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Global Abstract (for all three parts) The work presents a new approach to the mathematical description
of stochastic conditional independence structures of a finite number of random variables" The new ap-
proach is related to the classical approaches, that is to the use of directed acyclic graphs (Bayesian
networks), undirected graphs (Markov networks) and dependency models (semigraphoids). The approach
provides a deductive mechanism to infer probabilistically valid consequences of positive information
about conditional independence stnrcture" This mechanism is much more powerful than the use of semi-
graphoids as it includes, from the classical point of view, an infinite number of inference rules. Never-
theless, from the theoretical point of view, it is finitely implementable. The developed theory is illus-
trated by examples showing how it is applicable.

INDEX TERMS'z: Conditional independence, dependency model, imset, scalar product ordering, base,
skeleton.

INTRODUCTION

History of Description of Conditional Independence Structures

Attempts to describe adequately the structure of dependence (or independence) re-
lationships among random variables have a long and rich tradition. Graphs (both
directed and undirected) were used to make these structures understandable by hu-
mans (this was probably started by geneticist S. Wright [1934]). Directed acyclic
graphs form the basis of the method of influence diagrams [Howard and Matheson,
1981], [Shachter, 198ó]' [Smith, 1989], which is widely used in artificial intelli-
gence-see INETWORKS, 1990]" Similarly, but in a slightly different way (as re-
ported in [Smith, 19891 p. 661) directed acyclic graphs are used in recursive models
forcontingency tables [Wermuth and Lauritzen, 1983], [Ki iveri, et a|",1984]. Use
of undirected graphs stems from Markov field theory [Moussouris, 1974], [Darroch,
et al., 1980], [Lauritzen, eÍ aI., 1984]"
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The concept that was gradually recognized as underlying these methods is sto-
chastic conditional independence (CI). This concept was accentuated in modern sta-
tistics first by Dawid U9791, and later by other researchers [Mouchart and Rolin,
19841, [van Putten and van Shuppen, 1985]. Spohn [1980] studied the concept of
CI from a philosophical point of view. And finally, its importance for probabilistic
expert systems was explicitly discerned and highlighted by Pearl and Paz [1987],
who introduced the concept of a dependency model [Pearl, 1988] to describe the
structure of multidimensional probability measures (and many other structures too).
Roughly speaking, a dependency nrodel is a set of statements of the form Á L B I C
where A, B, C are disjoint subsets of the set of attributes (variables, symptoms) N,
interpreted in probabilistic setting as [é,]l=a is conditionally independent of [ť,]'.a
given [ť.]'.c (here [ť.]r=7y is the System of random variables)' In contrast to graphical
methods, dependency models allow the description of all possible probabilistic CI-
structures. They also give direct access to information about Cl-structure, since any
Cl-statement A L B I C can be interpreted (in harmony with an equivalent definition
of CI) as representing a qualitative relationship among attributes, namely: if the val-
ues of the attributes from C are known, the information about Á becomes irrelevant
with respect to the information about B.

However, owing to properties of CI treated earlier by Dawid [1979] (see also
[Spohn, 1980], [Smith, 1989]), this conception would be too wide to describe CI-
structures. Therefore, a special class of dependency models satisfying the mentioned
properties was introduced and named the class of semigraphoids lPearl, 19881 to-
gether with a subclass of graphoids intended to describe structures of strictly positive
probability measures. Semigraphoids were defined as dependency models closed un-
der 4 concrete inference rules (called axioms by Pearl and Paz), graphoids have one
additional inference rule. As such they provide an easy deductive mechanism to infer
Cl-statements as valid consequences of an input list of Cl-statements. The original
hypothesis from [Pearl and Paz, 1987] that graphoids coincide with dependency models
probabilistically representable by a strictly positive measure was refuted in [Studený'
l989al where a new independent property of stochastic CI was found. Later, it has
appeared that probabilistically representable dependency models cannot be charac-
teňzed as dependency models closed under a finite number of inference rules [Stu-
dený, 1992]. on the other hand, such a characterization can be found for certain
important substructures of Cl-structure-see [Geiger and Pearl, 1993], [Matúš, 1995].

Motivation

Nevertheless, the mentioned results do not exclude the possibility of an efficient
deductive mechanism for CI, they only say that the use of inference rules is un-
suitable. This led me to an attempt to develop a way of inferring Cl-statements from
which the mentioned crucial disadvantage of the inference rule approach is removed.
In fact, I looked for a new approach to the description of Cl-structures" The first
attempt in this direction was made in [Studený, 1989bl but that original proposal
was immature. I have since made an effort to clarify this approach and make the
theory elegant and computer implementable. The result of this effort is presented
here. From a classical point of view the proposed deductive mechanism involves an
infinite number of inference rules, in fact, all those rules whose probabilistic validity
can be proved by the method used in [Studený, |'992]. The presented theory can be
understood either solely as a proposal for a "finitely implementable" deductive mech-
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Figure 1.1 A dependency model is assigned to every probability measure

anism for (probabilistically representable) dependency
way to describe Cl-structures.

The fundamental concept of the presented theory is that of aface.' Formally, a
face is defined as a set of so-called imsets (i.e. functions ascribing integers to sets
of attributes) closed under three operations named nontriviality, composition and de-
composition. Here, faces are used to represent Cl-structures. They can be understood
as a counterpart of dependency models. That is, imsets correspond to Cl-statements,
faces (i.e. sets of imsets) to dependency models (i.e. sets of Cl-statements) and the
three above mentioned operations to inference rules. Our problem is to represent
faces in a computer. Two ways are proposed. The first one uses so-called generating
imsets to represent faces. The second one, which uses so-called portairs, seems to
be more fitting but it requires a complete list of certain imsets, which is named the
skeleton.

The whole work is organized as follows. It is divided into three parts. The first
part is contained in this paper; in addition to this Introduction it defines some basic
concepts. The second part is devoted to the mathematical foundations of the theory.
The third part gives several examples of its use" Every result or definition is iden-
tified by two numbers, the first indicating the part where it can be found and the
second its location within that part.

Construction of the Theory

We will now outline the construction of the theory more concretely and by means
of illustrative diagrams. The primary situation is recapitulated (this time with precise
mathematical definitions) in section 1.1 where a dependency model is assigned to
every probability measure (see Figure 1.1).

'The name *face' was motivated by an analogy with the theory of convex polytopes: the class of
'our' faces is isomorphic with the lattice clf faces (concepts from [Broudsted, 1983]) of a certain cone.
However, the motivation behind our nomenclature is immaterial fiom the point of view of this paper.

125
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SKELETON

PORTRAITS

Figure 1.2 Faces are identified with imsets and portraits through the skeleton.

The next two sections contain preparatory mathematics: section 1.2 gives basic
definitions concerning imsets and section 1.3 contains some assertions conceming
quasiorderings on imsets. The assertions are based on results (of a geometric nature)
about cones in finite-dimensional real vector spaces which are proved in another
article [Studený, |993a].

The second installment of the work, subtitled 2nd part: basic theory, is deeper.
In section 2.I the main theory is described, for the time being, without reference to
probability measures or dependency models. In order to make the theory more widely
applicable" the theory is developed for any so-called scalar product ordering, but
reasonable results are achieved only for a special class of orderings called finitely
established orderings. Thus, faces with the corresponding deductive mechanism (called
facial implication) are defined there and every face is identified with certain "pos-
itive" imsets (i.e. positive with respect to the considered ordering). This mapping
endows the class of "positive'" imsets with a corresponding equivalence, calledfacial
equivalence. Facial implication can be tested easily by a computer in the case that
the skeleton is at disposal. Thefr faces or imsets can be represented by their portraits
(for an illustrative picture see lFigure 1 .2).

The "right ordering" (the faces of which are used to represent Cl-structures in this
work) is introduced in section 2.2 and called the structural ordering. Two equivalent
definitions of this finitely established ordering are mentioned and the existence of
the skeleton is derived.

The next step is to relate structural faces and imsets to dependency models, and
this is the subject of the first two subsections of the section 2.3. Namely, a depen-
dency model is ascribed to every structural face and this induces an identification of
structural imsets (endowed with the facial equivalence) with dependency models.'Ihe ascribed dependency model is called a structuraL semigraphoid (see Figure 1.3).

Finally, the image is completed by assigning a structural face to every probability
measure. Of course, the new definition is concordant with the primary approach: the

*Ihe reason for this is explained in Conclusions-see the third instalment of the work.
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SEMI6RAPHOIDS

Figure 1.3 A dependency model is assigned to every structural face.

dependency model ascribed to that face coincides with the dependency model as-
signed originally to the probability measure (see Figure 1.4).

The last installment of the work, subtitled 3rd part: examples of use and append-
ices, illustrates the implementation of facial implication and relates the theory to
other methods for describing Cl-structures. Examples show how to transform infor-
mation about Cl-structure in the form of a dependency model (especially an indi-
vidual Cl-statement), Bayesian network (i.e. directed acyclic graph) and Markov
network (i.e. undirected graph) into an imset. Thus, the theory can be applied in
those areas as well.

A method of proving the probabilistic soundness of a given inference rule is also
illustrated. This procedure is quite simple. The reader who is not interested in math-
ematics can read and use it almost immediately (only sections 1.1, 1 .2 and Definition
2.10 are needed)" The proof of a result concerning the structural ordering is shifted

RAL
SEMIGRAPHOIDS

Figure 1.4 A structural face is assigned to every probability measure
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to Appendix A and some remarks concerning the operation of contraction of imsers
are contained in Appendix B. The advantages and disadvantages of and prospects
for the presented approach are discussed in Conclusions.

NOTATION AND BASIC ARRANGEMENTS

Firstly, we review the symbols for number sets:

R real numbers
@" nonnegative rational numbers
Z intesers
4* 

= 
'Z o [0, oo) nonňegative integers (including zero)

N :  {1 ,2,3,  . -"}  natura l  numbers ( :  pos i t ive iňegers) '

Throughout this paper we will deal with the following siruation: A finite set N
having at least two elements called the basic sel is given, i.e,2 Š card l/ ( m' The
class of all its subsets will be denoted by exp N. The class of nontrivial subsets of
N, i.e. subsets having at least two elements will be denoted bv ÓlÍ:

0 l r : {SCď;  ca rds>2} .

Having a set ?n c N, its indicator i.e" the zero-one function on exp N (possibly
restricted to r[), is defined as follows:

( ,
ó , ( s ) : { :  i n caseS=7

lU  i n caseS#7 .

For disjoint sets A, B 9 ]ý the juxtaposition Á.B will abbreviate A U B in many
examples. Finally, symbols for several classes of functions on oll are introduced:
R(oU) the class of real functions on rll
Q@) the class of rational-vďued functions on Ql
ZOI) the class of integer-valued functions on rll.
Z"$I) the nonnegative integer-valued functions on rll,.

(Notice that the notation is concordant with the symbols for number sets.)

1. I DEPENDENCY MODELS

In this section the "classical" approach to the description of Cl-structures, namely
by means of the concept_of dependency model, is recalled. Using this approach it
is possible to describe Cl-structures by means of graphs (both unáirected bnes and
directed acyclic ones) and also to try to formalize them by means of a simple de_
ductive system. First, elementary concepts (probability měasu.e, conditional inde-
pendence) are recalled. Then the concept of dependency model is defined and related
to C.I. Finally, special attention is devoted to semigraphoids-a special type of de-
pendency model.
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I .L I Probabitity Measures' and Conditional Inclependence

We begin by introducing the relevant class of probability measures. These measures
are distributions of systems of finitely-valued random variables indexed bv the basic
set N, therefore their domains are cartesian products of finite sets indexed by N. (I
follow a custom, common in the literature, by alluding to random variables but in
fact dealing with probability measures.)

DnrrxnroN 1.1 (probability measure over N, marginal measure)
A probability measure oyer N is specified by a collection of nonempty finite sets
{,, i e N} and by a probability measure on ihe cartesian product il,;Í,.
The class of all these measures will be denored by g(N)"
Whenever 0 + S S N define a probability measure over S called the marginal mea-
sure of P and denoted by rÉ as follows:

p'Q,: P(A X [,='',X,) wheneverÁ C |I'esx'"

Moreover, P" is defined as P itself.

Depending on the various authors, elements of l{ may be called variables or symp-
toms or attributes, while setsX, are called theirdomains" Of course, supposing f is
the distribution of a random system [ť.],.", the marginal measure p' (ůňere o + s
e M) is the distribution of its subsystem [í]ies.

The aim is to deal with conditional independence relationships among random
variables within a random system [ť,]'.". More precisely, we are consideňng state-
me1ts of the type ..[ť']'=o is conditionally independent of [{],." given |-€],.c,' ]where
A, B, C are three disjoint subsets of 1V. Surely, such statements are definěá throush
the distribution of [š.],=,.li one of possible definitions follows.

DernvtnoN 1.2 (conditional independence.r
Suppose that P is a probability measure over N (on II,."X, concretely). Having a
triplet (A, B, C) of pairwise disjoint subsets of 1ý, wheie A, B are nónempty, we
say that the conditional independence statement (Cl-Statement) Á t B I C is.valid
for P or that P obeys the triplet (A, B, C) iff

V [xJ,." = fI x, P*,([*,f,.oud' P,(Ix,),-.) = ť,(Í*,],=o,,) .Po.(["J,=".).
l €tý

(P(a) is written instead of P({a}) and the convention pt([xJ,.r) = 1 is accepted here.]
Note that there are many equivalent definitions of conditional independence, one

of which allows CI to be interpreted as a certain (nonnumericai) relationship among
variables or Symptoms" This makes it possible to use qualitative (structurál) infor.
mation of this type to form the knowledge base of a probabilistic expert system.

I .l .2 The Concept of Dependency Model

Now, what does it mean to say that two random systems (indexed by N) have the
same Cl-structure? Naturally, that the corresponding Cl-statements have the same
true value! The following concepl of dependency model formalizes this intuitive
notion



r30 MILAN STUDENY

DppwtrtoN 1.3 (dependency model)
Denote by 7*(N) the set of all triplets (A, B, C) where A, B, C E N are pairwise
disjoint and A, B nonempty. Every snbset of I*(M will be called a dependency model
over N.

Remark This concept was introduced (in a slightly different form) by the group
around Judea Pearl ([Pearl, 1988], INETWORKS, 1990] pp. 507-534) as a tool to
describe various types of relational structure: stochastic conditional independence,
separation in graphs or embedded multivalued dependency (from the theory of re-
lational databases). I accepted and modified this concept in [Studený, 1992)'

ln this article dependency models are used to describe structures of conditional
stochastic independence:

DenNIrIon 1.4 (submodel and model of Cl-structure)
Suppose that 1 is a dependency model over N and P a probability measure over N.
Then 1 is a submodel of the CI-structure of P iff P obeys all triplets belonging to 1.
Moreover, 1 is the model of the CI-structure of P iff 1 is exactly the set of triplets
obeyed by P.

Terminological remark This terminology aťtempts to highlight the presented view
on dependency models. Many other phrases are used in the literature to Say thaÍ I
is the set of triplets obeyed by P:'1 is induced by P' in [Ur and Paz, 1994),'P is
peďect for 1' in [Geiger and Pearl, 1993], .1 is probabilistically representable by P'
in [Matúš, 1992),.1is conditional-independence relation corresponding to P' in [Stu-
dený,  1992) '

DpnlNnroN 1.5 (probabilistically representable models)
Suppose that O E 9(1V) and 1 is a dependency model over N. Then 1 is represented
in Ó iff there exists P e o such that / is the model of Cl-structure of P.
Moreover, 1is called probabilistically representable iff it is represented in 9(AD.

1.1.3 Semigraphoids

Of course, some dependency models are not probabilistically representable. Well-
known properties of conditional independence treated by Dawid II979l or Spohn
[980] imply that every probabilistically representable dependency model satisfies
the fol lowing condit ions:

DprnqnroN 1.6 (semigraphoid)
A dependency model 1 is called a semigraphoid rff it satisfies:

( a )  (Á ,  B ,C )  € /< ) (B ,A ,C> € ' I  wheneve r (A ,B ,  C ) € 7* (M)
(b) (A,  BC,  D) €  1e (A,  B,  CD),  <A, C.  D> e I

whenever (A, B, CD>, (A, C, D> e I*(AD.
The concept of semigraphoid was introduced by Pearl [1988] in rather diff'erent

form. He introduced semigraphoids as dependency models closed under 4 inference
rules (called by him axioms):

DprrNrrroN 1.7 (semigraphoid derivability)
Suppose that 1e 7*(M and r € T*(^|,). Say that t is derivable from 1(by semigra-
phoid rules) and write I 1,"^ t iff there exists a derivation sequence k,, ..,, k, e
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7*(N) where kn : t and for each t, either ki e I or t, is a direct consequence of
some preceding {s by virtue of some of the following inference rules:
(A, B, C) - (8, A, C> symmetry
\A, BC, D) n (A, C, D) decomposition
(A, BC, D) - (A, B, CD> weak union
I(A, C , D>, (A, B, CD>l -> (A, BC , D) contraction
(Both antecedents and consequents of these rules are assumed to be elements of
7*(N).)

Remark This terminology was probably motivated by an idea to describe special
dependency models and therefore Cl-structures by means of both undirected and
directed acyclic graphs-see Introduction for references.

Evidently, a dependency model / is a semigraphoid iff every triplet derivable by
the above mentioned deductive system belongs to 1. Nevertheless, the aim of Pearl
and Paz's approach was to characterize probabilistically representable dependency
models as models closed under a finite number of inference rules. i.e. to formalize
probabilistic implication:

DpnINtrtoN 1.8 (probabilistic implication)
Suppose that I e T*(N) and r e Z*(N). Say that I probabilistically implies t and
write 1 | t iff every P € Ý}(N) that obeys 1 (i.e. all triples from /) also obeys r.

Terminological remark Various phrases are used in the literature for this relation,
namely 'r is logically implied by f in [Geiger and Pearl, 1990], 'r is valid conse-
quence of f in [Pearl, et al., 1990] or 't is entailed by f in [Geiger and Pearl,
19931.

1"2 IMSETS

This section introduces some elementary concepts. First, the concepts of imset and
multiset are defined together with corresponding operations" Then, three further con-
cepts are introduced: simple equivalence of imsets (with a related concept of nor-
mďized imset)' the natural extensíon of an imset and finally the settled extension of
an imset.

DErwruon 1.9 (imset, multiset)
Every integer-valued function on rll, is called an imset (on olt). Recall that the class
of all imsets is denoted by ZeD.Nonnegative imsets (i.e. elements <lf Z-(oú)) are
called multisets (onQI). Define basic operations with imsets like summing, subtract-
ing, multiplying by integers coordinatewise. Trivial examples of imsets are zero im-
set (assigning zero to each set from rll) denoted by 0 and the indicator 6, defined
foreveryr € fu .

Terminological remark I would like to explain the chosen terminology. The term
"multiset' is taken from [Aigner, 1919]" Looking fbr a proper designation of those
integer-valued functions I decided to use the abbreviation imset (integer-valued
multiset)"

l 3 t
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DprnntoN 1.10 (simple equivalence, normalized imset)
Having u, v e Z(tI) define:

u - ve3 t ' l € N  k . u : l , v .

Evidently, - is an equivalence on Z(6V).It will be called the simple equivalence.
An imset u e Z(%') is called normalized iff the collection of numbers {a(S); s € 0u}
has no common prime divisor. The class of normalized imsets will be denoted by
Z,o,^(A)'

Notice that 0 # Z,o,^(%). The following statement is a simple consequence of
these definitions.

Ltt"nta 1,1 For each nonzero u e ZOD there exists exactly one v e Z,.,^(QI) with
l1 - v. The corresponding simple equivalence class has the form {Ě.v; fr € N}.

Sometimes (for example in [Studený, 1993b]), an alternative view on imsets is
convenient: to consider them as integer-valued functions on exp N. Therefore we are
going to introduce their natural extensions. We need the following:

Lerr'rvrn 1.2 Every imset u e. Z(ú) has a uniquely determined extension

ú : exp N --> Z- satisfying the following two conditions:

Xr;(S);SEA4:g
Vr €N  ž{r(D;  r € SeN}:0

(N .1 )

(N.2)

This defines a one-to-one coÍTespondence between Z(%) and the class of integer.
valued functions on exp N satisfying (N.1) and (N.2).

DppmIrroN 1. I I (natural extension)
For any u e Z(%,) the uniquely determined extension u : exp N ---> Z satisfying (N. 1)
and (N.2) is called the natural extension of u"
Another type of extension will be also used for elements of R(Óll) in the other parts.

DsrrNInclN 1.12 (settled extension)
A function r: expN-+ R is cal led settled iff f(S):0 whenevercanl S < 1. For
any r € R(rlÍ) its settled extension r is defined by that condition.

r.3 QUASIORDERTNGS ON TMSETS

In this section special types of quasiorderings on imsets are studied: namely qua-
siorderings induced by subclasses of R(af) by means of scalar product. We study
their properties and find the conditions completely characterizing these orderings.
Then the question of finding the largest subclass of R(rlÍ) inducing a given quasior-
deríng is answered.

A lot of care is devoted to orderings which can be induced by a finite subclass of
Z(0lI).It appears that they can be alternatively defined by "prescribing" a finite set
of "positive" imsets which establishes all other 'positive" imsets. The theory de-
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veloped in this series of papers can be successively applied especially for these or-
derings. Therefore both ways of their determination are studied:

(a) by means of an inducing class (leading to the concept of skeleton)
(b) by means of an establishing set (leading to the concept of base).

I "3.l Inducing of Quasiorderings

DEnNrrroN 1.13 (quasiordering, ordering, exhaustive class)
a) A binary relation š on imsets is called a quasiordering iff it satisfies the fol-

lowins two conditions:
uš ř  wheneve rue  Z ( lD
|w _1 v & v š u) ) w š a wheneyet u, v, w e Z\D.
In case that it also satisfies the condition:
Iušv  &vš  u ]žv  =awheneve tu , veZ \D
it is called an ordering,

b) Given r, u e. R(rlf) define their scalar product as follows:
(r, u) : )5.qrr(.1)'il(S).

c) Given a class c E R(o[) define the binary relation {6 for imsets:
v 46 u <+ [Vr € C (,,,) = (r, u)] whenever u, v e ZgL).
It is clearly a quasiordering, called the scalar product quasiordering tnduced
bv c"

d) A class C e R(Ólt) is called exhaustive iff it satisfies:
[(r, u) : 0 for all r e C] ) u = O whenever u e Z(%).

The last condition is evidently equivalent to the antisymmetry of (.. Therefore in
this case the relation {. is calledthe scalar product ordering induced by C"

The essential properties of scalar product quasiorderings are formulated below. In
fact, they are charactenzed as continuous linear quasiorderings.

Assnnnon l .l A binary relation š on imsets is the scalar product quasiordering
índuced by some class C e R(ou) iff it satisfies the following three conditions:

uŠu wheneve ruezQD r y .1 )

f v ,Š u ,  &v2Š uz ]žv ,  *  v ,šu1 l  v ,  wheneve r  I l 1 , ! l 2 , v , , v7e  Z (9 I )  (V ' 2 )

t {yJe  Q*0< uoe  Z(Q| l im1. I tk :Ue  Z\D|)oŠu.
k+Ó

These conditions also imply:

r33

vŠu(9v*  wšu*w wheneve r l l , v ,we  ZgD

v  4  u €  n . v  1n ,u  wheneve r  u , v  e  z (qD ,  n  €  N

reflexivity
transitivity

antisymmetry

(v.3)

(v.4)

(v.s)
Proof The necessity of (V.1)*(V.3) follows easily from elementary properties

of scalar product (linearity and continuity). conversely, supposing (v.l)-(v.3) put
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L: {ue Z(ú);0 < u} Evidently, v Š uiff u_ v e Land'L satisf iesthe fol lowing
conditions:

u , ve . L )u*veL

fuee  L  ueZ (%' )  É* ,  É €  N  Fo ,  " , o - - - '  p_ , ,  u1 )  ue  L

0 € L .

Hence, by Lemma 9 in [Studený' l993a] there exists a nonempty closed cone K C
R(Ólr) with L = K. Z('u). By Consequence 1 in [Studený,I993a) K : {y e R(Óll);
Vr e. C (r, y) > 0) for some C e R(rU).

To derive (V.4) use (V"l) to get w š w and _w Š -,n, then apply (V.2). The
impl icat ion )  in  (V.5)  fo l lows f rom (V.2) .  For  €  Put  7t  :  n- , , I tk:  n,u _ n,v
f o reach t €  N "  By  (V . a )  0  š  uoandus i ng (V .3 )de r i ve0  š  u  _  v i . e .  v  Šuby
ry.4). I

I .3.2 Regular Cones

of course, a scalar product ordering š can be induced by several classes. Let us
ask whether a largest such class exists and what are its characteristics. It can be
easily seen that a quasiordering {. coincides with the quasiordering {*rcr where
con(C) is the least closed cone' containing the class C e R(fu). Thus, a naive hy-
pothesis might be the largest class inducing {. is exactly con(C). Nevertheless, this
hypothesis is false as the following example shows.

Exnupm 1.l Suppose card N ž 3, choose different A, B € 0l1 and a positive
irrational number 7. Put C : {r € R(%); r(A) > y. r(B)}. Evidently C is a closed
cone. Considering u e Z9D with 0 {. a it is easy to See that: [ir(K) : 0, for K €
%VÁ, B}l & [u(B) : _y"u(A)l. Thus, 0 4g u iff u : 0 i 'e. O 4, uwhere D :
R(otr)!

The essence of the counterexample consists in the fact that the "boundary" of that
cone "does not meet well'" Q(lI). This motivates the following concept which allows
us to answer our question.

DennvrrroN 1.14 (regular cone)
A set C _E R(0[) is called a regular cone rff it is a nonempty closed cone and Q(rU)
is denseo in C í-l (_C) where (_C) : {r € R(oU); _r e C}.

AssEnrIoN 1.2 Suppose that š is a scalar product quasiordering' Then the class
C., : {r € R(Ól/); Vď< u e' Z\D k, ň = oi is a regul* cone iřducing š'
Mbreover, it is the largest class inducing š and the only regular cone iňducing š"

Proof Existence and uniqueness is proved in [Studený,I993a] as Prop<lsition 6a.
Moreover, every class inducing š is evidently contained in C.. l

'Remember that a set C c R(ou) is cal|ed a r:one ifÍ it is closed under summing and multiplying by
nonnegative real numbers; C is closed iff it contains limits of ail convergent sequences of its elements,

oA is dense ín B iff every element of B is a limit of a sequence of elements of Á f] B'
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Remark If Cr, Cr_ e R are two regular cones, then the quasiordering induced by
C' is stronger than the quasiordering induced by C,iff C,Ž e CI (see Propo.sition 6b
in [Studený, l993al).

1.3.3 Estabtishing of Quasiorderings

Now, another possibility to clefine quasiorderings on imsets will be deďt with: namely
by prescribing a certain set of positive imsets.

DernIrroN 1.15 (finitely established quasiordering)
A binary relation ( on imsets is called a finitely established linear quasiordering iff
there exists a nonempty finite set á e Z(oU) such that š is determined by the fol-
lowing property:

s-r --  v)  :  )  k . . 'w for  some n e' z_)
w-ť'

Note that this equality always defines a binary relation satisfying (V.1)-(V.2) i"e.
a linear quasiordering. In that case we Say that E establishes Š.

If š moreover satisfies the antisymmetry condition it is called afinitely established
linear ordering.

A finitely established quasiordering is a special case of a scalar product quasior-
dering (see fStudený, |993a], Proposition 7a). Nevertheless, the most interesting
result can be achieved in the case of orderings:

AsssnrtoN I .3 The following three conditions on a binary relation ( on imsets are
equivalent:

(a) < is a finitely established ordering

(b) < is a quasiordering established by a nonempty finite G e Z(U) sarisfying
[!lq € R(6|L) Yu € Gv0i k, u) > 0l"

(c) < is a scalar product ordering induced by a finite exhaustive class C e Z(W).

Whenever any of these conditions is fulfilled there exists the least set of normalized
imsets establishing š (necessarily finite)'

Proof Use Proposition 8 iri [Studený, |993a]. The condition (a) corresponds to
(i i i) there, (b) to (i i) and (c) to (iv). I

I .3.4 Base and Skeleton

The previous result naturally leads to the following concept.

DsnNnton 1.16 (base)
Supposing š is a finitely established ordering' the least establishing set of normal-
ized imsets will be called the base of < and its elements basic imset's for Š,

Having a finitely established ordering by Assertion 1.3 we easily derive that there
exists a finite subclass <tf 2,",^(01I) inducing it. Let us ask whether there exists the
least such class. The answer is no, as the following example illustrates.
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Exavplp 1.2 Suppose cardN ž 3, chooseAF._ 0[ and putE: {6a] B €  ruvÁ}}.
It establishes the quasiordering š described as follows:
0  _1  uě [u (A ) :0&vB  e  o l t vÁ}u (8 )  >  0 ]  wheneve r  ueZ9D .
It is evidently an ordering and the following classes of imsets
K, : {óo, -6o} U {6u; B € oltvÁ}}

Kz : {6o, _6o} U {óo + 6u B e.uvÁ}}
are both minimal subclasses of Zno,^ (0U) inducing š.

Nevertheless, the existence of the least finite inducing subclass of Z,o,- (Ql) can
be ensured as follows.

Asspnnon 1.4

(a) Let š be a quasiordering established by a finite exhaustive set E e Z$L).
Then there exists the least finite subclass A e Z,o,^(%) inducing š.

(b )  Mo reove rV r  e  A ]ue  ZgL )  ( , , , } : 0&Vs  e  Á{ r } ( s ,  u )  >  0 .

Proof Use Proposition 7b from [Studený, 1993a],

Remark (warning) The previous assertion does not give the least subclass of
Z,o,^(%) inducing the quasiordering! Another infinite inducing subclass may exist.
For example, the natural ordering Š is generated by an exhaustive set E : {6'; 'S €
Ólr}. The same class induces <. Nevertheless, in case card N' > 3 choose different
A, B eÓ[ and put: Ka,, : {n.6o * óu; n € N} U {6s; s e q^{Á}}. This class is an
infinite subclass of Z^,^(?I) inducing the natural ordering which does not contain E.

The previous assertion motivates the following definition which concludes the section.

DepINnroN 1.17 (skeleton)
Supposing that š is a quasíordering established by a finite exhaustive set of imsets,
the least finite class of normalized imsets inducing š will be called the skeleton of
š and its elements skeletal imsets for š,
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