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Multichannel Blind Deconvolution of Spatially
Misaligned Images

Filip Šroubek and Jan Flusser, Senior Member, IEEE

Abstract— Existing multichannel blind restoration techniques
are prone to noise, assume perfect spatial alignment of channels
and a correct estimation of blur size. We develop an alternating
minimization scheme based on a maximum a posterior estimation
with a priori distribution of blurs derived from the multichannel
framework and a priori distribution of original images defined by
the total variation semi-norm. This stochastic approach enables
us to recover the blurs and the original image from channels
severely corrupted by noise. We observe that the exact knowledge
of the blur size is not necessary and we prove that translation
misregistration up to a certain extent can be automatically
removed in the restoration process.

Index Terms— multichannel blind deconvolution, image
restoration, total variation, subspace methods, MAP estimator,
conjugate gradient

I. INTRODUCTION

IN many applications, such as microscopy imaging, remote
sensing and astronomical imaging, observed images are

degraded by distortion. Examples of most common distortions
are atmospheric turbulence, relative motion between a camera
and an object or wrong focus. Restoration of the degraded
images is generally a necessary step that precedes any other
image processing or segmentation tasks.

First, a proper mathematical model that simulates the acqui-
sition system is required. Images may be regarded as either de-
terministic or stochastic signals, blurred by linear or nonlinear
processes and corrupted with additive or multiplicative noise.
Several constraints on the degradation and the original image
were proposed and many different restoration algorithms were
analyzed in the literature; see e.g. [1]. In the sequel, we adopt
a linear filter model with additive uncorrelated noise, i.e.

z(x) = (h ∗ u)(x) + n(x) ,

where z, h, u and n are the degraded image, blur, original
image and noise, respectively, and ∗ denotes convolution. This
model accurately describes many common degradations and
that justifies its frequent use.

The amount of a priori information about the degradation,
like the size or shape of blurs and the noise level, significantly
influences the success of restoration. When the blur function
is known, many conventional approaches have been developed
to compensate for the distortion. Such problems are solvable
except at spatial frequencies where the Fourier transform

Financial support of this research was provided by the Grant Agency of
the Czech Republic under the project No. 102/00/1711.
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of the blur function is zero or close to zero, which is a
phenomenon that occurs almost surely. We therefore face an
ill-posed problem that calls for regularization. When the blur
is unknown, we talk about blind image restoration. Blind
image restoration is extensively studied and many techniques
have been proposed for its solution [2]. Most of the methods
are iterative or recursive. They involve regularization terms
based on any available a priori information which assure
various statistical properties of the image and constrains the
estimated image and/or restoration filter. As in the nonblind
case, regularization is required to improve stability. Probably
the most successful regularization approach is based on the
total variation semi-norm [3]. Minimization of total variation
preserves edges and fine details in the image and it was
first applied to image denoising and later on to restoration.
Nevertheless, since the blind case is strongly ill-posed, all the
methods suffer from convergence and stability problems.

There are some applications, where several blurred versions
of the same original image are observed through different
acquisition channels. Adopting the above model, we write

zk(x) = (hk ∗ u)(x) + nk(x), k = 1, . . . ,K ,

where K is the number of channels. Restoring the original
image in this scenario is called multichannel restoration
(MC). Examples of such multichannel measuring processes
are common, e.g., in remote sensing and astronomy, where
the same scene is observed at different time instants through a
time-varying inhomogeneous medium such as the atmosphere;
in confocal microscopy, where images of the same sample
are acquired at different focusing lengths; or in broadband
imaging through a physically stable medium but which has
a different transfer function at different frequencies. Nonblind
MC restoration is potentially free of the problems arising from
the zeros of blurs. The lack of information from one blur in
one frequency is supplemented by the information at the same
frequency from others. Intuitively, one may expect that the
blind restoration problem is also simplified by the availability
of different channels. Two classes of multichannel blind image
restoration algorithms exist. Extensions of singlechannel blind
restoration approaches form the first class, but since they suffer
from similar drawbacks as their singlechannel counterparts,
they are of not much interest. The other class consists of
intrinsic multichannel approaches, which evolved primarily
from multichannel one-dimensional signal estimation methods
and will be considered here.

The intrinsic multichannel algorithms basically come in
three flavors. Harikumar et al. [4] proposed an indirect al-
gorithm, which first estimates the blur functions and then
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recovers the original image by standard nonblind methods.
The blur functions are equal to the minimum eigenvector of
a special matrix constructed by the blurred images. Necessary
assumptions for perfect recovery of the blur functions are
noise-free environment and channel coprimeness, i.e. a scalar
constant is the only common factor of the blurs. Giannakis
et al.[5] (and at the same time Harikumar et al. [6]) devel-
oped another indirect algorithm based on Bezout’s identity
of coprime polynomials which finds restoration filters and by
convolving the filters with the observed images recovers the
original image. Both algorithms are vulnerable to noise and
even for a moderate noise level restoration may break down.
In the latter case, noise amplification can be attenuated to a
certain extent by increasing the restoration filter order, which
comes at the expense of deblurring. Pai et al. [7], [8] proposed
two direct multichannel restoration algorithms that, contrary
to the previous two indirect algorithms, estimate directly the
original image from the null space or from the range of a
special matrix. In noisy cases, the direct algorithms are more
stable than the indirect ones. Nevertheless, all the algorithms
lack the necessary robustness since they do not include any
noise assumptions in their derivation and miss regularization
terms. Recently, we have proposed an iterative MC algorithm
[9] that performs well even on noisy images. It is based on
least-squares deconvolution by anisotropic regularization of
the image and between-channel regularization of the blurs.

All the above mentioned intrinsic multichannel algorithms
assume that the size of the blurs is known or can be correctly
estimated, and that the channel outputs are spatially aligned
(registered). These assumptions are seldom true in real ap-
plications and, to our knowledge, their impact have not yet
been considered in previous works dedicated to multichannel
restoration. Present techniques assume that the channels are
correctly registered and if not they require a preprocessing
step, which registers the channels.

In this paper, we address the issues of robustness, blur
size and misregistration. Exploiting the stochastic model and
Bayes’ rule in Section III, we express the a posteriori prob-
ability of the original image in terms of the conditional
probability and two a priori probabilities, which are derived
from properties of bounded variation functions and from the
multichannel framework. An alternating minimization (AM)
algorithm as a solution to a maximum a posteriori probability
(MAP) estimator is also given here. In Section IV, we
examine the minimization algorithm for its ability to alleviate
the blur-oversized problem and demonstrate its convergence
properties. We illustrate that the channel misalignment can be
perfectly neutralized by properly oversizing the blur support
in Section V.

II. NOTATION

We use the following conventions throughout the paper.

N2 2D space of integers
u : N2 → R image function with a finite rectangular

support
Su ≡ (S1

u, S
2
u) support size of the image u

x = (i, j) ∈ N2 position at the i-th row and the j-th
column in the image

u(x) ≡ u(i, j) image value at the position x
u ≡ [u(1, 1), u(2, 1), . . . , u(S1

u, 1), u(1, 2),
. . . , u(S1

u, S
2
u)]T image column vector,

lowercase bold letters
C matrix, uppercase bold letters
‖ · ‖ l2 norm

det(·) matrix determinant
Tr(·) trace of a square matrix
E{·} expected value
F {·} discrete 2D Fourier transform

We endow the vector space N2 with operators
“+” and “−” defined in a standard way

(i, j) + k abbreviated form for (i, j) + (k, k)∏
(i, j) ≡ ij

(i, j) < (k, l) ≡ {i < k ∧ j < l} and similarly other
binary relations “>”, “=”, etc.

For our next discussion, it is necessary to define convolution
with a variable output support in matrix-vector notation. We
follow the definition in [4]. Let u(x) and v(y) be two images
with support 1 ≤ x ≤ Su and 1 ≤ y ≤ Sv = (s1, s2),
respectively, and B = (b1, b2), T = (t1, t2), B ≤ T . We
separate v column-wise and address individual columns as
v1, . . . , vs2 . We denote by CB,T

Sv
{u} a Toeplitz-block-Toeplitz

matrix of size
∏

(T−B+1)×∏Sv such that the concatenated
result of convolution

∑
B≤x≤T u(y − x)v(x) is equal to

CB,T
Sv
{u}v. This is given by

CB,T
Sv
{u} =




Cb1,t1
s1 {vb2} . . . Cb1,t1

s1 {vb2−s2+1}
Cb1,t1
s1 {vb2+1} . . . Cb1,t1

s1 {vb2−s2+2}
...

...
...

Cb1,t1
s1 {vt2} . . . Cb1,t1

s1 {vt2−s2+1}




︸ ︷︷ ︸
s2 blocks

(1)
and

Cb,t
s {vj} =




v(b, j) v(b− 1, j) . . . v(b− s+ 1, j)

v(b+ 1, j) v(b, j) . . . v(b− s+ 2, j)

...
...

...
...

v(t, j) v(t− 1, j) . . . v(t− s+ 1, j)



,

where v(i, j) = 0 for i < 1 ∨ i > s1 ∨ j < 1 ∨ j > s2.

III. PROBLEM FORMULATION

We first define the single-input multiple-output degradation
model in the discrete domain N2 as follows. Suppose that an
original (input) image u(x) has support 1 ≤ x ≤ Su. The input
image propagates through K different channels that behave
as linear filters each with a finite impulse response (blurs)
hk, k ∈ {1, . . . ,K}. Let the maximum support of the blurs
be Sh. In each channel, the image is further degraded with
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additive white Gaussian noise (AWGN) nk of zero mean and
variance σ2 and shifted by tk ∈ N2, tk ≥ 0. Let St denote the
maximum observed shift. On the output, we receive degraded
and shifted images zk(x) with minimum support 1 ≤ x ≤ Sz ,
where Sz = Su − Sh − St + 1. The whole model can be
expressed as

zk(x) =
∑

1≤y≤Su−Sh+1

δtk(x− y + St + 1)

∑

1≤z≤Su
hk(y − z + Sh)u(z) + nk(x) ,

where x, y, z ∈ N2 and δtk is a discrete delta function at
St− tk + 1. By concatenating columns of the images, we can
rewrite the previous equation in matrix-vector notation as

zk = TkHku + nk ,

where zk, u and nk are corresponding column image vectors.
Tk = CSt+1,Su−Sh+1

Su−Sh+1 {δtk} is of size
∏

(Su−Sh−St+ 1)×∏
(Su − Sh + 1) and Hk = CSh,Su

Su
{hk} is of size

∏
(Su −

Sh + 1) ×∏Su. Both matrices are constructed according to
(1) and perform “cropped” convolution, i.e. the support of the
result is only a part of the full convolution support. It is easy
to verify that the matrix product TkHk = Gk defines cropped
convolution with a mask gk(x) = hk(x − tk) of size Sg =
Sh + St. This mask is a shifted version of the original blur
hk. By concatenating the output vectors z ≡ [zT1 , . . . zTK ]T and
the shifted blur vectors g ≡ [gT1 , . . . ,g

T
K ]T , the multichannel

model can be rewritten in two equivalent forms

z = Gu + n = Ug + n , (2)

where G ≡ [GT
1 , . . . ,G

T
K ]T , n ≡ [nT1 , . . . ,n

T
K ]T , and U

is a block–diagonal matrix with K blocks each performing
convolution with the image u, i.e.

U ≡




C
Sg,Su
Sg

{u} . . . 0

...
. . .

...

0 . . . C
Sg,Su
Sg

{u}




︸ ︷︷ ︸
K blocks

.

We have obtained a standard multichannel convolution model
and all conclusions for blur restoration in [4] and [5] apply also
to our shifted version. When noise is omitted, it follows from
(2) that the “cropped” convolution matrix Zk ≡ C

Sḡ,Sz
Sḡ

{zk}
for some arbitrary support Sḡ is given by

Zk = UGk , (3)

where U ≡ C
Sg+Sḡ−1,Su
Sg+Sḡ−1 {u} and Gk ≡ C

1,Sg+Sḡ−1
Sḡ

{gk}.
The above equality determines the rank property of Zk and is
utilized in the following lemma.

First, we recall an important definition from [5]. Let
h̃k(z1, z2) denotes the 2D z-transform of the blur hk. The
polynomials {h̃k(z1, z2)} are called “weakly coprime” if their
only common factor is a scalar constant.

Lemma 1: Suppose that K ≥ 2, {h̃k(z1, z2)}Kk=1 are
weakly coprime, U in (3) has full column rank and the noise
term is not present in (2). Then all solutions {ḡk} to

Ziḡj −Zj ḡi = 0 , 1 ≤ i < j ≤ K (4)

have the form

ḡk =





C
1,Sḡ
Sg
{f}gk if Sḡ ≥ Sh + St ,

αgk if Sḡ = Sh + St ,

∅ otherwise,

where f is some spurious factor of size Sḡ −Sh−St + 1 and
α is some scalar.
The proof is similar in nature to the proof given in [4] except
that St is included in size constraints as discussed below. The
above lemma states that in the noiseless case, if the estimated
blur size Sḡ is equal to the sum of the maximum size of
the original blurs Sh and the maximum shift St, then the
true shifted blurs can be recovered precisely except to some
scalar factor. This magnitude ambiguity can be resolved by
stipulating, e.g.,

∑
x hk(x) = 1, which is a standard energy

preserving assumption. For oversized Sḡ, the solutions lie in a
space that contains the original blurs but the dimensionality of
the solution space is proportional to the degree of the oversize.
The first assumption that the blurs are weakly coprime is
satisfied for many practical cases, since the necessary channel
disparity is mostly guaranteed by the nature of the acquisition
scheme and random processes therein. Refer to [4] for a
relevant discussion. The second assumption of full column
rank is also a mild one. For generic u, the matrix U has full
column rank provided that it has more rows than columns.
Let us assume that the blur size is correctly estimated, i.e.
Sḡ = Sg, then U is of size

∏
(Su− 2(Sg + 1))×∏(2Sg − 1)

from which follows a size constraint
∏

(Su−2(Sh+St+1)) ≥∏
(2(Sh + St) − 1). Generally, u is much bigger than h and

the size constraint is violated only if the channel shift is for
example St > Su+3

4 − Sh. It follows that U does not have
certainly full column rank if St > Su/4.

There are K(K − 1)/2 equations in (4) and after stacking
them into one system, we get

Zḡ = 0 , (5)

where ḡ ≡ [ḡT1 , . . . , ḡ
T
K ]T ,

Z ≡




Z1

...
ZK−1


 ,

Zi ≡




0 . . . 0

...
. . .

...
0 . . . 0

︸ ︷︷ ︸
i−1 blocks

Zi+1 . . . −Zi . . .

...
. . .

...
...

ZK . . . . . . −Zi




︸ ︷︷ ︸
K−i+1 blocks

(6)

for i = 1, . . . ,K − 1. From Lemma 1 follows that the
dimension of the null space of Z is

∏
(Sḡ − Sg + 1). In the

presence of noise, the left-hand side of (5) is not zero anymore
but is proportional to the noise level.

Adopting a stochastic approach, the minimization problem
can be formulated as a maximum a posterior (MAP) estima-
tion. We assume that the images u, g and z are random
vector fields with given probability density functions (pdf)
p(u), p(g) and p(z), respectively, and we look for such
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realizations of u and g which maximize the a posterior
probability p(u,g|z). We assume that u and h are uncorrelated
then, according to the Bayes rule, the relation between a priori
densities p(u), p(g) and the a posterior density is p(u,g|z) =
p(z|u,g)p(u)p(g)/p(z). The pdf p(z) is a constant and can
be thus omitted. The conditional pdf p(z|u,g) follows from
our model (2) and from our assumption of AWGN, i.e.,

p(z|u,g) ∝ exp

{
− 1

2σ2
(z−Gu)T (z−Gu)

}
. (7)

A. A priori distribution of the original image

The necessity of meaningful a priori probabilities becomes
often Achilles’ heel of Bayesian approaches. Several different
forms of the image a priori probabilities were proposed in
the literature. Some are suitable only for a specific class of
images and others are more general. The classical general form
chooses the Laplacian operator as the inverse of the covariance
matrix of u, i.e., p(u) ∝ exp(uT∇2u), where ∇2 denotes the
discrete Laplacian operator. Apart from easy implementation,
this pdf is not suitable for the a priori model, since it prefers
smooth functions without any discontinuities. On real images,
object edges create sharp steps that appear as discontinuities
in intensity functions. Geman et al. [10] thus proposed a more
sophisticated model with a “line process” which keeps track of
edge locations. Similar results were obtained for the Mumford-
Shah functional [11] that introduces a discontinuity set on
which the image function is allowed to have an infinite image
gradient. It is the space of bounded variation (BV) functions
that is widely accepted as a proper setting for real images. This
has been proved many times [3] by demonstrating very good
anisotropic denoising properties of the total variation semi-
norm TV (u) =

∫
|Du(x)|dx that is finite only in the BV

space. Here, Du denotes the distributional gradient of u. Since
TV is highly nonlinear and not continuous at Du(x) = 0, a
special attention must be paid to its discretization and several
relaxed linearization schemes were proposed. We follow the
half-quadratic regularization scheme in [12] that introduces an
auxiliary variable. First, let us recall:

Lemma 2: For every x ∈ R, x 6= 0

|x| = min
v>0

(
v

2
x2 +

1

2v

)
,

the minimum is reached for v = 1/|x|.
The a priori distribution of the original image can be thus

expressed as

p(u, v) ∝ exp

{
1

2

∑

i,j

v(i+ 1
2 , j)|u(i+ 1, j)− u(i, j)|2+

v(i, j+ 1
2 )|u(i, j+1)−u(i, j)|2

}
≡ exp

{
−1

2
uTL(v)u

}
,

(8)

where v is the auxiliary flux variable similar to Geman’s line
process. It is indexed (i± 1

2 , j± 1
2 ) instead of (i, j) to underline

that it denotes the edge strength between point (i, j) and its
neighbors (i± 1, j ± 1). Matrix L(v) is positive semidefinite
constructed by v and performs shift-variant convolution with

v. To avoid division by zero and in accordance with the above
lemma,

v(i± 1
2 , j ± 1

2 ) =
{

1
|u(i±1,j±1)−u(i,j)| if |u(i± 1, j ± 1)− u(i, j)| > ε

1
ε otherwise,

(9)

where ε is the relaxation parameter. Note that in relatively flat
regions, |Du(x)| ≤ ε, L(v) becomes the Laplacian operator.
In regions with high image gradient, |Du(x)| > ε, uTL(v)u
approximates the TV semi-norm of the image u.

B. A priori distribution of blurs

The a priori distribution p(g) can be derived directly from
the multichannel model. The Bayes rule states that p(g) =
p(g|z)p(z)/p(z|g), where p(z) is a constant and can be thus
dropped. To proceed, the conditional probabilities p(g|z) and
p(z|g) are necessary to derive. After substituting for Z from
(2), we see that E{‖Zg‖2} = σ2 Tr(GGT ), where G is defined
as Z in (6) with C

Sg,Sz
Sz

{gi} substituted for Zi. The conditional
pdf p(g|z) is then given by

p(g|z) ∝ exp
{
− 1

2σ2
gTZT (GGT )−1Zg

}
. (10)

The main difficulty arising here is the covariance matrix
GGT that totally depends on the blurs g, which are not
known in advance. One way would be to use an iterative
algorithm and construct G from g of the previous iteration.
Such kind of the iterative maximization of p(g|z) w.r.t. g
is in accord with the IQML algorithm in [4]. Our numerical
experiments have shown, however, that the covariance matrix
can be approximated by a constant diagonal matrix D such
that Tr(D) = Tr(GGT ), i.e. D = (2/K)E{‖g‖2}I =
(2/K)E{‖h‖2}I. This greatly simplifies the calculation and
does not inflict the restoration. The expected value of ‖h‖2

is not known in advance, but a good approximation can be
given. If energy preserving assumption,

∑
x hk(x) = 1, and

positiveness, hk ≥ 0, are satisfied then K∏
Sh
≤ ‖h‖2 ≤ K

and we use the bottom limit for E{‖h‖2}.
The conditional pdf p(z|g) can be expressed as p(z|g) =∫
p(z|u,g)p(u) du. To obtain an analytical solution, we must

assume that the matrix L(v) in p(u) is constant and not
dependent on v. Therefore, we approximate L with the discrete
Laplacian operator 1

ε∇2. The analytical result is summarized
in the following lemma.

Lemma 3: For the model in (2), suppose that p(n) =
kn exp(− 1

2σ2 nTn),
p(u) = ku exp(− 1

2uTLu) and p(h) are uncorrelated, then

p(z|g) = k exp

{
−1

2
zT
[ 1

σ2
I− 1

σ4
G(ATA)−1GT

]
z

}
×

√
2πS

1
uS

2
u

det(ATA)
, (11)

where ATA = 1
σ2 GTG + L and k is the appropriate

normalization constant.
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The proof is carried out directly by substituting for p(n) and
p(u) in relevant equations.

It is easy to verify that the exponential term in (11) is
extremely flat w.r.t. g and can be thus regarded as a constant
term. Finally, after substituting D for GGT , we obtain from
(10) and (11) that

p(g) ∝ exp
{
− K

4σ2‖h‖2 gTZTZg
}√

det(ATA) . (12)

C. AM–MAP algorithm

The a posterior pdf p(u,g|z) is composed of (7), (8), (12)
and turns out to be

p(u,g|z) ∝ exp

{
−1

2

( 1

σ2
(z−Gu)T (z−Gu)+

uTL(v)u +
K

2σ2‖h‖2 gTZTZg
)}√

det(ATA)

The MAP estimation is equivalent to minimizing E(u,g) =
− log(p(u,g|z)), i.e.

E(u,g) =
1

σ2
(z−Gu)T (z−Gu) + uTL(v)u+

K

2σ2‖h‖2 gTZTZg − log(det(ATA)) . (13)

To find a minimizer of the energy function E, we perform
alternating minimizations of E over u and g. The advantage of
this scheme lies in its simplicity. Each term in (13), except the
logarithmic one, is convex (but not necessarily strictly convex,
especially, when g is oversized). The derivatives w.r.t. u and g
can be easily calculated for each except again the logarithmic
term. However, if G and L = (1/ε)∇2 are approximated by
circulant-block-circulant (CBC) matrices, we conclude that

∇gi
(

log(det(ATA))
)

=
2

σ2
F−1

{
F {gi}∑K

k=1 ‖F{gk}‖2
σ2 + Λ

}
,

r = [∇Tg1
, . . . ,∇TgK ]T ,

where Λ are the eigenvalues of approximated CBC L. This
term closely resembles the MC Wiener filter and Λ prevents
division by zero. In summary, the AM–MAP algorithm con-
sists of

gm+1 = arg min
g
E(um,g)⇔

(UTU +
K

2‖h‖2 ZTZ)g + r = UT z ,

um+1 = arg min
u
E(u,gm+1)⇔

(GTG + σ2L(v))u = GT z .

(14)

In each step, the flux variable v is updated according to (9).
Our AM approach is a variation on the steepest-descent

algorithm. The search space is a concatenation of the blur
subspace and the image subspace. The algorithm first descends
in the blur subspace and after reaching the minimum, i.e.,
∇gE = 0, it advances in the image subspace in the direction
∇uE orthogonal to the previous one, and this scheme repeats.
The preconditioned conjugate gradient (PCG) method is used

to solve the individual equations. E as a function of both vari-
ables u and g is not convex. Therefore, we cannot guarantee,
in general, that the global minimum is reached by the AM–
MAP algorithm. Nevertheless, our experiments have shown
good convergence properties even for the oversized blurs. We
also assume that the noise variance σ2 is known. If this is not
the case, the noise variance can be assessed by standard noise
estimation methods or an approach of “trial and error” can be
considered. The impact of wrong σ2 can be easily observed.
If the parameter is too small, i.e. we assume less noise, the
restoration process begins to amplify noise in the image. If the
parameter is too big, the restoration process starts to segment
the image.

IV. OVERSIZED BLURS

It is difficult to analyze global convergence properties of the
algorithm (14) due to the nonlinear term L(v). Chan et al. in
[13] transformed a similar alternating minimization problem
into the Fourier domain and performed the analysis there.
Sadly, this approach is false in our case since the support
constraint of the blurs is lost in the Fourier domain and
therefore blind deconvolution is very “loose” in the Fourier
domain. It means that any image u which in the z-transform
splits only into two factors, ũ = ũ1ũ2, has infinite number of
factors in the Fourier domain.

We have run a series of experiments on simulated data with
an incorrectly estimated blur size. A standard 128×128 “Lena”
image in Fig. 2 was degraded with three random blurs of
size 5 × 5 and with additive Gaussian noise of SNR = 20,
30, 40, 50dB. (Recall that SNR decreases as noise variance
increases.) The original image was recovered from each image
triplet using the alternating minimization algorithm with the
blur size set to 5 × 5, 6 × 6, 7 × 7 and 8 × 8, respectively.
The percentage mean squared error of the estimated image ū
,defined as PMSE(ū) = 100‖ū − u‖/‖u‖, was used as the
evaluation measure at each iteration. Calculated PMSE’s are
summarized in Fig. 1. We can see that the slope of PMSE
tends to flatten as the blur size increases. It follows from
Lemma 1 that rank of Z decreases as the order of oversize
grows. In the noisy case, this corresponds to an increasing
number of eigenvalues of Z bellow the noise level, which
implies the slower convergence rate of the CG method. We
observe even slower convergence rate for less noisy images
(SNR = 50dB) since here the eigenvalues cluster close to zero.

V. SHIFT-INVARIANT RESTORATION

The first experiment demonstrates the capability of the
AM–MAP algorithm to recover the original image from two
degraded and shifted versions thereof, when the maximum
shift between any two channels is known. The 128 × 128
“Lena” image in Fig. 2 was degraded with two 5 × 5 blurs.
One blurred image was shifted by 10×20 pixels and then both
images were cropped to the same size; see Fig. 3. The AM
algorithm was initialized with the correctly estimated blur size
15 × 25. The restored image and blurs are shown in Fig. 4.
The blurs are perfectly recovered and properly shifted. The
restored image matches the original one, showing only minor
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Fig. 1. PMSE of the “Lena” image calculated at each iteration step. The “Lena” image was degraded with three random blurs of size 5×5 and with AWGN
of SNR (a) 20dB, (b) 30dB, (c) 40dB and (d) 50dB. The AM algorithm was executed with the estimated blur size (©) 5× 5 (correct size), (�) 6× 6, (O)
7× 7 and (×) 8× 8

artifacts close to the borders where only data from one channel
were available. The same experiment was conducted again
but Gaussian noise SNR = 30 dB was added to the blurred
and shifted input images in Fig. 3. Obtained results in Fig. 5
illustrate satisfying restoration.

We have also compared the performance of the AM–
MAP algorithm with the performance of Pai’s method [8] for
different noise levels. The Pai approach directly recovers the
original image by calculating the maximum singular vector
of a special matrix. The QR decomposition is necessary for
the construction of this matrix and the power method (or any
other iterative method for eigenvector computation) is used
to find the maximum singular vector, i.e the original image.
Although the Pai method is not iterative in its definition, it
requires numerical iterative methods and thus approaches the
complexity of our inherently iterative algorithm. We used four
randomly generated 3× 3 blurs to obtain four blurred “Lena”
images. The images were then mutually translated so that
centers of the images were in corners of a 5×5 square. Noise
was added with SNR = 10, 20, 30, 40 and 50 dB, respectively.
The maximum shift and the size of blurs were assumed to
be known and therefore both methods were initialized with

the correct blur size 8 × 8. For each SNR, the experiment
was repeated with different blurs 10 times and stopped after
50 iterations in the AM–MAP case. The mean PMSE and
standard deviation was calculated over these 10 estimated
images and plotted in Fig. 6. Clearly, the AM–MAP performs
better then the Pai method for every SNR.

To evaluated the performance of the AM–MAP algorithm
with respect to the channel misalignment, a different exper-
iment was conducted. Degraded images were prepared in
similar fashion as in the previous experiment but this time the
maximum translation between any two channels varied from
0 to 5× 5 pixels to simulate inaccurate registration. For each
shift, the experiment was repeated 10 times with different blurs
and was every time initialized to 8×8 blur size. The calculated
mean PMSE and standard deviation is given in Figs. 7 and 8.
For low SNR’s around 10 and 20 dB, PMSEs are almost
constant, which demonstrates a very good stability of the
algorithm with respect to the mask overestimation. In the case
of high SNR’s, see Fig. 8, we can observe a steady growth of
the restoration error as the shift increases and then a dramatic
performance gain for shift 5. This sharp error decrease is due
to much better convergence of the algorithm if the blur size is
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Fig. 3. Input channels: (a) “Lena” images degraded with two 5× 5 blurs in (b) . Mutual translation between the images is 10× 20 pixels.
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Fig. 2. The original “Lena” image 128× 128.

correctly estimated, which, in our case, corresponds to shift 5.
Results for low SNR’s in Fig. 7 do not exhibit such dramatic
performance gains as the impact of noise prevailed over the
blur size overestimation.

Finally, to demonstrate the applicability of the AM–MAP
algorithm, we have performed an experiment with real data.
This experiment was motivated by many practical situations
where we have to handle images degraded by random vibration
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Fig. 4. Perfect noise-free AM restoration: (a) recovered “Lena” image, (b)
recovered blurs and 10× 20 shift between channels
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Fig. 5. Noisy AM restoration (30dB): (a) recovered “Lena” image, (b)
recovered blurs and 10× 20 shift between channels

blur. This problem appears frequently in industrial visual
inspection when the camera is mounted on a vibrating machine
or when a stationary camera monitors vibrating environment.
A text label (a part of a standard newspaper page) was attached
to a vibrating machine. The label was monitored under poor
light conditions by a standard digital camera mounted on a
tripod. The camera exposure time was set at 1/15s which
was comparable to the period of irregular vibrations of the
machine. Three cropped images of the label acquired with the
camera were used as the input channels of AM–MAP; see
Fig. 9. Note strong shift blurs due to the machine movement
and clear spatial misalignment of the channels. The AM–
MAP algorithm was initialized with the blur size 10 × 10,
σ2 = 0.01 and ‖h‖2 = 0.25. The reconstructed label and
the corresponding blur masks after 20 iterations are shown in
Fig. 10. Observe that the restoration is slightly less successful
at the image borders, especially close to the top edge, where
only data from the third channel were available. We may
conclude that the restoration was successful (the text is clearly
readable) and that the spatial misalignment inherent to this
type of problems poses no threat to proper functionality of the
algorithm. Let us recall that no assumption about the shape of
the blurring functions and no preprocessing of the input images
were employed.

VI. CONCLUSION

We have developed the iterative algorithm for MC blind
deconvolution that searches for the MAP estimator. The prior
density functions were derived from the variational integral
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Fig. 6. Comparison of the AM–MAP algorithm (solid) and the Pai method
(dashed): Mean PMSE and standard deviation (vertical abscissae) of the
restored images over 10 different degradations and for different SNR.
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Fig. 7. AM-MAP algorithm performance on misaligned channels: Mean
PMSE and standard deviation (vertical abscissae) of restored images over
10 different degradations for a different degree of channel misalignment and
SNR.
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Fig. 8. AM-MAP algorithm performance on misaligned channels: Mean
PMSE of restored images over 10 different degradations for a different degree
of channel misalignment and SNR.
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Fig. 9. Real data experiment: Three consecutive acquisitions of a text label
attached to a vibrating machine. The images are cropped to 100× 200 size.
Shift blurs and spatial misalignment of the images are clearly visible.
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Fig. 10. Real data experiment: Reconstructed part of the label and the
corresponding blurs (magnified) using the AM–MAP algorithm. The irregular
vibration of the machine is well preserved in the blurs.

defined on bounded variation functions and from the mutual
relation of weakly coprime channels. The restoration is reg-
ularized with an anisotropic term for edge preservation and
performs well on heavily degraded images with high SNR and
shows better performance then the most recent multichannel
method. We have also shown that the inaccurate registration
of channels can be alleviated by properly overestimating the
size of blurs. All previously published MC blind deconvolu-
tion methods assumed perfectly registered channels. To our
knowledge, this is the only method dealing explicitly with
misregistration of images in the multichannel framework and
providing a successful solution to this problem.
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