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Abstract

This document describes the outcomes of the first six months of the project PIZZARO concerning the

image restoration module. In this phase, the project focused at a thorough evaluation of existing methods

and analysis of their applicability to situations we can meet in forensic practice. In the following text,

we summarize the existing Bayesian methods for blind deconvolution and super-resolution, space-variant

restoration, restoration of images/video from JPEG/MPEG compressed sources and approximative ap-

proaches based on non-local means algorithm and adaptive kernel regression.

1 Introduction

This report gives a general overview of methods that can be used to reduce image blur and improve reso-

lution of image and video data. This includes the classical deconvolution formulation as well as challenging

extensions to spatially varying blur and data compressed by JPEG/MPEG algorithms. Besides Bayesian

approaches we pay special attention to algorithms based on non-local means filtering which can help in

restoration of highly degraded images, where there is not enough information to apply the Bayesian tech-

niques.

We consider mainly algorithms fusing information from multiple blurred images to get an image of better

quality. We do not treat deblurring methods working with one image that need stronger prior knowledge and

other than MAP approaches. Nor we consider approaches requiring hardware adjustments such as special

shutters (coded-aperture camera [13]), camera actuators (motion-invariant photography [14]) or sensors

(Penrose pixels [6]). We focus on our results [29, 28, 27], described in Sec. 3, and other relevant references

are commented in more detail inside the text.

We first introduce a general model of image acquisition needed for the modeling of image blur and

resolution loss. This model is later used for deriving a Bayesian solution of the problem. Next, we briefly

discuss possible sources of blur. In each case we also include possible approaches for blur estimation for both

space-invariant and space-variant scenarios.

All the common types of generally spatially varying blur, such as defocus, camera motion or object

motion blur, can be described by a linear operator H acting on an image u in the form

[Hu] (x, y) =

∫
u(x− s, y − t)h(s, t, x− s, y − t) dsdt , (1)

where h is a point spread function (PSF) or kernel. We can look at this formula as a convolution with a PSF

that changes with its position in the image. The traditional convolution is a special case thereof, with the

PSF independent of coordinates x and y. In practice, we work with a discrete representation of images and

the same notation can be used with the following differences. Operator H in (1) corresponds to a matrix and

u to a vector obtained by stacking columns of the image into one long vector. Each column of H describes
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the spread of energy for one pixel of the original image. In the case of the traditional convolution, H is a

block-Toeplitz matrix with Toeplitz blocks and each column of H contains the same kernel shifted to the

appropriate position.

In the space-variant case, each column may contain a different kernel. An obvious problem of spatially

varying blur is that the PSF is now a function of four variables. Except trivial cases, it is hard to express it

by an explicit formula. Even if the PSF is known, we must solve the problem of efficient representation. If

the PSF changes smoothly without discontinuities, we can store the PSF on a discrete set of positions and

use interpolation to approximate the whole function h. If the PSF is not known, the local PSF’s must be

estimated as in the method described in Sec. 3. Another type of representation is necessary if we consider

moving objects, where the blur changes sharply at object boundaries. Then we usually assume that the

blur is approximately space-invariant inside individual objects, and the PSF can be represented by a set of

convolution kernels for each object and a corresponding set of object contours. Final case occurs when the

PSF depends on the depth. If the relation cannot be expressed by an explicit formula, as in the case of ideal

pillbox function for defocus, we must store a table of PSF’s for every possible depth.

1.1 General model of image degradation

In this section, we show a general model of image acquisition, which comprises commonly encountered degra-

dations. Depending on the application, some of these degradations are known and some can be neglected.

The image u is degraded by several external and internal phenomena. The external effects are, e.g.,

atmospheric turbulence and relative camera-scene motion, the internal effects include out-of-focus blur,

diffraction and all kinds of aberrations. As the light passes through the camera lens, also warping due to

lens distortions occurs. Finally, a camera digital sensor discretizes the image and produces a digitized noisy

image g(x, y). An acquisition model, which embraces all the above radiometric and geometric deformations,

can be written as a composition of operators

g = DLHu+ n . (2)

Operator L denotes lens distortions, blurring operator H describes the external and internal radiometric

degradations, D is an operator modelling the camera sensor and n stands for additive noise. The operator

D is a filter originating as a result of diffraction, shape of light sensitive elements and void spaces between

them. We will assume that the form of D is known. In the language of mathematics, the goal of this part

of PIZZARO project is to solve an inverse problem, i.e., to estimate u from the observation g.

Many restoration methods assume that the blurring operator H is known, which is rarely true in practice

and it is indispensable to assume at least that H is a traditional convolution with an unknown PSF. This

model holds for some types of blurs (see e.g.[31]). In our work, we go one step further and allow spatially

varying blur, which is the most general case that encompasses all the above mentioned radiometric degra-

dations if occlusion is not considered. On the other hand, without additional constraints, the space-variant

model is too complex. Various scenarios that are space-variant but still solvable are discussed in Sec. 3.

If lens parameters are known, one can remove lens distortions L from the observed image g without

affecting blurring H, since H precedes L in (2). There is a considerable amount of literature on estimation

of distortion [35, 1]. If the lens distortion is known or estimated beforehand, we can include L inside the

operator D or it can be consider as a part of the unknown blurring operator H and estimated during the

deconvolution process. In any case, we will not consider L explicitly in the model (2) from now on.

In many cases, only one input image is not sufficient to get a satisfactory result and we assume that

multiple images of the same scene are available. Having several input images, we will denote the quantities

belonging to the kth image by index k. To describe this situation, we use the term multichannel or K-channel

in the rest of this text. To be able to describe the common real situation of several images taken by the same
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camera from slightly different viewpoints, we need to introduce an unknown geometric deformation Wk for

each image, which gives us

gk = DHkWku+ nk , (3)

with D remaining the same in all the images. Deformations Wk can be estimated by a proper image

registration method [37]. To be able to work with these pre-registered input images, we need to interchange

the order of operators Hk and Wk, which gives

gk = DWkH̃ku+ nk = DkH̃ku+ nk . (4)

On the right hand side of this formula, we denote the combined operator of Wk and D as Dk = DWk and

assume it is known.

We need to show that the operators Hk and Wk can be really interchanged. Indeed, if the geomet-

ric transform Wk is invertible and we consider the blurring operator H̃k = W−1k HkWk, we get WkH̃k =

WkW
−1
k HkWk = HkWk. Moreover, if Hk is a standard convolution with a PSF hk and Wk denotes a linear

geometric transform, then by placing Wk in front of Hk, the new blurring operator H̃k remains a standard

convolution but with hk warped according to Wk. If Wk denotes a nonlinear geometric transform, then after

interchanging the order, H̃k becomes a sparse linear operator that can no longer be described by convolution.

It is important to realize that the blurring operator is unknown and instead of Hk we are estimating H̃k,

which is an equivalent problem as long as the nature of both blurring operators remains the same. To avoid

extra symbols, we keep the symbol Hk instead of more exact H̃k from now on and we will also denote the

full degradation operator as Gk = DkH̃k.

1.2 Bayesian view of solution

One way to approach the deblurring and super-resolution problems is to use the Bayesian paradigm. Other

approaches can be considered as approximations of the Bayesian solution.

If we know the degradation operatorsGk, the MAP (maximum a posteriori) solution under the assumption

of Gaussian noise corresponds to the minimum of a functional

E(u) =
∑
k

1

2σ2
k

‖Gku− gk‖2 +Q(u), (5)

where the first term describes an error of our model and the second term Q(u) is a so-called regularization

term that corresponds to the negative logarithm of the prior probability of the image u. Noise variance in

the k-th input image is denoted as σk.

The prior probability is difficult to obtain and it is often approximated by a statistics of the image

gradient distribution. A good approximation of the prior log-probability for common images is for example

total variation regularization [19]

Q(u) = λ

∫
|∇u| , (6)

which corresponds to an exponential decay of gradient magnitude. The total variation term can be replaced

by an arbitrary suitable regularizer (Tikhonov, Mumford-Shah, etc.) [3, 26].

To minimize functional (5) we can use many existing algorithms, depending on a particular form of the

regularization term. If it is quadratic (such as the classical Tikhonov regularization), we can use an arbitrary

numerical method for solving the system of linear equations. In the case of total variation, the problem is

usually solved by transforming the problem to a sequence of linear subproblems, such as the half-quadratic

iterative approach as described for example in [28].

The derivative of functional (5) with the total variation regularizer (6) can be written as

∂E(u)

∂u
=
∑
k

G∗k(Gku− gk)

σ2
k

− λdiv

(
∇u
|∇u|

)
. (7)
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G∗k = H∗kD
∗
k is an operator adjoint to Gk. The operator adjoint to Hk defined in (1) can be written as

[H∗u] (x, y) =

∫
u(x− s, y − t)h(−s,−t, x, y) dsdt. (8)

We can imagine this correlation-like operator as putting the PSF to all image positions and computing dot

product. The same relation holds for D∗k, which corresponds to the convolution with the original PSF rotated

by 180 degrees.

If we know the operators Gk, the solution is in principle known, though the implementation of the above

formulas can be quite complicated. In practice however, the operators Gk are not known and must be

estimated.

Especially in the case of spatially varying blur, it turns out to be indispensable to have at least two

observations of the same scene, which gives us additional information that makes the problem more tractable.

Moreover, to solve such a complicated ill-posed problem, we must exploit the internal structure of the

operator, according to the particular problem we solve. Some parts of the composition of sub-operators in

(2) are known, some can be neglected or removed separately – for example geometrical distortion. All the

above cases are elaborated in Section 3.

Without known PSF’s it is in principle impossible to register precisely images blurred by motion. Conse-

quently, it is important that image restoration does not necessarily require pixel precision of the registration.

The registration error can be compensated in the algorithm by shifting the corresponding part of the space-

variant PSF. Thus the PSF estimation provides robustness to misalignment. As a side effect, misalignment

due to lens distortion does not harm the algorithm as well.

In general, if each operator Gk = G(θk) depends on a set of parameters θk = {θ1k, . . . , θPk }, we can again

solve the problem in the MAP framework and maximize the joint probability over u and {θk} = {θ1, . . . ,θK}.
As the image and degradation parameters can be usually considered independent, the negative logarithm of

probability gives a similar functional

E(u, {θk}) =

K∑
k=1

1

2σ2
k

‖G(θk)u− gk‖2 +Q(u) +R({θk}) , (9)

where the additional term R({θk}) corresponds to a (negative logarithm of) prior probability of degradation

parameters. The derivative of the error term in (9) with respect to the i-th parameter θik of θk, equals

∂E(u, {θk})
∂θik

=
1

σ2
k

〈∂G(θk)

∂θik
u,G(θk)u− gk〉+

∂R({θk})
∂θik

, (10)

where 〈.〉 is the standard inner product in L2. In discrete implementation, ∂G(θk)
∂θik

is a matrix that is multiplied

by the vector u before computing the inner product with the residual error.

Each parameter vector θk can contain registration parameters for images, PSF’s, depth maps, etc. ac-

cording to the type of degradation we consider.

Unfortunately in practice, it may be difficult to minimize the functional (9), especially in the case of

spatially varying blur. Details are discussed in [30].

An alternative to MAP approach is to estimate the PSF in advance and then proceed with (non-blind)

restoration by minimization over the possible images u. This can be regarded as an approximation to MAP.

One such approach is demonstrated in Section 3.3.

We should also note that MAP approach may not give optimal results, especially if we do not have

enough information and the prior probability becomes more important. This is a typical situation for blind

deconvolution of one image. It was documented (blind deconvolution method [10] and analysis [13]) that in

these cases marginalization approaches can give better results. On the other hand, in the case of multiple

input images, which is discussed in this article, the MAP approach is usually appropriate.
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2 Point-spread functions

This section discusses the shape of the PSF for the most frequent types of blur and indicates the relation

of the involved PSF to camera parameters, camera motion and three-dimensional structure of an observed

scene; for details, see [30].

To model defocus, image processing applications widely use a simple model based on geometrical optics,

where the shape of the PSF corresponds to a circular spot, often called informally pillbox, with a radius

inversely proportionally to the distance from the plane of focus.

In practice, due to lens aberrations and diffraction effects, PSF will be a circular blob, with brightness

falling off gradually rather than sharply. Therefore, most algorithms use two-dimensional Gaussian function

with a limited support instead of a sharply cut pillbox-like shape. Gaussian shapes are adequate for good

quality lenses or in the proximity of the image center, where the optical aberrations are usually well corrected.

A more precise approach is to consider optical aberrations. However, an issue arises in this case that

aberrations must be described for the whole range of possible focal lengths, apertures and planes of focus. In

practice, it is also useful to take diffraction effects into account as many cameras are close to their diffraction

limits.

Another important type of blur is the blur caused by camera shake or, in general, the blur caused by

camera motion during exposure. To model this situation, we need to express the PSF as a function of the

camera motion and distance from camera. In the case of a general camera motion, it can be computed from

the formula for velocity field [28, 11] that gives apparent velocity of the scene for the point (x, y) of the image

at time instant τ as

v(x, y, τ) =
1

d(x, y, τ)

[
−1 0 x

0 −1 y

]
T (τ)+[

xy −1− x2 y

1 + y2 −xy −x

]
Ω(τ),

(11)

where d(x, y, τ) is the depth corresponding to point (x, y) and Ω(τ) and T (τ) are three-dimensional vectors

of rotational and translational velocities of the camera at time τ . Both vectors are expressed with respect

to the coordinate system originating in the optical center of the camera with axes parallel to x and y axes

of the sensor and to the optical axis. All the quantities, except Ω(τ), are in focal length units. The depth

d(x, y, τ) is measured along the optical axis. The function d, for a fixed τ , is called depth map.

The apparent curve [x̄(x, y, τ), ȳ(x, y, τ)] drawn by the given point (x, y) can be computed by the inte-

gration of the velocity field over the time when the shutter is open. Having the curves for all the points in

the image, the two-dimensional space-variant PSF can be expressed as

h(s, t, x, y) =

∫
δ(s− x̄(x, y, τ), t− ȳ(x, y, τ))dτ, (12)

where δ is the two-dimensional Dirac delta function.

Analytical form of (12) is usually not used directly, because the analytical forms of velocity vectors Ω(τ)

and T (τ) are not available. Instead, our algorithms [28, 29] use a discrete representation extending standard

convolution masks (see Section 3.3). The analytical form is in a sense used in the recent single-image

deconvolution paper [33].

In addition, in real algorithms, it is necessary to use certain assumptions on these vectors, which simplifies

the computations. The key assumption we use for the blur caused by camera shake is that camera translations

can be neglected T (τ) = 0, which means that the velocity field is independent of depth and changes slowly

and without discontinuities. Consequently, the blur can be considered locally constant and can be locally

approximated by convolution. This property can be used to efficiently estimate the space-variant PSF, as

described in Sec. 3.3.
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A more complicated special case it to disallow camera rotation and assume that the change of depth is

negligible with an implication that also the velocity in the direction of view can be considered zero. It can

be easily seen [28] that in this special case, the PSF can be expressed explicitly using the knowledge of the

PSF for one fixed depth of scene.

In many real scenarios, the observed scene is not static but contains moving objects. Local movements

cause occlusion of the boundary and an additional varying blur. To include these two phenomena in the

acquisition model is complicated as it requires segmentation based on motion detection. Most restoration

methods assume a rigid transform (e.g. homography) as the warping operator W in (4). If the registration

parameters can be calculated, we can spatially align input images. If local motion occurs, the warping

operator must implement a non-global transform, which is difficult to estimate. In addition, warping by

itself cannot cope with occlusion. A reasonable approach is to segment the scene according to results

obtained by local-motion estimation and deal with individual segments separately. Several attempts in this

direction were explored in literature recently. Since PSF’s may change abruptly, it is essential to precisely

detect boundaries, where the PSF’s change, and consider boundary effects. An attempt in this direction was

for example proposed in [4], where level-sets were utilized. Another interesting approach is to identify blurs

and segment the image accordingly by using local image statistics as proposed, e.g., in [12].

3 Algorithms

This section describes several types of deblurring algorithms based on the MAP framework explained in the

introduction, with accent on our results [23, 28, 29].

We will progress from simple to more complex scenarios, where we need to estimate a higher number of

unknown parameters. The simplest case is the space-invariant blur. An algorithm of this type, originally

published in [23], is described in Sec. 3.1. If the blur is caused by a complex camera movement, it generally

varies across the image but not randomly. The PSF is constrained by six degrees of freedom of a rigid

body motion. Moreover, if we limit ourselves to only camera rotation, we not only get along with three

degrees of freedom, but we also avoid the dependence on a depth map. This case in multi-image scenario

is treated in Section 3.3, which describes mainly our algorithm [29]. A recent single-image camera shake

deblurring algorithm can be found in [33]. If the PSF depends on the depth map, the problem becomes

more complicated. Section 3.4 indicates possible solutions for two such cases: defocus with a known optical

system and blur caused by camera motion. In the latter case, the camera motion must be known or we

must be able to estimate it from the input images [28]. Note that to make things simple, we explain the

algorithms in their greyscale versions and the color examples we present in this article were generated by

their color extensions. For details see the original papers.

3.1 Space-invariant blind deconvolution and super-resolution

We assume the K-channel acquisition model in (4) with Hk being traditional convolution with an unknown

PSF hk. The corresponding functional to minimize is (9) where {θk} = {θ1, . . . ,θK} comprises registra-

tion parameters and PSF’s hk. If the acquired images gk are not ideally registered, operators Dk must

compensate for geometric misalignments. Since we restrict ourselves to the space-invariant case, admissible

geometric transformations are only linear (at most affine) otherwise the nature of Hk would change from

space-invariant to space-variant after registration. The space-invariant case allows us to construct an intrin-

sically multichannel regularization term R({θk}), which is a function of hk’s and utilizes relations between

all the input images. An exact derivation is given in [23]. Here, we leave the discussion by stating that it is
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of the form

R({hk}) ∝
∑

1≤i,j≤K
i 6=j

‖hi ∗ gj − hj ∗ gi‖2 , (13)

with the asterisk denoting the operation of convolution. This term is positive and convex and if no noise is

present it is equal to zero for any set of kernels {f ∗hk}, where hk is the true k-th PSF and f is an arbitrary

function. It means, that R is zero in the correct solution but there are infinitely many other kernels with the

same property. This drawback can be eliminated by forcing positivity on PSFs and limiting their maximum

allowed size.

One image from the input sequence is selected as a reference image gr (r ∈ 1, . . . ,K) and registration

is performed with respect to this image. If the camera position changes slightly between acquisitions, we

assume affine model. The algorithm runs in two steps:

1. Initialize parameters {θk}: Estimate affine transformations between the reference frame gr and each gk

for k ∈ 1, . . . ,K. Construct accordingly decimation operators Dk. Initialize {hk} with delta functions.

2. Minimization of E(u, {θk}) in (9): alternate between minimization with respect to u and with respect

to {hk}. Run this step for a predefined number of iterations or until a convergence criterion is met.

For images blurred by PSF’s larger than about 20 pixels, the convergence of the minimization slows down

and a hierarchical (also called multiscale) approach is necessary. The input images are first downsampled

to several predefined scales . We start with the coarsest scale (smallest images) and run the deconvolution

(Step 2) on it. The estimated PSF’s correspond to the given scale and their support is thus much smaller.

Then, we upsample the estimated PSF’s to the next scale and use them as initial values for the deconvolution

on this scale. This procedure repeats until we reach the scale of the original input images.

Figure 1: Multichannel blind deconvolution of a scene degraded by space-invariant blurs: The two photos

(1800x1080 pixels) on the top acquired by a common digital camera are blurred due to camera shake. The

bottom left image shows the estimated sharp image from the two blurry ones using the blind deconvolution

algorithm. The bottom right image shows the estimated PSF’s (50x30 pixels). Best viewed electronically.
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Figure 2: Close-ups of images in Fig. 1: The left column shows three different details of the first input

image and the right column shows the corresponding sections in the estimated output image. Best viewed

electronically.

Performance of the aforementioned algorithm was tested on common digital cameras. We conducted

several experiments with handheld digital cameras shooting under low light conditions, which produce images

blurred by camera shake. We took two or more images in a row in order to have multiple acquisitions of the

given scene and then we applied the deconvolution algorithm. One such example of blind deconvolution from

two blurred images is given in Fig. 1. The input images (1800×1080 pixels) shown in the top row are heavily

blurred by camera motion. The PSF extends over 40 pixels, which is too wide to apply the deconvolution

algorithm directly on the input images in their original scale. However, the multiscale approach provides

a stable solution. Notice that the estimated PSF’s (bottom right) match the shape of the trajectories of

several pinheads in the input images (see also the lower-left close-up in Fig. 2). Likewise, the estimated

image (bottom left) is sharp and without any artifacts. Three close-ups of the first input image and the

corresponding parts in the estimated image are illustrated in Fig. 2.
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Based on our tests we can conclude that the algorithms of multichannel blind deconvolution and super-

resolution can be efficiently implemented and are stable to be useful in forensics. Additional benefits can be

brought by masking described in the next section.

3.2 Deconvolution and super-resolution with masking

The degradation models we have discussed so far resulted either in the camera motion or in the global

scene motion. In many real scenarios, the observed scene is not static but contains moving objects. Local

changes inflicted by moving objects are twofold. First, local motion creates additional varying blurring,

and second, occlusion of the background may occur. To include these two phenomena in the acquisition

model is complicated as it requires segmentation based on motion detection. Most restoration methods

assume a rigid transform (e.g. homography) as the warping operator W . If the registration parameters

can be calculated, we can spatially align input images. If local motion occurs, the warping operator must

implement a non-global transform, which is difficult to estimate. In addition, warping by itself cannot cope

with occlusion. A reasonable approach is to segment the scene according to results obtained by local-motion

estimation and deal with individual segments separately. Several attempts in this direction were explored

in literature recently. Since PSFs may change abruptly, it is essential to precisely detect boundaries, where

the PSFs change, and consider boundary effects. An attempt in this direction was for example proposed

in [4], where level-sets were utilized. Another interesting approach is to identify blurs and segment the

image accordingly by using local image statistics as proposed, e.g., in [12]. All these attempts consider only

convolution degradation. If decimation is involved, then space-variant super-resolution was considered, e.g.,

in [21]. However, this technique assumes that PSF’s are known or negligible. A method restoring scenes

with local motion, which would perform blind deconvolution and super-resolution simultaneously, has not

been proposed yet.

A natural way to avoid the extra burden implied by local motion is to introduce masking. Masking

eliminates occluded, missing or corrupted pixels. In the case of local motion, one can proceed in the following

way. A rigid transform is first estimated between the input images and inserted in the warping operator.

Then discrepancies in the registered images can be used for constructing masks. This idea will be further

investigated and if proved to be sensible, we plan to implement it in the PIZZARO project.

3.3 Smoothly changing blur

In many situations, the blur is spatially variant. This section treats the space-variant restoration in situations

where the PSF changes without sharp discontinuities, which means that the blur can be locally approximated

by convolution. A typical case is the blur caused by camera shake, when the rotational component of camera

motion is usually dominant and consequently, according to (11), the blur does not depend on the depth map.

On the other hand, the PSF can be significantly spatially variant, especially for short focal length lenses.

In principle, in this case, known blind deconvolution methods such as [22] could be applied locally and

the results could be fused. Unfortunately, it is not easy to put the patches together without artifacts on the

seams, not mentioning time complexity. An alternative way is to use first the estimated PSF’s to approximate

the spatially varying PSF by interpolation of adjacent kernels and then compute the image of a better quality

by the minimization of the functional (5). The main problem of these procedures is that they are relatively

slow, especially if applied on too many positions. We investigated the latter idea for the purpose of image

stabilization in [29] using a special setup that simplifies the involved computations and makes them more

stable.

We assume that the user can set the exposure time of the camera, which is an acceptable assumption

as we can always balance noise with motion blur by setting a suitable shutter speed. In particular, we set

the exposure time of one of the images to be so short, that the image is sharp, of course at the expense
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Figure 3: A night photo (1550× 980 pixels) taken from hand with shutter speed 2.5s (left). The same photo

was taken once more at ISO 1600 with 2 stops under-exposure to achieve a hand-holdable shutter time 1/30s

(middle). The right image shows the result of algorithm [29] that fuses the information from both. Best

viewed electronically.

of underexposure, which is equivalent to noise amplification. The whole idea was investigated relatively

recently [25, 15, 36].

On the left side of Fig. 3, we can see a night photo of a historical building taken at ISO 100 with shutter

speed 2.5s. The same photo was taken once more at ISO 1600 with 2 stops under-exposure to achieve a

hand-holdable shutter time 1/30s. The algorithm detailed in [29] fuses the information they contain to get

one sharp noiseless picture.

At the input, we have two images g1 and g2, the first one blurred and the second underexposed and noisy

because of the high ISO setting. The model (4) has a simple form – the operator D is identity for both

images and blurring operator H2 is identity for the noisy image. The geometric deformation is removed in

the registration step.

The algorithm works in the following three phases. The first is a rough image registration. Note that

precise registration is not possible for principle reasons because of ambiguity as discussed in Section 1.2. On

the other hand this fact does not harm the algorithm because the registration error is compensated by the

shift of the corresponding part of the PSF. The second step is the estimation of convolution kernels on a

grid of windows (Fig. 4 left) followed by an adjustment at places where the estimation failed. It means that

instead of estimating the whole function h in (12), we represent it by a set of standard convolution masks.

Finally, we get the sharp and almost noiseless image by minimizing the functional (5). The PSF described

by the operator H for the blurred image is approximated by interpolation from the kernels estimated in the

previous step.

The second step is a critical part of the algorithm. In the example in Fig. 3, we took 9× 9 = 81 square

sub-windows, in which we estimated corresponding convolution kernels. The blur kernel corresponding to

each square is calculated as a least squares fit between a patch in the noisy image and the corresponding

patch in the blurred image, all this subject to non-negativity constrain. The estimated kernels are assigned

to centers of the windows where they were computed. In the rest of the image, the PSF is approximated by

bilinear interpolation from blur kernels in the four adjacent sub-windows [16]. Note that such interpolation
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Figure 4: If the blur changes gradually, we can estimate convolution kernels on a grid of positions (9 × 9)

and approximate the PSF in the rest of the image by interpolation from four adjacent kernels. The right

side shows two of the computed PSFs from upper-left and bottom-right corners of the image. The size of

the PSFs is 51× 51 elements.

is not physically correct and we could get better results by a kind of warping. The time consumption of

the algorithm would nevertheless significantly grow up. The kernel estimation procedure can naturally fail,

either because of a lack of texture or because of pixel saturation. In [29], we identify such kernels and replace

them by the average of the nearest neighbors. For the identification, we use two simple measures – sum of

the kernel values and kernel entropy.

For minimization of the functional (5), we used a variant of the half-quadratic iterative approach, solv-

ing iteratively a sequence of linear subproblems, as described for example in [28]. Note that the blurring

operator can be speeded up by Fourier transform computed separately on each square corresponding to the

neighbourhood of four adjacent PSFs [16]. Instead of the half-quadratic approach, we could use one of faster

versions of the iterative shrinkage algorithm, such as [5].

Finally, we should mention that we actually do not solve the problem in the strict MAP sense but results

show that the chosen approach is sufficient. Details of the algorithm can be found in [29].

3.4 Depth-dependent blur

Certain types of blur, such as defocus and the blur caused by camera motion depend on the distance from

camera (depth). Then, if the scene contains significant depth variations, the methods requiring PSF without

discontinuities are not suitable. Artifacts would appear especially at the edges of objects. In this case, it is

indispensable to estimate both the unknown image and depth map. In the MAP framework, it can be done

again by minimization of a functional in the form (9), with the parameter vector {θk} containing the whole

depth map.

First such approach appeared for out-of-focus images in [18] proposing to use simulated annealing to
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minimize the corresponding cost functional. This guarantees global convergence, but in practice, it is pro-

hibitively slow. Later, this approach was adopted by Favaro et al. [8] who modelled the camera motion blur

by a Gaussian PSF, locally deformed according to the direction and extent of blur. To make the minimization

feasible, they took advantage of special properties of Gaussian PSFs as to view the corresponding blur as

an anisotropic diffusion. This model can be appropriate for small blurs corresponding to short locally linear

translations. An extension of [8] proposed in [9] segments moving objects but it keeps the limitations of the

original paper concerning the shape of the PSF.

The main assumption of existing algorithms is that the relation between the PSF and the depth is known.

An exception is our paper [28], where this relation is estimated for a camera motion constrained to movement

in one plane without rotation.

Based on our previous experience and tests conducted within the PIZZARO project, current restoration

methods working with blur that depends on depth map showed to be too slow and unreliable to have

application in forensic practice.

4 Restoration of compressed data

Our analysis revealed that in most situations relevant from the forensic viewpoint, image and video data are

degraded by compression. There are several approaches as how to solve this problem, from simple ones trying

to remove visually distracting squares in JPEG images [17] to statistically elaborated Bayesian approaches

incorporating full statistical model of JPEG or MPEG degradation [34, 20, 2].

5 Adaptive Kernel Regression

Regression (kernel regression) is conventionally seen as a tool for interpolation of regularly sampled data

(up-sampling). However recently kernel regression has been used in [24] for restoration and enhancement of

noisy and possibly irregularly sampled images. Regression methods attempt to recover the noiseless high-

frequency information corrupted by the limitations of imaging systems, as well as the degradations processes

such as compression. Interpolation of irregularly sampled image data is essential for applications such as

super-resolution, where several low-resolution images are fused (interlaced) onto a high-resolution grid. We

note that denoising is a special case of the regression problem where samples at all desired pixel locations

are given, but these samples are corrupted, and are to be restored.

Classic kernel regression is in essence a form of locally adaptive linear filtering process. To overcome the

inherent limitations dictated by the linear filtering properties of the classic kernel regression methods, the

nonlinear data adapted class of kernel regressors must be used, such as steering kernels [24]. One can show

that popular filtering techniques, e.g. bilateral filters or non-local means [7], are special cases of adaptive

kernel regression.

The outstanding performance of the data-adaptive kernel regression methods can be explained by noting

that in its simplest form (bilateral filter) exploits the (PDE-based) total variation regularization, which is

known to have superior performance compare to other regularizers.

The main advantages of regression methods are their low computational complexity and wider applicabil-

ity. We expect that using regression will allow us to perform super-resolution (or other image enhancement

tasks) even if insufficient number of frames is available.

6 Conclusion and future steps

In this report, we outlined basic types of image restoration techniques we considered for implementation

within the project PIZZARO. We give their assessment with respect to the applicability in the project.



Project PIZZARO - Image Restoration Module - Report I 13

Analysis revealed wide applicability of multichannel blind deconvolution and super-resolution methods,

especially when supplemented by recent masking procedures [32] reducing artifacts caused by movements of

scene objects. On the other hand, the restoration methods working with blur that depends on depth map

were evaluated as too slow and not reliable enough to have application in forensic practice. Open questions

still remain concerning feasibility of space-variant methods. For this moment, the state of the art does not

seem to bring enough to substantiate their use.

In the nearest future, we start designing the part of application that implements blind deconvolution

and super-resolution methods including the masking procedures mentioned above. Analysis will continue

with the assessment of techniques working with compressed data, which was identified as a critical problem

in most real situations. Finally, we will analyse the applicability of approaches based on non-local means

filtering and adaptive kernel regression.
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[26] David Tschumperlé and Rachid Deriche. Vector-valued image regularization with pdes: A common

framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(4):506–517, 2005.
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