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Abstract 

The paper gives a few arguments in favour of 
use of chain graphs for description of proba
bilistic conditional independence structures. 
Every Bayesian network model can be equiva
lently introduced by means of a factorization 
formula with respect to chain graph which is 
Markov equivalent to the Bayesian network. 
A graphical characterization of such graphs is 
given. The class of equivalent graphs can be 
represented by a distinguished graph which is 
called the largest chain graph. The factoriza
tion formula with respect to the largest chain 
graph is a basis of a proposal how to represent 
the corresponding (discrete) probability dis
tribution in a computer (i.e. 'parametrize' it). 
This way does not depend on the choice of a 
particular Bayesian network from the class 
of equivalent networks and seems to be the 
most efficient way from the point of view of 
memory demands. 
A separation criterion for reading indepen
dences from a chain graph is formulated in 
a simpler way. It resembles the well-known 
d-separation criterion for Bayesian networks 
and can be implemented 'locally'. 

1 INTRODUCTION 

Two traditional approaches to description of proba
bilistic conditional independence structures use undi
rected graphs (Markov networks) and directed acyclic 
graphs (Bayesian networks) - see (Pearl 1988). Markov 
networks have lines (undirected edges) while Bayesian 
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networks have arrows (directed edges). In middle 
eighties Lauritzen and Wermuth (1984) introduced the 
class of chain graphs, that is acyclic hybrid graphs hav
ing both lines and arrows. Since then many theoretical 
results analogous to the results concerning Bayesian 
networks were achieved - for an overview see (Studeny 
1996). 

Chain graphs provide an elegant unifying point of 
view on Markov and Bayesian networks. However, 
researchers interested in graphical modelling of prob
abilistic structure may still have sensible objections 
against (wider acceptance of) chain graphs. Let us 
mention three of them. 

1. The original way of introducing of the class of 
Markovian distributions with respect to a chain 
graph by means of the moralization criterion 
(Lauritzen 1989) seems to be too complex to be re
membered immediately. It does not lead directly 
to an evident interpretation of chain graph mod
els. 

2. The first version of the separation criterion for 
chain graphs (Bouckaert and Studeny 1995) seems 
even more complicated, especially in comparison 
with d-separation criterion for Bayesian networks. 
Moreover, it is not evident whether it can be im
plemented locally. 

3. Many researchers believe that Bayesian networks 
provide a sufficiently general class of probabilis
tic models. Why one should use a more complex 
models for description of certain situations if one 
can describe it by a Bayesian network? 

The aim of this paper is to respond to these three pos
sible objections by adequate arguments in favour of 
chain graphs. In Section 2 some basic concepts are 
recalled. Then, in Section 3 we show that the class of 
Markovian distributions with respect to a chain graphs 
can be sometimes introduced very simply: by means 
of a factorization formula with respect to the chain 
graph. This holds in the case of a discrete strictly pos
itive probability distribution and also in the case of a 
chain graph which is Markov equivalent to a Bayesian 
network (by equivalence is meant that the graphs de-
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scribe the same probabilistic model, that is they have 
the same class of Markovian distributions). The for
mula leads to a more natural explanation of meaning of 
a chain graph model: such a model is a result of com
bination of pieces of structural information obtained 
from different experts. 

In Section 4 a graphical characterization of chain 
graphs equivalent to Bayesian networks is given. More
over, we propose to represent every equivalence class 
of Bayesian networks by the largest chain graph of the 
corresponding class of equivalent chain graphs. Note 
for explanation that the concept of largest chain graph 
is not identical with the concept of essential graph from 
(Andersson et. al. 1997a). Such a way of representa
tion has certain advantage. First, one has a relatively 
simple graphical characterization of the largest chain 
graphs (equivalent to Bayesian networks) in graphical 
terms. Then every Bayesian network within the equiv
alence class can be obtained from the largest chain 
graph by directing its edges. Second, every chain 
graph within the corresponding equivalence class (in
cluding every mentioned Bayesian network) leads to 
a certain factorization formula which can be used to 
store Markovian distributions in memory of a com
puter. The formula with respect to the largest chain 
graph seems to lead to the most effective way from the 
point of view of memory demands (among formulas). 

In Section 5 a simplified version of the separation 
criterion for chain graphs is presented. It resembles 
the well-known d-separation criterion for Bayesian net
works very much. Moreover, we show that it can be 
implemented locally . Section 6 (Conclusions) summa
rizes content. 

2 BASIC CONCEPTS 

Throughout the paper N will denote a non-empty fi
nite set of variables which will be identified with nodes 
of graphs. For sake of brevity, juxtaposition UV will 
denote the union U U V of sets of variables U, V C N. 

2.1 GRAPHS 

A hybrid graph G over N (= the set of nodes) is speci
fied by a set of two-element subsets of N, called edges, 
where for every edge { u, v} just one of the following 
three cases occurs. Either it is a line between u and 
v (= undirected edge), denoted by u - v, or an ar
row from u to v ( = directed edge), denoted by u -+ v, 
or an arrow from v to u, denoted by u � v. An 
undirected graph is a hybrid graph without arrows, a 
directed graph is a hybrid graph without lines. The 
underlying graph of G is obtained from G by replacing 
arrows with lines. Every set 0 =f. A C N induces a 
subgraph over A, denoted by GA, which has exactly 
those edges in G which are subsets of A. Components 
of G are obtained by removing all arrows of G and 
taking the connectivity components of the remaining 
undirected graph. 
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Figure 1: Example of a chain graph. 

A chain graph is a hybrid graph whose components can 
be ordered into a sequence C1, ... , Cn, n � 1 (called a 
chain) such that if { u, v} is an edge with u, v E C; then 
u- v, and if {u, v} is an edge with u E C;, v E Cj, 
i < j then u -+ v. For several other equivalent defini
tions see (Studeny 1997). The reader can easily verify 
that chain graphs involve both undirected graphs and 
directed acyclic graphs. Figure 1 gives an example of a 
chain graph. The corresponding chain of components 
is {a, b, c}, {d,e}, {f, g}. 

The set of parents of a set A C N denoted by paa(A) 
is { v E N \ A ; v -+ u for some u E A } . The symbol of 
the graph G can be omitted if it is clear from context. 
A sequence of distinct nodes v1 , . . .  , Vk, k � 1 such 
that { v;, v;+ l } is an edge in G for every i = 1 ,  . . . , k -1 
is called a path in G .  

2.2 PROBABILITY 

Given a collection of non-empty finite sets {X;; i E N}, 
and 0 =f. A C N the symbol XA will denote TiiEA X;. 
By convention X0 is a fixed singleton. Whenever x = 
[x;];eN E XN the symbol XA will denote its projection 
[x;];EA to XA. 

A probability distribution over N is specified by a col
lection of non-empty finite sets {X;; i E N} and by a 
function 

P: XN -+ [0, 1) with L {P(x); x E XN} = 1 .  

If P(x) > 0 for all x E XN , then P is called strictly 
positive. The marginal distribution of P for 0 f. A C N 
is a probability distribution pA (over A) defined by: 

P A(y) = L{P(x); x E XN , XA = y} for y E XA. 

We accept the convention P0 (-) ::= 1 .  Having dis
joint A, B C N, the conditional probability PAlE is a 
function on XA x XB defined by 

pAB([xA,XB]) PAIB(xAi XB) = pB(xB) 
for XA E XA, XB E XB in case P8(xB) > 0. We 
accept the convention that P AlB ( XA ixB) = 0 whenever 
P8(xB) = 0. Note that PAI0 = pA. 
Let us denote by T (N) the class of triplets (A, BIG) 
of disjoint subsets of N whose first two components A 
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Figure 2: Closure graphs. 

and B are nonempty. Having (A, BIG} E T(N) and 
a probability distribution P over N we say that A is 
conditionally independent of B given C with respect 
toP and write AlL B I C [P] if 

PAjBc(xAI [xB,xc]) = PAjc(xAixc) 

for every XA E XA, XB E XB, xc E Xc. 

3 FACTORIZATION FORMULA 

The aim of this section is to show that probability 
distributions and chain graphs can be related quite 
simply by means of a factorization formula for chain 
graphs which has a natural intuitive interpretation. 

A basic concept is factorization with respect to an 
undirected graph. Given an undirected graph G over 
N, a set A C N is complete if u - v for every dis
tinct u, v E A. A clique of G is a maximal complete 
set with respect to inclusion. A non-negative func
tion f defined on XN is factorizable according to G 
if there exists a collection of non-negative functions 
{ 'lj; K ; /{ E K } where K the class of cliques of G and 
'lj;K is defined on XK such that 

f(x) = II 'lj;K(XK) for x E XN . 
KE/C 

3.1 FACTORIZABLE DISTRIBUTIONS 

Let G be a chain graph over N and C a component 
of G. Then by the closure graph for C we understood 
the undirected graph H (C) over C U paG (C) obtained 
in this way: 

• take lines and arrows in G (directed) to nodes of 
C and drop direction (change arrows into lines), 

• connect by a line every pair of distinct nodes of 
paG(C). 

Equivalently, make paG( C) complete in the underlying 
graph of Gcupa(C) · Figure 2 shows the closure graphs 
for components of the graph from Figure 1. Nodes of 
pa( C) are marked by an asterisk. 

A probability distribution P over N is factorizable 
with respect to a chain graph G over N if the following 
two conditions hold: 

(a) component-wise factorization, that is 

P(x) = II Pcjpa(C)(xclxpa(C)) for x E XN 
cec 

where Cis the class of components of G. 
(b) clique-wise factorization, that is for every compo

nent C of G the conditional distribution Pqpa(C) 
is factorizable according to the closure graph 
H(C). 

The condition (b) can be equivalently expressed as the 
requirement that the marginal distribution pCupa(C) 
is factorizable according to H(C), or that Pcjpa(C) is 
computed from a distribution Q over CUpaG(C) which 
is factorizable according to H (C). 

EXAMPLE 3.1 Let G be the graph from Figure 1. A 
probability distribution P over {a, b, c, d, e, f, g} is fac
torizable with respect to G iff 

P = pabc · Pdeja · Pjgjbde , 
and moreover 

pabc 
= 'lj;ab''lj;bc, Pdeja = 'lj;ad''lj;de, Pjgjbde = 'lj;bdej·'lj;jg 

where 'lj;'s are arbitrary respective non-negative func
tions. 

In the preceding example, the elementary factors are 
not specified. Indeed, one has freedom in their choice 
in general. In the next section we will mention more 
specific factorizations in which the factors are condi
tional (marginal) probabilities computed from P. 
Such a two-degree factorization formula does not look 
natural at first sight. However, it has very good intu
itive interpretation. Let us consider a situation when 
our probabilistic model is composed from pieces of 
(structural) information obtained from different ex
perts. Thus, each expert has his/her exclusive non
empty area of competence; the areas are disjoint and 
cover together the whole set of factors N. The ex
pert is supposed not only to give information about 
structural relationships within his/her area of com
petence but also indicate outside factors which influ
ence the factors within the area of competence. To 
prevent discrepancy between experts we order the ar
eas of competence into a sequence C1, . .. , Cn, n ;::: 1 
and ask every expert to indicate the influential fac
tors from preceding areas only. That is, the i-th ex
pert can 'provide' information about the conditional 
probability Pc,jc,u ... uc,_, (i = 1, . . .  , n) in the form 
of Pc,jpa(C;) where pa(C;) C C1 U . . .  U Ci-1 is the 
influence area determined by the expert. However, 
we suppose that the expert can provide more detailed 
information about the structure of Pc;jpa(C;)· Thus, 
we want him/her to indicate how it factorizes, that is 
to provide the corresponding undirected graph H ( C;) 
over C; U pa( C;). Since the expert has C; as the lim
ited area of competence, he/she is not entitled to evi
dence relationships within pa( C;). Thus, it is natural 
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to suppose that pa(G;) is a complete in H(C;) (this 
is mathematical representation of 'missing' structural 
information). For simplicity we suppose that C; is a 
connected subset in each H(G;). Altogether, Pis fac
torizable with respect to a certain chain graph over N 
having G1, ... , Gn as components. Indeed, for every 
C, create 'local' hybrid graph G(G;) from H(Ci): re
move edges within pa( G;) and direct edges from pa( Ci) 
to C;. Then compose G of these local hybrid graphs. 

Let us mention a special case of Bayesian networks. In 
this case components are singletons and P is factoriz
able with respect to an acyclic directed graph G iff 
P = IleN P;lpa(i)· This well-known formula than can 
be interpreted as above: this time the i-th expert has 
G; = { i} as his/her area of competence and his/her 
only role is to indicate pa(G;) (H(C;) is complete!). 

3.2 MARKOVIAN DISTRIBUTIONS 

Let us recall the original way how probabilistic struc
ture was ascribed to a chain graph (Lauritzen 1989), 
(Frydenberg 1990). Supposing G is a chain graph over 
N, its moral graph is an undirected graph over N in 
which { u, v} is an edge iff { u, v} is an edge in G or 
u, v E paG(C), u f. v for a component C of G. For 
example, the closure graph H(C) mentioned in 3.1 is 
nothing but the moral graph of Gcupa(C)· Having a 
set of nodes A C N the symbol anG(A) denotes the set 
of ancestors of A, that is the set of those nodes v E N 
that there exists a path v = w1, . . .  , Wk = u, k 2: 1 in 
G from v to a node u E A such that w; --> Wi+l or 
w; - w;+l for 1 :::; i :::; k- 1. Note that A C anG(A). 
A triplet (A, BIG) E T(N) is represented in a chain 
graph G (according to the moralization criterion) if 
every path in the moral graph of G an(ABC) from a 
node of A to a node of B contains a node of C.  

A probability distribution P over N i s  Markovian with 
respect to a chain graph G over N if A ll B I C [ P] for 
every triplet (A, BIG) E T(N) represented in G. 

LEMMA 3.1 Every probability distribution factorizable 
with respect to a chain graph G is Markovian with re
spect to G. 

Proof: Suppose that P is factorizable with respect 
to G, and (A, BIG) E T(N) is represented in G ac
cording to the moralization criterion. One can find 
a chain of components C1, ...  , Cn, n 2: 1 such that 
an(ABC) = G1 U . . .  U Cm for some 1 :::; m :::; n. We 
leave it to the reader to verify using this fact that 
pan(ABC) is factorizable with respect to Gan(ABC)· 
Hence, pan( ABC) is factorizable according to the moral 
graph of Gan(ABC) · Therefore pan(ABC) is Markovian 
with respect to the moral graph of Gan(ABC) - see 
(Lauritzen et. al. 1990). Hence All B I G  [P]. D 

Thus, the factorization property implies Markovness. 
The converse holds often, too. Frydenberg (1990) 
showed that Markovness implies factorization in case 
of strictly positive distributions. In sequel we show 

that both conditions are also equivalent for certain 
special chain graphs. Thus, the class of Markovian 
distributions can be often introduced very simply by 
means of the factorization formula. 

4 MARKOV EQUIVALENCE 

We say that two chain graphs over N are Markov 
equivalent if their classes of Markovian distributions 
coincide. Let us recall Frydenberg's (1990) graphical 
characterization of Markov equivalence which general
izes an analogous result for Bayesian networks (Verma 
Pearl 1991). 

A complex in a chain graph G is a special induced sub-
graph of G, namely a path v1, ... , Vk, k 2: 3, such that 
v1 --> v2, Vi - Vi+1 fori = 2, ...  , k-2, Vk-1 f- vk in G, 
and no additional edges between nodes of { v1, ... , Vk} 
exist in G. For example, the only complexes in the 
graph from Figure 1 are b-> f f- d and b-> f +-e. 

THEOREM 4.1 Two chain graphs over N are Markov 
equivalent iff they have the same underlying graph and 
the same complexes. 

4.1 CHAIN GRAPHS MARKOV 
EQUIVALENT TO BAYESIAN 
NETWORKS 

An undirected graph G is called decomposable if the 
collection of its cliques can be ordered into a sequence 
K1, . . .  , Kk, k 2: 1 satisfying the running intersection 
property, that is 

Vi> 2 3j < i K; n CU Kz) C I<i. 
l<i 

Then, for every clique K of G, one can find such an or
dering which starts by K. For the proof of this fact and 
further equivalent definitions of a decomposable graph 
see (Lauritzen 1996). In (Andersson et. al. 1997b) the 
following result is shown. 

THEOREM 4.2 A chain graph G is Markov equivalent 
to an acyclic directed graph (Bayesian network) iff for 
every component G of G the closure graph H( C) is 
decomposable. 

An important fact is that a probability distribution Q 
factorizable according to a decomposable undirected 
graph can be factorized in such a way that the factors 
are conditional probabilities (computed from Q). In 
fact, there exists a distinguished formula for Q in terms 
of its marginals. 

LEMMA 4.1 Let Q be a probability distribution factor
izable according to a decomposable undirected graph G, 
and K 1 ,  . . .  , Kk, k 2: 1 is an ordering of its cliques sat
isfying the running intersection property. Then 

k 
QK; 

Q = II (1) 
. QK;n(U . K1) •=1 '<• 
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k 
Q }] QK;\ (U1<; K ,) 1 K;n (U,<; K 1) ( 2) 

Proof: One can use induction according to the num
ber of cliques k. The asumption implies that Q = 
1/JL ·1/JM where L = Ui<k Ki, M = Kk. We leave it to 
the reader to show that Q = ( QL · QM) I QL nM. Since 
QL is factorizable according to G L (which is decom
posable) one can apply the induction assumption to 
QL. 0 

The sets Si = Ki n ( Uz< i Kz) determined by the chosen 
sequence K 1, ...  , Kk are called separators of the se
quence (Lauritzen 1996). It may happen that Si = Si 
for i =F j. However, the set of separators and the num
ber of their occurences in s1' . . . 'sk does not depend 
on' the choice of the sequence K 1, ... , K k satisfying the 
running intersection property - see for example Lemma 
2.18 in (Studeny 199 2). In particular, the expression 
( 1) for Q in Lemma 4.1 does not depend on the choice 
of K1, ... ,Kk. 
Thus, in case of a chain graph G which equivalent to a 
Bayesian network the factorization formula from Sec
tion 3.1 can be made more specific. Indeed, for each 
component C of G one can choose a clique of the clo
sure graph H(C) containing paa(C). Then, one can 
find an ordering K1, ... , Kk(C), k(C);::;: 1 of the cliques 
of H (C) satisfying the running intersection property 
startin� by the chosen clique and apply Lemma 4.1 to 
Q = p upa(C). After that, one can write by ( 2) 

pKl k(C) 
Pclpa(C) = ppa(C) · II PK;\ S;IS; 

i=2 
where Si are the corresponding separators. This leads 
to the following global factorization: 

k(C) 
P = II ( PK1 \pa(C) lpa(C) · IT PK;\ S; IS;)· 

CEC i:2 
Note that in case G is directly an acyclic directed 
graph it collapses to the classical formula p = f1iEN pilpa(i)· 
EXAMPLE 4.1 To illustrate it let us continue with Ex
ample 3.1. Each closure graph from Figure 2 is decom
posable. Both cliques of the component {a, b, c} con
tain pa( {a, b, c}) = 0. Hence, there are two possible 
ways of writing pabc , that is 

either pabc = pab . Pclb or pabc = pbc . Palb . 
However, the required ordering of cliques is unique for 
the other components: 

Pdela = Pdla · Peld' Pfglbde = pflbde · Pglf · 
This leads to two factorization formulas for P hav
ing conditional probabilities as basic factors. Never
theless, one can also write it using (1) as a 'ratio of 
marginals' which leads to the following formula: 

pab . pbc pad . pde pbdef . pig p = 

pb pa . pd pbde . p f · 

As explained in the following remark one can obtain 
such an 'unique' formula for every chain graph which 
is Markov equivalent to a Bayesian network. 

Remark In the formula before Example 4.1 P is ex
pressed as a product of conditional probabilities. The 
overall number of factors is the number of cliques in 
all closure graphs for components. However, as men
tioned in Example 4.1, the formula may depend on the 
choice of orderings of cliques. Let us mention two ways 
how to avoid seeming ambiguity. 
First, one can use the first expression ( 1) from Lemma 
4.1 for p Cupa(C) which leads to the formula 

II TIKEX:(C) pK 
p 

= CEC ppa(C). TisES(C)(P S )m(S)' 

where JC(C) is the class of cliques of H(C), S(C) is 
the class of separators of H (C), and m( S) denotes the 
number of occurences of a separator S. Here, the el
ementary factors are only marginals of P . Seemingly, 
the number of factors both in numerator and denomi
nator is the overall number of cliques. However, some 
factors can cancel out. I have some reasons to believe 
that this form of expression for P even does not depend 
on the choice of the graph from the class of Markov 
equivalent chain graphs. 
The second way is the formula which has elemen
tary factors in the form of conditional probabilities 
PA\pa(C) 1 Anpa(C) where A is either a clique or a sep
arator of H(C) for a component C. Indeed, since 
pa(C) c K1 one has Ki n pa(C) = Si n pa(C) for 
i ;::;: 2 and therefore 

II TIKEX:(C) PK\pa(C) I Knpa(C) p = 
CEC f1sES(C)(Ps\pa(C) I S npa(C))m(S) 

PROPOSITION 4.1 Let G be a chain graph which is 
Markov equivalent to a Bayesian network. Then every 
Markovian distribution with respect to G is factorizable 
with respect to G. 

Proof: Let us fix a chain of components C1, . .. , Cn, 
n > 1 of G. Then use Theorem 4.2 and fix a re
spe�tive ordering K1, ... , Kk(C), k(C) ;::;: 1 of cliques 
of H(C) for every component C (see above). Con
struct a sequence of all nodes of N in the follow
ing way: take components in their order and within 
each component consider the blocks B1 = K 1 \ pa( C), 
Bi = Ki \ Ui<i B i for i ;::;: 2, in their order (the order 
within those blocks is immaterial). This ordering is 
consonant with orientation of arrows in G. One can 
direct all edges of G according to this ordering and 
obtain an acyclic directed graph D which is Markov 
equivalent toG by Theorem 4.1. Thus, every distribu
tion P which is Markovian with respect toG is Marko
vian with respect to D. By Theorem 1 in (Lauritzen 
et. al. 1990) P is factorizable with respect to D, that 
is P = Ti iEN p iupav(i) I ppav(i). Hence, the reader can 
verify that P is factorizable with respect to G. 0 
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Figure 3: Example of a Bayesian network and the cor
responding largest chain graph. 

4.2 LARGEST CHAIN GRAPH 

Supposing G and H are Markov equivalent chain 
graphs over N we say that G is larger than H and 
write H-< G if every arrow in G is an arrow in H with 
the same orientation. Informally, G has 'more' lines 
than H. Frydenberg (1990) showed that within each 
Markov equivalence class Q of chain graph there exists 
a chain graph Goo E Q which is larger than every other 
G E Q. The graph Goo is then called the largest chain 
graph of g. Let us recall a graphical characterization 
of the largest chain graphs from (Volf and Studeny 
1998). 

An arrow u -r v covers an arrow x -r y in a chain 
graph G if u is an ancestor of x and y is an ancestor of 
v in G. An arrow u -r vis protected in G if it covers an 
arrow which belongs to a complex in G. In particular, 
every complex arrow is protected. 

THEOREM 4.3 A chain graph is the largest chain 
graph (of a Markov equivalence class of chain graphs) 
iff every its arrow is protected. 

In fact, Goo has an arrow u -r v iff u -r v is shared 
by all graphs from g. By the preceding result, these 
shared arrows can be identified as protected arrows in 
every G E Q. 

EXAMPLE 4.2 Let us consider the acyclic directed 
graph D in the left picture in Figure 3. The only 
protected arrows in D are the arrows of the complex 
a -r c ._ b.  Thus, the corresponding largest chain 
graph G00 is in the right picture of Figure 3. The 
factorization formula with respect to D is 

P = pa 
· pb 

· Pcjab · Pdjc · Pejcd · Pfjcde · 
Note that each Markov equivalent Bayesian network 
has the arrows c -r d, c -r e and c -r f. Thus, 
Markov equivalent Bayesian networks differ only in 
permutation of nodes d, e, f. In particular, all equiv
alent Bayesian networks induce the same type of the 
factorization formula. On the other hand, the factor
ization formula with respect to Goo is different: 

P = pa · pb · Pcjab · Pdeflc · 

How it is related to Bayesian networks? Let 1) be a 
class of Markov equivalent Bayesian networks. Well, 
every D E 1) is only an auxiliary tool to describe the 
(common) underlying probabilistic structure (induced 
by each D E 1J) which is the crucial concept. Is it 
possible to represent the structure by a distinguished 
graph which reflects (only) the substantial features of 
the structure? This problem has not an appropri
ate solution within the framework of acyclic directed 
graphs. All equivalent Bayesian networks from Exam
ple 4.2 are equally entitled to represent the correspond
ing probabilistic structure but none of them expresses 
exchangeability of d, e, f. However, perhaps a solution 
can be found in a wider class of graphs. Let us con
sider the class Q of all chain graphs which are Markov 
equivalent to the graphs in 1J. Of course, Q is wider 
than 1) but the point is that the graphs from Q de
scribe the same probabilistic structure as the graphs 
from 1)! 

We propose to represent the structure by the largest 
chain graph Goo ofQ. Note that Theorem 4.3 together 
with Theorem 4.2 gives a graphical characterization 
of the largest chain graphs equivalent Bayesian net
works. This approach has several advantages. First, 
the choice of the representative is made on basis of 
a 'fair' mathematical criterion - the maximal number 
of undirected edges. Second, every Bayesian network 
D E 1J can be obtained from Goo by directing all its 
lines. The point of view of chain graphs gives a bet
ter insight into the class of equivalent graphs. While 
Goo is the maximal graph with respect to -< within Q 
Bayesian networks are the minimal graphs. Perhaps 
the task of checking equivalence of two Bayesian net
works D1 and D2 looks more transparent now. They 
are equivalent iff their corresponding largest chain 
graphs coincide. Instead of 'converting' arrows in D1 
to obtain D2 one can apply an algorithm transform
ing both into the corresponding largest chain graph 
(Studeny 1997). Third, the factorization formula with 
respect to the largest chain graph mentioned in 4.1 of
fers a promising method how to represent Markovian 
distributions in memory of a computer. Let us returm 
to Example 4.2. The difference between respective for
mulas is that the term Pdeflc from the formula induced 
by Goo is in the formula induced by D formally disin
tegrated: 

Pdeflc = Pdjc · Pejcd · Pficde · 

However, the memory demands for Pdeflc and for 
Pfjcde are the same: in both cases one needs IXcdef I 
numbers.1 Thus, the terms Pdjc and Pejcd only raise 
memory demands. I think that this holds in general. 

1The reader can object that only IXBI· (IXAI-1) values 
suffices to represent PAlE since the values of a probability 
distribution sum to l. In fact, this 'actual algebraic di
mension' of Pdefic and one of Pdlc · Peicd · Pficde are the 
same, namely IXcl · (IXdefl - 1). It does not depend on 
the choice of the graph at all, I guess. However, this ex
tremely frugal way of 'parametrization' almost surely leads 
to other computational difficulties. I doubt whether this is 
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The number of factors in the factorization formula 
from 4.1 (the formula induced by a Bayesian network 
is a special case) is the number of cliques of all closure 
graphs. One can expect less number of these cliques in 
a graph with less number of components. And the min
imal number of components within g has the largest 
chain graph of Q! An intuitive hope that the above 
mentioned approach could be computationally feasi
ble is based on Theorem 4.2. Distributions complying 
with decomposable models can be represented in form 
of a junction tree. This is a basis of a local computa
tion algorithm based on 'probability propagation' - see 
(Lauritzen 1996). Perhaps one can somehow to utilize 
the fact that in the formula from 4.1 every Pc!pa(C) 
(or equivalently pCupa(C)) complies with 'local' de
composable modeL 

Remark Andersson et. a/. (1997a) proposed to rep
resent every class V of Markov equivalent Bayesian 
networks by the essential graph of V which has the 
same underlying graph as every D E V and only those 
arrows which are shared by all graphs in V. This is 
always a chain graph. Example 4.2 shows that the cor
responding Markov equivalence class of chain graphs 
g is wider than V and therefore the essential graph 
does not coincide with the corresponding largest chain 
graph, in general. 

5 SEPARATION CRITERION 

The aim of this section is to formulate a separation 
criterion for chain graphs in such a way that its affinity 
with d-separation is evident. Moreover, we indicate 
how to implement it locally. 

5.1 SUPERACTIVE ROUTES 

A route in a chain graph G is a sequence of nodes 
p: VI, ... , Vk, k 2:: 1 such that {v;, v;+I} is an edge of 

G for every i = 1, . . . , k - 1. The difference from the 
concept of path is that nodes in a path are distinct, 
but the nodes in a route can be repeated! A section of 
p is its maximal undirected sub route v; - ... - Vj, 
1 � i � j � k. If 1 < i � j < k, Vi-I -> v; and 
Vj +- Vj+l, then it is called a head-to-head section. 
In case of a Bayesian network sections are just single 
nodes. Suppose that C is a set of nodes of a chain 
graph G. We say that p is superactive with respect to 
Ciff 

• every head-to-head section of p has a node of C, 

• every other section of p is outside C. 

A triplet (A, BIG) E T(N) is represented in G (accord
ing to the separation criterion) if there is no route in G 
from a node in A to a node in B which is superactive 
with respect to C. 

an effective way of internal representation of distributions 
in a computer. 

What does it mean in case of Bayesian networks? A 
route p in an acyclic directed graph D is superactive 
iff 

u E C {::} u is a head-to-head node 

for every node u of p. This condition is stronger than 
the concept of active route (Pearl 1988). In an ac
tive route u non-head-to-head nodes are outside C and 
head-to-head nodes have descendants in C. But when
ever u is a head-to-head node in u outside C, then 
there exists a path u = WI -> .. . -> Wk E C, k 2:: 2 
with {wi, . . . , Wk- d n C = 0 and u can be patched by 
w1 -> . . .  -> wk +- . . . +- w1. Thus, any active route 
can be modified into a superactive route. Therefore, 
one can formulate d-separation criterion in the follow
ing way. A triplet (A, BJC) E T (N) is represented in 
D if there is no route between A and B which is super
active with respect to C. I think that this formulation 
of d-separation is even simpler than the original one. 
The surpising simplicity is due to the fact we consider 
the class of all routes which may be infinite. Every ac
tive route can be shorthened to an active path but this 
is not true for superactive routes. In either case, it is 
evident that the above mentioned separation criterion 
for chain graphs generalizes (a simplified version of) 
d-separation. 

Note that the original c-separation criterion ( = separa
tion criterion for chain graph) was more complicated. 
It was formulated for certain finite class of routes, 
called trails, and an auxiliary concept of slide was nec
essary. The proof of the following lemma is analogous 
to the proof of Proposition 3 from (Lauritzen et. a/. 
1990). We omit it for page limitation. 

LEMMA 5.1 Let G be a chain graph over N. Then 
(A, BJC) E T(N) is represented in G according to the 
separation criterion iff it is represented in G according 
to the moralization criterion. 

5.2 ALGORITHM 

Potentially infinite number of routes in a chain graph 
may cause doubts whether c-separation can be imple
mented on a computer. To show that is possible we 
propose an algorithm which by 'local propagation' in
dicated the nodes connected by a superactive route. 

Input A chain graph G over N, A, C C N disjoint. 

Since the class 'I of triplets represented in G satis
fies the following 'composition property' (Studeny and 
Bouckaert 1998): 

(A, B1JC), (A, B2JC) E 'I � (A, BI U B2JC) E 'I, 

there exists unique maximal B C N \ AC (possibly 
empty) such that (A, BIG) is represented in G. 

Output Maximal B C N \ AC such that (A, BJC) is 
represented in G according to the separation criterion. 

Initiation Four sets U, V, W, Z C N will be modified 
dynamically by the algorithm. Put U = A, V = W = 
z = 0. 
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Inference rules This will be done by the use of the 
following 'propagation' rules applicable to edges { u, v} 
in G (one of them is applied to nodes u E N only). 

1. u E U, u - v, v fl. C :::} v E U, 

2. u E U, u <--- v, v fl. C :::} v E U, 

3. u E UV, u-+ v, v fl. C :::} v E V ,  

4. u E V, u- v, v fl. C :::} v E V ,  

5. u E UV, u-+ v :::} v E W , 

6. u E W, u- v :::} v E W , 

7. u E W, u E C :::} v E Z, 

8. u E Z, u- v :::} v E Z, 

9. u E Z, u <--- v, v fl. C :::} v E U.  

Stopping rule The algorithm will end when preced
ing rules cannot enlarge the sets U, V, W, Z. Then put 
B = N\UVC. 

LEMMA 5.2 The algorithm above indicates as UV the 
nodes v E N such that there exists a route in G from 
u E A to v which is superactive with respect to C. 

Proof: Let us ascribe meaning to sets U, V, W, Z. The 
set V contains those v E N such that there exists a 
superactive route from u E A to v whose last section 
has the form w; -+ Wi+l - ... - wi+k = v, k 2:: 1. 
The set U involves those v E N such that there exists 
a superactive route from u E A to v whose last section 
has not such a form. The set W contains those v E N 
that there exists u E UV and a route u = to -+ t1 -
... - tr = v, r 2:: 1 in G. And Z denotes v E N such 
that there exists a route u = to -+ t1 - ... - tr = v, 
r 2:1 in G with u E UV and {t1, ... ,tr}n C ::j: 0. 
We leave it to the reader to check that the rules above 
have to indicate gradually all nodes of U, V, W, Z. 0 

6 CONCLUSIONS 

Let us summarize the paper. Section 3 responds to 
an objection that the way of introducing the class of 
Markovian distributions for chain graphs is too com
plex. The factorization formula is quite simple, has 
reasonable interpretation, and fits in case of chain 
graphs equivalent to Bayesian networks (Lemma 3.1, 
Proposition 4.1) . Section 4 tries to show that chain 
graphs can be useful even in situations which can be 
described by Bayesian networks. We propose to repre
sent the class of equivalent Bayesian networks by the 
corresponding largest chain graph and argue that it 
leads to an effective way of computer representation 
of Markovian distributions. Section 5 responds to an 
objection that the separation criterion for reading in
dependences from a chain graph is too complicated in 
comparison with d-separation. Much simpler version 
of c-separation is presented. Moreover, we propose a 
method how to implement it in such a way that in each 
step only neighbor nodes are consulted. 
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