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The topic of this survey are structures of stochastic conditional independence.
Two basic questions are dealt with: the problem of characterization of conditional
independence models and the problem of their mathematical description and com-
puter representation. Basic formal properties of conditional independence are re-
capitulated and the problem of axiomatic characterization of stochastic conditional
independence models is mentioned. Classic graphical methods of description of these
structures are recalled, in particular the method which uses chain graphs. Limita-
tion of graphical approaches motivated an attempt at a non-graphical approach. A
certain method of description of stochastic conditional independence models which
uses non-graphical tools called ’structural imsets’ is outlined.
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1. Introduction

Motivation of this paper stems from general significance of the concept of
conditional independence (CI). Classic concept of stochastic independence of two
random vectors [ξi]i∈A and [ξi]i∈B has interpretation of their mutual irrelevance
which means that the values [ξi]i∈B have no relevance to the task of estimation
of the values of [ξi]i∈A and conversely.

The concept of conditional independence has similar interpretation. Con-
sider a random vector [ξi]i∈N and suppose that A,B,C ⊆ N are pairwise disjoint
sets. Then the situation when [ξi]i∈A is conditionally independent of [ξi]i∈B given
[ξi]i∈C can be interpreted in terms of relevance as follows. Knowing the values of
[ξi]i∈C the values of [ξi]i∈A and the values of [ξi]i∈B have no relevance each other.
Alternative interpretation is in terms of ’decomposition’ which means that the
system of variables [ξi]i∈A∪B∪C can be decomposed without loss of information
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into two subsystems, namely [ξi]i∈A∪C and [ξi]i∈B∪C . More exactly, the joint
distribution of [ξi]i∈A∪B∪C is recoverable from its marginals for A∪C and B ∪C
by means of a certain product formula. Thus, CI describes certain qualitative
relation among variables and every CI statement represents a piece of general
’structural’ information about a stochastic system.

Formal properties of stochastic CI were widely studied in probabilistic rea-
soning which is an area of artificial intelligence where uncertainty processing is
based on probability theory. Moreover, CI appears in two branches of math-
ematical statistics. For example, in analysis of contingency tables, well-known
graphical log-linear models can be interpreted in terms of CI (see Chapter 4 of
[29]). Similarly, in multivariate analysis, certain graphs describing CI structures
are associated with well-known structural equation models (see Section 5 of [3]).

But the significance of the concept of CI is not limited to probabilistic
(and statistical) framework. This concept has been introduced in several non-
probabilistic frameworks, namely in various calculi for dealing with uncertainty
in artificial intelligence (for more detailed overview see [51,45,13]). Note for il-
lustration that several other contributions in [63] dealt with CI in alternative
frameworks, namely with CI in the framework of

• possibility theory [4,14,60],
• coherence theory [7],
• theory of imprecise probabilities [9],
• theory of evidence [5],
• hypergraphs [31].

To conclude this motivation part let me formulate two basic questions of
interest of this paper.

1. The problem of characterization is the question what are the structures of
stochastic CI among a finite number of discrete random variables.

2. The problem of description is the question how to describe these structures
mathematically to have both the possibility of suitable interpretation of the
mathematical tool and the possibility of relevant computer implementation.

Note that the phrase ’CI structure’ is used throughout the paper in general sense,
mainly in motivation parts. It corresponds to exact mathematical concept of ’CI
model’ introduced in Definition 4.

The content of the following sections is as follows. Basic concepts are recalled
in Section 2, in particular the concept of CI. After preliminaries classic formal
properties of stochastic CI known as semi-graphoid properties are recapitulated
(Section 3). This is a starting point for a more general question of axiomatic
characterization of formal properties of CI mentioned afterwards (Section 4).
Then the problem of description of CI structures is treated. Section 5 briefly
summarizes classic graphical methods. The need for non-graphical methods is
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justified in Section 6. Finally, Section 7 describes roughly a certain non-graphical
approach which tries to overcome limitation of graphical methods.

2. Basic concepts

Throughout the paper N denotes a non-empty finite set of factors. These
factors correspond to random variables, say ξi, i ∈ N . Every non-empty subset
A of N corresponds to a random vector [ξi]i∈A. Every random variable ξi has a
certain measurable space (Xi,Xi) as a frame, that is the set Xi of possible values
(= sample space) endowed with σ-algebra Xi. Under this situation (XA,XA) will
be used as a shorthand for (

∏
i∈AXi,

∏
i∈AXi) which serves as a frame for ξA.

Moreover, let us accept the convention that (X∅,X∅) is (an appended) measurable
space endowed with trivial σ-algebra X∅ ≡ {∅, X∅}.

Note that those readers who are not familiar with basic measure-theoretical
concepts may consider finite non-empty sets Xi, i ∈ N instead of measurable
spaces (Xi,Xi), i ∈ N . Respective definitions in this special discrete case will be
systematically recalled in the sequel.

Given x = [xi]i∈N ∈ XN and ∅ 6= A ⊆ N the projection of x to XA is
denoted by xA ≡ [xi]i∈A.

Definition 1. By probability distribution over N will be understood any proba-
bility measure with domain (XN ,XN ). Its marginal for ∅ 6= A ⊂ N is defined by
the formula

PA(Y ) = P (Y ×XN\A) for Y ∈ XA .

Moreover, PN ≡ P and P ∅ is the unique probability measure on (X∅,X∅) by
convention. A probability distribution over N is marginally continuous if there
exists a collection of σ-finite measures µi on (Xi,Xi), i ∈ N such that P is
absolutely continuous with respect to the product measure

∏
i∈N µi. Recall that

P is absolutely continuous with respect to a σ-finite measure µ on (XN ,XN ),
written by P � µ, if µ(Y ) = 0 ⇒ P (Y ) = 0 for every Y ∈ XN . Well-known
Radon-Nikodym theorem [44] then implies the existence of density of P with
respect to µ, called also Radon-Nikodym derivative.

If the dominating measures µi, i ∈ N are fixed, by marginal density for
∅ 6= A ⊆ N , denoted by fA, is understood the Radon-Nikodym derivative of PA

with respect to µA ≡
∏

i∈A µi. Moreover, f∅(x) = 1 for any x ∈ X∅. 4

It can be shown (see [49], Proposition 1) that P is marginally continuous if it is ab-
solutely continuous with respect to the product of its one-dimensional marginals∏

i∈N P {i}. An important special case of a marginally continuous distribution
is any non-degenerate multidimensional Gaussian distribution where (Xi,Xi) is
the set of real numbers with Borel σ-algebra for every i ∈ N . Moreover, every
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discrete probability measure over N is automatically marginally continuous since
one can always consider the counting measure on Xi in place of µi, i ∈ N .

Thus, the reader can accept the following simplified version of the above
definition. Probability density over N is any non-negative real function p on XN

with
∑
{p(x) ; x ∈ XN } = 1. It is called strictly positive if p(x) > 0 for all

x ∈ XN . The corresponding probability measure P on (XN ,XN ) where XN is
the power set of XN is then

P (Y ) =
∑
y∈Y

p(y) for Y ⊆ XN .

The marginal density pA for ∅ 6= A ⊂ N is defined as follows

pA(y) =
∑
{ p(y, z) ; z ∈ XN\A } for every y ∈ XA , (1)

and p∅(∗) ≡ 1 by convention.

Remark 2. Note that the situation described in Definition 1 is not completely
general. In fact, ’logical independence’ [7] or ’valuation independence’ [13] of
considered random variables is implicitly assumed which means that fixing on a
value of ξi, i ∈ N does not impose any restriction of the range of ξj , i 6= j ∈ N .
Formally, the joint sample space has the form of a product space. On the other
hand, fixing on a value of ξi may influence the probability of occurence of values
of ξj for j 6= i which is modelled by a probability distribution P . Therefore, no
restriction concerning ’stochastic independence’ of considered random variables
is involved in Definition 1 as explained above (arbitrary discrete distribution is
marginally continuous).

Note that ’logical contraints’, i.e. the situations when fixing on a value of ξi
excludes the occurence of some values of ξj for j 6= i (differently from the case of
zero probability of the value ξj which still lets the occurence of this value possible
- even if improbable) can be modelled by taking a general joint sample space for
ξi, i ∈ N . However, this necessitates much more general definition of the concept
of CI - see Remark 5.

On the other hand, ’classic’ Kolgomorovian probabilistic approach which
is treated in this paper does not allow to distinguish between different levels of
zero probability events. There are other approaches which allow to do so, for
example the coherence theory [8]. This approach takes the concept of conditional
probability as a primitive concept; the corresponding definition of CI then involves
additional requirements in comparison with the definition given below (Definition
4). Nevertheless these two definitions definitely coincide in discrete case with
strictly positive probability distributions.

Thus, the concept of marginally continuous distribution is general enough
for our purposes. It includes both discrete distributions and typical continuous
distributions. Respective CI statements are described by special triplets of sets.
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Definition 3. By a disjoint triplet over N will be understood any triplet
〈A,B|C〉 of pairwise disjoint subsets of N . The class of disjoint triplets over
N will be denoted by T (N). 4

Conditional independence of random vectors ξA and ξB given ξC , where
〈A,B|C〉 ∈ T (N), is formally defined in terms of their joint distribution over
A ∪ B ∪ C. The following definition of CI is limited to the case of marginally
continuous distributions (for explanation see Remark 5).

Definition 4. Suppose that 〈A,B|C〉 ∈ T (N) and P is a marginally continuous
distribution over N . Let µN ≡

∏
i∈N µi be the product of fixed dominating

measures. One says that A is conditionally independent of B given C with respect
to P and writes A ⊥⊥ B |C [P ] if the equality

fA∪B∪C(xA∪B∪C) · fC(xC) = fA∪C(xA∪C) · fB∪C(xB∪C) (2)

holds for µN -almost every x ∈ XN (here fA, A ⊆ N are marginal densities from
Definition 1). Recall that the phrase ’for µN -almost every x ∈ XN ’ means that
µN {x ∈ XN ; (2) does not hold } = 0. This slight technicality cannot be avoided
since the densities (Radon-Nikodym derivatives) are determined uniquely only
within equivalence ’equality almost everywhere’ - see [44].
The conditional independence model induced by P is then defined as follows

{ 〈A,B|C〉 ∈ T (N) ; A ⊥⊥ B |C [P ] } .

Abbreviation CI model is used in the sequel. 4

Note that the definition above actually does not depend on the choice of
dominating measures (see Section 2.3.1 in [59]). In discrete case, that is in case
when Xi, i ∈ N are finite non-empty sets, the above definition takes the following
simple form: one has A ⊥⊥ B |C [P ] iff

pA∪B∪C(a, b, c) · pC(c) = pA∪C(a, c) · pB∪C(b, c)

holds for every a ∈ XA, b ∈ XB, c ∈ XC (here pA, A ⊆ N are given by (1) and
equality is required for every a, b, c since the equality ’almost everywhere’ with
respect to the counting measure on XN is usual equality). Some of the readers
may be familiar with alternative equivalent definitions in the discrete case. They
are usually formulated in terms of conditional density which is defined by

pA|C(a, c) =
pA∪C(a, c)
pC(c)

whenever pC(c) > 0 ,

for disjoint A,C ⊆ N . Here is an overview of common equivalent definitions of
A ⊥⊥ B |C [P ] in discrete case.
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• In terms of conditional density over A given B ∪ C and C:

pA|B∪C(a|b, c) = pA|C(a|c)

for every a ∈ XA, b ∈ XB, c ∈ XC with pB∪C(b, c) > 0.
• In terms of conditional density over A ∪B given C (a descriptive version):

pA∪B|C(a, b|c) = pA|C(a|c) · pB|C(b|c)

for every a ∈ XA, b ∈ XB, c ∈ XC with pC(c) > 0.
• in terms of conditional density over A∪B given C (a non-descriptive version):

for every c ∈ XC with pC(c) > 0 the conditional density pA∪B|C(∗|c) is the
product of densities over A and B.
• Factorization property: there exist real functions f on XA∪C and g on XB∪C

such that

pA∪B∪C(a, b, c) = f(a, c) · g(b, c)

for every a ∈ XA, b ∈ XB, c ∈ XC .
• Cross-interchangeability condition:

pA∪B∪C(a, b, c) · pA∪B∪C(a, b, c) = pA∪B∪C(a, b, c) · pA∪B∪C(a, b, c)

for every a, a ∈ XA, b, b ∈ XB, c ∈ XC .

It is left to the reader to verify that the conditions above are equivalent in the
above mentioned discrete case. The most common definition is the first one
which corresponds to interpretation of CI in terms of irrelevance. The factor-
ization property is eloquent, it leads directly to interpretation of CI in terms
of decomposition. Special cross-interchangeability condition has specific inter-
pretation from the point of view of statistical physics [39]. Various attempts to
introduce the concept of CI in non-probabilistic frameworks are based on analogy
with previous forms of definition.

Remark 5. For sake of brevity I omitted general definition of CI (for arbitrary
probability distributions over N). Definition of this type is too technical. One
has to come back to measure-theoretical groundings in order to recall general
concept of (say non-regular) conditional probability with respect to a σ-algebra,
which is a special function defined uniquely only within certain equivalence. This
enables one to introduce the concept of CI of two σ-algebras given the third one as
the equality of certain conditional probabilities within respective equivalence (for
details see [15]). CI for random variables is then introduced as CI of respective
σ-algebras.
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3. Basic formal properties of conditional independence

Several authors independently accentuated some simple basic formal prop-
erties of stochastic CI. In modern statistics, the first author was probably Dawid
[12] who characterized certain statistical concepts, for example the concept of suf-
ficient statistics, in terms of generalized stochastic CI and used such properties
to derive his results in an elegant way, without tedious calculation. Analogous
properties, formulated in terms of σ-algebras were treated by other statisticians,
for example by Mouchart and Rolin [38]. Spohn [48] studied the concept of CI
from the point of view of philosophical logic and formulated the same proper-
ties like Dawid. Note that implicit remarks on properties of CI (in alternative
frameworks) also appeared in literature. One of reviewers of this paper pointed
out that Nambiar [40] interpreted multivariate dependencies treated in theory of
relational databases as CI statements.

Finally, the importance of CI in probabilistic reasoning was explicitly dis-
cerned and highlighted by Pearl and Paz [42]. They introduced the concept of
semi-graphoid to name ’formal independence models’ (i.e. subsets of T (N)) sat-
isfying these formal properties. These well-known properties are formulated in
the next lemma (the proof in discrete case is left to the reader, for general case
see Lemma 2.1 in [59]).

Lemma 6. Let P be a probability distribution over N . Supposing A,B,C,D ⊆
N are pairwise disjoint sets the following properties hold.

1. A ⊥⊥ ∅ |D [P ] triviality,
2. A ⊥⊥ B |D [P ] ⇒ B ⊥⊥ A |D [P ] symmetry,
3. A ⊥⊥ B ∪ C |D [P ] ⇒ A ⊥⊥ C |D [P ] decomposition,
4. A ⊥⊥ B ∪ C |D [P ] ⇒ A ⊥⊥ B |C ∪D [P ] weak union,
5. {A ⊥⊥ B |C ∪D [P ] & A ⊥⊥ C |D [P ] } ⇒ A ⊥⊥ B ∪ C |D [P ] contraction.

Note that some authors [43,46] regarded the above properties as suitable
axioms for abstract conditional irrelevance. Indeed, the most of CI models aris-
ing in miscellaneous alternative uncertianty calculi [51] exhibit the same formal
properties. Semi-graphoids can be also viewed from purely algebraic point of
view which leads to interesting related inference tasks [36]. Their further gener-
alization leads to the concept of separoid which is a specific algebraic structure
on a join semi-lattice [13].

4. Problem of axiomatic characterization

In general, by the problem of axiomatic characterization is meant the task
to characterize CI models over N (see Definition 4) without a reference to ’under-
lying’ probability distributions, namely in terms of properties of formal indepen-
dence models. Of course, one is interested in formal properties of semi-graphoid
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type applicable to any set of factors N which can also be interpreted as inference
rules of a certain ’formal axiomatic theory’ [37] in sense of mathematical logic.
For more detailed explanation of preceding sketchy sentence see [50].

Pearl and Paz [42] raised a natural conjecture that semi-graphoids coincide
with CI models (induced by discrete distributions). Unfortunately, their conjec-
ture was refuted [49] by finding another property of CI models:

{A ⊥⊥ B |C ∪D [P ] & C ⊥⊥ D |A [P ] & C ⊥⊥ D |B [P ] & A ⊥⊥ B | ∅ [P ] } ⇔
⇔ {C ⊥⊥ D |A ∪B [P ] & A ⊥⊥ B |C [P ] & A ⊥⊥ B |D [P ] & C ⊥⊥ D | ∅ [P ] } .

Note that this result was achieved using some tools of information theory, namely
by application of the properties of multiinformation function respectively of en-
tropy function. This information-theoretical point of view (which is also somehow
behind the method from Section 7) made it possible to derive later even a stronger
result [50]:

Theorem 7. CI models induced by discrete probability distributions cannot be
characterized in terms of a finite number of formal properties of semi-graphoid
type.

More specifically, for every natural number n ≥ 3 there exists a formal prop-
erty of CI (of semi-graphoid type) which applies on a set of factors of cardinality
n but which cannot be revealed on a set of less cardinality, namely

{A ⊥⊥ B1 |B2 & A ⊥⊥ B2 |B3 & . . . & A ⊥⊥ Bn−1 |Bn & A ⊥⊥ Bn |B1 } ⇔
⇔ {A ⊥⊥ B2 |B1 & A ⊥⊥ B3 |B2 & . . . & A ⊥⊥ Bn |Bn−1 & A ⊥⊥ B1 |Bn } .

Note that, moreover, the properties cannot be derived as a consequence of other
formal properties of CI valid on sets of factors of less cardinality.

Remark 8. Although semi-graphoid properties do not characterize stochastic CI
models, several results on their relative completeness were achieved. Geiger, Paz,
Pearl [21] and independently Matúš [32] showed that classic (unconditional) inde-
pendence models can be characterized in terms of properties derivable from semi-
graphoid properties. The same conclusion holds in full-context case, when dis-
joint triplets involving all variables in N are treated (see independently achieved
results by Geiger and Pearl in [22] and by Malvestuto [30]). Specific relative com-
pleteness results concern graphical models represented by acyclic directed graphs
[20,46] and models generates by pairs of CI statements [56].

The problem of axiomatic characterization has close connection to the im-
plication problem for a distribution framework. By a distribution framework is
meant ’consistently’ defined class P of probability measures over N for every set
of factors N . Three examples of distribution frameworks are the class of discrete
probability distributions, the class of strictly positive discrete probability distri-
butions and the class of non-degenerate Gaussian distributions. Given a set of
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disjoint triplets Σ ⊆ T (N) its logical closure relative to P is the set of disjoint
triplets over N representing CI statements with respect to every P ∈ P such
that all triplets from Σ are CI statements with respect to P . The respective
implication problem is the task to characterize logical closure with help of formal
properties of CI models induced by P ∈ P, called axioms of CI relative to P.
The above mentioned results on relative completeness of semi-graphoid properties
can be viewed as results solving the implication problem for special distribution
frameworks and specific restrictions of the class of CI statements.

5. Graphical methods

The second basic question of this paper is the problem of description of
stochastic CI structures. In general, by the problem of description is meant the
task to describe (some of) CI models over N (see Definition 4) by means of
simpler mathematical objects of discrete mathematics, namely those which offer
acceptable interpretation for humans. Traditional methods which comply with
requirements for easy interpretability and computer feasibility use graphs whose
nodes correspond to factors (= variables). Classic types of graphs used for this
purpose admit either directed or undirected edges betwen nodes.

Definition 9. Let H be an undirected graph having N as the set of nodes and
B1, . . . , Bn, n ≥ 1 is an ordered partition of N into non-empty blocks, called a
chain. The corresponding chain graph (CG) G is made from H by directing every
edge in H between nodes from different blocks in direction from the former block
to the latter block. Graph obtained in this way is called a chain graph over N .
Its directed edges are called arrows, undirected edges are called lines. 4

Note that chain graphs can be equivalently introduced as graphs without
loops, multiple edges and directed cycles (that is, sequences of nodes u1, . . . , un,
n ≥ 4 with un = u1 such that ui → ui+1 or ui −− ui+1 for i = 1, . . . , n and where
uj → uj+1 for at least one j ∈ {1, . . . , n}) - see Lemma 2.1 in [57].

CGs were introduced by Lauritzen and Wermuth in mid-eighties [25], but
they had some predecessors [24]. One of the aims of introducing them was to give
an unifying point of view on two traditionally separate but analogous graphical
approaches. The first was using undirected graphs (UGs) named also ’Markov
networks’ [43] that is graphs allowing lines only. The second was using acyclic
directed graphs called ’Bayesian networks’ [43], that is graphs allowing arrows
only and with forbidden directed cycles. The majority of authors in this field
became accustomed to the phrase ’directed acyclic graph’ and abbreviation DAG
which is not completely accurate (since adjectives do not commute). Comparison
between classic classes of graphs used for description of CI structures is illustrated
by Figure 1.
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Figure 1. Relationships among classic graphical models.

Remark 10. The aim of this ’historical’ remark is to explain the reader how mis-
cellaneous graphical criteria (e.g. Definition 11 below) used to relate (identify)
graphs with formal independence models (= subsets of T (N)) and consequently
with probability distributions were invented. It has close connection to the im-
plication problem mentioned in Remark 8.

The way of identification of classic graphs with CI structures was a result of
certain development. For example, in case of UGs the original interpretation of a
line u−− v was a certain ’conditional dependence statement’. More exactly, an UG
over N was intended to represent a class of strictly positive (discrete) probability
distributions over N , called Markovian distributions (with respect to the graph).
Distribution P of this kind was defined by the requirement that if a pair of nodes
{u, v} is not a line in the graph, then {u} ⊥⊥ {v} |N \ {u, v} [P ]. However, other
CI statements appeared to be valid in every Markovian distribtion. Thus, the
original ’pairwise Markov condition’ was often replaced by stonger ’local Markov
condition’ (for details see Section 3.2.1 in [29]). Nevertheless, this condition
was not strong enough to identify all CI statements valid with respect to every
(strictly positive) Markovian distribution. Thus, the development ended with
’global Markov condition’ which identifies the whole collection of CI statements
shared by (positive) Markovian distributions. These shared CI statements can
be identified directly on basis of the graph G by means of separation criterion
for undirected graphs as follows. The CI statements correspond to those triplets
〈A,B|C〉 ∈ T (N) for which every path in G between A and B has a node in
C. The graph G represents in this way the CI structure which is shared by
Markovian distributions (with respect to G). Thus, one can regard the graph as
a representative of the whole (common) CI structure which is the point of view
taken in this paper.

Note that analogous development was observed in case of DAGs (see Section
3.2.2 in [29]). The difference is that the development ended with two different
but equivalent criteria to determine the maximal collection of CI statements valid
with respect to the corresponding class of Markovian distributions. The group
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around Lauritzen [28] generalized an incomplete criterion from [24] to a step-wise
moralization criterion. Here, testing whether a disjoint triplet is represented in
the graph consists in transformation of the directed graph into a certain UG,
called the moral graph, and then using the separation criterion for undirected
graphs. Geiger, Verma and Pearl [18] proposed a direct d-separation criterion
(d stand for ’directional’) which examines paths in the original directed graph
whether they are blocked. The definition of blocking at a node of a path de-
pends on direction of arrows ’entering’ the node. The criteria were shown to be
equivalent in [28].

Interpretation of classic CGs is in accordance with traditional interpretation
of UGs and DAGs. Lauritzen [27] introduced moralization criterion for chain
graphs which simultaneously generalizes the separation criterion for undirected
graphs and the moralization criterion for acyclic directed graphs. Note that
theory of classic CGs was later developed and deepened by results of Frydenberg
[17] (e.g. characterization of equivalent CGs).

Definition 11. Let G be a CG over N and 〈A,B|C〉 ∈ T (N) is a disjoint triplet
over N . Testing whether 〈A,B|C〉 is represented in G according to the moraliza-
tion criterion for CGs consists of three steps.

1. Restriction of G to the set of ancestors T of A ∪B ∪ C in G, that is the set
of u ∈ N such that there exists a sequence u = u1, . . . , un, n ≥ 1 such that
un ∈ A ∪ B ∪ C and ui → ui+1 or ui −− ui+1 in G for i = 1, . . . , n. The
resulting induced graph is denoted by GT .

2. Moralization of GT means that an edge between different nodes u, v of GT

is added if there exists a path u = w1 → w2 −− . . . −− wm−1 ← wm = v,
m ≥ 3. The middle part of the path is composed of lines but it may consist
of a single node. After that direction of possible arrows is forgotten so that
the resulting moral graph of GT is an undirected graph over T .

3. If every path between a node in A and a node in B in the moral graph contains
a node in C then 〈A,B|C〉 is represented in G according to the moralization
criterion.

Then one writes A ⊥⊥ B |C [G]. 4

The moralization criterion is simply illustrated by Figure 2. The tested
disjoint triplet 〈a, d |{b, e, g}〉 is not represented in the given CG because the
path a −− f −− c −− d in the moral graph is outside the conditioning set.

The next step is to introduce the class of Markovian distributions with
respect to a CG.
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Figure 2. Testing 〈a, d | {b, e, g}〉 according to the moralization criterion for chain graphs.

Definition 12. Supposing G is a CG over N one says that a probability distri-
bution P over N is Markovian with respect to G if

A ⊥⊥ B |C [G] implies A ⊥⊥ B |C [P ] for every 〈A,B|C〉 ∈ T (N) .

Say that P is perfectly Markovian if the converse implication holds as well. 4

Justification for use of chain graphs as mathematical tools for description of
stochastic CI models follows from the next result proved in [58].

Theorem 13. For every chain graph G over N there exists a strictly positive
discrete probability distribution P over N which is perfectly Markovian with
respect to G.

Thus, every CG indeed represents a stochastic CI model, not only the col-
lection of CI statements shared by all Markovian distributions (see Remark 10).
Note that analogous results were earlier achieved for UGs [16,22] and for DAGs
[19]. Analogously to the case of DAGs the substantial step of the proof of The-
orem 13 is direct c-separation criterion (c stands for ’chain’) for identification of
CI statements represented in a CG. This criterion introduced in [6] generalizes
d-separation criterion for DAGs [43] and is equivalent to the above mentioned
moralization criterion for CGs (see Consequence 4.1 in [58]).

Remark 14. Even more general types of graphs were recently proposed for de-
scription of CI structures. For example, general directed graphs which allow
multiple edges and directed cycles [47], reciprocal graphs [23], joint-response
chain graphs [11], chain graphs with alternative interpretation [2], partial an-
cestral graphs [3] and annotated graphs [41].
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6. Why non-graphical methods?

However, the main problem of graphical approaches is that they can hardly
describe all stochastic CI structures (at least in discrete case). Let me illustrate
it in case of four factors. In recently finished series of papers [33–35] all CI models
induced by discrete distributions over four factors were found (for an overview see
[55]). The resulting number makes it possible to make comparison in this case.
One has 64 UG models, 185 DAG models, 200 CG-models and 18300 stochastic
CI models over four factors (the number of semi-graphoids is 26424). I hope that
the numbers are eloquent.

However, they are theoretical reasons why even above mentioned advanced
graphical approaches do not overcome this limitation of graphical methods.
Namely, the number of graphs is exponential in the number of factors while
the number of stochastic CI models is superexponential (see Section 3.6 in [59]).

Note that limitation to a certain ’nice’ class of graphical models is possible
but it may lead to serious methodological errors in learning CI models from
statistical data. More exactly, limited graphical framework may force acceptance
of CI statements which are not supported by data on basis of CI statements which
are supported by data (see Section 1.1 in [59] or [62]).

This motivated an attempt to develop a non-graphical method of descrip-
tion of CI structures which hopefully keeps some assets of graphical methods.
The method proposed below is partially inspired by an information-theoretical
approach. It can be used both in case of discrete distributions, in case of non-
degenerate Gaussian distributions or even in mixed case of increasingly popular
of conditional Gaussian distributions [29].

7. Non-graphical approach

The above mentioned non-graphical method was presented in a series of
papers [53,52] but a more up-to-date exposition is to appear in later chapters of
[59]. Basic mathematical tools for description of stochastic CI models over N are
certain integer-valued functions on the power set of N .

Definition 15. By an imset over N is understood an integer-valued function on
the class {A ; A ⊆ N}. Every disjoint triplet 〈A,B|C〉 ∈ T (N) corresponds to a
semi-elementary imset u〈A,B|C〉 defined as follows:

u〈A,B|C〉: A ∪B ∪ C, C −→ +1,
A ∪ C, B ∪ C −→ −1,

Z −→ 0 otherwise.

It is called elementary if A and B are singletons. An imset u over N is called
structural if there exists a natural number l and a sequence of (possibly repeated)
semi-elementary imsets u1, . . . , ur, r ≥ 0 such that l · u =

∑r
i=1 ui. 4
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Figure 3. Hasse diagram of a semi-elementary imset.

Note that the word imset is an abbreviation for integer-valued multiset.
Multiset is a common concept from combinatorial theory describing systems of
sets where some sets can be taken repeatedly. So, multisets generalize hyper-
graphs in a certain sense.

For a small number of factors (= variables) imsets can be visualized by
special pictures. The power set of N is a well-known distributive lattice and can
be represented by means of its Hasse diagram. Nodes of this diagram correspond
to subsets of N and a link between two nodes is made if the symmetric difference
of represented sets is a singleton. A function on the power set can be visualized
in such a way that one writes the corresponding values into respective nodes. An
example of such a diagram is in Figure 3.

However, for description of stochastic CI structures only structural imsets
are used. In fact, they were introduced as imsets which can be obtained as a con-
ical combination of semi-elementary imsets (with rational coefficients). However,
they can be equivalently introduced as imsets obtained as a conical combination
of elementary imsets. There are theoretical reasons for this apparently super-
fluous terminological distinction: elementary imsets correspond (in sense of the
next definition) to atomic (= minimal non-trivial) stochastic CI models.

Definition 16. Let u be a structural imset over N and 〈A,B|C〉 ∈ T (N) a
disjoint triplet over N . One writes A ⊥⊥ B |C [u] and says that 〈A,B|C〉 is
represented in u if there exists a natural number k and a structural imset w such
that

k · u = u〈A,B|C〉 + w .
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A probability measure P over N is Markovian with respect to u if

A ⊥⊥ B |C [u] implies A ⊥⊥ B |C [P ] for every 〈A,B|C〉 ∈ T (N) .

It is called perfectly Markovian if the converse implication is true as well. 4

Thus, structural imsets can be used for description of certain formal inde-
pendence models. Note that they can be utilized for description of all stochastic
CI models induced by probability distributions with finite multiinformation. Re-
call that the multiinformation of a probability distribution P over N [49] is the
relative entropy of P with respect to the product of its one-dimensional marginals∏

i∈N P {i}. The class of distributions with finite multiinformation is a subclass
of the class of marginally continuous distributions (see Section 2.3.4 of [59]).

Those readers who are not familiar with basic measure-theoretical concepts
should know at least the fact that every discrete distribution has finite multi-
information. The same claim is true for non-degenerate Gaussian distributions.
The main result is the following one (see Section 5.3 of [59], discrete case [53]).

Theorem 17. Let P be a probability distribution over N with finite multiinfor-
mation. Then there exists a structural imset u over N such that P is perfectly
Markovian with respect to u.

Thus, every discrete stochastic CI structure can be described by a structural
imset. On the other hand, there exists a structural imset describing a formal in-
dependence model which is not a stochastic CI model for any discrete probability
measure.

Some readers may object that structural imsets are far from reasonable
interpretation. Perhaps they appreciate the following equivalent definition of
Markovian distribution in terms of a certain product formula (see Section 4.5 of
[59], discrete case [52]).

Theorem 18. Let u be a structural imset over N . Then a probability distribu-
tion P over N with finite multiinformation is Markovian with respect to u iff the
following formula holds∏

S⊆N

fS(xS)u+(S) =
∏

S⊆N

fS(xS)u−(S) for µN -almost every x ∈ XN .

Here µN ≡
∏

i∈N µi denotes suitable produt of dominating measures and u+

are u− are positive and negative parts of u (i.e. u+(S) = max {u(S), 0} and
u−(S) = max {−u(S), 0} ).

Note that in discrete case the formula above reduces to the form∏
S⊆N

pS(xS)u+(S) =
∏

S⊆N

pS(xS)u−(S) for every x ∈ XN .
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Thus, every discrete stochastic CI models has (through the concept of structural
imset) interpretation which is analogous to the interpretation of well-known log-
linear models from mathematical statistics (see e.g. Chapter 4 in [29]). Further
consequence of the formula in Theorem 18 is that the class of marginals

{P T ; T ⊆ S for some S with u(S) < 0 }

determines uniquely (always wider) class of marginals

{P T ; T ⊆ S for some S with u(S) > 0 } .

This often means (for ’nice’ structural imsets) that P is determined uniquely by
some of its proper marginals.

An important question is the question of theoretical possibility of computer
implementation of the method. Structural imsets provide a certain numerical
inference mechanism which is based on arithmetic operations with integers. Fur-
ther results of [59,53] concern this question. One of the results (see Sections 5.2
and 6.2.2 in [59]) says that for every N there exists a finite class of non-negative
imsets (the number of these imsets depends on cardinality of N) which allows one
to reduce the question of testing inference between structural imsets over N to
a standard task of linear programming (namely checking whether scalar product
of some integral vectors are non-negative).

Characterization of Markov equivalent structural imsets (that is, imsets de-
scribing the same CI structure) is a consequence of this result. Moreover, a direct
formula which makes it possible to ’translate’ some classic graphs into structural
imsets describing the same CI structure is proposed (see Section 7.2 of [59]).

8. Conclusion

The method of structural imsets makes it possible to describe all stochastic
CI structures arising in discrete framework and in continuous Gaussian frame-
work. However, it is not a finished theory. There are lots of open problems
motivated mainly by practical requirements (see Chapter 8 of [59]).

A substantial step towards wider acceptance of this approach can be suitable
visualization for humans. Related question is relevant interpretation of these
models of CI structure (which is however more likely a philosohical question than
a mathematical question). Hasse diagrams are good visualization tools for a
small number of factors but impractical for more than 5 factors. Perhaps some of
’sparse’ structural imsets (that is imsets with a small number of non-zero values)
can be visualized in the form of graphs whose nodes are sets (with non-zero imset
value). I have in mind an analogue of joint trees [10] or valuation networks [45].
I guess that it is feasible for structural imsets which correspond to some classic
graphical models (e.g. decomposable models).
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Another bunch of open questions concerns computer implementation. The
way of implementation is clear from theoretical point of view but related problems
with memory demands (when the number of variables increases) appear to be very
serious. The task which seems to be the most important one from statistical point
of view is the task to develop good methods for learning CI structures induced
by structural imsets. This remains to be a topic of research New Millenium.
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18 M. Studený / On stochastic conditional independence

[13] A. P. Dawid, Separoids: a general framework for conditional independence and irrelevance,
to appear in Annals of Mathematics and Artificial Intelligence.

[14] L. M. de Campos and J. F. Huete, Independence concepts in possibility theory, parts I.
and II., Fuzzy Sets and Systems 103 (1999) 127-152 487-505.

[15] J.-P. Florens, M. Mouchart and J.-M. Rolin, Elements of Bayesian Statistics, Marcel
Dekker, 1990.

[16] M. Frydenberg, Marginalization and collapsability in graphical interaction models, Annals
of Statistics 18 (1990) 790-805.

[17] M. Frydenberg, The chain graph Markov property, Scandinavian Journal of Statistics 17
(1990) 333-353.

[18] D. Geiger, T. Verma and J. Pearl, Identifying independence in Bayesian networks, Networks
20 (1990) 507-534.

[19] D. Geiger and J. Pearl, On the logic of causal models, in: Uncertainty in Artificial Intelli-
gence 4, eds. R. D. Shachter, T. S. Lewitt, L. N. Kanal and J. F. Lemmer, North-Holland,
1990, pp. 3-14.

[20] D. Geiger and J. Pearl, Logical and algorithmic properties of conditional independence and
their application to Bayesian networks, Annals of Mathematics and Artificial Intelligence
2 (1990) 165-178.

[21] D. Geiger, A. Paz and J. Pearl, Axioms and algorithms for inferences involving probabilistic
independence, Information and Computation 91 (1991) 128-141.

[22] D. Geiger and J. Pearl, Logical and algorithmic properties of conditional independence and
graphical models, Annals of Statistics 21 (1993) 2001-2021.

[23] J. T. A. Koster, Markov properties of nonrecursive causal models, Annals of Statistics 24
(1996) 2148-2177.

[24] H. Kiiveri, T. P. Speed and J. B. Carlin, Recursive causal models, Journal of Australian
Mathematical Society series A 36 (1984) 30-52.

[25] S. L. Lauritzen and N. Wermuth, Mixed interaction models, Research report R-84-8, In-
stitute of Electrical Systems, University of Aalborg 1984 (the research report was later
modified and became a basis of the journal paper [26]).

[26] S. L. Lauritzen and N. Wermuth, Graphical models for associations between variables, some
of which are qualitative and some quantitative, Annals of Statistics 17 (1989) 31-57.

[27] S. L. Lauritzen, Mixed graphical association models, Scandinavian Journal of Statistics 16
(1989) 273-306.

[28] S. L. Lauritzen, A. P. Dawid, B. N. Larsen and H.-G. Leimer, Independence properties of
directed Markov fields, Networks 20 (1990) 491-505.

[29] S. L. Lauritzen, Graphical Models, Oxford Statistical Science Series 17, Clarendon Press,
1996.

[30] F. M. Malvestuto, A unique formal system for binary decomposition of database relations,
probability distributions and graphs, Information Sciences 59 (1992) 21-52.
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[59] M. Studený, On mathematical description of probabilistic conditional independence struc-
tures, a survey monograph (thesis for DrSc degree), Institute of Information Theory and
Automation, Prague (May 2001).
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