
Int. J Cenerul Svslgrns, Vol 23" pp 323-341

Reprints available directly from the publisher

Photocopying permitted by license only

O 1995 OPA (Overseas Publishers Association)

Amsteťdam B.v
Published under l icense by Oordon and Breach

Science Publishers SA
Printed in thÉ Uni(ed States of America

DESCRIPTION OF STRUCTURES OF
STOCHASTIC CONDITIONAL INDEPENDENCB

BY MEANS OF FACES AND IMSETS
3rd part: examples of use and appendices'

MILAN STUDENÝ

Institute of Information Theory and Automation, Czech Academy of Sciences, Pod
vodárenskou věží 4, I82 08 Prague 8, Czech Republic

Local Abstract (3rd part) Thís part contains several examples that illustrate the implementation oí the
facial deductive mechanism and show how to transform information about conditional independence
structure given in the form of dependency models, Bayesian or Markov networks into imsets. Another
example indicates that the ťacial deductive mechanism is indeed more powerful than the semigraphoid
one. A simple method of proving the probabilistic soundness of an inference rule is presented" Two
appendices contain some supplementary resu|ts about the structural ordering of imsets. The advantáges
and disadvantages of and prospects íor the presented approach are discussed in the Conclusions.

INDEX TERMS:r Conditional independence, imset, Bayesian network, Markov network, facial im-
pl ication" portrait.

PREFACE

This paper is the last installment of the three-part work Description of structures of
stochastic conditional independence by means of faces and imsets" Recall that the
first part of the work describes the mo(ivation for the presented theory and defines
basic concepts while the second part contains its mathematical fundamentals. This
part gives several examples illustrating the implementation of the corresponding de-
ductive mechanism for conditional independence (CI) and the relation to the other
existent methods of description of Cl-structures. All these examples are gathered in
one section. Moreover, this part is supplemented with two appendices. Appendix A
contains the proof of Assertion 2.2 from the second installment of the series and
Appendix B studies the operation of contraction of imsets whicb may be used in a
probabilistic expert system as "restriction of the set of symptoms"" The paper also
contains a Conclusions section (for the entire series) which treats the prospects of
the presented theory.

Every definition, result, example or section throughout all series is denominated
by two numbers: the first number indieates the paper where it can be found and the
second number is its location within that paper.

'This research was supported by the internal grants of Czech Academy of Sciences n. 27510 'Ex-

planatory power of probabilistic expert systems: theoretical background' and n" 27564 'Knowledge

derivation for probabilistic expert systems'"
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JZ+ MILAN STUDENÝ

Of course, the reader should be familiar with preceding two parts of the work in
order to understand adequately all the examples. However, some examples are easily
understandable without thorough study of those papers. Namely, the last two ex-
amples illustrating the combining of Bayesian networks and the deriving of inference
rules can be read almost immediately (only a few definitions from sections 1 " 1 , 1 .2
and Def 2.10 from $2.:.t are needed) and considered as simple instructions.

NOTATION

Throughout the paper we will deal with the following situation: Afinite set N having
at least two elemenrs called the basic ser is given, i.e" 2 < card y'ý q oo. The class
of all its subsets will be denoted by exp N. The class of nontrivial subsets of N, i.e.
subsets having at least two elements will be denoted by Óll:

otf : {S C N; card,S > 2}.

For a set T C N, its indicator i.e. the Zero-one function on exp ď (possibly restricted
to Ólt)" is defined as follows:

r ,l l  i n ca seS=Irt{J) = 
1o in case s + T.

For disjoint sets Á, B C ď the juxtapositionÁB will stand for their union A U B.
The symbol A L B I C is used for the Cl.statement Saying that Á is conditionally
independent of B given C (see Def 1.2, $1.1.1), (., ") denotes the scalar product
( see  De f  l . 13b ,  $1 .3 .1 ) .

The structural ordering (see Def 2.8, g2.Z.l) will be denoted by <. The letter E
usuďly denotes its base (i.e. the set of elementary imsets, see Def z,7, s2,2.I),
while the letterÁ its skeleton (Def 1.17, $1.3.4)"

The symbol l-"u. stands for semigraphoid derivability (Def 1.7, $1.1.3), I is used
for probabilistic implication (Def 1.8, $1" l.3) and r-+ for facial implication (Def 7.3,
92"1"2). Facial equivalence (see Def 2"4, $2.1.3) will be denoted by :, the set of
nonnegative integers (including zero) by Z* and the set of positive integers (natural
numbers) by N. Finally" the following symbols for classes of functions on 0ll will
be used:

R(ou)
ZgD
Zno,.(%)

z(<)

3.1 EXAMPLES OF USE

This section contains several examples showing how tcl make facial implication im-
plementable on computers. First, all skeletal imsets (for the structural ordering) in

the class of real functions on Ó[
the class of integer-valued functions on 0U
the class of normďized integer-vďued functions on rU,, see Def 1 .10,
sec t . 1 . 2
the class of structural imsets, see Def 2.8, 52.2.1
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Tabie 3.1 Values (a, u} for a € A and u e. E

325

6 i l - ó s _ 6 r  ó N  - ó s . - ó R  ó ď _ 6 7 * 6 R

a t : 6 N

a 2 = 6 " * ó 5

a ' = ó " * ó 7

a o = 6 ' + ó "
a 5 = 2 6 N + ó l + ó 7 + ó R

the case of 3 symptoms are found and the testing of facial implication by means of
the skeleton is illustrated. Then two types of internal computer representation of faces
are discussed (namely by means of generating imsets and portrairs) " Further ex-
amples illustrate three ways of inputing information about Cl-structure (individual
Cl-statements, Markov and Bayesian networks). The section is concluded by two
examples of use illustrating the advantages of the proposed method over previous
methods" The first one shows how a whole Cl-structure can be inferred using the
new approach. The second one says how "to prove easily" probabilistic soundness
of "prospective' inference rules.

3.1.1 Testing Facial Implication

Before an example illustrating the testing of facial implication we find the skeleton
in case of 3 variables.

Exevpln 3.1 (skeleton in case of 3 variables)
Suppose that card N = 3; let {S, T, R} be the list of its subsets of cardinality 2. In
this case there exist 6 elementary imsets (see Def 2.7,52.2.1), namely:

E: {6' * 6s _ ó., 6" _ 6s - 5", 6'_ 6T _ 6^, 6,, ó', 6^}.

By Consequence 2.5, š2,2.4 the structural ordering has the skeleton i.e. the least
finite subset A C Z,o,^ (%) satisfying:

[0 < rz] a[Yae A (a, u] >Ol whenever u eZOD.

Thus" to show that the set

(3 . t )

Á : {6", óN + 6s, 6N + ar, óN + óR, 26* + 65 + 6Z + 6*}

is indeed the structural skeleton it suffices to verify that it is a minimal subset of
Z,o,^ (6lI) satisfying (3.1). It is done in three steps below.

I. [0 < u] ž [Va e A (a, u) > O) whenever u e Z(%)'
Table 3.l gives the values of (a, u) for a e' A and úe E,
Whenever n ' I l  :  ž,etk, .v  for  n €  N,  k ,  e Z,  (see Def  l .15,  $ l .3 .3)  then for  a l l
a  e  A  n . ( a ,  u ) :  ž , . , k " . ( a ,  v )  =  0 '

I I .  [Va  e  A (a ,  & )  >  0 l  ě [u :ž ,e t ku ' v f o rSome&,  e  Z " )  wheneve r  u € Z (% ' ) .
Ncrtice that the equality a, I a, = az * a7 * aa (see the table) has an important role
in the sequel. The required implication can be proved by induction on (a, * a,,, u)

I
I
0
0
0

1
0
I
0
0

I
0
0
I
0

000
100
010
001
l t r



= (a, * a, * ao, u) > 0.In case that (a, * a5, u) = 0 we easily derive L(a,, u) :
0 for all il, hence u = 0 and simply put t" = 0 for every v e E"

In case (o, * as, u) > 0 at least one of 6 cases listed below occurs and one can
ťtnd w € á havin1 (a,, w) = l just for the selected a, e A:

326 MILAN STUDENÝ

[(a,, u)' (a,, u) > 0] -' W : 6,v * 6' _ ó^

f(a,, u), (a,, ,) > 0] * w : ól _ ó, - ó^

[(a,, u), (ao,,) > 0] -- W : ó,v - ó, _ ó.

[(a,, u|, (a', u) > 0l -* w : ás

Iky u)" (ar, ,l > 0l -- ,il = 6r

Uao, u), (or, r) > 0l -- w : 6,t.

Clearly, u - w satisfies the induction assumption.

I I I .  Vd  €  Aau  e  Zg I )  [ (a ,  u |  <  0  &  Va  eá  \ td}  (o , , )  >  0 ] '

This can be shown as follows:

d = at: árv+ a : _ól,, + 6s + 6?. + 6R

ó= az :  ó l u  *  6s -  u  -  * ó s  +  ó r+  óR

d: al: ólv * 6r--> u - ós _ ór + 6R

ó : ao= ólv * 6n--+ u = ós * á' - ó*

á = as : 26u + ós + ór + áf -.+ Il = ó' - 6, _ 6. _ ó^.

ExnvplB 3.2 (testing of facial implication)
Consider the situation from the preceding example and suppose that the following
structural imsets u, v are given (the "decomposition" is in braces):

U = 6N_ 6* (= {ó" * ó' _ 6R} + Es)
v = 26p+ 3ós * 26, _ 26^(= 2{ó' _ ó7 _ 6R} + 36s).

The question is whether a *+ v. It is possible to recognize it without the skeleton,
as it follows from Lemma 2,2(b), š2.|'2:

f u ,+v ] € t 3 t  eZ*  k .u ._v :  ) - . u  k* .w fo r somek .  e  Z* ] "

Indeed, one can write: 5u _ v : 3{ó" _ ós - ón} + 2ó7 and therefore z n-+ y" ln
this case n has to be multiplied 5 times to find a concrete "decomposition". But how
to estimate the needed "factor" in the general case? One can avoid this problem in
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Tabte 3.2 Scalar products with skeletal imsets

ó" _ ó* 2óN + ''ós - 26T _ 26R 2 ó N - 6 s - 6 , _ 6 ^6/ý

4r = ólv
a . = ó p - | ó s
4 r = ó N + ó I
4 4 = ó ť + ó R
a 5 = z a N + ó s + ó 7 + a R

case when the skeleton is known (or at least a finite class inducing the structural
ordering is known) by means of Assertion 2.1($2.1.7). Then

|u*>v] € [ Va  e .A (a ,  v )>0ž(a ,  i l )>0 ] .

Thus, Table 3.2 of scalar products implies the conclusion u *> v immediately. The
converse question i"e. whether v o-> u clearly has a negative answer. You can see
that this conclusion can be hardly achieved using the "decomposition'" approach.

3.1 .2 Representation of Faces in Computer

Now, we are going to deal with the question of how to represent faces in a computer.
In fact, there are two possibilities discussed below.

The first way uses the above mentioned identification of faces with classes of
:-eQuivalence, i"e. it describes a face by its generating imset ($2. t.01. Nevertheless,
it has a minor disadvantage: the representation of Cl-structure is ambiguous in the
sense that the same Cl-structures can be represented by different imsets. In fact, two
imsets represent the same Cl-structure if they are facially equivalent (Summary 2.3,
š2.3.2). Certainly, some of the imsets within a class of faciď equivalence are ex-
ceptional. For example, the structural imsets ilt = ólv _ ó5 and u2. : 26y _ 2ó' _
6. are :-equivalent and O {, u2 - ut but not conversely (i.e" not 0 { u, - u2)" One
can suggest representing --classes by imsets "minimď' in this sense" Although these
imsets are usually unique (in case card N : 3) two such imsets may exist; for ex-
ample 61, and 26, _ ó' _. 6. - 6p form such a pair of ..minimal" --equivalent
normalized imsets (see Table 3 .2 in $3. I . 1).

The second way, which avoids the mentioned ambiguity, is to represent faces by
means of portraits ($2.1.8). This approach removes the above mentioned problem
(see Summary 2"2b). The reader can object: Portraits are evidently better for rep-
resentation of faces in a computer^ Why does the author deal with generating imsets
at all? I have two reasons for keeping in mind both types of representation.

. The first one is that structural imsets lead to further possible description of CI-
structures, namely by means of validity of so-callecl product formulas. This ap-
proach, explained in [Studený' l993l, can make interpretation of facial Cl-struc-
tures more natural.

. The second reason is connected with the intended input of information about CI-
structure. [n probabilistic expert systems, one can expect that incomplete inÍbr-
mation about Cl-structure will come from various sources: as a result of a sta-
tistical test or as an expert's estimate. The task is usually to gather this infor-
mation and then either to deduce some "new" information or to "build up' the
modei' When eÍltering individual Cl.statements, imsets are a more natural (rJi-

2
5
0
0
J
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rect) "translation" than portraits. To form the corresponding portrait one has to
compute a lot of scalar products (specifically, one must be computed for each
skeletal imset; note that the cardinality of the skeleton rapidly increases with
card AD. Moreover, the representation of portraits seems to require more memory
in a computer. It is not reasonable to make this "translation procedure" after
each input. A better way is to gather the information in the form of imsets (sim-
ple summing of imsets!) and make the "translation" to portraits only before de-
ducing some "required" information about Cl-structure.

3 .l .3 CI-statements as InPut

The next topic of our discussion is the input of information about Cl-structure. The
theory was constructed with the intention of making possible various types of input
and their combination. Therefore dependency models are taken to be the basic input.
They enable experts to enter undirected graphs (Markov networks) or directed acyclic
graphs (Bayesian networks) but also of individual Cl-statements as a result of an
affirmative answer of a statistical test.

Note that the so-called'principle of positive information about Cl-structure" is
accepted here, i.e. we enter only sure positive information about conditional inde-
pendence. This should be emphasized especially when the source of information is
a graph (where just a missing link or arrow means positive information about in-
dependence) in order to avoid the mistake "ignorance means independence'.

All three above mentioned possibilities for original sources of information will be
illustrated by examples. They will show that sometimes one can find a short cut.

Exar,rpr-n 3.3 (individual Cl-statements as input)
Let i/ = {1,2,3,4}.Suppose that we have obtained posit ive information about CI-
structure in the form of following four Cl-statements:

r :  rL4 l3  1L3 l i2  2L314 2L4 l13.

The task i s t o recogn i zewhe the rC l - s t a t emen t s / r : l  I 3 l+ resp .  t r : 3  L  4  |  l  a r e
implied by the given list. The input of information in the form of individual CI-
statements is very simple: one can translate each Cl-statement by the primary map-
ping i (Def 2.10, $2.3.1) into a structural imset. In this case we obtain the following
set of strucfural imsets L : {ur, . ", u+}:

u1 = D1l':,o1 _ 6{r,s} _ ó{:'+t u2: 61t,z,ss _ órr 'z} _ ó{z' l}

u3= 6p3'a1_ órz '+} _ ó{r '+} l l+:6N _ 6{r ,z ' r}  _ 6{r , : ,+} * 6{r , : t"

The information can be then gathered by summing these imsets: indeed, it follows
from Lemma2.7,  $2.1.1 and Lemma2"2 (a) ,92.1.2 that  for  each v e ZG) lL  , - -> v l
iff (ž"€r u) ,-+ v. Thus our task is to decide whether u : 2?=, Ui : 6ll * ótz':'+} _-

6tr,z} * 61z':} _ 6{z,+} _ 26p,+t facially implies either u1 : á1t,:,+1 _ ó{r,+} - ó1:r,+1 or v'
= 6{r.:,a} - 6{r,:} - 6{r,q}' The equality

t) - vt t {8" - 611,2.+} - 6{r,:,+i l- 61r,+1} + {Ert,z,+1 - 61r,21 - 612,+t}

* {óp. l .+t 
_ D{z ' . l}  -  6t ' ,ot}

says that U ě Vt, Note that I |,"* l,. To show that u,f v,.it is necessary to find a
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Figure 3"1 Markov network.

skeletal imset d such that (a, vz) > 0 and (a, u) = O (proceed as in Example 3.2).
The list of skeletal imsets is in .code' form in Table 2"|, š2.2.4. As a result of the
check procedure one should find two such skeletal imsets, one of which is a : ó"
* ótr,:,+} * 6{z'r,a} * 6{:'+l (namely mg for T^i,: {{3' 4ii). Note that the co-atomic
face corresponding to a is probabilistically representable; it also implies I # tr.

3.l .4 Undirected Graphs as Input

As mentioned in the lntroduction, undirected graphs (UGs) are widely used in the
literature to represent Cl-structures (the concept on Markov network from [Pearl,
19881). A triplet (A, B, c) is represenred in a uG iff every parh from Ato B meets
C. Every dependency model defined by this condition is probabilistically represent-
able (see [Geiger and Pearl, 1990b]). The elementary method of input for a UG is
to form the corresponding dependency model and enter it as described in the pre-
ceding example.'

Nevertheless, for special graphs, called triangulated or chordal (specified by the
condition that every cycle of the length 4 or more possesses a chord), which cor-
respond to well-known decomposable models [Lauritzen, et a|.,1984], a short cut
is possible. The method giving directly a pertinent stmctural imset will be described
in the following example.

Exeupm 3.4 (UG input)
Put 1ý : {7 , 2,3, 4, 5} and consider the graph in Figure 3. l. To show the elementary
method first find the corresponding dependency model. One can easily verify that
the following 6 triplets are the only 'pairwise' triplets represented by the given UG
(symmetric triplets are omitted):

tLz l4s  1t21345 113145 tL3 l24s 2L3 l4s  2L3 lL4s"
By translation using the primary mapping and summing one can get the imset:

a,:3ó" _ ó11,z '+'-5} _ ó{r , : ,+'s} -  ó12,: ,+"s} '_ 6{r '+'s} _ 6 iz '+,s} _ ó13,+,s} * 3ó1+,s i"

rNote that it suffices to limit input to triplets of the form (ÍaI, {ti, C) (the s<l-cal|ed patrwise form
of dependency model) which correspond to elementary structural imsets (this argumentis based on Prop-
clsiti<rn I from [Matůs' 1992]; it can be a|so <lerived using 'Iheorem 

2. l $2 1 4)

329
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Nevertheless, as the graph is chordal the direct method also can be used. Simply
identify the class of maximal cliques '{ of the graph and then take the the imset u
with the followins natural extension:

l l : O U q t

a+%cq

(*  1)" -o  * '  6n*

(n 9j is the intersection of sets from 9B, U (€ is the union of sets from Ý)"
The reasoning of this formula can be found in [Studený, |992b]. In our example

t6  :  {{1  ,4 ,5} ,  {2 ,4 ,5} ,  {3 ,4 ,5}}  and  the  co r respond ing  imse t  i s

Uz : 6r't - ó11,+,s} * á{z,+,s} _ 6{,'o',} 1- 26g'st'

The reader can easily verify that indeed ut - uz.

Rtvnnr 3.1 (multiple joint conditional independence)
The preceding example shows how imsets can be used to describe multiple joint
conditional independence i.e. conditional independence of more than 2 random vari-
ables under condition of another set. Namely, the imset a2 describes independence
of I,2,3 given {4, 5}. Note that it can be also formulated in terms of dependency
models, for example by couple of Cl-statements: L I Z l +S *, 12 L 31 45. Never-
theless, there is no simultaneously symmeřic and non-redundant expression by means
of triplets.

3.1.5 Directed Acyclic Graphs as Input

Directed acyclic graphs (DAGs) represent another classical way to descňbe Cl.struc-
tures. The terminology differs: Pearl [1988] calls themBayesian networ,ks, Shachter
[1990] probabilístic influence diagrams, Smith [1989] simply influence diagrams,
Lauritzen et al. [1990) directed Markovfields. A triplet (A, B, C) is represented in
a DAG iff C d-separatesa Á and B (see [Pearl, et at.,1990]). There are óther equiv-
alent criteria: the method of .morď graphs' proposed by Lauritzen et al" [1990] or
the procedure from [Smith, 1989] mentioned below" Certainly, one possible way to
translate the Cl-structure given by a DAG into an imset is to enter the dependency
moclel made of the triplets represented by the DAG. Nevertheless, an elegant short
cut is derived in the following example.

Exeupln 3.5 (DAG input)
A simple formula "translating" DAGs into imsets is derived here" Namely, for a
DAG the formula:

u: 6, - D, * ) {6,,r, - Dreru"nkr},
k€N

where n(,t) denotes the set of parents of the node fr i.e. origins of arcss to ,t, gives

oAn undrrected path from A to B is d-separated by C iff either some tail-to-tail or tail-to-head node
on it meets C or, on the other hand, the set of descendants of some head-to-head node on it (includine
that node) has empty intersection with C.

5Most authors use teÍTn .arc' instead of ,arrow''
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the natural extension of a structural imset describing exactly the Cl-structure rep-
resented by the given DAG.

Indeed, the originally proposed way to obtain triplets represented by a DAG is to
form a sequence of its nodes compatible with the orientation of the arcs, then define
the following sequence of triplets (so-called tnput list):

I  :  ( k , {1 ,  . . . , k -  t h z - ( t ) ,  r r ( k ) )  k :  1 , .  " , n

(whenever 11, ". ., k - lfr(f) : 0 the corresponding triplet is omitted) and then
form their semigraphoid closure (see [Smith, 1989], the equivalence of this criterion
to d-separation is shown in [Pearl et a|.,1990]). As the resulting dependency model
is probabilistically representable (see [Geiger and Pearl, 1990a]) it follows that (Con-
Sequence ?'6, s2,3.1 and Consequence 2'8, Š2.3.4):

[.] F,"^ /] (+ tt(O '-+ i(t)l <> [ l= 4 whenever t C f*(AD.

Thus by Lemma 2.1 and Lemma 2,2(a) the imset u : Lrcr i(l) describes the same
Cl-structure" Nevertheless z : žÍ=r {6r''...'ot _ 6r', .,k-l} _ á{o}u.tol * ó'<ol} gives the
formula above. Note that the formula does not depend on thé choice of a ..compat-
ible" sequence!

Relvtenx 3.2 Theoretically, probability measures could also serve as input infor-
mation about Cl-structure. In this case its multiinformation function M can sive di-
rectly the portrait as follows:

{ae  A ;aue  E  (P t , u ) :0&  (a ,u )>O\ .

3.] .ó Combining Information Sources

The following example shows that facial implication is indeed more poweďul than
the semigraphoid derivabitity. The example combines two inputs" namely two DAGs.
Another important feature is that it illustrates how a whole Cl-structure can be de-
rived using the new approach. In fact, another example of this operation can be found
in the literature, namely reversing arcs from [Shachter, 1990] can be understood as
derivation of a new DAG from an original one. I think that the presented method
can be also used for these purposes.

Exauplp 3.6 (combining Bayesian networks)
Let N : {1 ,2,3, 4}. Suppose that positive information about Cl-structure was given
by two experts in the form of the DAGs in Figure 3.2. One can find the correspond-
ing imsets r, and urby the formula from Example 3.5:

Ut:  6y . -  61r , z ,+} -  ó{ r , z , :}  *  6r r ' z l  *  6 t r ' : }
Uz: 6u _ á1r,:,+) _ ó12,:,+} * ó iz '+} * 6r:,+}.

To get the imset gathering both pieces of information simply sum these imsets:

u = 267, _ ó11,z':} _ ó{r,z,q} _ ó{r,l,+} - d-12,:,+} { átl 'z} .1- 61r,:l * ó{z'+} * ó1:.+}.

J_1 I
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'B 
4'

Figure 3"2 Given DAGs.

22

'34 '

The question is whether the influence diagram in Figure 3"3a is implied.
It can be clescribed by the imset u. : ólv^- ?r',''o} 

- 6{z":.+} + 6r,'ol * ó13,+1. The
equality Lt _ Uz: {á"^- ótr 'z.. l l  _ ó1r.: '+) + ótr ':r} i 'b., ' , , ůys u ,-. i , '  and therefore
by Consequence 2.8, g2.3.4 the DAG in Figuré 3.3a.iíprobabilisticálly implied by
th91e from Figure 3.2" The Bayesian network in Figure 3.lb can be derivéd simitarty.

Note that the conclusion from Example 3.6 cannot be shown using semigraphóid
derivation. For example, the triplet (3,4,0) represented by the DAďin Fig"ure 3.3a
cannot be derived by semigraphoid axioms from the triplets'represented by ňe DAGs

2

Á .
t

Figure 3.3a The

I
I

'g

íirst implied DAG

2

4 '

Figure

'3

3.3b lhe second rmplied DAC
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in Figure 3.2 (as they form a semigraphoid).ó Consequently, the DAG in Figure 3.3a
(and similarly the one in Figure 3.3b) cannot be derived using the method of re-
versing arcs [Shachter, 1990] which is based on semigraphoid inference rules (see
[Smith, 1989]).

3.1 "7 Deriving Inference Rules

As already mentioned, the probabilistic implication cannot be characterized by means
of a finite number of probabilistically sound inference rules [Studený , I992a]. There-
fore, it would be nice to be able to derive 'automatically' such inference rules. The
following example describes a simple method how to verify soundness of inference
rules suspected to be sound; note that it can be used to derive all inference rules
(A.3)-(A.7) from [Studený, l994]'

Exeupm 3.7 (deriving inference rule)
Suppose that Á, B , C , D , E are nonempty and pairwise disjoint subsets of the basic
set N. Our task is to verify the probabilistic soundness of the following "inference
rule":

IA L B lcn a A L c lor  uA L Dlar  uA r  EIBC)

ě [Á -L EICD & A L D IBC &A L c Inn &A I  B IDE)

For ttris purpose ..translate'' every tňplet <lf the first line to imsets by the primary
mapping (see Def  2.10,  $2.3.1):

L l r : 6 , q , c o -  6 o r r -  6 r ,  l 6 r ,

Uz :6acoe  _  ó -u  -  6 , , ,  *  6ou

ut : 6tnor - 6*, - 6rou | 6uu

Uq : 6eact .-. óo". _ óu.u t 6"..

Similarly "translate" triplets from the second line:

i ls:6,q,coe _ áo.o _ 6,o, * 6.o

Ud: 6,u,co _ 6-.- _ 6,,, * óac

Ul : 6nac'a.- ó*u _ 6,,, f óur

ua : 6anor - 6-" -- 6ro, * 6ou.

It is easy to see u1 I u2 * ut 't Llq : Lt5 * uo + u7 * u, and this implies the
prcrbabilistic soundness of the "inference rule" above. Indeed, by Lemma 2.2(b),

uln fact. it can be done by the inf.erence rule (A.7) frcrm [Studený, 1994) which is independent of
the semigraphoid tnference rules.
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#2.I"2 {ur, rr., ut, uq} - ur, u6, r,!-t, rJ8 and conversely {ur, ru, u7, u8} - i lr, L!2, r,t3,
uo. Hence Consequence 2.8,92.3.4 gives the required probabilistic implication.

3.2 APPENDIX A (proof of Assertion 2.2)

First, we denve some necessary conditions for structural imsets.

CoNspQupNcE A'1 Introduce a multiset f for each B € ol1 as follows:

( '
rB(n: l l  incaseBCK

I 0 otherwise"\

Whenever u e Z(<) then V B e qr (f ,,} : ž{rl(ňO; B C K} > 0.

Proof Put í : {K e Óll; B C K}, clearly ftlg = /, use Lemma 2.8 and Theorem
2.4b from 52.2"3^ I

Fecr A Whenever '1/Ir C qL is ascending (see Lemma 2.8) and u e Z(%,) then the
condition tVB € \r (f , rz) : 0] implies tVK e W u(Io : Ol.

Hint: take maximal B e 'W satisfying u(B) * 0.

Col tsEQuENCE A.2 For any Z C N,cardZ > 3 and g C{K €  6 l r ;  K 8Z}wit t t
card 3 > 2,

[C ,Deg  C+D\žZ:CUD.  (3 "2 )

Suppose that u e Ze) satisfies the condition:

u ( IQ=o  wheneve r . sgK*Z fo r someS € ý .  ( 3 . 3 )

Then0<Zu(A* l seyu ( J ) .

Proof Let?i : {Ke rlr; fS € ý s C K}, try to compute mg (see Lemma 2.8,
g2.2"3), by (3.2) I^i,: ý. Hence ms 6): l for s e ý. Now, the aim is to show:

mgr(A) < | whenever A EZ. (3 .4)

Indeed, it is evident when card Á < 2; proceed by induction on cardÁ" Supposing
card Á > 3 the nontrivial case is A e T \ ý. For any relevant couple's' r C N with
Á : .S U 7 verify mr(9) + mg(T) _ meí.S n D = 1. By tho induction assumpti<rn
only fte case n:i(,S) : ms,(n : I is interesting. Thus, C C S and D C 7 for some
C ,D  e  ý .  A s  AgZby  (3 ' 2 )C :  D"  HenceC  C  s  í1  7g i ves  mg(S  A  7 ) :  l ,
i.e. ng(S) + mg(T) _ mg(S í-] .l") : l.

Clearly (3.4) implies mr1z1 = 2. On the orher hand take C, D e tf , C + D and
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by (3.2) an<l the convexity inequality get: m.r(Z) - mr(C) + ms(D) - ms(C ) D)
> 2. Then using l,emma 2.8 and Theorem 2"4b (92.2.3) write:

O Š (m'q, 0 = 2 mc(K) u(n : \u(A + ) rz(s) +
KeT s €ý Ke9\ýU{Z}

By (3'3) Zxeli',gulz} mg(K)'u(n Š 0, hence the desired inequality. l

Lsvrve A.1 Suppose thatu e E (E denotes the set of elementary imsets, see Def
2"7,  g2.2.1)  and n,  L l  :  v  l  wwhere n €  N v,  w e.26).  Then v = k.  ufor  some
kez*"

Proof  Div ide á into d is jo int  subsets E '  i :  | , . . . ,  cardN -  1:

E,: {u e E, u: 6sur _ ós _ ór '| 6snr where card,S : card T : i).

Three cases will be distinguished.

I .  u e Ey t .e .  u:  6e wi th card A = 2.

In-this case put W = 
ou{Á} and for each B € "l4l write O : (ť, n, u) : (/, v) .+

(ť, -) (noiation / is from Consequence A.1)' By Consequence A.1 both (f ,,|
and (f , w) are nonnegative and therefore vanish. By Fact A, [vK € w v(ňQ : 0]
i .e .  y  :  f t . óo where k:  ( , " , , )  > 0 by Consequence A.1.

II. u e E2i.e. U = 6l, _ óB _ ó6 where cardÁ : 3 and B, C, D aresubsets of
Á of cardina|ity 2.

Put"l4l :0l1VÁ, B, C, D} and as in I ' derive tVK e 1// u(K) : w(n:0l. Then 0
:  (ť ,  n ,u | :  ( f  , , )  +  <f  ,  w)  g i ves  ( f  , , ) :  \ f  ,  w)  :  0  by  Consequence  A .1
and hence v(Á) + v(B) : o : w(A) + w(B). Similarly v(Á) + v(C; : 0 : w(Á) *
w(C). Finally, letZ = A 9 : {8, C, D} and by Consequence A.7 derive O < Zv(A)
+  v (B )  +  v (C )  *v (D) ,  0=Zw(A)+  w(B )  +  w(C)  +  w(D)  i . e . 0  <v (D) ,w(D)
and 0 : n. u(D) = v(D) + w(D) implies v(D) : 0. Hence v = k.(Do _ 6u _ ó.)
where k : (/, v) > 0 by Consequence A. 1"

III. u € á, where i > 3 i.e' u : ós.,r - ós _ 6r + 6sn7 where card S : card 7n
:  i  z  3  and  ca rd  S \  T  :  ca rd  Z \S  :  1 .

First introduce .ď : {K e otr; K C s U T} and divide it into four disjoint subclasses:

ďsur  :  lK  e  ú;K\s  + ( l  & K\r  + a}

ďs:{Ked;KCs&K\T+a}

ú,:{Ke"ď;  K\s#0&KCT}

ďsnr:{reď;  KCseKC7}

The conclusion will be derived in 6 steps:

(i) Vť e qr \.ď v(K) : 0 : w(Á).
Take w = 0ll \ ď and repeat the procedure from l.
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(ii) v(S U O : *v(S) : -v(T) : y(,S n O A w(S U Z) : -w(,S) : *w(T) :
w(S f] i").

By consequence A.1 and (i) 0 = (r,, r): v(^S) + v(S U I) and 0 < w(.S) + w(,S U
7';. Since 0: n.(r(S)"{- a(S U n) : {v(S) + v(S U D} + {w(S) + w(S U
Ql it fottows that v(s) + v(s U T) = o: v,(,s) + w(s U o. similarly, using
r' derive v(D + v(S U 7) : 0 : w(T) + w1š U o. An analogous přocedure
fory'nryields v(S l |) + u(S) +,|n + v(J U D :0 : w(š n Ď + wts)
+ w(D * w(.S U D.

( i i i )  VK € ď , u . \ { . '  U  r }  v (a :0 :  w(K ) .
To verify this by reverse induction on card K it suffices to show:

[V te  ď ,u . \ { sU r}  KEL  v ( L )  : 0 :w( I ) l  9  v (K )=0 :x , (K ) '

Let Z : ,S U T and ý : {^s, T, K). According the induction assumption, (i) and
Consequence A.2 get:

0=2v ( .SUO +  v (S )  +  v (T )+v ( IQ  0=2w( .SUO+ rv (S )+  w(T )+w( Ie

i.e. by (ii) 0 < v(Ig, w(19 and 0 : n. u(lO : v(K) + w(lg implies v(K) : e :
w(n.

(iv) Vr( € ďsV.'} v(K) :0 : x,(K).
Also use reverse induction and prove:

[Vte .ďNs} KgL v(L)=0:w(Z)]  + v(a:0:w(K)"

From (i), (iii), the induction assumprion and again (ii) ir follows thar:

({,r): v(K) + v(S) + v(S U D = v(Ig

(f ,-): w(IO + w(S) * r"v(^! U O: y!(n.

By Consequence A. l ,0 = v(a,  w(ň.)  and o:  n,u(n:  v(I]  + w(K).
( v )VK €  ď^{ r }  vQ{ ) :0 :  w(K ) .

The method is the same as in (iv).

(vi) VK € .ďsnr\{s n r} v(n : 0 : w(Io.
Repeat the procedure from (iv), but to verify (ro. u) : v(K) and, ({, w) = w(K) use
(i), (iii), (iv), (v), the induction assumption and then (ii).

(vi i) '"the steps (i)_(vi) together imply v: k.(ó,u, - 6s _ ó7 + ósnr) where k
: (ť", , v) > 0 by Consequence A.1. l

AssBnrIoN 2.2 The set of elementary imsets á is the base of {.

Proof Owing to Assertion 1.3 ($1.3.3) it suffices to show that E is a minimal
set establishing <. Thus, we prove by eontradiction:

Vue  E  n ' u* )n*u . ru l& " .u  f o rany r z € N ,  k ' € _  Zn
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Suppose not. Then choose v e. E \ {u} with r" > 0 (it is possible owing to u * o)
and  pu t  w  = n .  u  - v .  As  0  <  v ,  w  by  Lemma A . l ,  y  :  k .u fo r  some k  e  Z -* .
Since u, v e 2,,,-(?I) by Lemma 1.1, section 1"2 v : u and this contradiets the
choice of v.

3.3. APPENDIX B (contraction of imsets)

An operation of contraction can be defined for structural imsets. It has significance
of restriction of the model of Cl-structure to a subset of the basic set. Some results
concerning this operation are mentioned below.

DmrunroN B"1 (contraction, intersection)
For an imset u e Z(lD and a subset V of the basic set introduce the contraction of
u tct V as follows:

(a ̂  v.Xs) : 2 {u(K);K € 0lr S : K o V} whenever s € 0lr.

Evidently, u A, V is vanishing outside V.
Given r € R(olr) and V C N define the intersection of r byV, denoted r A'V, as:

(rÁ lrXs): r( ' '  n l. whenevers e otr. (forrseeDef 1'12, section t.2)

Further properties of scalar product quasiorderings can be derived under additional
assumptions regarding the inducing class.

Lnvua B.l Suppose that š is the scalar product ordering induced C C R(qr).
a) If C is closed under intersection š then

v š u* (,  A V) < (u LV whenever u, v eZ(qD, V C N. (V"ó)

b) If every r e C is nonnegative and non<leereasing (with respect to inclusíon), then

0< u  )  (a  A  w  Šu wheneve r  ue  Z (?D ,  yC  N

In particular,0 Š rz implies 0 š u (let V: 0)"

Proof It is easy to see that:

(v.7)

( r , uLV ) :  ( r  l t V ,u}  wheneve r r € R (o l l ' ) ,  ue  Z \D ,v . -  N '

a) Therefore [(v A y) š (u L,y)] <+ [Vr €  C (r A V,v) = (r hV, u)|. Nevertheless,
r e C implies (r ly V) € C according to the assumption.
b) Clearly r L V < r for any r € C and y C N. Write for arbitrary u e" 2+(117.

0s  ( r  _  ( ' ÁV ) ,u ) :  ( r , u}  -  ( rA  V ,u ) :  ( r , u )  _  ( r , uL ,V ) ,  I



338 MILAN STUDENÝ

Lgrvtvra B.2 The class of completely convex set functions (see Def 2"9, š2.2.2) is
closed under intersection.

Proof Whenever m is a completely convex function and A, B C N write: (m t\
D(Á u B) + (m A'V@ n B) _ (m A'V\(Á) _ (m hV(B) = m((A n v) U (B n
14) + n((A on n @ n n) -  m(An n -  a@ nI4 > 0.  t

CoNspeurNcr 8.1 The structural ordering satisfies in addition to (V.1)-(V.5) the
properties:

v  {v )  ( rA  W <  (u  LV )  wheneve r  u , v  eZgD ,yCN  (V .6 )

o=už@LV)<u  wheneve ru1Z (1L ) ,VCN .  (V .7 )

Proof By Theorem 2"4b, 52"2.3 ( is induced by the class of completely convex
set functions. Combine Lemma B.1, LemmaB"T and Lemma2.7b,52.2.2. I

Note that the same method can be used to show that the standard multiinformation
ordering (see Def 2"18, $2.3.5) satisf ies (V.6) and (V.7).

CONCLUSIONS

The aim of entire series of papers was to introduce a new approach to the description
of Cl-structures. It provides the concept of face as an alternative to the concept of
dependency model for description'of these structures" It was indicated how to rep-
resent faces in a computer and the connection between faces and dependency models
was established. Here I try to discuss advantages and disadvantages of and prospects
for the presented approach.

Contribution

First, I would like to highlight what I consider to be the contribution made by this
serjes of papers.

1. The presented theory gives a deductive mechanism to infer probabilistically
valid consequences of positive information about CI-structure. This mechanism
is more poweďul than the well-known semigraphoid mechanism (treated more
or less explicitly for example in [Dawid,1979), [Spohn, 1980], [Pearl, 19881,
lsmith, 1989]). The approach makes it possible to prove further independent
qualitative properties of stochastic CI i.e. to verify probabilistic soundness clf
conjectured inference rules'-the simple method is described in Example 3"7"

2" Although the mentioned deductive mechanism involves an infinite number of
independent inference rules (see Remark 2"3,92.3.2) it is "finitely imple-
mentable" from a theoretical point of view. Namely, whenever the skeleton is
at your disposal (its existence was proved) you can provide a simple efficient
implication algorithm--see Example 3.2.

'Note that many authors, ínfluenced by results o[ Armstrong [1974] rn the theory of relationa| da.
tabases, called these inference rules 'axioms'.



STOCHAST'IC CONDITIONAT. INDEPENDENCE

The presented approach allows the input of information about Cl-structure in
various forms. The basic connection with dependency models enables you to
enter individual Cl-statements (as a result of a statistical test or expert's tes-
timony)-see Example 3.3. Moreover, both Bayesian networks and decom-
posable models (i.e. chordal undirected graphs) have a simple, natural form of
input-see Example 3 "4, 3.5" Note that information from different sources can
be easily combined (see Example 3.6).
In contrast to the classical approach where only individual Cl-statements were
inferred this deductive mechanism can also infer the validity of a whole CI-
structure (for example the validity of a Bayesian network)-this was shown in
Example 3.6.

In contrast to both types of graphical representation of information about CI-
structure (undirected and directed acyclic graphs) this approach involves all
possible probabilistic CI- stÍuctures-see Consequence 2"9, s2.3"4' of course,
semigraphoids also involve all Cl-structures, but as already mentioned, the
structural faces approach says more.

The result about an equivďent description of vďidity of a faciď model by means
of the so-called product formula from [Studený, 1993] is the first step to a
justified interpretation of all these models of Cl-structure. Thus, it seems to
me that the facial approach to description of Cl-structures has at least as sound
an interpretation as hierarchical log-linear models in statisties.
The internal computer representation of faces by means of generating imsets
enables you to join and save information without its loss (in contrast to re-
versing arcs in the influence diagram method [Shachter, 1990]). As concerns
representation in a computer, an imset requires card fu : zcardN - card N - 1
integers i,{r a memory of a computer while a dependency model 4cudN I 2ctdN
_ z.3caÍoly bits (although in the case of a semigraphoid it can be reduced to
card N.(card N - 1) ."2carťN-31,

Multiple joint conditional independence has a natural internal representation by
means of imsets-see Remark 3" I, $3. 1.4"

Tasks to be Solved

There remain certain problems:

1. So, far I have no sufficiently convenient characterization of the skeleton al-
lowing an algorithm to construct it for an arbitrary given number of variables
or attributes. This may be a seňous problem as the verification of completeness
of the class of skeletal imsets was very tedious in the case of 4 attributes-
see [Studený , 1991) '

2. Unfortunately, structural faces do not completely correspond to probabilistic
Cl-structures. There exists a structural face which is not probabilistically rep-
resentable (even in the case of 4 attributes, namely all 6 co-atomic faces cor-
responding to the skeletal imsets from the class IX mentioned in Table 2. l,
92.2.4). I must emphasize that the essential step to this discovery was made
by my colleague F. Matúš [1994) who found that there exists a matroid which
is not probabilistically representable Knowing this I succeeded in finding fur-
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ther independent properties of probabilisticďly representable
which do not hold for general structural semigraphoids:

A LBlc ue LBID &B L CIA&c LDIA+ B

dependency models

LACIA  (B " l )

A LBID &A Lc ln  aa Lc lA&c Lo l0+AB LC l0  (B.2)

The proofs of these properties are still in manuscript; Matúš and I plan to publish it
later after deriving more results.

Finally, I would like to mention some prospects for the presented approach:
1. Although the described theory did not fulfill the original aim to completely

correspond to probabilistic Cl-structures it seems that it can be successfully
modified in order to be able to describe precisely Cl-structures within a special..Ílice'' class of probability measures o" In fact, this is the very reason for the
development of the theory of faces for the general scalar product ordering on
imsets (see section 2" 1). Consider the multiinformation ordering (see Def 2.18,
$2.3.5) corresponding to @; in case that it is finitely establishecl there is a fair
hope that faces with respect to this multiinformation ordering both fit Cl-struc-
tures within I and have an efficient deductive mechanism. This may also be
the case for the standard multiinformation ordering! So far, I don't know how
the standard multiinformation ordering (in case of 4 attributes) looks,

2. Perhaps a natural way of input of graphical models (i.e" undirected graphs)
could be found. A proper set of triplets giving the dependency model repre-
sented by such a graph as its semigraphoid closure is needed.
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