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ssimbero@asu.cas.cz

Abstract

In this paper we present a new multichannel blind
deconvolution method based on so-called subspace
technique that was originally proposed by Harikumar
and Bresler. When at least two differently degraded
images (channels) of the original scene are provided,
the method is better conditioned than classical single
channel ones. In comparison with earlier multichannel
blind deconvolution techniques the subspace method is not
iterative and this possibly implies an implementation that
can be computationally more efficient. An application of
the proposed method to the restoration of the images of
sunspots is presented.

1. Introduction

By multichannel (MC) blind deconvolution we
understand simultaneous deconvolution of several
images obtained by measuring the same scene convolved
with different unknown filters. Since the MC blind
deconvolution can often provide much better results than
the single channel (SC) approach, that is ill-conditioned
and ill-posed, it has found numerous applications in many
areas.

The motivation of this work came from solar
astrophysics. Pictures taken by a ground-based telescope
are often the major information source about the processes
on the Sun atmosphere. In the visible spectral band,
the effects of the refractive index fluctuation of the air
caused by temperature variations become significant. The
wavefronts are perturbed and, consequently, the quality of
the images decreases. Another limit on image resolution is
imposed by an atmospheric turbulence. In a short-exposure
image the turbulent medium forms a complex point-spread
function (PSF) with a random phase whose mean equals
zero for frequencies higher than r0/λ, where r0 is a
diameter of a diffraction-limited circular pupil that would

give an image of the same resolution and λ stands for the
wavelength. Knowing the parameters of the telescope we
can partially model the PSF. However, due to the random
component presented by the atmospheric turbulence a
complete modeling of the PSF is impossible. Thus, the
image restoration must be viewed as a blind deconvolution
problem.

In ground-based astronomical observations it is often
possible to obtain several images of the object under
investigation that differ just by the degradation PSF. A
typical example is a short time sequence of pictures of a
still scene. Thus, it is possible to use a MC approach to
image restoration.

The MC deconvolution problem is in general better
conditioned than the SC one when channels with
different blur functions are assumed. This problem has
recently attracted a considerable attention as new efficient
algorithms have been proposed for its solution. First
attempts were made in the blind deconvolution of multiple
speckle images. SC blind iterative algorithms were applied
in parallel here and estimates were averaged [8], [7].
Methods proposed in [1], [2], [10], [11], [6] extend readily
available SC blind algorithms to the MC framework. More
recently, intrinsically MC blind methods that do not have
SC equivalent were proposed, e.g. in [9], [5].

In this paper, we present a new MC blind deconvolution
method based on the subspace technique that was originally
proposed by Harikumar and Bresler [5], [4]. Their work
extends the 1-D subspace technique EVAM [3] to the 2-D
scenario. The subspace technique belongs to the set of
intrinsically MC blind deconvolution approaches, i.e. it
requires at least two differently degraded images of the
original scene for a successful restoration. An application
of the subspace method to the restoration of the images
of sunspots and experiment results are shown in the last
section of the paper.
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2. Algorithm

We assume the linear shift-invariant degradation that is
modeled as

Yi = X ∗Hi + Ni, 1 ≤ i ≤ p (1)

where X denotes the discrete original image of size
(mx, nx) convolved with p ≥ 2 discrete blur filters Hi

of maximum size (mh, nh), Ni are noise matrices of
appropriate size and Yi are the observed images. The
requirement of different measurements corresponds to an
assumption that Hi are coprime, i.e. a scalar constant is
the only common factor of the z-transforms H̃i(z1, z2) of
the blurs Hi. It is proved in [5] that in the noise-free case, if
p ≥ 2 and the coprime assumption holds, then all solutions
Gi of size (mg, ng) to

Yi ∗Gj −Yj ∗Gi = 0, 1 ≤ i < j ≤ p (2)

have the form Gi = Hi∗K for some extra factor K ifmg ≥
mh and ng ≥ nh. In particular, if (mg, ng) = (mh, nh),
all solutions have the form Gi = αHi for some scalar α.
If mg < mh or ng < nh then (2) has no solution. Using
the vector-matrix notation the set of equations (2) can be
rewritten as

Yg = 0 (3)

where g is a vector representation of [G1,G2 . . .Gp]. In
the presence of noise, however, the situation is different and
we look for the least-squares solution to (3) subject to the
constraint ‖g‖ = 1, i.e.

ĝ(mg,ng) = arg min
‖g‖=1

‖Yg‖2 (4)

where ĝ denotes estimated blurs of size (mg, ng) in the
vector representation. The dimensions of Y are very
large even for small images. By transferring (3) to
the Fourier domain we were able to solve the equation
much more effectively without ever having to construct the
whole matrix Y and thus drastically reducing the memory
space requirements. Once the estimates ĝ are determined
the original image can be restored by standard non-blind
deconvolution approaches. Our images contain only a
part of the original image and so the boundary effect was
also considered in our implementation as it is described in
[5]. For low SNR (< 30dB) the subspace technique does
not give very accurate estimates and an iterative algorithm
based on the ML estimates is proposed in [5]. In our case of
astronomical images, we certainly know that SNR > 50dB
and so the subspace technique gives satisfying results.

The whole restoration procedure of X was done in four
steps:

1. Solve (4) for overestimated size (mg, ng), i.e. mg >
mh and ng > nh. We know that the solutions have
the form Ĝi = Hi ∗K and thus we may consider the
oversized estimates Ĝi as our new degraded images
and apply the subspace technique again. Clearly, this
speeds up the whole restoration, because Ĝi are much
smaller than Yi.

2. Using Ĝi instead of Yi rewrite (4) as ĥ(Mh,Nh) =
arg min‖e‖=1 ‖Ge‖2 and solve it for all possible
supports smaller than (mg, ng) to find the blur
estimates ĥ(Mh,Nh). In each step the number of
unknowns is equal to the blurs support Mh ×Nh.

3. For each ĥ(Mh,Nh), the original image estimate
X̂(Mh,Nh) is the one that minimizes the residual
r(Z) =

∑
i ‖Yi − Ĥi ∗ Z‖2. We use the conjugate

gradient method to minimize the residuals.

4. X̂(Mh,Nh) with the optimal residual is considered as
the best restoration of X. The residual r is not a
reliable choice for estimating the proper size (Mh, Nh)
because it does not penalize the over-fitting of data
and it generally decreases as (Mh, Nh) increases.
However, r stays high to a certain breaking point and
then it drops down to much smaller values. Estimates
X̂(Mh,Nh) that are just below this edge are regarded
as optimal. For estimates of larger (Mh, Nh) strong
artifacts, e.g. ringing, tend to show up.

3. Experiment

In this Section, we demonstrate the performance of the
proposed method in a real situation. Three images of the
spot in the solar photosphere taken by a telescope with a
CCD camera are blurred considerably mainly due to the
atmospheric turbulence (see Fig. 2). Additive noise is also
present but its impact is not significant here. Thanks to
high quality of the imaging device, the signal-noise-ratio
is higher than 50dB. Since the time interval between each
two consecutive acquisitions was very short, the scene can
be considered still.

We started with the overestimated blur size (mg, ng) =

(20, 20), see Section 2 step 1. The estimated blurs Ĝi

where then applied and we solved (4) and minimized the
residual 361-times (19 × 19) as described in the step 2 and
3. Optimal residual was reached for the blur size (7, 8)
and the corresponding restored image is in Fig. 2(d). A
significant improvement can be seen by visual comparison
with the original images. In Fig. 1 one can see another
frame from the original observation acquired at the moment
when the atmospheric turbulence was very mild. This
image was not used in the restoration algorithm. Since
it depicted the scene in almost ideal way, it can serve as
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image D
slightly blurred Fig. 1 10.49

Fig. 2(a) 4.24
considerably blurred Fig. 2(b) 5.80

Fig. 2(c) 4.55
restored Fig. 2(d) 13.41

Table 1. The measure of the restoration
quality D evaluated for blurred images and
the restored image.

the reference for evaluation purposes. Visual comparison
with the restored image proves a good performance of
our restoration technique. As an objective measure of the
restoration performance we use an integral of a sum of
image partial derivatives

D(x) =

∫ ∫ ∣∣∣∣
∂x

∂u

∣∣∣∣+

∣∣∣∣
∂x

∂v

∣∣∣∣ dudv , (5)

where x is the image function. If the blur function h is
non-negative (h(u, v) ≥ 0) and it preserves the image
energy (i.e.

∫ ∫
h(u, v)dudv = 1) then D(x ∗ h) ≤ D(x).

This implies that the value of D increases for less blurred
(sharper) images and so it can be used as the measure of the
restoration quality. We evaluated integral (5) for images in
Figs. 1, 2 and the results are presented in Table 1.

4. Conclusion

We have applied the previously proposed subspace
method to the real astronomical data that are of the MC
character with a low noise level. In comparison with the
original subspace method [5] we have solved the proposed
equations in the Fourier domain which dramatically reduces
the computation time and memory space requirements and
thus enables us to apply this method to large images. We
have observed that although the residual is not in theory
a reliable choice for estimating the proper size of blurs,
i.e. the residual decreases as the blur size increases, a
slope of the residual descent can be used as an indication
of the proper blur size. We have presented the blurred
sunspot images that were used as the input sequence for the
subspace method and the final restored image. Apart from
the visual comparison that proves a satisfying performance
the objective measure of the restoration quality defined as
the integral of a sum of image partial derivatives is given.

A majority of MC methods previously proposed reaches
estimated solutions by iteratively improving previous
estimates. The subspace approach is not iterative in this
sense. It estimates PSF of given size in one single step but
has to probe different sizes of PSF. Many drawbacks typical

for iterative methods, e.g. initial estimates, convergence,
local minima, disappear in the subspace approach. On the
other hand, the subspace approach gives erroneous results
for low signal-noise-ratios compared to iterative methods.

5. Acknowledgment

This work has been supported by the projects No.
102/00/1711 and No. 102/98/PO69 of the Grant Agency
of the Czech Republic.

References

[1] K. Boo and N. Bose. Multispectral image restoration with
multisensors. IEEE Trans. Geoscience Remote Sensing,
35(5):1160–1170, Sept. 1997.

[2] D. Ghiglia. Space-invariant deblurring given N
independently blurred images of a common object. J.
Opt. Soc. Am. A, 1(4):398–402, Apr. 1984.

[3] M. Gurelli and C. Nikias. Evam: An eigenvector-based
algorithm for multichannel blind deconvolution of input
colored signals. IEEE Trans. Signal Process., 43:134–149,
Jan. 1995.

[4] G. Harikumar and Y. Bresler. Efficient algorithms for the
blind recovery of images blurred by multiple filters. In
Proceedings of ICIP 96, volume 3, pages 97–100, Lausanne,
Switzerland, 1996.

[5] G. Harikumar and Y. Bresler. Perfect blind restoration of
images blurred by multiple filters: Theory and efficient
algorithms. IEEE Trans. Image Processing, 8(2):202–219,
Feb. 1999.
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Figure 1. The gray-scale image (300× 300) of the sunspot. Due to good atmospheric conditions this
observation is negligibly blurred.

(a) (b)

(c) (d)

Figure 2. (a)-(c): Other observations of the same sunspot as in Fig. 1. The images are blurred
considerably by a varying atmospheric turbulence. (d): The restored image from the sequence
(a)-(c) using the proposed subspace technique.
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