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The motivation for the paper is the geometric approach to learning Bayesian network (BN)

structure. The basic idea of our approach is to represent every BN structure by a certain

uniquely determined vector so that usual scores for learning BN structure become affine

functions of the vector representative. The original proposal from Studený et al. (2010) [26]

was to use a special vector having integers as components, called the standard imset, as the

representative. In this paper we introduce a new unique vector representative, called the

characteristic imset, obtained from the standard imset by an affine transformation.

Characteristic imsets are (shown to be) zero-one vectors and have many elegant prop-

erties, suitable for intended application of linear/integer programming methods to learning

BN structure. They aremuch closer to the graphical description;we describe a simple transi-

tion between the characteristic imset and the essential graph, known as a traditional unique

graphical representative of the BN structure. In the end, we relate our proposal to other

recent approaches which apply linear programming methods in probabilistic reasoning.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks are basic graphical models, used widely both in statistics [13] and artificial intelligence [18]. These

statisticalmodels of conditional independence (CI) structure are described by acyclic directed graphswhose nodes correspond

to (random) variables in consideration. It may happen that two different graphs describe the same statistical model, that is,

they areMarkov equivalent. A classic result [10,31] says that two acyclic directed graphs are Markov equivalent iff they have

the same adjacencies and immoralities, which are special induced subgraphs over three nodes.

A quite important topic is learning Bayesian network (BN) structure [16], which is determining the statistical model on

the basis of observed data. Although there are learningmethods based on statistical CI tests, contemporary score and search

methods are based onmaximization of a suitable quality criterionQ, also named a scoring criterion or simply a score by some

authors. It is a real function of the (acyclic directed) graph G and the observed database D. The valueQ(G,D) measures how

well the BN structure defined by G fits the database D. Two important technical assumptions on the criterionQ emerged in

the literature in connection with computational methods dealing with this maximization task:Q should be score equivalent

[3] and (additively) decomposable [5].

Representing the BN structure by any of the acyclic directed graphs defining it leads to a non-unique description causing

later identification problems. Thus, researchers calling formethodological simplification proposed to use a unique represen-

tative for each particular BN structure. A classic unique graphical representative is the essential graph [1] of the corresponding

Markov equivalence class of acyclic directed graphs, which is a special graph allowing both directed and undirected edges.
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The basic idea of an algebraic approach to the description of CI structures [22] is to represent themby certain vectorswith

integer components, called imsets. In the context of learning Bayesian networks this led to the proposal to represent each

BN structure uniquely by a so-called standard imset. The advantage of this algebraic approach is that every score equivalent

and decomposable quality criterion becomes an affine function (= linear function plus a constant) of the standard imset (see

Chapter 8 in [22]).

A geometric view was offered in [26], where it was shown that the standard imsets over a fixed set of variables N are

vertices (= extreme points) of a certain polytope, called the standard imset polytope. These results allow one to use the tools of

polyhedral geometry in the area of learning Bayesian nets, because they transform the learning task to a linear programming

(LP) problem [19], namely to optimize a linear function over a bounded polyhedron.

In thispaper,weproposeanalternativevector representativeof theBNstructure, called the characteristic imset. It is avector

obtained from the standard imset by a one-to-one affine transformation which maps integer vectors to integer vectors (in

both directions). Thus, every score equivalent and decomposable criterion is an affine function of the characteristic imset and

the set of characteristic imsets is the set of vertices of a polytope, called the characteristic imset polytope. Every characteristic

imset is a zero-one vector, that is, it has only zeros and ones as its components. Moreover, it is very close to the graphical

description: both adjacencies and immoralities are encoded by certain components of the characteristic imset (see Corollary

2 for details).

We establish a simple relation of the characteristic imset to any acyclic directed graph defining the BN structure and to

the respective essential graph as well. More specifically, we provide a formula for the characteristic imset on basis of any

chain graph defining the BN structure which has no flag, which is a special induced subgraph over three nodes. In particular,

this makes it possible to get the characteristic imset immediately on the basis of the essential graph. We also consider the

converse task of reconstructing the essential graph from the characteristic imset and provide a polynomial algorithm (in the

number |N| of variables) for it.
If we restrict our attention to decomposable models [13], interpreted as BN structures, then the characteristic imset has

quite a simple form. The situation is particularly transparent in the case of (models induced by) undirected forests: then the

edges in the graph correspond to ones in the characteristic imset. Thus, one can use the well-known greedy algorithm [20]

to learn these special graphical models; this gives an elegant geometric interpretation to the classic heuristic procedure

proposed by Chow and Liu [6].

The structure of the paper, which is based on [27], is as follows. In Section 2we recall some of the definitions and relevant

results. In Section 3 we introduce the characteristic imset and derive the above mentioned observations on it. Section 4 is

devoted to the transition between the essential graph and the characteristic imset. Section 5 contains comments on learning

decomposable models. In Section 6 we relate characteristic imsets to other zero-one vector structure representatives which

have recently appeared in the literature [17,11].We also discuss there the idea of intended future application of this approach

to practical learning, motivated by [11,7,9]. In Section 7 we briefly mention our preliminary computational experiments,

and, in Conclusions we discuss the perspectives.

2. Basic concepts

We tacitly assume that the reader is familiar with basic concepts from polyhedral geometry. Throughout the paper N

is a finite non-empty set of variables; to avoid the trivial case we assume |N| ≥ 2. In statistical context, the elements of N

correspond to random variables in consideration; in graphical context, they correspond to nodes.

2.1. Graphical concepts

Graphs considered here have a finite non-empty set of nodes N and two types of edges: directed edges, called arrows,

denoted like i → j or j ← i, and undirected edges. No loops or multiple edges are allowed between two nodes. If there is

an edge between nodes i and j, we say they are adjacent.

Given a graph G over N and a non-empty set of nodes A ⊆ N, the induced subgraph of G for A has just those edges in G

having both end-nodes in A. An immorality in G is an induced subgraph (of G) for three nodes {a, b, c} in which a→ c← b

and a and b are not adjacent. A flag is another induced subgraph for {a, b, c} in which a → b, b and c are adjacent by an

undirected edge and a and c are not adjacent.

A set of nodes K ⊆ N is complete in G if every pair of distinct nodes in K is adjacent by an undirected edge. To avoid

confusion note that some authors [13] may use this term to name a set in which every pair of distinct nodes is adjacent,

no matter whether by a directed or an undirected edge. However, in this paper we do need the stronger concept of (an

undirected) complete set. A maximal complete set is called a clique.

A set C ⊆ N is connected if every pair of distinct nodes in C is connected via an undirected path. Maximally connected

sets are called (undirected) components. Of course, the components of G provide a natural partition of N.

A graph is directed if all its edges are arrows. A directed graph G over N is called acyclic if there exists an ordering

b1, . . . , b|N| of all its nodes which is consistent with the direction of arrows, that is, bi → bj in G implies i < j.

A graph is undirected if all its edges are undirected. An undirected graph is called chordal, or decomposable, if every

(undirected) cycle of the length at least four has a chord, that is, an edge connecting two non-consecutive nodes in the cycle.
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There is a number of equivalent definitions of a decomposable graph [13]; one of them says that it is an undirected graph

which can be acyclically directed without creating an immorality. A special case of a chordal graph is a forest, which is an

undirected graph without undirected cycles. A forest over N in which N is a connected set is called a (spanning) tree.

A chain graph is a graph whose (undirected) components can be ordered into a chain, which is a sequence C1, . . . , Cm,
m ≥ 1 such that if a→ b in G then a ∈ Ci and b ∈ Cj with i < j. Every acyclic directed graph and every undirected graph is

a special case of a chain graph; in fact, they both fall in the class of chain graphs without flags, which class of graphs plays

an important role below.

Given a connected set C in a chain graph G, the set of parents of C is

paG(C) := { a ∈ N; a→ b in G for some b ∈ C }.
Clearly, in a chain graph, if C is a connected set of nodes inG, then paG(C) is disjointwith C. Typically, wewill have a singleton

{i} in place of C, in which case we write paG(i).

2.2. Learning Bayesian network structure

In a statistical context, each variable (= node) i ∈ N is assigned a finite (individual) sample space Xi (= the set of possible

values); to avoid technical problems assume |Xi| ≥ 2 for each i ∈ N. A BN structure defined by an acyclic directed graph G

(over N) is formally the class of discrete probability distributions P on the joint sample space
∏

i∈N Xi that are Markovian

with respect to G. Recall from [13,18] that P is Markovian with respect to G if it satisfies CI restrictions determined by the

respective separation criterion.

As mentioned in the Introduction a classic graphical equivalence characterization says that two acyclic directed graphs

over N are Markov equivalent (= define the same BN structure) iff they have the same adjacencies and immoralities (for a

proof see [1]). The inclusion of BN structures is the inclusion of corresponding classes of probability distributions.

A complete database D of the length � ≥ 1 is a sequence x1, . . . , x� of elements of the joint sample space. By learning

BN structure (from data) is meant determining the BN structure based on an observed database D. A quality criterion is a real

function Q of two variables: of an acyclic directed graph G and of a database D. The value Q(G,D) evaluates quantitatively
how good the BN structure defined by G is to explain the occurrence of the database D. However, we will not repeat the

formal definition of the relevant concept of statistical consistency of Q; for details see [16].

Since the aim is to learn a BN structure, a natural requirement is Q to be score equivalent [3], that is, for fixed D, we have

Q(G,D) = Q(H,D),

for any pair of Markov equivalent acyclic directed graphs G and H over N.

An additively decomposable criterion [5] is a criterion Qwhich can be written as follows:

Q(G,D) =∑
i∈N

qi|paG(i)(D{i}∪paG(i)), (1)

where DA for ∅ 	= A ⊆ N is the projection of the database D to
∏

i∈A Xi and qi|B for i ∈ N, B ⊆ N \ {i} are real functions.

Note that the terms qi|B(D{i}∪B) are often called the local scores.

Statistical scoringmethods are typically based on the likelihood function. For example, evaluating each BN structure by a

maximized log-likelihood (MLL) leads to a score equivalent and additively decomposable criterion. However, this criterion is

not statistically consistent in sense of [16], because it does not take into consideration the complexity of statistical models.

Therefore, subtracting a penalty term evaluating the dimension of the statistical model and the length of the database may

solve theproblem.A standardexampleof sucha criterionwhich is statistically consistent, score equivalent anddecomposable

is Schwarz’s Bayesian information criterion (BIC) [21].

Bayesian approach to derive criteria is to average the likelihood function after some prior distributions on the respective

parameter spaces; then each BN structure can be evaluated by the logarithm of the marginal likelihood. However, a plenty of

technical assumptionsmust be accepted here tomake it consistent [12]; an example of a score equivalent and decomposable

criterion derived in this way is the Bayesian Dirichlet Equivalence (BDE) score.

2.3. Essential graph

The essential graph G∗ of a Markov equivalence class G of acyclic directed graphs over N is defined as follows:

• a→ b in G∗ if a→ b in every G from G,
• a and b are adjacent by an undirected edge in G∗ if there are graphs G1 and G2 in G such that a→ b in G1 and a← b

in G2.

The first graphical characterization of essential graphs was provided by Andersson et al. [1]. It follows from that characteri-

zation that every essential graph is a chain graph without flags.
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In this paper, we exploit the following characterization of essential graphs from §6.5 of [25]. Given an acyclic directed

graph G, let G be the equivalence class of acyclic directed graphs containing G and H the (wider) equivalence class of chain

graphs without flags containing G. Here, we consider two chain graphs overN without flags equivalent if they have the same

adjacencies and immoralities. The classH can be naturally (partially) ordered as follows:

given H1,H2 ∈ H , if, ∀ a, b ∈ N , a→ b in H1 implies a→ b in H2,

then we say that H1 is larger than H2. This terminology was introduced by Frydenberg [10] and the reason was as follows.

If H1 is larger than H2 then this implies (but is not equivalent to!) that any undirected edge in H2 is an undirected edge in

H1, meaning that H1 is more “undirected" than H2. With this partial ordering, the essential graph G∗ (of G) is just the largest

graph in H; see Proposition 29 in [25].

Moreover, there is a graphical procedure for getting G∗ on the basis of any graph H inH. It is based on a special graphical

operation. Let H be a chain graph without flags. Consider two of its components, U called the upper component and L called

the lower component. Provided the following two conditions hold:

• paH(L) ∩ U 	= ∅ is a complete set in H,
• paH(L) \ U = paH(U),

we say that the components can be legally merged. The result of merging is a graph obtained from H by replacing the arrows

directed from U to L by undirected edges. By Corollary 26 in [25], the resulting graph is also a chain graph without flags

equivalent to H. Moreover, Corollary 28 in [25] says: if G and H are equivalent chain graphs without flags and H is larger

than G, then there exists a sequence of legal merging operations which successively transforms G into H. Of course, this is

applicable to an acyclic directed graph G and the essential graph G∗ in place of H.

2.4. Algebraic approach

An imset over N is a vector, whose components are integers indexed by subsets of N. Traditionally, all subsets of N are

considered, although in Section 3 we also consider imsets with a restricted domain. Thus, in the terminology of polyhedral

geometry, imsets are just the lattice points in the Euclidean space R
P(N) (= elements of Z

P(N)), where P(N) ≡ {A; A ⊆ N}
denotes the power set of N.

Every vector in this space can be written as a (real) combination of basic vectors δA ∈ {0, 1}P(N) for A ⊆ N:

δA(T) =
⎧⎨
⎩

1 if T = A ,

0 if T ⊆ N, T 	= A ,
for T ⊆ N.

This allows us to write formulas for imsets. Given an acyclic directed graph G over N, the standard imset for G is given by

uG := δN − δ∅ +
∑
i∈N

{
δpaG(i) − δ{i}∪paG(i)

}
, (2)

where the basic vectors can cancel each other. It is a unique algebraic representative of the corresponding BN structure

because uG = uH if and only if G andH areMarkov equivalent (Corollary 7.1 in [22]). The convex hull of the set of all standard

imsets over N is called the standard imset polytope.

Although the standard imset is a vector of an exponential length in |N|, the memory demands for its computer represen-

tation are polynomial in |N|. This is because at most 2 · |N| of its components are non-zero, since at least one term δpaG(i) in

(2) cancels against−δ∅. Note that there is a polynomial-time algorithm (in |N|) for the reconstruction of the essential graph

from the standard imset [24].

2.4.1. Algebraic view on learning

An important result from the point of view of an algebraic approach to learning BN structure is that any score equivalent

and decomposable criterion Q is an affine function of the standard imset. Specifically, Q has the form

Q(G,D) = sQD − 〈tQD , uG〉 , (3)

where 〈∗, ∗〉 denotes the scalar product, and both s
Q
D ∈ R and t

Q
D ∈ R

P(N) only depend on the database D and the criterion

(see Lemmas 8.3 and 8.7 in [22]). In particular, the task to maximize Q is equivalent to finding the optimum of a linear

function over the standard imset polytope. Moreover, (the constant s
Q
D and) the data vector t

Q
D is uniquely determined under

additional standardization conditions t
Q
D (A) = 0 for A ⊆ N with |A| ≤ 1.

Note that one can hardly expect that most of the components of the (standardized) data vector are zeros. However,

because the components of the standard imset uG mostly vanish, to compute the value ofQ(G,D) by means of (3), one only
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needs to compute at most 2 · |N| components of t
Q
D . Thus, the idea was to have a formula for the data vector and to compute

a particular component of t
Q
D only when needed.

For example, the standardized data vector tMLL
D for the MLL criterion can be computed as follows (see Proposition 8.4 in

[22]). Let P̂ denote the empirical measure on
∏

i∈N Xi computed from D, P̂A its marginal for A ⊆ N and H(P̂A|∏i∈A P̂{i}) the
relative entropy of P̂A with respect to the product of its own one-dimensional marginals. Then

tMLL
D (A) = � · H

⎛
⎝P̂A|

∏
i∈A

P̂{i}

⎞
⎠ where � is the length of the database D, for any A ⊆ N.

A formula for the data vector relative to the BIC criterion can be found in Section 8.4.2 of [22]; an analogous formula in the

case of BDE score in §8.3 of [23].

The reader may raise doubts whether the computation of components of the data vector is treatable for practical use,

or, whether one can keep such a long vector in the memory of a computer (if needed). As explained in Section 6.4, one can

easily compute the values of the data vector from local scores. Thus, once one is able to compute the local scores, one should

be able to compute the components of the data vector as well. As concerns the problem of memory demands, realize that

the memory demands for keeping all components of a data vector are smaller than the memory demands for representing

the database in the form of a (contingency) table of counts. Therefore, once one is able to keep the data in memory of a

computer, one should be able to keep the data vector, too. Moreover, one can often in practice avoid the need for computing

all components of the data vector (see Section 6.4).

2.4.2. CI statement coding

In the context of an algebraic description of CI structures [22], special simple imsets are used to describe CI statements.

More specifically, given a triplet of pairwise disjoint sets of variables A, B, C ⊆ N, the corresponding semi-elementary imset

is given by

u〈A,B|C〉 := δA∪B∪C + δC − δA∪C − δB∪C .

It algebraically encodes the CI statement A ⊥⊥ B | C, meaning that A is conditionally independent of B given C. The CI

statement and the corresponding imset is called elementary if A and B are singletons: |A| = |B| = 1. Note that every semi-

elementary imset is a standard one. The corresponding acyclic directed graph G over N can be obtained as follows. Order the

variables in N in such a way that (the elements of) C precede A, then B follows and N \ (A ∪ B ∪ C) is put at the end. Then

direct the edges of the complete (undirected) graph over N according to this order and remove the arrows from A to B.

3. Characteristic imset

The characteristic imset is formally an imset with a restricted domain to the class

P2(N) := {A ⊆ N; |A| ≥ 2} of sets of cardinality at least two.

Definition 1. Given an acyclic directed graph G over N, let uG be the standard imset for G. We introduce the (upper) portrait

of uG , denoted by pG , as follows:

pG(S) :=
∑

T, S⊆T⊆N
uG(T) for S ⊆ N. (4)

Then we subtract the portrait from the constant one-vector and get the characteristic imset for G, denoted by cG:

cG(S) := 1− pG(S) = 1− ∑
T, S⊆T⊆N

uG(T) for S ⊆ N. (5)

We will consider cG as an element of Z
P2(N), or equivalently, as an element of Z

P(N) satisfying additional constraints

cG(S) = 1 for |S| ≤ 1. Having fixed N, the convex hull of the set of characteristic imsets is called the characteristic imset

polytope.

The reason for ignoring the components of cG for |S| ≤ 1 is as follows. Every standard imset satisfies the linear constraints

∑
T⊆N

uG(T) = 0,
∑

T, i∈T⊆N
uG(T) = 0 for any i ∈ N. (6)

In particular, one always has pG(S) = 0 for S ⊆ N with |S| ≤ 1, and therefore, cG(S) = 1 for those S ⊆ N.
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Thus, the characteristic imset is obtained from the standard one by an invertible affine transformation ofRP(N) toR
P2(N).

Indeed, one can compute back the standard imset by the well-known formula for Möbius inversion:

uG(T) =
∑

S, T⊆S⊆N
(−1)|S\T| · pG(S) =

∑
S, T⊆S⊆N

(−1)|S\T| · (1− cG(S)) for T ⊆ N, |T| ≥ 2. (7)

The remaining values of uG can then be determined by (6). Since the transformation is one-to-one, two acyclic directed

graphs G and H are Markov equivalent iff cG = cH (cf. Section 2.4). Thus, the characteristic imset is also a unique BN

structure representative.

The basic observation about the characteristic imset is as follows.

Theorem 1. Let G be an acyclic directed graph over N. For any ∅ 	= S ⊆ N we have cG(S) ∈ {0, 1} and cG(S) = 1 iff there

exists some i ∈ S with S \ {i} ⊆ paG(i). In particular, cG is a zero-one vector.

Proof. Consider the defining formula (2) for the standard imset. For any S ⊆ N, |S| ≥ 1, the entry pG(S) can be computed

as

pG(S) = 1+ ∑
i∈N, S⊆paG(i)

1− ∑
i∈N, S⊆{i}∪paG(i)

1 .

Hence, we get

cG(S) = 1− pG(S) =
∑

i∈N, S⊆{i}∪paG(i)

1− ∑
i∈N, S⊆paG(i)

1 = ∑
i∈N, S⊆{i}∪paG(i),i∈S

1 = ∑
i∈S, S\{i}⊆paG(i)

1 .

For fixed S, assume that there exists two different elements i, j ∈ S with S \ {i} ⊆ paG(i) and S \ {j} ⊆ paG(j). This implies

both i ∈ paG(j) and j ∈ paG(i). The simultaneous existence of the arrows i→ j and j→ i, however, contradicts the fact of

G being acyclic. Thus, for each S ⊆ N, there is at most one i ∈ S with S \ {i} ⊆ paG(i). Consequently,

cG(S) =
∑

i∈S, S\{i}⊆paG(i)

1 ∈ {0, 1},

and thus cG is a zero-one vector. �

Corollary 1. For any N, the only lattice points in the characteristic imset polytope and in the standard imset polytope are their

vertices.

Proof. The result holds for any zero-one polytope and thus also for the characteristic imset polytope. The portrait map is an

affine linear map between uG and cG , mapping lattice points to lattice points, in both directions. Thus, the result holds also

for the standard imset polytope. �

Remark. Note that the observation that there is no lattice point in the standard imset polytope except its vertices is also

made in [28]. The original proof of this result in the manuscript of [28] was quite long and complicated. However, later

discussion among the authors of the present paper lead to a much simpler proof, namely using the portrait map. In the end,

this simple proof, the result of our joint effort, was also used in the final version of [28].

Another consequence of Theorem 1 is the characterization of adjacencies and immoralities in terms of the characteristic

imset.

Corollary 2. Let G be an acyclic directed graph over N and a, b (and c) are distinct nodes in G. Then

(i) a and b are adjacent in G iff cG({a, b}) = 1,

(ii) a→ c← b is an immorality in G iff cG({a, b, c}) = 1 and cG({a, b}) = 0. The latter two conditions imply cG({a, c}) = 1

and cG({b, c}) = 1.

Proof. Part (i) directly follows from Theorem 1: cG({a, b}) = 1 iff either b ∈ paG(a) or a ∈ paG(b). The necessity of the

condition in (ii) also follows from Theorem 1. Conversely, if cG({a, b, c}) = 1, three options may occur: {b, c} ⊆ paG(a),{a, c} ⊆ paG(b) and {a, b} ⊆ paG(c). But cG({a, b}) = 0 means, by (i), that a and b are not adjacent in G, which excludes

the first two options and implies that a→ c← b is an immorality in G. �

3.1. Quality criteria and characteristic imsets

Now we show that any usual quality criterion is an affine function of the characteristic imset.
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Definition 2. Given a score equivalent, an additively decomposable criterion Q and a database D, let t
Q
D denote the stan-

dardized data vector relative to Q. Introduce the revised data vector (relative to Q) as an element of R
P2(N):

rQD (A) = ∑
B,B⊆A,|B|≥2

(−1)|A\B| · tQD (B) for A ⊆ N, |A| ≥ 2. (8)

Lemma 1. Every score equivalent and additively decomposable criterion Q has the form

Q(G,D) = Q(G∅,D)+ 〈rQD , cG〉 , (9)

where G∅ is the empty graph over N (= graph without adjacencies).

Proof. Realize that t
Q
D (B) = 0 for |B| ≤ 1 and substitute (7) into (3):

Q(G,D) = sQD −
∑

B⊆N, |B|≥2
tQD (B) · ∑

A, B⊆A
(−1)|A\B| · (1− cG(A))

︸ ︷︷ ︸
uG(B)

.

Now, change the order of summation in the latter sum:

∑
A⊆N, |A|≥2

(1− cG(A)) ·
∑

B⊆A, |B|≥2
(−1)|A\B| · tQD (B)

︸ ︷︷ ︸
r
Q
D (A)

.

Thus, we get by (8):

Q(G,D) = sQD −
∑

A⊆N, |A|≥2
(1− cG(A)) · rQD (A) = constant + ∑

A⊆N, |A|≥2
cG(A) · rQD (A) .

The observation that the characteristic imset for the empty graph G∅ is identically zero implies that the constant above is

simply Q(G∅,D). �

Remark. Because adjacencies and immoralities characterize Markov equivalence (see Section 2.2) it follows from Corollary

2 that two acyclic directed graphs over N are Markov equivalent iff the components of their characteristic imsets for sets of

cardinality at most three coincide. In particular, the characteristic imset cG for an acyclic directed graph G over N is uniquely

determined by its components for S ⊆ N, 2 ≤ |S| ≤ 3. Therefore, the restricted characteristic imset (to sets of cardinality

at most three) is also a unique BN vector representative of a polynomial length in |N|. The reader may think that one can

perhaps omit the “superfluous" components of cG for sets of cardinality four andmore. However, the situation is not so easy.

The point is that the procedure for computing the remaining components of cG from those for sets of cardinality at most

three is non-linear. More specifically, for a set S ⊆ N of cardinality at least four, one has cG(S) = 1 iff at least three subsets

T ⊂ S of cardinality |S|−1 exist such that cG(T) = 1, see Lemma 4.1 [30] for details. Therefore, if we omit the “superfluous"

components of cG the quality criterion Q becomes a non-linear function of the restricted characteristic imset.

3.2. Inclusion in terms of characteristic imsets

Another interesting question is whether the inclusion of BN structures (see Section 2.2) can be recognized on the basis

of the corresponding characteristic imsets. This is indeed the case.

The first step is to characterize, for acyclic directed graphs K and L over N, the maximal non-trivial inclusion of the BN

structure defined by L in the BN structure defined by K . This is the situation when the statistical model induced by L (= the

BN structure determined by L) is strictly contained in the statistical model induced by K while there is no acyclic directed

graph G over N such the statistical model induced by G is strictly between the statistical models induced by L and K . This

graphically corresponds to the situationwhen there exists an acyclic directed graph K ′Markov equivalent to K and an acyclic

directed graph L′ equivalent to L such that L′ is obtained from K ′ by the removal of one arrow (Lemma 8.5 in [22] or [5]).

Lemma 2. Let K, L be two acyclic directed graphs over N. Then the BN structure defined by L is maximally non-trivially included

in the BN structure defined by K iff there exists an elementary CI statement a ⊥⊥ b | C such that cK − cL is the (upper) portrait of
u〈a,b|C〉, that is, cK − cL = p〈a,b|C〉.

Proof. It follows from Remark 8.10 and Corollary 8.4 in [22] that the abovementioned inclusion relation between statistical

models is equivalent to the condition that uL − uK is an elementary imset u〈a,b|C〉. Now, it remains to apply the invertible
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Fig. 1. An example that cK ≥ cL does not imply the inclusion.

linear portrait mapping defined in (4) and obtain

u〈a,b|C〉 = uL − uK ⇔ p〈a,b|C〉 = pL − pK = (1− pK)− (1− pL)
(5)= cK − cL,

which gives the desired conclusion. �

As the portrait of an elementary imset is a non-negative vector, the consequence of (repeated application of) Lemma 2 is

that if the BN structure defined by K includes the one defined by L then cK − cL ≥ 0. This is a simple necessary condition

for the inclusion, but not a sufficient one. The counterexample is in Figure 1: we have

cK ≡ δ{a,b,c} + δ{a,c} + δ{b,c} ≥ δ{a,c} + δ{b,c} ≡ cL,

but the BN structures defined by K and L are not in the inclusion relation.

Corollary 3. Let K, L be two acyclic directed graphs over N. Then the BN structure determined by K contains the BN structure

determined by L iff cK − cL is the combination of portraits of elementary imsets with non-negative integer coefficients.

Proof. Since there is a finite number of acyclic directed graphs over N, the inclusion premise implies that there exists a

sequence of acyclic directed graphs K = G1, . . . , Gn = L, n ≥ 1 such that, for i = 1, . . . n−1, Gi and Gi+1 are in the relation

mentioned in Lemma 2. Conversely, if cK − cL is a combination of portraits of elementary imsets, then Lemma 2 implies the

inclusion. This is because adding the portrait of an elementary imset to a characteristic imset corresponds to the removal of

an arrow. �

In particular, the inclusion of BN structures can be tested by tools of linear programming. Corollary 3 reduces it to testing

whether {x ≥ 0; A x = cK − cL} 	= ∅ for a zero-one matrix A. Indeed, the columns of A are portraits of elementary imsets.

4. Transition between graphs and characteristic imsets

4.1. From a graph to the characteristic imset

Now, we establish the relation of the characteristic imset to any chain graph without flags defining the BN structure.

Theorem 2. Let H be a chain graph without flags equivalent to an acyclic directed graph G over N. For any |S| ≥ 1 one has

cG(S) = 1 iff

∃ ∅ 	= K ⊆ S complete in H, with S \ K ⊆ paH(K). (10)

Proof. In an acyclic directed graph G, the only non-empty complete sets are singletons. Thus, by Theorem 1, cG(S) = 1 iff

(10) holds with G (in place of H).

The next step is to observe that if H̃ is obtained from a chain graph H without flags by legal merging of components

(see Section 2.3), then for any S ⊆ N, |S| ≥ 1, (10) holds with H iff it holds with H̃. To verify this observe that any set S

satisfying (10) has a uniquely determined component C with K ⊆ C in H. Moreover, paH(K) = paH(C), since H has no flags.

The validity of (10) then depends on the induced subgraph of H for C ∪ paH(C). However, if H̃ is obtained from H by legal

component merging, thenmost of these induced subgraphs are kept and the only change concerns the merged components

U and L. We leave the reader to verify that this change satisfies condition (10) in both directions.

Finally, we use the result mentioned in Section 2.3 which implies the existence of sequences of legal merging operations

transforming G into G∗ and H into G∗. In particular, for S ⊆ N, |S| ≥ 1, (10) with G is equivalent to (10) with G∗, and the

latter is equivalent to (10) with H. �

Thus, Theorem 2 applied to the essential graph G∗ in place of H gives a direct method for getting the characteristic imset

from the essential graph.

4.2. Back to the essential graph

Corollary 2 allows us to reconstruct the essential graph from the characteristic imset. Indeed, the conditions (i) and

(ii) there determine both the adjacencies and immoralities (in any acyclic directed graph G defining the corresponding BN
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Fig. 2. Orientation rules for getting the essential graph.

structure). Thus, we can directly get the pattern (of G) which is the graph having the same adjacencies as G, with arrows

belonging to immoralities (in G) directed as in G and the remaining adjacencies being undirected edges.

Thus, the pattern is shared by all acyclic directed graphs defining the same BN structure. Nevertheless, it neither has to

be the essential graph nor even a chain graph. However, there is a simple (polynomial-time) procedure for transforming

the pattern into the corresponding essential graph G∗. It consists of the (repeated) application of three orientation rules.

Specifically, Theorem3 in [15] states that the exhaustive application of rules fromFigure 2 to the pattern of an acyclic directed

graph G results in the essential graph G∗ (of the equivalence class G containing G).

5. Learning decomposable models

Note that every chain graph G (over N) can also be interpreted as a statistical model: the class of Markovian probability

distributions on the joint sample space
∏

i∈N Xi can be ascribed toG [13]. Analogously, one can extend the concept ofMarkov

equivalence to chain graphs. An undirected graph is Markov equivalent to an acyclic directed graph iff it is chordal [2]. More

specifically, a chordal undirected graph G is equivalent to any acyclic directed graph without immoralities obtained by

directing edges of G; the essential graph is then G. Therefore, learning decomposable models (= chordal undirected graphs)

can be viewed as a special case of learning BN structure, specifically, it is learning restricted to a particular subclass of BN

structures.

Corollary 4. Let H be a chordal undirected graph over N. Then the corresponding characteristic imset cH is specified as follows:

cH(A) = 1 iff A is a complete set in H.

Proof. Consider the equivalence class G of acyclic directed graphs equivalent to H and apply Theorem 2. Since H has no

arrows, (10) is equivalent to the above requirement. �

A special case of a chordal graph is an undirected forest. The only complete sets in it are its edges:

Corollary 5. Let H be an undirected forest over N. Then the corresponding characteristic imset cH vanishes for sets of cardinality

three and more, and, for distinct a, b ∈ N, we have cH({a, b}) = 1 iff a and b are adjacent in H.

In particular, the characteristic imset for a forest can be identified with a vector of polynomial length
(|N|

2

)
, namely the

characteristic vector of its edge set. Actually, this motivated our terminology.

The above observation simplifies many things. For example, if maximizing a quality criterionQ over (undirected) forests

is of interest, then, by Lemma 1, the function

cH ∈ Z
P2(N) �−→ 〈rQD , cH〉 =

∑
A edge in H

rQD (A) = ∑
A edge in H

tQD (A)

should be maximized, since r
Q
D (A) = t

Q
D (A) for |A| = 2 by (8).

In particular, in case of the MLL criterion this means maximizing the sum of weights
∑
{a,b} edge w{a,b} ,

where w{a,b} = H(P̂{a,b}|P̂{a} × P̂{b}) is the (empirical) mutual information between a and b; see Section 2.4.1.

The polytope spanned by (restricted) characteristic imsets for forests has already been studied in matroid theory [20]

and appears to be quite nice from an algorithmic point of view. One important observation is the existence of a simple

polynomial-time procedure based on the greedy algorithm for finding amaximum-weight forest, where forests areweighted

by the sums of weights of their edges.

This gives an elegant geometric interpretation to a classic (heuristic) procedure for approximating probability distribu-

tions with trees proposed by Chow and Liu [6]. Taking into account what was said above, their procedure can be interpreted

as the maximization of the MLL criterion over spanning trees using the greedy technique.

6. Related work

In the literature, we came across two papers in which zero-one vectors (of an exponential length in |N|) were used for

similar purposes aswe (plan to) use characteristic imsets.Moreover, during the reviewing process, two other relevant papers
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have been published and the reviewers kindly attracted our attention to them. In this section, we relate our approach to

those papers.

6.1. Niepert’s LP method for testing CI implications

The paper by Niepert [17] is devoted to testing CI implications by tools of LP. More specifically, given a triplet of pairwise

disjoint sets of variables A, B, C ⊆ N the corresponding CI statement A ⊥⊥ B | C is encoded by a zero-one vector as follows.

First, Niepert introduces a special class of sets, called the semi-lattice of A ⊥⊥ B | C:
L(A, B|C) := { S ⊆ N; C ⊆ S and A \ S 	= ∅ 	= B \ S },

and then defines the vector

v〈A,B|C〉(S) =
⎧⎨
⎩

1 if S ∈ L(A, B|C) ,

0 if S 	∈ L(A, B|C) ,
for S ⊆ N.

It is no problem to see (we leave it to the reader) that v〈A,B|C〉 is, in fact, the lower portrait of the semi-elementary imset

u〈A,B|C〉:

v〈A,B|C〉(S) =
∑
T⊆S

u〈A,B|C〉(T) for any S ⊆ N.

The difference from our upper portrait is that here the sum is over subsets of S, while in Definition 1 we sum over supersets

of S. An additional formal difference is that in Definition 1 we ignore components for |S| ≤ 1 because they automatically

vanish, while in case of v〈A,B|C〉 the components for S with |S| ≥ |N| − 1 always vanish.

Since both portrait mappings are linear and invertible (by well-known Möbius inversion), there exists a one-to-one

linear transformation ascribing p〈A,B|C〉 to v〈A,B|C〉. As the characteristic imset for the acyclic directed graph G corresponding

to A ⊥⊥ B | C (see Section 2.4.2) is an invertible affine function of pG ≡ p〈A,B|C〉, one can obtain the characteristic imset

cG from v〈A,B|C〉 by an invertible affine transformation. Of course, this only concerns acyclic directed graphs encoding CI

statements.

The reader may be interested in why we decided to use the upper portrait in Definition 1 and not the lower one. Both

transformations are equally suitable if one limits one’s attention to CI statements. However, since our aim is learning BN

structurewewished to have zero-one vector representatives for all of them. The lower portrait transformation is not suitable

from this point of view because it may transform standard imsets outside zero-one vectors. For example, consider the case

N = {a, b, c} and the empty graph G over N. Then uG = δN − δ{a} − δ{b} − δ{c} + 2 · δ∅ and the corresponding (lower)

portrait representative vG is

vG = δ{a} + δ{b} + δ{c} + 2 · δ∅ .

6.2. Jaakkola et al.’ LP approach to learning BN structure

Like our paper, the paper by Jaakkola et al. [11] was devoted to the application of methods of polyhedral geometry to

learning BN structure. They have used the following straightforward zero-one encoding of (acyclic) directed graphs: the

components of their vectors are indexed by pairs (i|B), where i ∈ N and B ⊆ N \ {i}. Given an acyclic directed graph G over

N, the respective vector ηG is defined as follows:

ηG(i|B) =
⎧⎨
⎩

1 if B = paG(i), i ∈ N,

0 otherwise.

The point is that then one can re-write (1) in the form

Q(G,D) = ∑
i∈N

∑
B⊆N\{i}

qi|B(D{i}∪B) · ηG(i|B) , (11)

which allows one to interpret Q as a linear function of ηG . Thus, they also transformed the task of maximizing Q to an LP

problem.

Moreover, Jaakkola et al. have provided an explicit LP relaxation of their polytope (spanned by vectors ηG for acyclic

directed graphs). Besides evident non-negativity η(i|B) ≥ 0 and equality constraints
∑

B⊆N\{j} η(j|B) = 1, for any j ∈ N,

they introduced so-called cluster inequalities

1 ≤∑
i∈C

∑
B⊆N\C

η(i|B) , (12)
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whichencodeacyclicity restrictionsonG. Thepoint is that every latticepoint in thepolyhedron specifiedby those inequalities

is already the vector ηG for some acyclic directed graph G over N.

This allows one to use methods of integer programming (IP). To avoid the exponential length of η-vectors in |N|, Jaakkola
et al. used an important pre-processing step, based on observations from [8]. The idea of pruning of the components of η is

based on the observation that in practice one can often exclude from consideration huge parent sets, because of a particular

form of the database and the criterion; see Section 6.4 for further details.

To cope with the exponential number of cluster inequalities in |N| they used the cutting plane approach. Thus, they have

not applied all the inequalities (12) simultaneously; instead, they add a particular cluster inequality only when it appears

to be convenient. What was special in their approach is that they used the dual LP problem formulation as a tool for guiding

which additional cluster constraint to add.

Of course, while ηG is in a one-to-one correspondence to G, the characteristic imset cG is not, because it corresponds to

the Markov equivalence class of graphs. Thus, there is no mapping transforming cG to ηG .

On the other hand, cG can be viewed as a linear function of ηG . In [29], which should be a basis of a future paper, the

following formula was derived:

cG(S) =
∑
i∈S

∑
B, S\{i}⊆B⊆N\{i}

ηG(i|B) for |S| ≥ 1. (13)

In general, the transformation of linear inequalities through a many-to-one linear mapping is a complicated mathematical

task.Nevertheless, the imageof theη-polyhedron specifiedby the above inequalities through (13)was characterized in terms

of linear inequalities in [29]. Luckily, the cluster inequalities can easily be transformed to the framework of characteristic

imsets:

1 ≤ |C| − ∑
S⊆C, |S|≥2

c(S) · (−1)|S| . (14)

However, paradoxically, the problem occurs with the transformation of basic non-negativity and equality constraints.

Because of the many-to-one correspondence ηG �→ cG , the number of corresponding inequalities for c is higher than the

number of inequalities for η, which is the price for having unique representatives of BN structures.

An interesting fact is that some of the basic inequalities cG(S) ≤ 1 are not implied by the transformed inequalities for

ηG . Another non-trivial important observation from [29] is that the transformed linear inequalities define an LP relaxation

of the characteristic imset polytope.

6.3. Cussens’ LP approach to learning BN structure

Cussens [7] also applied the IP approach to structural learning Bayesian networks. He used the same way of vector

encoding of (acyclic) directed graphs as Jaakkola et al. [11]. Being inspired by them, he also utilized the cluster inequalities

(12) and the cutting plane approach. Of course, he also took the advantage of the idea of pruning the components of the

η-vector.
However, unlike Jaakkola et al., Cussens have not used the dual LP formulation. Instead, he utilized specialized IP-solving

software SCIP, which has build-in strategies for finding cutting planes. Besides the inequalities (12) he considered their

generalization called k-cluster-based constraints:

k ≤∑
i∈C

∑
B⊆N\{i}, |B∩C|<k

η(i|B) ,

where C ⊆ N and 1 ≤ k ≤ |C| is an integer, and additional cutting planes called Gomory cuts, offered by the integer

programming theory.

Cussens also introduced special surplus variables skC meaning how far the right-hand side of the above inequality is above

its lower bound k. He mentioned an interesting connection of the surplus variables for 2 ≤ |C| ≤ 3 and k = 1 with

adjacencies and immoralities in the respective (acyclic directed) graph G, which similar to our Corollary 2. More specifically,

he mentioned

• a and b are adjacent in G iff s1{a,b} = 0,

• a→ c← b is an immorality in G iff s1{a,c} = 0, s1{b,c} = 0, s1{a,b} = 1 and s1{a,b,c} = 1.

One of the reviewer was interested in whether there is a possible connection between the surplus variables and the charac-

teristic imsets. Indeed, there is a relation which easily follows from the cluster inequality (14) in terms of the characteristic

imset. If C = {a, b} one has, by (14), s1{a,b} = 1 − cG({a, b}), which means that Cussens’ observation about adjacencies is
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equivalent to (i) in Corollary 2. In the case C = {a, b, c} one has, by (14),

s1{a,b,c} = 2− cG({a, b})− cG({a, c})− cG({b, c})+ cG({a, b, c}) .

Thus, Cussens’ immorality condition in terms of cG has the form cG({a, c}) = cG({b, c}) = 1, cG({a, b}) = 0 and

cG({a, b, c}) = 1, which means his observation about immoralities follows from (ii) in Corollary 2.

6.4. The idea of pruning

This is an idea explicated in [8] and then applied in [11,7]. The basic observation, proved as Lemma 1 in [9], which is an

extended version of [8], is as follows. IfQ be an additively decomposable criterion andD a database such that, for some i ∈ N

and B ⊆ N \ {i},
∃ C ⊂ B qi|C(D{i}∪C) > qi|B(D{i}∪B) , (15)

then there is no acyclic directed graph G over N maximizing G �→ Q(G,D) with paG(i) = B. The idea of the proof is to

consider the graph H obtained from G by the removal of arrows from nodes in B \ C to i and observe Q(H,D) > Q(G,D).
Thus, provided the condition (15) holds for some i and B, one cannot have an optimal acyclic directed graph G with

paG(i) = B, for which reason, the component of ηG for (i|B) and the respective local score qi|B(D{i}∪B) can be excluded from

the considerations in (11).

However, to prune most of the components of η one has to verify exponentially many such conditions (15). The point is

that the criteria used in practice somehow prefer sparse graphs. For example, the BIC score has a penalty termwhich, in fact,

protects huge parent sets to occur in the optimal graph. This was the observationmade already in Theorem 4.6 of [3], saying

that the size of the parent set in an optimal acyclic directed graph with respect to BIC has O(ln �) upper bound, where �
is the length of the database D. Analogously, in [9], stronger sufficient conditions for pruning with BIC were derived which

allow, for some i ∈ N and B ⊆ N \ {i}, to prune with (i|B) also all pais (i|B′) where B ⊆ B′ ⊆ N \ {i}. Besides the conditions

for BIC, also one such a condition for the BDE score was obtained in [9].

Actually, as reported in §6 of [9], the pruning procedure was applied to some databases from so-called UCI repository,

and it typically resulted in the reduction of the parent set cardinality to at most 5; only in a few cases the maximal parent

set cardinality was 7 or 8.

The reader may be interested in whether pruning can be utilized in the context of characteristic imsets. It follows from

what said above and the formula (13) that if, for S ⊆ N, |S| ≥ 2, the condition (15) holds for any i ∈ S and B ⊆ N \ {i}
with S \ {i} ⊆ B, then cG(S) = 0 for any acyclic directed graph G over N maximizing G �→ Q(G,D). In particular, if η-vector
has been pruned in such a way that there is no component η(i|B) in it with |B| > k, then one can assume that there is no

component c(S) with |S| > k+ 1. Thus, the result of the pruning procedure can be utilized in our framework, too.

Another relevant question is how to get the components of the (revised) data vector on the basis of (pruned) local scores.

ProvidedQ be a score equivalent and additively decomposable criterion with local scores qi|B(∗), one can use the following

procedure (the proof of its correctness is omitted in this paper). First, the local scores are standardized:

q̂i|B(D{i}∪B) = qi|B(D{i}∪B)− qi|∅(D{i}) for i ∈ N, B ⊆ N \ {i} .
The components of the standardized data vector t

Q
D from Section 2.4.1 can be then computed as follows. For T ⊆ N, |T| ≤ 1

put t
Q
D (T) = 0, while for T ⊆ N, |T| ≥ 2 consider any total order ρ of the elements in T and introduce:

tQD (T) =∑
i∈T

q̂D(i | Bρ
i ) , where B

ρ
i denotes the set of predecessors of i in ρ .

Note that the right-handexpressionabovedoesnotdependon thechoiceofρ becauseof theassumptionQ is scoreequivalent.

Finally, one can use (8) to compute the components of the revised data vector r
Q
D (S).

7. Preliminary computational experiments

In [14] an indirect LP relaxation via an extension of the characteristic imset polytope has been introduced. For this

purpose, any characteristic imset vector cG was extendedwith the incidence vector yG of arrows in an acyclic directed graph

G from theMarkov equivalence class defined by cG . That means, extended vectors (yG, cG)were considered, where cG is the

characteristic imset for G. The extended encoding has the advantage that the acyclicity of the graph G can easily be ensured

by linear restrictions on yG . The second set of inequalities then implies a correct definition of the characteristic imset vector

cG based on the graph G defined by yG . In particular, an iterative extension of cG(S) for sets S with |S| ≥ 4 is gained; cf.

Remark following Lemma 1 and see Lemma 4.1 in [30] or Chapter 2 in [14] for details.

Someother advantageous features of this extended encodinghas beendescribed in [14], too. Additional inequalities,more

advanced formulations (preserving integrality on some variables) and the descriptions of polytopes for learning restricted



1348 R. Hemmecke et al. / International Journal of Approximate Reasoning 53 (2012) 1336–1349

classes of BN structures can easily be obtained. However, the simplification in the description, like pruning (see Section 6.4),

to reduce both the number of inequalities and variables, is necessary and, hence, implemented. If pruning is not applicable or

does not yield enough short description, column generation still remains to be an option for solving large instance problems.

For some of these LP relaxations, preliminary computational tests for learning BN structure have been performed and

described in [14]; the experiments were based on several freely available databases, such as the already mentioned UCI

repository, with up to |N| = 25 variables. The obtained optimal BN structures have then been analyzed with respect to

the used ways of the description and running times. The results of these experiments show that the simplification in the

description appears to be particularly necessary and useful.

Using state-of-the-art software like CPLEX, quick optimization procedures, especially fitted to binary problems, can be

exploited. The preliminary computational tests validate the applicability of our approach and the strength of the state-of-

the-art optimization software for learning BN structure and leave the potential for further improvement in running times.

8. Conclusions

Let us summarize the main contributions of the paper. We came with a new simple unique representative of the BN

structure, which opens a combinatorial view on the learning task. It is much closer to the graphical description: there is an

easy transition from any graph defining the BN structure to the characteristic imset. We also believe that the procedure for

recovering the essential graph from the characteristic imset is much simpler than an analogous procedure in the case of the

standard imset described in [24].

The new point of view also gives an elegant geometric interpretation to the classic learning procedure for (spanning)

trees from [6]. Of course, this allows one to generalize the greedy learning procedures to other criteria (like the BIC criterion)

and to undirected forests. However, this is not the point because this was more or less known in the probabilistic reasoning

community.

What seems to be more promising is the potential of future application of advanced methods of linear and integer

programming to learning BN structures. To apply the standard LP methods like the simplex method one would need to find a

polyhedral description of the characteristic imset polytope,which is an open problem. Nevertheless, to apply some advanced

methods of integer programming it is enough to find a suitable LP relaxation of the polytope, and we already have some LP

relaxations [29,14].

Further research topic could be the study of sub-polytopes of the characteristic imset polytope, which may result in

LP/IP methods for learning special subclasses of the BN structures. For example, we hope that characteristic imsets can be

applied successfully to learning decomposable models with an upper bound on the cardinality of cliques. Because learning

decomposablemodelswith cliques of cardinality atmost three is alreadyNP-hard (cf. [30]), this can appear to be a non-trivial

generalization of the greedy procedure for learning undirected forests.

The idea of a suitable transformation of vector representatives also appears to be useful in the context of testing CI

implications by the LP method. In [4], CI statements were encoded by semi-elementary imsets, but as indicated in Section

6.1, additional lower portrait transformation leads to zero-one vector representatives [17]. The use of the upper portrait

transformation does result in similar computational speed-ups as in [17], see [14] for details.
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