Faculty of Mathematics and Physics,
Charles University, Prague

Department of Software Engineering

Image Fusion via
Multichannel Blind Deconvolution

Ph.D. Thesis

Ing. Filip Sroubek

Supervisor: Doc. Ing Jan Flusser, DrSc.

Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague

12 — Software systems Prague, May 2003






Abstract

The thesis focuses on fusion of degraded images originating from one source with the aim
of obtaining an undegraded image of the source. Depending on the type of the degrada-
tion, a formalized system of the most common fusion problems is built. The unknown
degradation we deal with is additive noise and space-invariant blurs modeled by convo-
lution. The fusion process is then referred to as multichannel blind deconvolution and it
frequently occurs in microscopy imaging, remote sensing, astronomical imaging, etc.

A novel iterative algorithm is proposed, which solves an energy minimization prob-
lem by means of an alternating minimization scheme. The energy functional, which is
utilized here, incorporates regularization of the original image and blurs. Anisotropic
regularization of the image based on total variation and the Mumford-Shah functional is
implemented. Regularization of the blurs emanates from the multichannel framework of
the problem, in particular, from mutual relations between channels degraded with differ-
ent blurs. A better restoration performance was achieved in comparison with previously
proposed multichannel blind approaches. Primarily, an enhanced noise robustness was
observed. An accurate estimation of the blur size is however necessary.

The same restoration problem is revisited and a maximum a posterior estimate is de-
rived. A priori probabilities of the original image and blurs are approximated by total
variation semi-norm and by between-channel relations, respectively. This stochastic ap-
proach handles correctly situations when the blur size is overestimated. Moreover, trans-
lation misregistration of the channels up to a certain extent can be automatically removed
in the restoration process.

Capabilities of the proposed methods are illustrated not only on synthetic data but also
on real data acquired with a digital camera and on astronomical data.
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Chapter 1

Introduction

Our society is often called an “information society”. It could also be referred to as an
“image society”. This is not only because the image is a very powerful and widely used
medium of communication, but also because it is an easy, compact, and readily avail-
able way in which to represent the world that surrounds us. It is surprising indeed how
omnipresent images are in our everyday lives.

Recent advances in acquisition devices are one of the main reasons responsible for
such a phenomenon. Another reason is the increase in the capacity of computers, which
enables us to process more and more data. Digital data are nowadays easy to acquire,
store and efficiently process. This has given rise to new disciplines generally known as
image processing, image analysis and computer vision; these terms differ in what kind of
output information is required. In image processing, image intensity values are used to
generate an image or images in a certain sense improved. Image analysis deals mainly
with intensity values, which are often enriched with additional information that helps to
construct a symbolic description of the content of the image. Computer (or machine)
vision is mostly concerned with the 2-D representation of a 3-D world; it performs some
sort of abstract reasoning followed by decision-making and action. These disciplines have
found practical applications in several unfolding fields.

Medical imagery is one of the fields that has made use of images since the earliest
days. Many devices based on ultrasound, X-rays, magnetic resonance, scanners, etc. pro-
duce images that are subjected to various processing tasks, such as quality improvement,
feature enhancement and extraction, or integration of different pieces of information (fu-
sion).

Probably the first extreme need for an ability to retrieve meaningful information from
degraded images was encountered in astronomical imaging. Many space endeavors uti-
lize state-of-the-art image processing tools. Ground-based telescopes and extraterrestrial
observations of the universe provide numerous data that are prime examples of the need
for quality improvement and feature enhancement.

Another important field that directly concerns us is remote sensing. This consists of
applications, in which we analyze, measure, or interpret scenes at a distance. Apart from
defense and video surveillance applications and road traffic analysis, the observation of
earth resources is another important field. Image processing can aid in the tracking and
quantifying changes in forests, water supplies, pollution, etc. It can also be used for
weather forecasting.

During the last decade, video processing has become a prime target of investigation.
This is because in many applications we need to process not only still images but also se-
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quences of images. Typical examples are weather forecasting, video compression, move-
ment tracking, segmentation, and restoration of old movies.

A somewhat less related field that is beginning to take advantage of the most advanced
processing tools is art conservation, as well as art in general. Many attempts have been
initiated to create complex databases for the organization of art archives with “smart”
query capabilities based on some degree of image cognition. Other tasks that can benefit
from image processing include automatic determination of authorship, reconstruction of
prehistoric art and validation of conservation efforts.

1.1 Motivation

A corner stone of image processing and analysis that is rarely omitted from most real
application tasks is image restoration. The aim of the restoration process is to recover
an accurate representation of a given scene from degraded images acquired with a
imaging system.

There are many sources of corruption or distortion that we have to cope with. Light
rays (or other types of electromagnetic waves) reflected by objects on the scene travel
to measuring sensors through a transport medium, e.g., the atmosphere. Inevitably, each
transport medium modifies the signal in some way. The imaging system is thus sub-
ject to blurring due to the rapidly changing index of refraction of the medium, the finite
broadcast bandwidth and/or the object motion. The source of corruption and its charac-
teristics are often difficult to predict and can cause a restoration malfunction. In addition,
the signal is corrupted inside a focusing set after reaching the sensor. This degradation
is inherent to the system and cannot be bypassed, but it can often be measured and ac-
counted for; typical examples are all sorts of lens imperfections. Finally, the signal must
be stored on photographic material or first digitized with CCD’s and then stored. In both
cases the recording exhibits a number of degradations. Digital imaging systems suffer
from low resolution and low sensitivity to the input signal, which are imposed by a finite
number of intensity levels and a finite storage capacity. In analog systems, resolution
artifacts are caused by the limited size of photographic material grain. A good overview
of digital image restoration techniques can be found in [1]. A well-known example of
successful image restoration was given for images taken by the Hubble Space Telescope
(HST) before the corrective optics were installed in 1993. Due to the optical aberration in
HST’s primary mirror, starlight was blurred and the telescope’s ability to see faint struc-
ture was limited. Fig. 1.1(a) illustrates a cluster of tightly-packed young stars captured by
HST. The undesirable fuzzy halos around the stars are substantially reduced by computer
restoration as shown in Fig. 1.1(b). In comparison in Fig. 1.1(c), the same cluster mea-
sured by a ground-based telescope demonstrates the undesirable impact of the atmosphere
that is not present in HST’s images and which makes HST so praised.

Noise is another crucial factor that severely affects the quality of image acquisition. In
all real applications, measurements are degraded by noise. By utilizing suitable measuring
techniques and appropriate devices, it can be considerably diminished but unfortunately
never canceled. In the course of acquiring, transmitting, or processing a digital image, the
noise-induced degradation may be dependent or independent of data. We identify several
noise models that are characterized by different probability distributions. The most com-
mon is certainly Gaussian noise. Some applications, however, exhibit more specific ones,
like the speckle noise in radar images and Poisson noise in tomography or astronomy.
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(a) HST’s observation (b) Image restoration (¢) Ground-based observation

Figure 1.1: Hubble Space Telescope: View of a remarkable cluster of tightly-packed
young stars 160,000 light years from Earth in the Large Magellanic Cloud Galaxy. (a) raw
image as captured by HST exhibiting severe effects of mirror aberration; (b) computer
image restoration with fuzzy halos removed; (c) the same cluster observed from a ground-
based telescope. The images are credited to STScl and NASA.

(a) BEEM noisy image (b) Denoising (c) Denoising and hist. equal.

Figure 1.2: Image denoising: Ballistic Electron Emission Microscopy is prone to heavy
noise. (a) shows the raw BEEM image, (b) is the image reconstructed by a nonlinear filter
that preserves fine details and (c) shows results of successive histogram equalization.

Other noise models are Laplacian and impulsive. An overview of standard denoising
techniques can be found in [2] and for more advanced non-linear methods, refer to [3]
and [4]. Fig. 1.2 presents a noisy image taken by a ballistic electron emission microscope
(BEEM) and two results of restoration by nonlinear filtering and histogram equalization.

A problem that is more specific to image analysis is segmentation. To segment an
image means to partition the domain of its definition into several regions on which
the image is homogeneous and there are abrupt changes between regions. The ex-
act meaning of “homogeneous” depends on the application. Usually it means a behavior
according to some a priori probability distribution, which could be constant intensity or
uniform image texture. Segmentation problems arise in many tasks for automatic target
recognition. Some examples are the identification of tree-grass boundaries in synthetic
aperture radar images, the localization of hot targets in infrared radar and the separation
of foreground and background in laser radar. In Fig. 1.3, an example of 3-D scene segmen-
tation is illustrated. Medical imaging provides many data that benefit from segmentation
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(b) (c)

Figure 1.3: Image segmentation: (a) picture taken by a standard digital camera, (b) seg-
mentation using the Mumford-Shah functional, (c) level lines of the segmented image

as well. Images resulting from ultrasound, magnetic resonance imaging, tomography,
dermatoscopy contain certain objects of interest, e.g., an internal organ, a tumor, or a
boundary between the gray and white matter, that are necessary to localize and extract.
The main challenges of the segmentation problem depend on the object and on the imag-
ing modality. Image segmentation is closely related to restoration. Indeed, the solution to
one problem makes the other easier. If the region boundaries are known, recovery of the
uncorrupted image is simpler, and vice versa, segmentation is easier once a good estimate
of the image is at hand. It is therefore natural that many segmentation algorithms are
closely related to restoration techniques. In fact, some methods combine both tasks and
produce the edge locations and image intensity values simultaneously.

The efficiency of restoration and segmentation methods depends heavily on the amount
of a priori knowledge of the imaging system. This designates wide variety of aspects. The
fundamental one is definitely the understanding of the acquisition process, i.e., the prior
knowledge or assumptions about the type of degradation. Another useful information, but
often difficult to obtain, is the characteristic of measured objects.

Intuitively, one may expect that the usage of different sensors or repeated measure-
ment under varying conditions also provide extra information that improves restoration.
This brings us to a new field called data fusion. It means an approach to information ex-
traction spontaneously adopted in several domains. An illustration is given by the human
system which calls upon its different senses, its memory and its reasoning capabilities to
perform deductions from the information it perceives. Data fusion encompasses a very
wide domain. In a broad sense, the definition could be as follows. Data fusion is a set of
methods, tools and means for the alliance of data originating from various sources
of different nature in order to obtain information whose quality cannot be achieved
otherwise.

Since we concern ourselves with image fusion, all input information about the scene
is in the form of digital images. The goal of image fusion is to integrate complemen-
tary multisensor, multiview or multitemporal information into one new image which is in
some sense more suitable for further analysis. Image fusion has been used in many ap-
plication areas. In remote sensing and in astronomy [5, 6], multisensor fusion is used to
achieve high spatial and spectral resolutions by combining images from two sensors, one
of which has high spatial resolution and the other one high spectral resolution. Numerous
applications emanate from medical imagery like simultaneous evaluation of CT (com-
puter tomography), NMR (nuclear magnetic resonance) and/or PET (positron emission
tomography) images. In the case of multiview fusion, a set of images of the same scene
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taken by the same sensor but from different viewpoints is fused to obtain an image with
higher resolution than the sensor normally provides or to recover the 3-D representation
of the scene (shape from stereo). The multitemporal approach recognizes two different
aims. Images of the same scene are acquired at different time instances either to find and
evaluate changes in the scene or to obtain a less degraded image of the scene. The former
aim is common in medical imaging, especially in change detection of organs and tumors,
and in remote sensing for monitoring land or forest exploitation. The acquisition period
is usually months or years. The latter aim requires the different measurements to be much
closer to each other, typically in the scale of seconds, and possibly under different condi-
tions. This setting occurs, e.g., in astronomy, where objects are observed under different
atmospheric conditions or at different aperture.

It was mentioned above that image fusion is a powerful and frequent tool in medical
imaging (see [7] or [8] for instance), astronomy and remote sensing. Image fusion is also
often used in machine vision [9], [10] and mobile robot navigation [11], in scene under-
standing [12], [13], [14], in boundary tracking [15], in object and target recognition [16],
[17], in traffic control [18] and in automatic change detection and monitoring of dynamic
processes [19].

The main topic of this thesis is fusion towards image restoration, i.e., images are
assumed to be degraded and represent the same modality of the scene. In this particular
case, the input degraded images are called channels and we speak about multichannel
restoration, which more accurately reflects the theme under investigation.



Chapter 2

State of the art

In this chapter, we discuss in detail the problem of monomodal fusion from the perspective
of the above discussion. The basic terminology used in this field is introduced and then
the state of the art is given.

2.1 Basic framework

We deal here with monomodal fusion of degrade images. The word monomodal states that
the degrade images have one common image source and thus do not represent different
physical properties of a observed scene. Monomodal fusion can be in general formulated
as follows.

Let u(z,y) be an ideal, perfect image of the scene and let z1(z,y), - , z,(z,y) be
images of the same scene obtained from different sensors measuring the same physical
character, from different viewpoints, at different time instances and/or under different
observational conditions. The relation between each z; and u is expressed as

where D; is an operator describing all kinds of image degradations including imaging
geometry, blur, noise and other factors caused by the acquisition process. The major goal
of the fusion is to obtain an image « as a ’good estimate” of u, that means « should be in
some sense better representation of the original scene than each individual frame z; is.

The fusion methodology depends significantly on the type of the degradation opera-
tors D;. In the sequel, the degradations are assumed to be compositions of image blurring,
additive noise and geometric deformations caused by imaging geometry. The blur is intro-
duced into the image by such factors as diffraction, lens aberration, motion of the scene,
wrong focus and medium turbulence. Under these assumptions, (2.1) has the following
form:

zi(mi(w,y)) = Hi(u(z,y)) + ni(z,y), (2.2)

where H; is a linear bounded operator of the i-th imaging system that performs the inten-
sity value deformations, n;(x,y) is additive noise and 7; is a transform of spatial coordi-
nates. Operator /; and function 7; are assumed to be unknown. In this form, the problem
is too general to be solvable. However, in many practical cases H; can be successfully
modeled as an integral transform with kernel /;. We thus write
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where h;(z,y;s,t) is the impulse response or point spread function (PSF) at location
(z,y). In this case, h; varies within the image domain and we speak about a space-
variant imaging system. If h; is not dependent on (z,y), i.e. h;(z,y;s,t) = hi(s,t), we
speak about a space-invariant imaging system and (2.3) takes the form of convolution
H;(u) = h; * u.

Depending on the type of the degradation D, we can build a formalized system of
the most common fusion problems. We distinguish 4 models: locally ideal imaging, uni-
formly blurred channels, misregistered uniformly blurred channels and realistic imaging.
Description of each model follows.

2.2 Locally ideal imaging

This is the simplest model that assumes space-variant PSF’s in each channel. Every lo-
cation (z,y) in the image is assumed to be acquired undistorted in (at least) one channel,
which means that the corresponding local PSF is the delta function. No geometric defor-
mations are assumed.

This model is applicable when we photograph a static scene with a known piecewise
constant depth and we focus channel-by-channel on each depth level. Fig 2.1 illustrates
this simple fusion task. Image fusion then consists of comparing the channels in the im-
age domain [20, 21] or in the wavelet domain [22, 23], selecting the channel in which the
pixel (or block) is depicted undistorted and, finally, of mosaicing the undistorted parts.
To find the undistorted channel for the given pixel, local focus measure is calculated over
its neighborhood and the channel which maximizes the focus measure is chosen. Various
focus measures can be used for this purpose. Most of them are based on the idea to em-
phasize high frequencies of the image and measure their quantity. It corresponds with our
intuitive expectation that the blurring suppresses high frequencies regardless of the partic-
ular PSF. Image variance [24], energy of a Fourier spectrum [25], norm of image gradient
[24], norm of image Laplacian [24], image moments [26], and energy of high-pass bands
of the wavelet transform [22, 23, 27] belong to the most popular focus measures. Fusion
in the image domain is seriously affected by the size of the neighborhood on which the
focus measure is calculated. On the other hand, fusion in the wavelet domain is very
sensitive to translation changes in the source images.

2.3 Uniformly blurred channels

This model assumes “traditional” space-invariant convolution in each channel with no ge-
ometric deformations. The model describes for instance photographing a flat static scene
with different (but always wrong) focus. The image fusion is performed via multichannel
blind deconvolution. An example of blind deconvolution of sunspot images taken by a
ground-based telescope is depicted in Fig. 2.2.

Blind deconvolution in its most general form is an inextricable problem. All the meth-
ods proposed in the literature inevitably make some assumptions about the PSF’s h; and/or
the original image u. The deconvolution methods thus differ in the way what prior knowl-
edge of the blurs and the original image is used and how it is implemented. This is a bit
simplified but true statement. There are two basic approaches to multichannel deconvo-
lution. The first one is to treat each channel separately by any singlechannel deconvolu-
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in focus

Figure 2.1: Locally ideal imaging: A camera with a limited depth of field can be set to
different focus distances, and by mosaicing the acquired images, the whole 3-D scene is
reconstructed.
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by-product: PSF estimation

Figure 2.2: Uniformly blurred channels: Short-exposure images taken by a ground-based
telescope are blurred primarily due to perturbations of wavefronts in the Earth atmo-
sphere. The perturbations vary in time, which means that different blurs occure in a
sequence of measurements but the blur in each measurement is spatially uniform. Three
pictures of a sunspot taken shortly one after another and their restoration is depicited here.
No misalignment of images is present.
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tion method and then to combine the results, the other one is to employ a deconvolution
method that is multichannel in its nature.

Numerous singlechannel blind deconvolution methods have been published exten-
sively in the literature in last two decades (see [28] or [29] for a basic survey). Blind
deconvolution was shown to be an ill-posed problem, which does not have a unique solu-
tion and the computational complexity of which could be extremely high.

There are several major groups of blind deconvolution methods. Well-known para-
metric methods assume that a parametric model of the PSF is given a priori. Investigating
the zero patterns of the Fourier transform or of the cepstrum of z(x, y), the unknown pa-
rameters are estimated [30, 31, 32, 33]. This approach is very powerful in motion and
out-of-focus deblurring, for instance. Parametric methods for estimating more general
motion blurs by means of statistical moments of the motion functions [34] and by means
of autocorrelation of directional derivatives [35] were also proposed. Another blur iden-
tification method [36] selects from an admissible collection of PSF’s a candidate with
the restoration residual power spectrum that best matches the expected residual power
spectrum.

Promising results were achieved by a zero-sheet separation method, which was first
introduced in [37] and further developed in [38, 39]. The method is based on the analyti-
cal properties of the z-transform in 2-D. It was proven that the zeros of the z-transform of
each u(z,y) and h(z,y) lie on distinct continuous surfaces called zero sheets. Separating
these two zero sheets from each other, we can restore both u(z,y) and h(z,y) up to a
scaling factor. Although conceptually the zero-sheet method is correct, it has little prac-
tical application since the algorithm is highly sensitive to noise and prone to numerical
inaccuracy for large image sizes.

Another group of methods is based on the modeling the image by a stochastic pro-
cess. The original image is modeled as an autoregressive (AR) process and the blur as
a moving average (MA) process. The blurred image is then a result of a mixed autore-
gressive moving average (ARMA) process and the MA process identified by this model
is considered as a description of the PSF. In this way the problem of the PSF estimation is
transformed into the problem of determining parameters of the ARMA model. The meth-
ods of this category differ in how the ARMA parameters are estimated. Basic approaches
are maximum likelihood estimation [40] with an expectation-maximization algorithm [41]
or without [42], their multichannel extensions [43, 44] and generalized cross-validation
[45].

A projection-based approach to blind deconvolution proposed in [46] attempts to in-
corporate prior knowledge about the original image and the PSF through constraint sets.
This method was proven to perform well even if the prior information was not perfect.
However, the solution may be not unique. Besides the projection-based method, there
is a wide variety of other non-parametric algorithms which use a priori deterministic or
stochastic constraints, such as image positivity, the size of the PSF support, expected
power spectral densities of the PSF and the original image, etc. One of the oldest is ifer-
ative blind deconvolution [47] with its several enhancements [48, 49, 50, 51]. It is based
on iterative Wiener restoration that alternates between / and u and, in each iteration, the
constraints are imposed on partial results. This method is robust to noise but suffers from
uncertain convergent properties. Deconvolution via simulated annealing [52] fall into
this category as well. Very promising results have been achieved with a nonnegativity and
support constraints recursive inverse filtering (NAS-RIF) algorithm proposed in [53] and
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extended in [54, 55]. However, this method is applicable to images that contain objects
of finite support on a uniform background and the object support must be determined in
advance. Similar inverse filtering that admits solutions from a convex feasible set of filters
was proposed in [56]. Stochastic non-parametric approaches based on the Bayes theorem
include maximum a posteriori (MAP) estimation [57] and a Richardson-Lucy multichan-
nel algorithm [58] which is efficient for a Poisson noise model. A group of deconvolution
methods based on higher-order statistics (HOS) was designed particularly for restoring
images with textures [59, 60, 61].

Restoration methods that have evolved from minimization of variational integrals
form a very interesting branch [62, 63, 64]. The variational integrals, like e.g. total
variation (TV), play a prominent role in image denoising due to their anisotropic diffusion
ability which preserves edges in images. The main advantage is the sharpness of restored
images but the convergence properties are somewhat dubious [65].

All the methods discussed so far have not fully exploited the potential of the multi-
channel framework. The development of intrinsically multichannel methods has begun
just recently. There are three main advantages of the multichannel approach in compari-
son with the singlechannel one: noise reduction through statistical independence between
image noise fields, potential elimination of zeros in the denominator of the restoration fil-
ter, and mainly, higher amount of information about the original image when the PSF’s are
diverse enough. The lack of information from one blur in one frequency is supplemented
by the information at the same frequency from others.

One of the earliest methods [66] was designed particularly for images blurred by atmo-
spheric turbulence. Harikumar et al. [67, 68] proposed two indirect algorithms, which first
estimate the PSF’s and then recover the original image by a standard nonblind method.
The first one is a subspace technique and the PSF’s are equal to the minimum eigenvector
of a special matrix constructed only by the blurred images. The second one solves the
subspace problem as a maximum likelihood estimator. Necessary assumptions for per-
fect recovery of the blurs are exact knowledge of the blur size, noise-free environment
and channel coprimeness, i.e. a scalar constant is the only common factor of the blurs.
Giannakis et al. [69, 70] (and at the same time Harikumar et al. [71]) developed an-
other indirect algorithm based on Bezout’s identity of coprime polynomials which finds
inverse filters and by convolving the filters with the observed images recovers the original
image. Both, the subspace method and inverse filters, are vulnerable to noise and even
for a moderate noise level restoration may break down. In the latter case, noise amplifi-
cation can be attenuated to a certain extent by increasing the inverse filter order, which
comes at the expense of deblurring. Pillai et al. [72] have proposed another intrinsically
multichannel method based on the greatest common divisor which is, unfortunately, even
less numerically stable than the previous ones. Pai et al. [73, 74] came with two direct
multichannel restoration algorithms that, contrary to Harikumar’s and Giannakis’ indirect
ones, estimate directly the original image from the null space or from the range of a spe-
cial matrix. In noisy cases, the direct algorithms are more stable than the indirect ones.
Nevertheless, all the algorithms lack the necessary robustness since they do not include
any noise assumptions in their derivation and omit regularization terms.
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2.4 Misregistered uniformly blurred channels

This is a generalization of the previous model which allows rigid-body geometric differ-
ences (misregistrations) between the channels, i.e., 7; is a rotation and translation of the
channel. This model is applicable in numerous practical tasks when the scene or the cam-
era moves between consecutive channel acquisition. To fuse images degraded according
to this model, image registration must precede multichannel blind deconvolution.

Image registration in general is a process of transforming two or more images into
geometrically equivalent form. It eliminates the degradation effects caused by geomet-
ric distortion. From mathematical point of view, it consists of approximating 7, ' and
of resampling the image. For images which are not blurred, the registration has been
extensively studied in the recent literature (see [75], [76] and [77] for a survey). How-
ever, blurred images require special registration techniques. They can be, as well as the
general-purpose registration methods, divided in two groups — global and landmark-based
ones. Regardless of the particular technique, all feature extraction methods, similarity
measures, and matching algorithms used in the registration process must be insensitive to
image blurring.

Global methods do not search for particular landmarks in the images. They try to
estimate directly the between-channel translation and rotation. Myles and Lobo [78] pro-
posed an iterative method working well if a good initial estimate of the transformation
parameters is available. Zhang et al. [79], [80] proposed to estimate the registration
parameters by bringing the channels into canonical form. Since blur-invariant moments
were used to define the normalization constraints, neither the type nor the level of the blur
influences the parameter estimation. Kubota et al. [81] proposed a two-stage registra-
tion method based on hierarchical matching, where the amount of blur is considered as
another parameter of the search space. Zhang and Blum [82] proposed an iterative multi-
scale registration based on optical flow estimation in each scale, claiming that optical flow
estimation is robust to image blurring. All global methods require considerable (or even
complete) spatial overlap of the channels to yield reliable results, which is their major
drawback.

Landmark-based blur-invariant registration methods have appeared very recently, just
after the first paper on the moment-based blur-invariant features [83]. Originally, these
features could only be used for registration of mutually shifted images [84], [85]. The
proposal of their rotational-invariant version [86] in combination with a robust detector of
salient points [87] led to the registration methods that are able to handle blurred, shifted
and rotated images [88], [89].

Theoretically, after the images are registered, multichannel blind deconvolution from
the previous model could be employed. However, registration is always prone to small
inaccuracies and current blind deconvolution methods are not robust enough to deal with
it. This situation occurs, e.g., when a vibrating object is photographed. Due to an irregular
camera-object motion, acquired images are not only degraded with random motion blurs
but also mutually translated; see Fig. 2.3.

2.5 Realistic imaging

This model comprises space-variant blurring as well as nonrigid geometric differences
between the channels, i.e., 7; is affine or projective coordinate transform. Almost all sit-
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Figure 2.3: Misregistered uniformly blurred channels: When multiple acquisition is per-
formed, individual images are in general not spatially aligned. After channel registra-
tion, small translational misalignments are still frequently observed. The deconvolution
method proposed in the thesis is robust enough and can be thus applied to this case.

uations occurring in practice can be described by this model with a reasonable accuracy.
Like in the previous model, the image fusion consists of image registration and multi-
channel blind deconvolution but there is a significant difference. Here, the registration
technique must be able to remove nonrigid deformations and the deconvolution must be
space-variant. This model is not a simple extension of the previous models. It requires
qualitatively new approaches and methods; see Fig. 2.4 for illustration.

Shift-variant blind restoration is qualitatively far more difficult than the shift-invariant
problems considered so far and not many attempts have been made in past to solve
this problem. To our knowledge, there is a shift-variant extension of the expectation-
maximization algorithm [90] that divides the image into stationary regions, restoration by
anisotropic regularization [64] for the parametrized PSF and a multiscale attempt [91].
A successful method would certainly be praised, since many common imaging systems
exhibit space-variable PSF’s; just consider, for example, a picture of a 3-D scene taken by
a camera with a shallow depth of field compare to the depth of the scene.
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Figure 2.4: Realistic imaging: The most general model, which assumes nonrigid transfor-
mations between different acquisitions and the shift-variant convolution model. Taking a
picture of a 3-D scene from different view angles is a typical example.



Chapter 3

Objectives

In this chapter, the problem that is analyzed in the thesis is formulated and set in to the
frame of the previous discussion. The objectives of the thesis are clearly stated as well.

3.1 Problem formulation

The overview in Chapter 2 clearly illustrates that multichannel blind deconvolution (mono-
modal fusion) occurs in real applications in different forms and that a wide variety of tech-
niques some more and some less application-dependent were proposed in the literature to
solve it. The first three models 2.2, 2.3 and 2.4 are mathematically tractable and form
the primary topic of current research in this field. The last model 2.5 (realistic imaging)
with nonrigid misregistration and shift-variant convolution is far more challenging but
beyond the scope of this work. The few attempts that try to solve the realistic model are
still in their initial stage and do not provide a thorough framework. However, the realistic
imaging will certainly be a subject of research in the near future.

In the sequel, we are concerned with blind multichannel deconvolution, therefore,
model 2.3 (uniformly blurred channels) and model 2.4 (misregistered uniformly blurred
channels) form the domain of our investigation. The singlechannel methods are of not
much interest, since they blatantly neglect the complementary information provided by
multiple channels. On the other hand, the intrinsically multichannel methods proposed
so far combine seamlessly the information from multiple channels but exhibit some un-
pleasant characteristics. Mainly, it is the poor performance under noisy conditions and the
requirement of exact knowledge of the blur size. Both items hinder current multichannel
methods from being used in real applications.

To increase the noise robustness, a natural approach would be to incorporate noise
assumptions into the intrinsically multichannel methods. This can be done, for exam-
ple, by extending standard denoising techniques into the multichannel framework so that
mutual relations between channels are preserved during the denoising and deconvolution
procedure.

The requirement of exact knowledge of the blur size is very restrictive and often diffi-
cult to satisfy for real images. At the present, this problem is addressed by using blur-size
estimation techniques prior to the deconvolution process. The estimation techniques pro-
posed for this purpose are however prone to error and they perform even less satisfactory
as noise level increases. More reliable, but also more computationally demanding, ap-
proach is to implement a full search, i.e., restoration is repeated for the different blur sizes
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and the best result is retained. It is therefore clear that a deconvolution method, which
does not require the precise size of blurs, could be applied to a much broader range of
imaging problems. Moreover, one can intuitively deduce that such a method can cope in-
trinsically with simple between-channel misregistration like translation, since by shifting
the centers of the blurs the translation transform is performed during deconvolution.

The mathematical model that is considered in the thesis takes the following form:

where z;, h;, n;, u are the ¢-th degraded image, PSF, noise, original image, respectively,
(t7,tY) is the translation vector in the i-th channel and * denotes 2-D convolution.
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3.2 Thesis objectives

The main goal of the thesis can be formulated as follows:

Propose a multichannel blind restoration method, which performs satisfactory
on images severely degraded by noise and which is robust to spatial misalignment of
the channels. Demonstrate the capability of the proposed method on data obtained
from real applications, primarily astronomical imaging.



Chapter 4

Results

It was briefly outlined in the previous chapters, how to meet the objectives of the thesis
and what are the practical requirements that justify the goals declared.

The first objective, noise robustness, is addressed in a simple but very effective man-
ner. The straightforward approach adopted here is to incorporate mutual relations between
channels into a denoising algorithm. The mutual relation between channels forms the fun-
damental notion of the intrinsically multichannel deconvolution methods and it is based
on the assumption that the channels are sufficiently diverse, more precisely, that they
are weakly coprime, i.e., the z-transforms of PSF’s have no common factor. Although
coprimeness may seem to be rather theoretical and difficult to satisfy in real cases, the
opposite is true. The necessary channel disparity is mostly guaranteed by the nature of
acquisition schemes and random processes therein.

A wide range of noise removal approaches has been proposed in the literature. In
general we distinguish two main branches: linear and nonlinear. Linear denoising tech-
niques are easy to implement but they tend to blur images and their role in deconvolution
is thus limited. The key role plays the heat equation’ (% = Awu) that is proved to be
an asymptotic state of any iterative linear isotropic smoothing and which is the reason
why linear filtering has the overall uniform smoothing effect. Much more encouraging
results are achieved via nonlinear filtering. The basic idea is to let the smoothing happen
only in areas that are relatively flat, which implies that image edges and fine details are
preserved. This type of selective smoothing can be regarded as anisotropic diffusion. A
simple example is diffusion that occurs solely in the direction orthogonal to the gradi-
ent, i.e., 2 = div(Du/|Dul), where Du is the gradient of w in the distributional sense.
They are the partial differential equation (PDE) and its viscosity solution that became the
tools for tackling such nonlinear filtering problems. Many PDE’s come from variational
principles of the form [ F(]Dul|), where F is a smooth functional. The link between
these two approaches is that the gradient descent solution of a minimization problem
min, [ F(|Dul) is associated with a PDE 2¢ = div(g(| Du|)Du), where g(s) = F'(s)/s.
In the case of multichannel deconvolution, the minimization problem (and likewise the
PDE) is embedded with two distinct constraints. The first one measures the fidelity to the
degraded images based on our model (3.1). The second one has its origin in the mutual
relation between channels that was mentioned above.

The drawback of the constrained minimization problem is the necessity to properly
set weighting constants (or Lagrange multipliers) for the constraints. To partially alleviate

'The heat equation (or diffusion equation) is a partial differential equation that governs the standard
diffusion processes in nature and its solution is convolution with a Gaussian kernel.
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this problem, the minimization problem is revised here and formulated as a maximum a
posteriori (MAP) estimation problem that is iteratively solved. This stochastic approach
provides a different angle of view that reveals some surprising properties.

The MAP approach proposed here is not seriously dependent on the exact knowledge
of the blur size. In other words, if the blur size is overestimated the original shape of the
blurs can still be recovered, more or less. The validity of the solution and the conver-
gence rate depends on the degree of overestimation. If the blur size is underestimated the
restoration problem does not have a solution. This partial freedom in the blur size esti-
mation equips the MAP algorithm with an ability to handle spatially misaligned channels
and perform simple translation registration, which is the second objective of the thesis.

The thesis is a collection of four research papers:

F. Sroubek and J. Flusser, “Multichannel Blind Iterative Image Restoration,” /[EEE
Trans. Image Processing, accepted in March 2003 (see Section 4.1),

e F. Sroubek and J. Flusser, “Multichannel blind deconvolution of spatially mis-
aligned images,” IEEE Trans. Image Processing, submitted in March 2003 (see
Section 4.2), a shorter version will appear in Proc. of the 3rd Int’l Symposium on
Image and Signal Processing and Analysis, ISPA, 2003,

o F groubek, J. Flusser, T. Suk, and S. gimberové, “Multichannel Blind Deconvolu-
tion of the short-exposure astronomical images,” in Proc. of the 15th International
Conference on Pattern Recognition, pp. 53-56, 2000 (see Section 4.3),

e B. Zitova, J. Flusser, and F. Sroubek, “Application of Image Processing to The
Medieval Mosaic Conservation,” Pattern Analysis and Applications, submitted (see
Section 4.4), a shorter version published in Proc. of the IEEE International Con-
ference on Image Processing, pp. 993-996, ICIP’02, IEEE, Rochester 2002.

The first two journal papers propose two different approaches that give answers to the
thesis objectives and demonstrate their applicability to restoration of images acquired in
real situations, like astronomical imaging and digital camera photography.

The third in the collection illustrates multichannel restoration of blurred astronomical
images.

The last paper is a noteworthy attempt to assess an art conservation task, which was
conducted in the Department of Image Processing, UTIA, Prague. Different restoration
techniques were implemented and evaluated for this particular task.

Although the papers were co-authored, the author of the thesis is the originator of the
first three manuscripts and of the image restoration section in the fourth manuscript. My
own contribution (estimated by all co-authors) is 90%, 90%, 50% and 30%, respectively.
Extended abstracts of the papers together with a discussion concerning meeting the goals
of the thesis are given in the following sections. The reprints of the papers are attached as
well.
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4.1 Multichannel blind iterative image restoration

F. Sroubek and J. Flusser, “Multichannel Blind Iterative Image Restoration,”
IEEE Trans. Image Processing, accepted in March 2003.

An iterative algorithm for multichannel blind deconvolution with enhanced noise ro-
bustness is presented in this work.

Intrinsically multichannel methods proposed so far [67, 68, 71, 69, 70, 72, 73, 74]
are able to recover the original image if at least two images degraded with coprime blurs
are available. Their performance however deteriorates rapidly if noise is added to the
acquisition model. To overcome this negative behavior that prevents the classical mul-
tichannel methods from being used in real applications, we propose a novel constrained
minimization problem. The constrained problem is first transformed to an unconstrained
minimization problem using the Lagrange multipliers. The resulting energy functional is
a function of the estimated original image and of the estimated blurs. It comprises three
terms. The first one measures the fidelity of our estimates to the degraded images accord-
ing to the acquisition model. The second one is an anisotropic regularization term (total
variation or Mumford-Shah functional) that prevents undesirable attenuation of edges and
fine details in the image. The last term constrains the estimated blurs so that they are con-
sistent with the mutual relation of any two channels, which states that z; x h; —z; x h; = 0
for every 7 # j if noise is zero.

Before we can proceed to a numerical solution, a relaxed version of the energy func-
tional is first formulated. Then a suitable numerical scheme for this type of nonlinear
minimization problems is the half-quadratic algorithm, which introduces an auxiliary
variable, also called a dual variable. The energy becomes a function of three variables, the
original image estimate, blurs estimate and dual variable, but it is convex with respect to
each one. Finally, a multichannel alternating minimization (MC-AM) scheme is proposed
that performs an analogy of the steepest descent in the space of the image and blurs.

Convergence properties of the described algorithm together with the estimation of two
parameters associated with the Lagrange multipliers are discussed in detail.

A large section of the paper is dedicated to experimental results. First, the per-
formance of the MC-AM algorithm is compared with the performance of the subspace
method EVAM [67, 68], which belongs to the group of intrinsically multichannel meth-
ods. The performance was tested on simulated data for different SNR’s and the results
clearly favour the MC-AM method, especially for lower SNR’s (higher noise levels). The
rest of the experiments assess the applicability of MC-AM on real data: out-of-focus
images of a flat scene and astronomical images of a sunspot. Apart from the visual as-
sessment of the results, a wavelet-based focus measure was used as an objective measure
of the restoration performance. In the case of the out-of-focus images, a remarkably well
focused image was obtained from three blurred images that were only slightly differ-
ent from each other. The same sequence of astronomical images considered here were
analyzed in our earlier work; see Section 4.3. However, the sunspot image restored by
MC-AM demonstrates the clear superiority of the novel method over the EVAM approach
utilized in the earlier work. In all the experiments, we estimated the blur size beforehand.

The proposed iterative algorithm is sufficiently robust to noise and was successfully
applied to images acquired in real situations. Nevertheless, an accurate estimation of the
blur size is still necessary.
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4.2 Multichannel blind deconvolution of spatially misaligned
images

F. Sroubek and J. Flusser, “Multichannel blind deconvolution of spatially mis-
aligned images,” IEEE Trans. Image Processing, submitted in March 2003.

Intrinsically multichannel blind deconvolution techniques proposed in the literature
crucially depend on the correct size of the blurs. To our knowledge, all the techniques
also assume that the images are correctly registered. If this is not the case, a registration
step must precede restoration. In this paper, we present a multichannel approach that is
less dependent on the blur size and that can deal with misregistration of images.

A convolution operator performs translation if the origin of the convolution kernel is
shifted. Therefore, if the blurs are sufficiently enlarged so that they include the original
blurs properly shifted, deconvolution together with registration is achieved at once. The
mutual relation between channels (see Section 4.1) plays the fundamental role in the in-
trinsically multichannel methods, where it is used for recovering blurs from the degraded
images. A proof that the mutual relation can also be used for recovering blurs from spa-
tially misaligned images is given here.

The restoration problem is phrased as a search for a maximum a posterior (MAP) es-
timate. This stochastic approach refers to discrete images as random vector fields charac-
terized by probability distribution functions. To be able to formulate the MAP estimator,
a priori distributions of the original image and blurs are required.

The a priori distribution of the original image is difficult to obtain. A common ap-
proach is to model such distributions as Markov Random Fields or Gibbs distributions.
A space of bounded variation (BV) functions is considered by many as an acceptable do-
main for real images, because discontinuities (edges) in images are allowed therein. The
notion of total variation, which was introduced with the BV space, will serve the purpose
of an energy function in the Gibbs distribution.

The a priori distributions of the blurs is derived directly from the multichannel char-
acter of the problem, more precisely, from the mutual relation between channels. Simpli-
fications are however necessary to make this issue more tractable.

After the derivation of both prior distributions, an alternating minimization scheme
(AM-MAP) is proposed to solve the MAP estimation.

A large section of the paper is devoted to a convergence analysis and to experiments
on simulated and real data. The convergence and average performance of the AM-MAP
algorithm for different SNR’s and for different degrees of the blur size overestimation are
presented. A comparison of AM-MAP with the most recent intrinsically multichannel
approach of Pai [73, 74] was conducted as well. The performance was tested on simu-
lated data for different SNR’s. The restoration error of AM-MAP is smaller then the error
of Pai’s method on the entire interval of tested SNR’s. Finally to demonstrate the appli-
cability of the AM-MAP approach on real misaligned data, an experiment with images
degrade by random vibration blurs was performed.

We may conclude that the proposed MAP method gives us a sound solution to the
restoration problem of images, which are not only degraded by blurs and noise but also
misregistered.
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4.3 Multichannel blind deconvolution of the short-exposure
astronomical images

F. Sroubek, J. Flusser, T. Suk, and S. Simberové, “Multichannel Blind Deconvo-
m lution of the short-exposure astronomical images,” in Proc. of the 15th Interna- m
tional Conference on Pattern Recognition, pp. 53-56, 2000.

This conference paper illustrates one of the first attempts to apply an intrinsically
multichannel method to restoration of astronomical images. Real astronomical data un-
der investigation were obtained from an observation of the Sun with a terrestrial telescope.
The acquired short-exposure images of a sunspot in the visible spectral band were taken
one after another in short time intervals and were degraded not only by the intrinsic PSF
of the telescope but primarily by random perturbations of wavefronts in the Earth atmo-
sphere. In the visible light, the effects of fluctuations in the refractive index of the air
caused by temperature variations are profound. Since the atmospheric conditions may
change very quickly, the acquired image sequence usually contains images of different
quality from almost sharp to heavy blurred ones. This type of data are well registered and
satisfy the fundamental assumption of intrinsically multichannel methods, which states
that the channel PSF’s are “sufficiently diverse” (coprime). Moreover, the least degraded
images can be regarded as reference images and used for assessment purposes.

The algorithm proposed here is based on an intrinsically multichannel approach of
Harikumar and Bresler [67, 68] called the EVAM subspace method. The EVAM method
is used to estimate, for a given blur size, the PSF’s from the blurred images. Since the
estimate very much depends on the blur size, a full search is performed over an admissible
set of blur sizes. For each set of PSF’s multichannel nonblind deconvolution is calculated
and by means of a standard residual function the least erroneous restored image is se-
lected. As an objective measure of the restoration performance an integral of a sum of
image partial derivatives is considered. Visual assessment is conducted as well.

This work belongs to the earlier ones. Although we have not suggested a new multi-
channel method, the contribution is that the applicability of the previously proposed mul-
tichannel approach was verified on astronomical data. The results stated here are fully
compliant with the thesis’ objective of demonstrating the capability of the multichannel
restoration methods on data obtained from real applications.
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4.4 Application of image processing to the medieval mo-
saic conservation

B. Zitova, J. Flusser, and F. éroubek, “Application of Image Processing to The
Medieval Mosaic Conservation,” Pattern Analysis and Applications, submitted.

In this work, we demonstrate how up-to-date image enhancement and registration
techniques can be utilized to validate such delicate conservation tasks as the reconstruc-
tion of the 14" century mosaic is. Uniqueness of the described application lies in a fact
that this splendid marvel made by medieval artists was captured on an old photograph
just before it was severely damaged and removed from the wall, where is was situated
for several centuries, in the second half of the 19" century. This little coincident contains
precious information that enables us to compare the current renovated mosaic with its for-
mal state and to evaluate any discrepancies introduced by several conservation efforts in
the last 120 years. The problem we face here consists of three steps: enhancement of the
old photograph, geometric alignment of the old photograph with the new one depicting
the mosaic after the last renovation and identification of any differences between the two
photographs.

The subject of the enhancement task is the old photograph degraded primarily due
to aging effects (diffusion of chemical compounds in old photographic material). This
problem is singlechannel in its nature and the intrinsically multichannel methods can
not be applied therefore. We first considered advanced anisotropic denoising techniques,
like wavelet-based and adaptive nonlinear filters, and satisfying results were obtained.
Afterwards we applied several singlechannel deconvolution methods in both the blind
and nonblind setting. For the nonblind case, Gaussian blurs of different variance were
tested.

Feature based restoration was considered for the registration task. Since the color
tones of the old photograph do not match the color tones of the new one, correlation
methods for feature matching can not be applied. Instead, a manual selection and corre-
spondence of salient points was used. A method based on mutual information performed
additional refinement of the point locations and a geometric transformation between the
photographs was then calculated.

Using modern image processing methods for denoising, deconvolution and image reg-
istration, we were able to successfully identify pattern differences overlooked by restor-
ers. We claim that digital image processing can provide important complementary data
for scholars and should be thus considered as a verification tool for such restoration tasks.
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