq. (1) yields then both a
real and an imaginary part in the spatial domain. Both
parts can be seen for the 5 scale 8 orientation scheme
in Fig. 1.(b) and (c), respectively. They can be com-
pared with the filters of other multiresolution trans-
forms (orthogonal wavelets ‘Db4’ (Daubechies, 1992) in
Fig. 1.(e) and steerable pyramids (Portilla et al., 2003) in
Fig. 1.(f).

One objective of this study is to choose the transform
parameters as close as possible of the known physiol-
ogy of simple cortical cells. According to such purpose,
log-Gabor filters are chosen for modeling the receptive
field of the simple cortical cells as proposed in Daugman
(1985); Marcelja (1980); and Field (1987). Simple cells
are known to be organized in pairs in quadrature of
phase (Pollen and Ronner, 1981), justifying the choice
of complex-valued filters. The choice of the bandwidth
in orientation is motivated by the simple cell orientation
resolution which has been evaluated as around 20–40 de-
grees of full bandwidth at half response (Hubel, 1988;
Daugman, 1985). Such orientation bandwidth would re-
quire around 6 to 13 orientations to cover the 180 degrees
of the plane. For the proposed scheme using the typical
value of 8 orientations we obtain filters with 31.8 degree
full bandwidth at half response. The bandwidth in scale
of the simple cells has been evaluated between 0.6 and 3.2
octaves (DeValois et al., 1982), and around 1.3 octaves
in mean (Daugman, 1985) (at half response). The present
filters have a 1.43 octave bandwidth. DeValois et al.
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Figure 1. Multiresolution schemes. (a) Schematic contours of the log-Gabor filters in the Fourier domain with 5 scales and 8 orientations (only

the contours at 78% of the filter maximum are drawn). (b) The real part of the corresponding filters is drawn in the spatial domain. The two first

scales are drawn at the bottom magnified by a factor of 4 for a better visualization. The different scales are arranged in rows and the orienta-

tions in columns. The low-pass filter is drawn in the upper-left part. (c) The corresponding imaginary parts of the filters are shown in the same

arrangement. Note that the low-pass filter does not have imaginary part. Insets (b) and (c) show the final filters built through all the processes

described in Section 2. (d) In the proposed scheme the elongation of log-Gabor wavelets increases with the number of orientations nt . Here the

real parts (left column) and imaginary parts (right column) are drawn for the 3, 4, 6, 8, 10, 12 and 16 orientation schemes. (e) As a comparison

orthogonal wavelet filters ‘Db4’ are shown. Horizontal, vertical and diagonal wavelets are arranged on columns (low-pass on top). (f) As a second

comparison, steerable pyramid filters (Portilla et al., 2003) are shown. The arrangement over scales and orientations is the same as for the log-Gabor

scheme.

(1982) reported the existence of cells covering different
scales over at least 4 octaves for each retina location. At
least 3 scales for each retina location have been encoun-
tered, which justifies the choice of a multiscale transform.
Additionally the shape of the filters shown Fig. 1.(b)–
(c) appears close to the independent components learned
by sparse coding or ICA techniques on natural images
(Olshausen and Field, 1996; Doi and Lewicki, 2005),
confirming the adequacy of the filters to match natural
image features. By its parts the modulus operation on
real and imaginary parts which will be exploited for de-
noising in Section 3 and the resulting independency to-
ward phase are characteristic of the complex cortical cells
(Carandini et al., 2005). The thresholding operation used
in the denoising method has also a biological justifica-
tion (Perrinet et al., 2004). The present scheme gets then
close to the V1 physiology particularly in terms of recep-
tive field structures and multiscale and multiorientation
arrangement.

2.2. High-pass Oriented Filters

An important problem appears in the first scales where
from Eq. (1), Gr would have significant amplitude
above the Nyquist frequency (ρ ≥ log2( n

2
)). Cutting off

abruptly the filter response above the Nyquist frequency
strongly distorts the filter shape in the spatial domain
(this causes the appearance of side lobes or ringing).
For this reason in many implementations high frequen-
cies are not covered, e.g. in Ro et al. (2001). Alterna-
tively, to not discard this part of the spectrum Nestares
et al. included a non-oriented high-pass filter (Nestares
et al., 1998). Nevertheless when it is used in denois-
ing or compression, a non-oriented high-pass filter in-
troduces cross-shaped artifacts, which are very salient
and artificial-looking. We propose here several solutions
to design oriented high-pass filters having smooth shape
without extra side lobes. They consist first in incorpo-
rating a half-pixel shift in the spatial position of the
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(a) (b)

Figure 2. The real part of the first scale vertical filter is constructed in Fourier by symmetry. (a) The contours of the filters are drawn in the Fourier

domain at 78% of the filter maximum. The filter is build up by summing its central symmetry. (b) Resulting filter shown in the Fourier domain (the

horizontal axis represent the Fourier space which origin is located in the center of the plane and the vertical axis represents the amplitude). This filter

is shown in spatial domain in Fig. 1.(b) bottom row, left column.

imaginary part of the filters. This shift allows the first
scale filters to capture much more adequately the anti-
symmetric features, as it will be illustrated Section 2.2.3,
but consequently the real and imaginary parts of the fil-
ters have to be separately defined. Also vertical and hor-
izontal filters are designed in a different way than the
other filters, i.e. the oblique ones, see Section 2.2.1 and
2. Note that, because the definition of the first scale filters
differs from the other scales, the transform is no more
strictly a ”wavelet” one, but it can be considered as a
wavelet-like transform since the general shape of the ba-
sis functions is obtained by translation, dilatation, and ro-
tation of a mother function if we except the modifications
proposed here for improving the reconstruction perfor-
mance. Moreover the proposed Gabor wavelets build di-
rectly on the original Morlet and coworkers proposition of
using Gabor functions for a cycle-octave multiresolution
(Morlet et al., 1982).

2.2.1. Real Part of the Horizontal and Vertical Filters.

The real part of horizontal and vertical filters is defined by
central symmetry as shown in Fig. 2. Thus they are contin-
uous across the periodicities of the Fourier domain which
is important since strong discontinuities in the Fourier
domain create side lobes and a worst localization in the
spatial domain. They are also well localized and with-
out extra side lobes in the space domain (see Fig. 1.(b),
bottom row, 1st and 4th columns).

2.2.2. Real Part of Oblique Filters. The real part of
oblique filters (i.e. filters which are not vertical nor hor-
izontal) is also defined by central symmetry. But this is
not sufficient to maintain the Fourier domain continuous
(across periods) and to keep a good localization in the
space domain. We propose then to fold up those filters
by considering them as periodic with periodicity n. Nev-

ertheless when the part beyond the Nyquist frequency
(|u| ≥ n

2
or |v| ≥ n

2
, where (u, v) are the Cartesian coor-

dinates of the Fourier domain) is folded up by periodicity,
it covers the whole spectrum with significant amplitude.
To maintain the filter selectivity to high-frequencies, it
is then necessary to filter down the induced lowest fre-
quencies by multiplying the folded part by an attenua-
tion factor α defined here as a raised cosine function (see
also Fig. 3 for an illustration of the construction of such
filters):

α =

⎧⎪⎪⎨⎪⎪⎩
1

2
cos

(
π

d

n/3

)
+ 1

2
if d < n/3

0 if d > n/3
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where d is the Euclidian distance to the closest fre-
quency inside the Nyquist range (i.e. u and v within
[−n/2, n/2]).

2.2.3. Imaginary Part of the Horizontal and Vertical

Filters. The imaginary part is build in Fourier simi-
larly to the real part (Section 2.2.1) but antisymmetri-
cally instead of symmetrically. In the spatial domain the
imaginary part have to be antisymmetric, but here the
axis of central antisymmetry will not be localized in a
pixel but in between two pixels, this for two related rea-
sons. First, in the spatial domain, an antisymmetric filter
would have a zero as central coefficient. And, as first
scale filters have a frequency close to the Nyquist fre-
quency, i.e. an approximately two pixel period, the filter
would be almost null in its central part. The filter would
then be very coarsely localized, having most of its am-
plitude far from its center. Consequently the filter must
be centered in between two pixels (see Fig. 4.(a). Sec-
ond, in the Fourier domain, an antisymmetric high-pass



236 Fischer et al.

(a) oversampled filter

(b) folding (c)

(d) attenuation (e) symmetry

retlfilanogaid)g(retlfieuqilbo)f(

Figure 3. Construction of the real part of oblique first scale filters in the Fourier domain. (a) The frequency domain is oversampled 3 times. (b)

The frequencies above the Nyquist frequency are folded up by periodicity. (c) Raised cosine function α. (d) The folded part of the filter is attenuated

multiplying by the raised cosine α. (e) The central symmetry is summed up for the construction of a real-valued filter. (f) Resulting oblique filter. (g)

Resulting diagonal filter. These filters are shown in the spatial domain in Fig. 1.(b) bottom row.

Figure 4. Imaginary part construction of horizontal and vertical first scale filters. (a) In the spatial domain it is necessary to shift the sampling grid

by half a pixel. A non-shifted sampling yields a function almost null in the central coefficients, most of the amplitude being localized far from the

center inducing a very poor localization of the filter. The same antisymmetric filter built on a half-pixel shifted grid is much more closely localized. (b)

Shifting the sampling grid is realized by multiplying the frequencies by eiπ u
n (inducing the filter coefficients are complex-valued also in the Fourier

domain). It makes the filter continuous in its frequency coverage across periods.
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filter is not continuous across periods while a half-pixel
shifted version is (see Fig. 4.(b). For those reasons the fil-
ter is multiplied by a eiπ u

n or eiπ v
n function in the Fourier

domain (respectively for horizontal and vertical filters)
which induces a half pixel displacement in the space do-
main. As a consequence the Fourier coefficients are now
complex-valued and both the real and imaginary Fourier
parts of the filters become continuous across periods (see
Fig. 4.(b).

2.2.4. Imaginary Part of Oblique Filters. Those filters
are defined antisymmetrically and are folded by peri-
odicity with the same attenuation function α described
in Section 2.2.2. Moreover they are also shifted half
the interpixel distance perpendicularly to the preferred
direction of the filter by multiplication in Fourier by

e
iπ
n (u·tu+v·tv )·max(|tu |,|tv |), where (tu, tv) is the normalized

preferred direction vector of the filter.

2.2.5. Second Scale Filters. Second scale filters are
also folded by periodicity with attenuation α (see Sec-
tion 2.2.2). Here nevertheless it is not necessary to shift
half-pixel in position the antisymmetric filter and the
same definition is used for all orientations. An example of
second scale filter is shown in Fig. 5. In the coarser scales
(i.e. s ≥ 3), the filter part beyond the Nyquist frequency
has sufficiently low amplitude to be cut off.

2.3. Low-pass Filter

The multiresolution scheme is completed with a low-pass
filter (DC) for recovering the luminance information. The
low-pass filters could be defined simply as a Gaussian
low-pass filter as in Portilla et al. (1996). Nevertheless
for a better filling-in of the low-pass residual frequencies
not covered by the log-Gabor filters, it is defined in a

Figure 5. Second scale filters are constructed in Fourier by folding

the filters by periodicity and applying the attenuation function α on the

folded part. (Second scale filters are shown in the spatial domain in

Fig. 1.(b),(c) next to last rows.)

different way. Two additional scales above the number
of scales ns deployed are built and summed up together
(as the root sum squared). Moreover the part inside the
highest additional scale is set up to one. In practice if 5
scales are deployed, the filters that would correspond to
the 6th and 7th scales are summed and additionally the
space inside the 7th scale (ρ < log2n − 7) is set up to
one (the resulting filter can be seen in the spatial domain
in Fig. 1.(b), upper left part.)

2.4. Direct Log-Gabor Wavelet Transform

The whole set of bandpass filters, high-pass filters and the
low-pass filter are indexed by � = {1, . . . , nsnt +1}. The
filter set defined in the Fourier domain is then refereed
as (Gr )r∈�. The convolution of the image x by any filter
Gr is hr which is called a channel. It is computed in the
Fourier domain as:

hr = F−1 (Gr · F(x)) (3)

where F and F−1 are respectively the direct and in-
verse discrete Fourier transform. The whole set of chan-
nels, (hr )r∈�, is called a pyramid. Finally, the log-Gabor
wavelet transform of x is defined by:

W(x) = (hr )r∈�. (4)

2.5. Reconstruction Transform

The reconstruction transform W† consists in filtering in
Fourier each channel hr by the corresponding filter Gr

(where Gr is the complex conjugate of Gr . Note that in
most cases the filter Gr in Fourier is real-valued, so that
Gr = Gr ):

zr = F−1(Gr · F(hr )) (5)

Each zr is called a reconstructed channel. All recon-
structed channels are finally summed up to obtain the
reconstruction:

W†(h) =
∑
r∈�

zr = F−1

(∑
r∈�

Gr · F(hr )

)
(6)

Because the image x is real, its Fourier transform has
hermitian symmetry. For this reason, we used band-pass
Gabor filters covering only half of the Fourier plane,
while the other half plane is further completed at the re-
construction using hermitian symmetry (this completion
is obviated in the equations).

Because the transform is overcomplete, it can not be
strictly bijective nor invertible: the transform domain has
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Figure 6. Sparse downsampling method. (a) 4th scale 2nd orientation channel of the image “MIT” (the original can be seen in Fig. 9). Only the

moduli of the complex coefficients are shown. (b) Corresponding log-Gabor filter (scale 4, orientation 2) represented in the Fourier domain (Fourier

origin is located in the center of the inset). A window of the desired downsampling size is adjusted on the filter so as to retain inside the maximum

of the amplitude. Filters coefficients outside the window are zeroed out (only coefficients lower than 5% of the filter maximum are eliminated). (c)

The filter can be downsampled in an invertible manner by a factor 4 × 4 by removing the zero coefficients. (d) The resulting downsampled channel

obtained after inverse Fourier transform (as in (a) only the moduli of the coefficients are shown).

not the same dimension as the original domain. But, under
the conditions that will be further exposed in Section 2.8,
W† can be the pseudo-inverse of W so that W†(W(x)) =
x, ∀x ∈ RN .

2.6. Sparse Downsampling

To limit the expansion of the transform domain it is desir-
able to downsample the channels as much as possible, but
we desire to avoid at the same time any kind of aliasing.
The sparse downsampling method (Wurtz, 1994) can be
applied advantageously here for downsampling 3rd, 4th,
5th and low-pass filters both in u and v by factors of 2,
4, 8 and 8, respectively. The procedure is implemented
in the Fourier domain as follows: a window of the de-
fined downsampling size is centered on the filter and its
position is adjusted so as to retain inside the maximum
quantity of the filter amplitude (this operation is achieved
by displacing iteratively the window in all the possible
directions). Filter coefficients outside the window are ze-
roed out. In this way, only filter coefficients smaller than
5% of the filter maximum are cut off which preserves the
smooth shape of the filters in the spatial domain. Using
those filters, the channels can then be downsampled in an
invertible manner without mixing frequencies i.e. without
introducing aliasing: any frequency of the downsampled
channel corresponds bijectively to one unique non-zeroed
frequency in the upsampled version of the channel (the
sparse downsampling procedure is illustrated in Fig. 6).

The present log-Gabor filters which are complex-
valued in the spatial domain bring then an additional
advantage: the filters lie only in one side of the Fourier

domain allowing the implementation of the sparse down-
sampling method. In comparison, pure real or pure imag-
inary spatial filters are symmetric or antisymmetric in
Fourier and compel to downsample at Nyquist frequency,
that is twice the highest frequency. The sparse down-
sampling compensate largely that two real values (i.e. a
complex one) are obtained for each coefficient: complex-
valued log-Gabor filters can still be downsampled by a
factor around two times larger than real-valued filters.
Consequently, the overcompleteness factor measured as
the ratio M/N , where M is the dimension of the trans-
form domain and N is the dimension of the image, is
reduced to M/N � 40 (it can be approximated as 14

3
nt

where nt is the number of orientations). It is to remark
that other overcomplete schemes (Simoncelli et al., 1992;
Kingsbury, 2001; Portilla et al., 2003) are able to achieve
lower overcompleteness factors at the same time they
maintain the translation invariance property and a rela-
tively good directional selectivity. Nevertheless in such
schemes the filters do not satisfy all the criteria defined
in Section 2.1, particularly concerning the bandwidths
and the filter shape. Moreover a higher overcompleteness
factor is not a major drawback in many applications like
denoising, the principal penalization being an increased
computational cost proportional to the overcompleteness
factor.

In parallel, it is straightforward to demonstrate that ex-
act reconstruction using the same non-orthogonal filters
both for decomposition and reconstruction requires the
transform to be overcomplete. And to preserve the smooth
shape of the filters, M must be several times larger than N .
In the present case a higher downsampling would distort
the filters or induce aliasing effects. The above mentioned
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overcomplete factor of 40 is then necessary here. It is also
relatively consistent with the redundant number of simple
cortical cells compared with the number of photoreceptor
neurons (Hubel, 1988) which can be evaluated around 25.

The lack of aliasing guaranties the shiftability in
space (or translation invariance) (Simoncelli et al., 1992)
which is of special importance for image processing tasks
such as image denoising, image fusion, edge extraction,
etc: the transform coefficients do not change drastically
for a small displacement in space.

2.7. Matrix Notation

Because the transform is linear, it can also be viewed as
a matrix operation W ∈ RN×M . W can then be described
as the scalar product of x ∈ RN with a family of decom-
position functions (gk)k∈{1,... ,M} (the spatial log-Gabor
functions), with each gk ∈ RN :

W x = h = (hk)k∈{1,... ,M} = (< gk, x >)k∈{1,... ,M} (7)

Because we use the same filters gk for reconstruction,
the reconstruction transform is W T (where T refers to the
transposed matrix) and for all h ∈ RM :

W T h =
M∑

k=1

hkgk (8)

Under the conditions defined in Section 2.8, W T pro-
vides exact reconstruction. Thus the transform is said
self-invertible (i.e. exact reconstruction is achieved us-
ing the same filters both for the decomposition and the
reconstruction) (Simoncelli et al., 1992).

2.8. Methods for Reconstruction Improvement and
Exact Reconstruction

The condition of exact reconstruction comes from Eq. (3)
and Eq. (6) as: ∑

r∈�

|Gr |2 = 1 (9)

Lets defined S(u, v) = ∑
r∈� |Gr |2(u, v). In the sequel

we propose different methods for improving the recon-
struction, i.e. making S closer to 1.

2.8.1. Hexagonal Fourier Lattice by Shifting Even

Scales in Orientation. As already included in Eq. (1)
in the definition of θ(s,t), every second scale is shifted in
orientation by 1

2
π
nt

angle. This shift, originally proposed
in Gross and Koch (1995), induces a hexagonal config-
uration which provides a more uniform coverage of the
Fourier domain (see also Fig 1.(a).

2.8.2. Bandwidth Adjustment. The bandwidths defined
by Eq. (1) have been empirically adjusted. They allow a
fairly uniform coverage of the Fourier domain, the varia-
tions of S measured as 2(Smax−Smin)/(Smax+Smin) being
lower than 0.6% between the 2nd and 5th scale.

2.8.3. Exact Reconstruction. Each filter coefficient
Gr (u, v) is finally normalized by

√
S(u, v), thus from

Eq. (9) we have exact reconstruction filters. Because S is
already very close to the flat response before the division,
the deformation introduced is small and does not produce
appreciable distortions in the spatial domain (in particu-
lar side lobes are sufficiently small in amplitude to not be
perceptible). We have now ∀x ∈ RN , W T W x = x. Note
nevertheless that, due to the overcompleteness, in general
W W T h is not equal to h: ∃h ∈ RM , W W T h �= h.

3. Application to Image Denoising

The present log-Gabor wavelet scheme has already been
shown efficient in many classical image processing ap-
plications such as edge extraction (Fischer et al., 2005; in
press), image fusion (Redondo et al., in press), image de-
noising (Fischer et al., 2005; Redondo et al., 2005) and
also image compression (Fischer et al., 2006, 2005, in
press). Here to illustrate the efficiency of the transform
we propose to compare its ability to segregate the noise
from the signal in an image denoising scenario.

Most currently used denoising methods are based
on anisotropic diffusion (Tschumperlé and Deriche,
2005; Sroubek and Flusser, 2003; Hamza et al., 2002)
or wavelet thresholding techniques (Donoho, 1995;
Coifman and Donoho, 1995; Chang et al., 2000; Portilla
et al., 2003). Wavelet or multiresolution image denois-
ing applications usually proceed in three stages: first a
transformation, then a thresholding operation and finally
the inverse transform for reconstructing the image. The
transform aims at describing the signal in a domain where
image content (principally the contrast edges) has statis-
tically different amplitude than the noise: edges induce
high amplitude coefficients while spatially incoherent
noise produces a low level of amplitude spread in all the
coefficients. A basic thresholding permits then to segre-
gate most of the signal from the noise. There exist many
methods for determining the optimal threshold (Donoho,
1995; Kovesi, 1999; Zhong and Cherkassky, 2000; Chang
et al., 2000) (see Taswell, 2000 for a review). Moreover
more elaborated methods (Chang et al., 2000; Portilla et
al., 2003) also use the context (i.e. they take into account
the neighborhood of each coefficient instead of solely
the coefficient in order to decide if it represents signal
features or for noise).

Here we aim at comparing only the efficiency of
the log-Gabor wavelet transform in comparison with
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other multiresolutions independently of the method for
threshold determination. Therefore we will test the trans-
form in a series of classical images where Gaussian
noise has been added. A gradient descent technique is
applied to find the best threshold, i.e. the one giving
the highest PSNR (Peak Signal-to-Noise Ratio) given
the original image. The PSNR is calculated in dB as
−20log10(σe) where σe is the Root Mean Square Error
(RMSE) between the original and the denoised image.
Thus, the experiment finds the best result achievable if
the threshold determination technique would be optimal.
It measures then the ability of each transform to sepa-
rate the signal from the noise by thresholding. Note that
these experiments are not only significant for image de-
noising but also for many other image processing tasks
such as image compression or edge and feature extrac-
tion for which the possibility to code the image content
through a reduced set of large coefficients is of primary
importance.

For each experiment all the multiresolutions are im-
plemented with five scales. A vector of five thresholds
(one for each scale) is determined by gradient descent
searching for the best PSNR to the original image. No
strategy has been employed for improving the response
close to the borders of the image for any multiresolution.
This allows to visualize the artifacts (e.g. ringing) due to
the abrupt edges in those regions.

3.1. Number of Orientations

The first experiment aims at determining the opti-
mal number of orientations to be used with log-Gabor
wavelets. The question of the number of orientations
is important since (bi-) orthogonal wavelets deploy just
3 orientations whereas more recent studies claimed the
necessity of 6 orientations (Ro et al., 2001; Kingsbury,
2001), 8 orientations or more (Portilla et al., 2003; Fischer
et al., 2005), a variable number of orientations depend-
ing of the scale (Do and Vetterli, 2005), or even up to 64
orientations (Starck et al., 2002).

Results gathered in Fig. 7 are calculated over a set of 6
classical images each of them tested with 3 different lev-
els of noise. They show that the denoising improves im-
portantly between 3 and 8 orientations which confirms the
necessity of using more orientations than (bi-)orthogonal
wavelets do. The better results are obtained around 8 to
12 orientations but with variability, since in particular
cases the best results are obtained with as few as 5 or 6
orientations or as many as 16 or 20 orientations. Visual
inspection of Fig. 8 allows to see first that the number of
remaining noise points decreases when the number of ori-
entations increases particularly from 6 to 8 orientations
and from 8 to 12 orientations. And secondly that 12 or 16
orientations yield elongated artifacts. Such artifacts do

Figure 7. Denoising results as a function of the number of orienta-

tions. The denoising results are calculated over a set of 6 images (the

same set as in Table 1), each of them tested with 3 different levels of

noise (the PSNR is around 14, 20 and 28 dB). To reduce the influence

of the large variability of conditions across experiments, the mean and

standard deviation (in dB) are calculated taking as reference the previ-

ous number of orientations tested. Results show then how the denoising

improves when the number of orientations is incremented from 3 to 4

orientations, from 4 to 5, from 5 to 6, etc. Results improve clearly from

3 to 8 orientations, they then achieve a maximum around 12 orienta-

tions and latter decrease slowly when more orientations are employed

(see also the filter shapes as a function of the number of orientations in

Fig. 1.(d).

not appear, or at least are much less salient when using 8
orientations or less. All those results support the choice of
8 orientations as a good compromise between a low math-
ematical error and a high perceptual quality. This choice
is also consistent with biological models of simple cells
described in Section 2.1. Moreover it will allow to fairly
compare with the steerable pyramids used in Portilla et
al. (2003), since they also implement 8 orientations.

Note also that in the present scheme (as in other stud-
ies, see e.g. Starck et al., 2002; Do and Vetterli, 2005)
the bandwidth varies depending on the number of orien-
tations. Nevertheless it would be interesting to test both
the number of orientations and the bandwidth parameters
separately.

3.2. Comparison between Different Multiresolution
Schemes

In Table 1 log-Gabor wavelets with 8 orientations are
compared with orthogonal wavelets ‘Db4’ (Donoho,
1995), undecimated wavelets ‘Db4’ (Coifman and
Donoho, 1995; Chang et al., 2000; Li and Orchard, 2000),
and steerable pyramids with 8 orientations (Portilla et al.,
2003; Simoncelli et al., 1992) (see the shape of the fil-
ters Fig. 1). Soft thresholding is applied in the first two
methods. Given a threshold, it consists in the diminishing
(or shrinkage) of all coefficients by the threshold value
(and consequently it zeroes out all the coefficients which
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Figure 8. Denoising results through log-Gabor wavelets using different numbers of orientations. (a) 128 × 128 detail of the image “Barbara”. (b)

The noisy image has a PSNR equal to 20.07 dB. (c) In the case of denoising using 6 orientations a significant number of high amplitude noise points

are still visible. The PSNR is equal to 26.72 dB. (d) Using 8 orientations, the number of noise points is reduced. The larger size of the filters could

explain in part the better segregation between edges and noise. The PSNR improves to 26.82 dB. (e) Using 12 orientations the PSNR is 27.099 dB.

Almost all isolated noise points are removed but some elongated artifacts appear. (f) Although the best PSNR result is obtained here for 16 orientations

(PSNR = 27.100 dB), many salient elongated artifacts appear.

amplitude lies below the threshold). Consistently with
previous studies (see e.g. Donoho, 1995), we verified that
for almost all the experiments soft thresholding provides
better results than hard thresholding (i.e. zeroing out the
coefficients lying below the threshold and maintaining
unchanged the coefficients exceeding it) for critically
sampled wavelets and also, although in a lower amount
for undecimated wavelets. For orthogonal wavelets im-
provements are observed in all cases from the set of 6
images tested on 5 levels of noise (the same set as in
Table 1). The improvement is in mean of 0.76 dB, for a
standard deviation of 0.35 dB. For undecimated wavelets
improvements are observed in 23 of the 30 cases and is
of 0.21 ± 0.29 dB.

On the contrary hard thresholding yields better results
for steerable pyramids and log-Gabor wavelets (hard
thresholding is better for steerable pyramid in 25 of the
30 cases for a mean improvement of 0.24 ± 0.25 dB, and
for log-Gabor wavelets in 28 of 30 cases, the improve-
ment being in this case of 0.45 ± 0.32 dB. Full data are
available in Fischer (2007)). Hard thresholding is then

used for both those last methods. For log-Gabor wavelets
the threshold is applied in the modulus of the complex
coefficients with exception of the first scale where it
is applied separately on the real and imaginary parts
of the coefficients because, as exposed in Section 2.2,
they do not correspond exactly to the same position. It
is not totally surprising that hard thresholding performs
better here than soft thresholding since it preserves
better the high amplitude coefficients which are the
ones representing the image features. On the contrary
the fact that soft thresholding provides better results for
orthogonal and undecimated wavelets could be due to
the lower degree of matching between decomposition
functions and image features. This would induce that
each image feature is represented by a sum of transform
coefficients having very different amplitude and being
consequently less adequate for the segregation by hard
thresholding. The critical sampling could also enhance
this effect.

It appears from Table 1 that apart from very few excep-
tions, undecimated wavelets always provide better results
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Table 1. Denoising results given as PSNR in dB. The mean μ and standard deviation σ are given in each case in comparison with the previous

method.

Original image Noise level Orthogonal wavelets Undecimated wavelets Steerable pyramids Log-Gabor wavelets

Barbara 34.10 35.42 35.88 36.54 37.12

28.11 30.36 30.99 32.16 32.57

20.25 24.6 25.27 26.70 26.72

14.74 21.08 21.64 22.69 22.92

10.25 18.52 18.82 19.14 19.28

Teapot 34.33 35.28 35.83 36.01 36.45

28.41 30.12 30.90 31.24 31.63

20.71 24.44 25.28 25.62 25.79

15.06 20.75 21.45 21.69 21.77

10.41 17.48 17.91 17.96 18.06

Mandrill 34.12 34.29 34.35 34.30 34.35

28.09 28.65 28.83 28.96 29.06

20.3 22.24 22.77 23.26 23.42

14.75 18.64 19.25 19.73 20.01

10.28 16.22 16.67 16.98 17.16

House 34.15 35.66 36.13 36.09 36.52

28.2 31.31 32.02 32.36 32.94

20.38 26.86 27.59 28.28 29.10

14.78 23.58 24.09 24.83 25.37

10.2 19.94 20.27 20.72 20.89

Lena 33.97 34.83 35.10 35.01 35.45

28.15 29.79 30.23 30.54 31.11

20.34 24.37 24.99 25.52 26.01

14.89 21.27 21.80 22.16 22.59

10.26 18.32 18.67 18.78 18.94

Mit 34.82 35.73 36.12 36.06 36.94

28.79 30.51 31.10 31.22 32.29

20.98 24.10 24.85 25.29 25.95

15.56 20.00 20.57 21.25 21.77

10.64 16.21 16.56 16.86 17.10

Mean 34 +0.95 ± 0.42 +0.37 ± 0.16 +0.10 ± 0.26 +0.47 ± 0.25

improvement 28 +1.83 ± 0.76 +0.55 ± 0.20 +0.40 ± 0.35 +0.52 ± 0.29

(μ ± σ ) 20 +3.94 ± 1.38 +0.69 ± 0.096 +0.65 ± 0.36 +0.39 ± 0.29

15 +5.92 ± 1.58 +0.58 ± 0.062 +0.59 ± 0.27 +0.35 ± 0.16

10 +7.44 ± 1.43 +0.37 ± 0.053 +0.26 ± 0.14 +0.16 ± 0.044

than critically sampled wavelets (+0.51 dB of improve-
ment in mean, the standard deviation being σ = 0.18
dB). Steerable pyramids provide better results than un-
decimated wavelets (+0.40 ± 0.36 dB of improvement)
and log-Gabor wavelets outperform all the three former
methods (+0.38 ± 0.26 dB of improvement compared
with steerable pyramids. Improvements in terms of PSNR
are observed in each of the 30 cases tested which implies
the improvement is statistically highly significant. It is to
note moreover that the diversity of images and of noise
levels cover a wide range of denoising situations). Vi-

sual inspection on the Fig. 9 and 10 show that denoised
images contain artifacts which shape is characteristic of
the multiresolution employed. Indeed the shape of the
artifacts corresponds to the shape of the decomposition
functions shown Fig. 1. Residual features due to noise
also remain, their quantity could be reduced by a more
severe thresholding. Here the thresholds are adjusted for
the best PSNR. The thresholding should be a bit higher
for avoiding most of the residual noise at the cost of
loosing an additional part of the signal. This would be
perceptually more pleasant even if the PSNR would be
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Figure 9. Denoising results using different multiresolution schemes. (a) 128 × 128 pixel detail of the image “MIT”. (b) The noisy version has a

PSNR of 15.56 dB. (c) Denoising by orthogonal wavelets provides a 20.00 dB denoised image. (d) Undecimated wavelets yield a 20.57 dB denoised

image. (e) Steerable pyramid yields a 21.25 dB denoised image. (f) Log-Gabor wavelets achieve a 21.77 dB denoised image (see also the entire result

set in Table 1).

worst. It is remarkable that the log-Gabor method gener-
ally induces less amount of artifacts (particularly when
compared with orthogonal and undecimated wavelets but
also in comparison with steerable pyramids) which would
indicate an augmented statistical separation in the trans-
form domain between edge and noise features. In addition
the artifacts can appear more natural looking so that they
could result less annoying and be more easily perceived
as image features (specially for images without human
features, see Fig. 9).

It has already been established that the translation
invariance property improves the results of overcom-
plete representations in comparison to critically sam-
pled ones (Simoncelli et al., 1992; Coifman and Donoho,
1995; Chang et al., 2000; Li and Orchard, 2000), also
because of the aliasing present in critically sampled
wavelets. The better resolution in orientation can explain
the better results of steerable pyramids and log-Gabor
wavelets on undecimated wavelets. Note moreover that
the finer bandwidth in orientation yields larger filters in
the space domain, consequently it involves more pixels in
the calculation of the coefficients: the noise is averaged

on more pixels what leads to a better noise robustness
(Fig. 1.(d) shows how the filter size increases with the
number of orientations).

The better performances of the log-Gabor represen-
tation in comparison to steerable pyramids could be
explained by four factors: (1) the Gabor (Gaussian) filter
shape offers an optimal joint localization in frequency
and space, which is an improvement in comparison
with the raised cosine shape of steerable pyramids.
(2) Log-Gabor functions are complex-valued with
odd and even parts which permit a better capture of
both edges and ridges (Kovesi, 1999; Fischer et al.,
2005). (3) The oriented high-pass log-Gabor filters are
smooth and without extra side-lobes in space (while the
high-pass steerable filters (Portilla et al., 2003) shown in
Fig. 1.(f), bottom row seem to be constructed without the
precautions described in Section 2.2). (4) The proposed
log-Gabor filters have elongated shape whereas steerable
filters are more isotropic in size, i.e. log-Gabors have
larger bandwidth in frequency (1.43 octave against 1
octave for steerable pyramids) and narrower bandwidth
in orientation (37 degrees against 50 degrees for
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Figure 10. Denoising results for different multiresolution schemes. (a) 128 × 128 detail of the image “Lena”. (b) The noisy version has a PSNR

equal to 20.34dB. (c) Denoising by orthogonal wavelets provides a 24.37 dB denoised image. (d) Undecimated wavelets yield a 24.99 dB denoised

image. (e) Steerable pyramid yields a 25.52 dB denoised image. (f) Log-Gabor achieves a 26.01 dB denoised image. (see the entire result set in

Table 1).

steerable). The elongated shape seems more appropriate
for two reasons: they are adapted from biological data
and they are also closer to the independent component
of the natural images extracted by sparse coding or
ICA techniques (Olshausen and Field, 1996; Doi and
Lewicki, 2005). Thus the log-Gabor functions should
match better with edges of natural images (yielding a
stronger statistical differential response between edge
and noise features) and as an additional advantage they
can appear more ”natural looking” to human observers.

4. Conclusions

We proposed an overcomplete multiresolution scheme
mimicking the receptive field properties of simple
cortical cells and optimized for achieving exact recon-
struction through carefully designed filters. The proposed
log-Gabor wavelet transform is optimized by taking into
account mathematical, biological vision and image statis-
tic considerations. From the mathematical point of view,
Gabor functions are optimally joint-localized in fre-
quency and space, which makes them optimal functions

to characterize signals. The log-Gabor wavelet transform
is moreover self-invertible which has been shown impor-
tant for preventing the appearance of artifacts. Concern-
ing biological vision criteria, the log-Gabor filters mimic
closely the receptive field of V1 simple cortical cells. The
proximity to biological vision can help simultaneously
for choosing adequate transform parameters, for limiting
the saliency of the artifacts and for further developing the
biological models. And third, in relation with statistics of
natural images, the transform filters have similar shape
as the independent components learned from natural
images, which support the proposed log-Gabor wavelets
as an adequate scheme for matching natural image
features.

The transform showed excellent results for segregat-
ing the signal from the noise by hard thresholding. The
comparison with other methods (orthogonal wavelets,
undecimated wavelets and steerable pyramids) showed
an overall better performance of the proposed log-Gabor
wavelet technique both in terms of the mathematical
error and perceptual quality. The transform confirms then
to be an adequate tool for representing features of natural
images and to segregate them from incoherent noise.
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Among further developments, a whole image de-
noising application could be set up by implementing a
dedicated threshold determination method which would
take into account the relationships between neighboring
coefficients as proposed e.g. in Chang et al. (2000);
Portilla et al. (2003). Many other applications can also be
derived since the ability of coding image features through
a reduced set of large transform coefficients makes the
transformation suitable for many applications such as
image fusion or feature extraction. For image compres-
sion but also for general applications the redundancy
induced by the overcompleteness could be recovered by
deploying sparse approximation algorithms (Perrinet,
2004; Fischer et al., in press).
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multiresolution-based fusion scheme through log-Gabor wavelets

and a multisize windows technique. Information Fusion.

Ro, Y.M., Kim, M., Kang, H.K., Manjunath, B.S., and Kim, J. 2001.

MPEG-7 homogeneous texture descriptor. ETRI Journal, 23(2):41–

51.

Simoncelli, E.P., Freeman, W.T., and Heeger, D.J. 1992. Shiftable mul-

tiscale transforms. IEEE Trans. Inf. Theory, 38(2):587–607.

Sroubek, F. and Flusser, J. 2003. Multichannel blind iterative image

restoration. IEEE Trans. Image Proc., 12(9):1094–1106.

Starck, J.L., Candès, E.J., and Donoho, D.L. 2002. The curvelet

transform for image denoising. IEEE Trans. on Image Proc.,
11(6):670–684.

Taswell, C. 2000. The what, how and why of wavelet shrinkage

denoising. Computing in Science and Engineering, pp. 12–19.
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