
CONDITIONAL INDEPENDENCE RELATIONSHAVE NO FINITE COMPLETE CHARACTERIZATIONMilan Studen�yPragueKey words: Conditional{independence relation, Axiomatization of conditional independence, Syntacticdescription of conditional independence, Embedded multivalued dependencyABSTRACTThe hypothesis of existence of a �nite characterization of conditional{independence relations (CIRs)is refused. This result is shown to be equivalent with the non{existence of a simple deductive systemdescribing relationships among CI{statements (it is certain type of syntactic description). However,under the assumption that CIRs are grasped the existence of a countable characterization of CIRs isshown. Finally, the problem of characterization of CIRs is shown to be diverse from an analogicalproblem of axiomatization EMVDs arising in the theory of relational databases.INTRODUCTIONLet [�i]i2N be a random vector (2 � cardN < 1) and let us suppose for simplicity that itscomponents are �nite{valued random variables. Then we can de�ne a ternary disjoint relation I onexpN (disjoint means that its domain is the set of triplets of pairwise disjoint subsets of N):I(A; BjC) holds i� [�i]i2A is conditionally independent of [�i]i2B given [�i]i2C.We shall call this relation the conditional{independence relation (CIR) corresponding to [�i]i2N as itdescribes all conditional{independence relationships among its subvectors.Our question is whether it is possible to characterize CIRs as ternary disjoint relations satisfying aset of properties of the following type:[I(A1; B1jC1) & I(A2; B2jC2) & � � � & I(Ar; BrjCr)] �! I(Ar+1; Br+1jCr+1)2This task was called problem of characterization of CIRs in [16]. Many authors dealing with relatedproblems ([4], [6]) speak about axiomatization of conditional independence (CI). Indeed, �nding a �niteset of such properties characterizing CIRs it is possible to describe relationships among CI-statementssyntactically in simple way (i. e. by means of a deductive system { this notion paraphrases the notionof formal axiomatic theory from mathematical logic). We shall discuss it in x5.Nevertheless, in this article we prove that CIRs cannot be characterized by a �nite set of propertiesof the type 2. More exactly, we shall �nd for every 4 � n = card N some property of CIRs (of



2 M. Studen�ythe type 2) which cannot reveal in lower dimensions. Then we shall use this result to show thatno deductive system whose formulas correspond to individual CI{statements (we speak about simpledeductive system for describing CI) can completely comprehend relationships among CI{statements.The situation has analogy in the theory of relational databases where embedded multivalued depen-dencies (EMVDs) were shown have no complete axiomatization [15]. One can formulate a hypothesisthat CIRs and complexes of EMVDs can be characterized by the same set of properties of the type 2.We give two examples to refuse it. The former 2{property holds for CIRs but fails in case of EMVD,the latter one holds in case of EMVD but does not hold for CIRs.The �rst section deals with sources and history of the problem and gives the corresponding refer-ences. The second section gives basic de�nitions, the third one contains some preparatory results. Themain result is proved in the fourth section. It is supplied by a construction of a countable characteri-zation of CIRs by 2{properties (however applicable only in case that all CIRs are grasped). The �fthsection is devoted to syntactical description of CI. We discuss how a formal axiomatization for CI canlook and show that no simple complete deductive system for CI exists. The sixth section analyses theanalogy with the theory of relational databases and gives the promised examples. In the last section(concluding remarks) we summarize the article and propose a plan of further investigation.1 HISTORY OF THE PROBLEMThe conditional independence (CI) is one of the basic concepts of probability theory. Its importancein modern statistics was accentuated by Dawid [2] twelve years ago, where some formal properties ofCI was noticed. Since that time many articles have been concerned with those properties (for example[10], [14]).Our interest in this problem is motivated by its expected pro�t in the theory of probabilistic expertsystems. The notion of CI can be interpreted as certain (nonnumerical) relationship among symptoms(which are described by random variables) and thus it promises the possibility to determine the properstructure of the expert system directly by asking experts (see [16], [13]).The importance of CI for probabilistic expert systems was explicitly discerned and highlighted espe-cially by Pearl who in [12] formulated a concrete conjecture for characterization of CIRs correspondingto random vectors whose distributions are strictly positive measures. This conjecture was refused in[16] by �nding a new independent property of CIRs. Note that another task motivated by the samework was solved in [5].Nevertheless, some positive results were achieved in this respect, namely certain subclasses of CI{statements were characterized. In [4] and independently in [7] a complete characterization for the classof \marginal" CI{statements (i. e. statements I(A; BjC) with �xed C) was found. In [3] and also in [6](using di�erent formal description) the class of \�xed{context" CI{statements (i. e. I(A;BjC) whereA [ B [ C is �xed) was characterized. In connection with these result we would like to bring readersattention to the article [8] where special classes of CIRs (\monotonic" in condition) are characterized.The situation is similar to the situation in the theory of relational databases where attempts toaxiomatize miscellaneous types of dependencies were made. Relationships among multivalued depen-dencies (MVDs) were completely characterized in [1]. We can consider certain analogy, where theaxiomatization of MVDs corresponds with the characterization for the class of \�xed{context" CI{statement, and axiomatization of embedded multivalued dependencies (EMVD) corresponds with theproblem of characterization of CIRs. Thus, this article gives a result quite analogical to the resultfrom [15] saying that EMVDs have no complete axiomatization. Indeed, we found inspiration in [15].



M. Studen�y 3On the other hand the analogy is not absolute as the reader can see from the examples in the sixthsection.2 BASIC DEFINITIONSIn all this article index set will be any �nite set having at least two elements. Given an index set N letus denote by T (N) the set of all ordered triplets of pairwise disjoint subsets of N . Every subset of T (N)will be called dependency model on N (terminology borrowed from [3]). Given u = hA;B;Ci 2 T (N)its context is the set A [ B [ C. It will be denoted by [u]. We shall say that u = hA;B;Ci 2 T (N) istrivial i� A or B is empty. The set of non{trivial triplets will be denoted by T�(N).Let K and L be two index sets and v : K ! L an injective mapping (necessarily cardK � cardL).Then it can be considered as an injective mapping v : T (K)! T (L):hA;B;Ci 7!v hv(A); v(B); v(C)i whenever hA;B;Ci 2 T (K):Moreover, for every positive integer r � 1 it can be considered as an injection v : T (K)r+1 ! T (L)r+1:(u1; . . . ; ur+1) 7!v (v(u1); . . . ;v(ur+1)) whenever u1; . . . ; ur+1 2 T (K):For every index set N we introduce the class of N{dimensional measures P(N). Every element ofP(N) is speci�ed by a collection of �nite nonempty sets fXi; i 2 Ng and by a probability measure onQi2N Xi (endowed with the �{algebra of all subsets). Another possible view: elements of P(N) aredistributions of N{dimensional random vectors [�i]i2N where �i takes values in Xi.Having an index set N and P 2 P(N) we de�ne a dependency model I on N as follows:- if hA;B;Ci 2 T�(N) and C 6= ; then hA;B;Ci 2 I i� PA[B[C � PC = PA[C � PB[C(PA denotes the marginal measure of P on Qi2A Xi)- if hA;B;Ci 2 T�(N) and C = ; then hA;B; ;i 2 I i� PA[B = PA � PB- if hA;B;Ci 2 T (N) n T�(N) then we postulate hA;B;Ci 2 IWe shall call this dependency model the conditional{independence relation (abbreviation CIR) corre-sponding to P . The symbol CIR(N) will be used to denote the class of CIRs corresponding to allmeasures from P(N). We shall sometimes use the symbol I(A; BjC) instead of hA;B;Ci 2 I.Informally, by 2{rule we shall understand the schema:[I(A1; B1jC1) & � � � & I(Ar; BrjCr)] �! I(Ar+1; Br+1jCr+1)2The triplets I(A1; B1jC1); . . . ; I(Ar; BrjCr) are called antecedents, the triplet I(Ar+1; Br+1jCr+1) theconsequent . Of course, we are supposed to be able to substitute concrete elements of T (N) forI(Ai; BijCi) (for every index set N). Certainly, this notion requires a precise de�nition. Thus, a2{rule is speci�ed by a nonnegative integer r and by a collection of (r + 1){nary relations on T (N):�A(N) � T (N)r+1; N is an index set	For example, take r = 1 and put (for every N):A�(N) = f[hA;B;Ci; hB;A;Ci] ; A;B;C � N are pairwise disjointg :This 2{rule we easily express by the schema [I(A;BjC)] �! I(B;AjC).Another examples of 2{rules are described here:[I(A;BjC [D) & I(A;CjD)] �! I(A;B [ CjD) [ ] �! I(;;BjC):



4 M. Studen�yAll these 2{rules meet the following special property. A 2{rule (determined by A(N) � T (N)r+1 forany N) is regular i�8 K;L index set v : K ! L injective A(K) = (v�1)A(L):(2.1)Given an index set N and a 2{rule we shall say that a dependency model I � T (N) is closed underthis 2{rule i� it holds: whenever u1; . . . ; ur+1 can be substituted for antecedents and consequent ofthis 2{rule, then fu1; . . . ; urg � I implies ur+1 2 I (exactly u1; . . . ; ur 2 I & (u1; . . . ; ur+1) 2 A(N)implies ur+1 2 I). It seems to us that rule is more adequate term that axiom used in [4] and [6] (seex 5 Remark 2).In the sequel we shall often meet the index set N = f0; 1; . . . ; ng where n � 3. In that situation weshall consider the following operation of successor suc : f1; . . . ; ng ! f1; . . . ; ng:suc (i) = i+ 1 whenever i = 1; . . . ; n� 1 suc (n) = 1.3 AUXILIARY RESULTS CONCERNING CIRsFirstly, we mention a trivial property of CIRs namely symmetry. Given an index setN and I 2 CIR(N)it holds: hA;B;Ci 2 I i� hB;A;Ci 2 I whenever hA;B;Ci 2 T (N)(3.1)In the sequel we construct some concrete examples of CIRs. But constructions of probabilitymeasures are given only. The veri�cation that the corresponding CIRs meet our requirements is leftto the reader. Note that it can be easily done using techniques from [18].The �rst lemma contains a construction borrowed from [3] which simpli�es our tasks.Lemma 1. Let N be an index set and I; J 2 CIR(N). Then I \ J 2 CIR(N) (as I; J � T (N) alsoI \ J � T (N)).Proof. Suppose that P 2 P(N) (on Qi2N Xi) gives I as its corresponding CIR and Q 2 P(N)(on Qi2N Yi) gives J . De�ne R 2 P(N) on Qi2N Xi � Yi as follows:R �[xi; yi]i2N� = P �[xi]i2N � � Q �[yi]i2N � where xi 2 Xi; yi 2 YiIt can be veri�ed that I \ J is the CIR corresponding to R. 4Lemma 2. Supposing N = f0; 1; . . . ; ng (n � 3) and s 2 f1; . . . ; ng we put:I = [j2f1;...;ngnfsgfh0; j; suc(j)i; hj; 0; suc(j)ig [ [T (N) n T�(N)] :Then I 2 CIR(N).Proof. Firstly we give three auxiliary constructions.I Having D � N; cardD � 2 it holdsID = fhA;B;Ci 2 T (N); A \D = ; or B \D = ; or D �= A [ B [ Cg 2 CIR(N).Indeed: Put Xi = f0; 1g for i 2 D and Xi = f0g for i 2 N nD and de�ne a distribution P on Qi2N Xias follows: P �[xi]i2N� = � 21�cardD if Pi2D xi is even0 if Pi2D xi is odd: 




M. Studen�y 5II There exists K 2 CIR(N) satisfying- h0; i; ji 2 K whenever i; j 2 f1; . . . ; ng i 6= j- hi; j; 0i =2 K whenever i; j 2 f1; . . . ; ng i 6= j- hA;B; ;i =2 K whenever A; B 6= ;.Indeed: De�ne P 2 P(N) on Qi2N Xi where Xi = f0; 1g (for each i 2 N) as follows:(0; 0; 0; . . . ; 0) �! a1(1; 0; 0; . . . ; 0) �! a2(0; 1; 1; . . . ; 1) �! a3(1; 1; 1; . . . ; 1) �! a4where a1; . . . ; a4 > 0; a1 + � � �+ a4 = 1; a1 � a4 6= a2 � a3. 
III There exists J 2 CIR(N) satisfying- h0; j; suc(j)i 2 J whenever j = 1; . . . ; n� 1- h0; suc (j); ji =2 J whenever j = 1; . . . ; n� 1.Indeed: Put Xi = f1; . . . ; ig for i 2 f1; . . . ; ng and X0 = Xn. De�ne a1; . . . ; an 2 Qi2N Xi as follows:ak = �ak0; ak1; . . . ; akn� where ak0 = k and akj = minfk; jg whenever j = 1; . . . ; n. Consider the uniformdistribution on �a1; . . . ; an	 i. e. ak ! n�1 for every k 2 f1; . . . ; ng. 
IV Clearly, without loss of generality we can suppose s = n. Thus, we denoteI = n�1[j=1 fh0; j; suc (j)i; hj; 0; suc (j)ig [ [T (N) n T�(N)] :Our task is to show I 2 CIR(N). For this purpose we put D = D1 [ D2 whereD1 = fD � N ; cardD = 4gD2 = fD � N ; cardD = 3 & D 6= f0; j; suc (j)g for every j = 1; . . . ; n� 1g :Consider dependency models ID for D 2 D (see I), K from II and J from III. By Lemma 1K \J \TD2D ID 2 CIR(N). Evidently I � K \J \TD2D ID. To verify the reversed inclusionconsider u = hA;B;Ci 2 T (N) n I and show u =2 K \ J \TD2D ID:- if card [u] � 4 then u =2 TD2D1 ID (see I)- if C = ; (special case card [u] = 2) then u =2 K (see II)- card [u] = 3 & [u] 2 D2 then u =2 TD2D2 ID (see I)Thus, consider card [u] = 3 & [u] =2 D2 & C 6= ;. Then [u] = f0; j; suc (j)g for somej 2 f1; . . . ; n� 1g and only two cases can occur:- u 2 fhj; suc(j); 0i; hsuc(j); j; 0ig . . . then u =2 K (see II)- u 2 fh0; suc(j); ji; hsuc(j); 0; jig . . . then u =2 J (see III) 4Lemma 3. Let K;L be index sets, v : K ! L an injective mapping.a) Given I 2 CIR(K) there exists J 2 CIR(L) such that



6 M. Studen�yu 2 I () v(u) 2 J whenever u 2 T (K)(3.2)b) Given J 2 CIR(L) there exists I 2 CIR(K) such that (3.2) holds.Proof.a) Let P 2 P(K) (on Qi2K Xi) gives I as its corresponding CIR. Put Yj = Xv�1(j) for j 2 v(K)and Yj = f0g for j 2 L n v(K). The natural injection of Qi2K Xi into Qj2L Yj is a one{to{onemapping and transfers P to a measure Q on Qj2L Yj. Take J as the CIR corresponding toQ 2 P(L).b) Let Q 2 P(L) (on Qj2L Yj) gives J 2 CIR(L). Put Xi = Yv(i) for i 2 K. The natural bijectionbetween Qi2K Xi and Qj2v(K) Yj transfers the marginal of Q on Qj2v(K) Yj to some prob.measure P on Qi2K Xi. De�ne I as its corresponding CIR. 4Lemma 4. Let N be an index set, V � N and u 2 T�(N) with [u] n V 6= ;. Then there existsI 2 CIR(N) such that u =2 I andw 2 I whenever w 2 T (N); [w] � V:Proof. Put D = [u] and use part I of the proof of Lemma 2. 44 MAIN RESULTSA new property of CIRs is derived in the following proposition.Proposition 1. Let K = f0; . . . ; kg where k � 3. Consider the operation of successor on f1; . . . ; kg.Let I 2 CIR(N) where K � N . Then the following conditions are equivalent:(a) 8 j = 1; . . . ; k I (0; jjsuc (j))(b) 8 j = 1; . . . ; k I (0; suc (j)jj)Proof. We shall use the following result from [16]: We can assign the multiinformation functionIm : expN ! h0;1) satisfying the following conditions (4.1), (4.2) to every P 2 P(N):Im[A [ B [ C] + Im[C] � Im[A [ C] + Im[B [ C] for every hA;B;Ci 2 T (N)(4.1) I(A;BjC) holds i� the equality in (4.1) holds (I denotes the CIR corresponding to P ):(4.2)The condition (a) can be written by (4.2) as follows:8 j = 1; . . . ; k Im[0; j; suc (j)] + Im[suc (j)]� Im[0; suc (j)]� Im[j; suc (j)] = 0Hence, we get:0 = kXj=1 f Im[0; j; suc (j)] + Im[suc (j)]� Im[0; suc (j)]� Im[j; suc (j)] g == kXj=1 Im[0; j; suc (j)] + kXj=1 Im[suc (j)]� kXj=1 Im[0; suc (j)]� kXj=1 Im[j; suc (j)] == kXj=1 Im[0; j; suc (j)] + kXj=1 Im[j]� kXj=1 Im[0; j]� kXj=1 Im[j; suc (j)] == kXj=1 f Im[0; j; suc (j)] + Im[j]� Im[0; j]� Im[j; suc (j)] g



M. Studen�y 7According to (4.1) every expression in braces in the last sum is nonnegative. Thus, it vanishes andusing (4.2) we easily derive (b).The implication (b) ) (a) can be veri�ed analogously. 4Hence, we derive our main result.Consequence 1. No �nite system (A:1)� (A:p) of 2{rules can characterize CIRs in sense that forevery dependency model I on any index set N it holds[I 2 CIR(N) i� I is closed under (A:1)� (A:p)].Proof: Let (A:1); . . . ; (A:p) be a �nite set of 2{rules. Suppose that every CIR is closed under(A:1)� (A:p). It su�ces to �nd a dependency model closed under (A:1)� (A:p) which is not CIR forany probability measure.Let n � 3 exceeds the maximal number of antecedents of (A:i) (i = 1; . . . ; p). Put N = f0; . . . ; ng,consider the operation of successor on N and de�ne I � T (N) as follows:I = n[j=1fh0; j; suc (j)i; hj; 0; suc (j)ig [ [T (N) n T�(N)] :To show that I is closed under (A:i) (i = 1; . . . ; p) consider a set K � I that can be substituted forantecedents of (A:i). Let u 2 T (N) can be substituted for the corresponding consequent. As K � Iand cardK < n, according to Lemma 2 we can �nd J 2 CIR(N) such that K � J � I. Certainly,J is closed under (A:i). Hence K � J gives u 2 J � I. Thus, I is closed under (A:i). Nevertheless,according to Proposition 1 I =2 CIR(N). 4Although CIRs cannot be characterized by �nite number of 2{rules they can be characterized bycountably many regular 2{rules provided we can grasp CIRs. The construction is contained in thefollowing proposition.Proposition 2. Let us suppose that we have a list of elements CIR(N) for any index set N at ourdisposal. Then we can construct a countable set of regular 2{rules (A:r) r = 0; 1; . . . satisfying theconditions a) { d):a) every (A:r) has exactly r antecedents i. e. it is given by Ar(N) � T (N)r+1b) A0(N) = T (N) n T�(N) ( (A:0) includes exactly trivial triplets)c) Ar(N) � T�(N)r+1 whenever r � 1d) every (A:r) for r � 1 respects the context i. e.(u1; . . . ; ur+1) 2 Ar(N) implies [ur+1] � Sri=1 [ui]such that for every dependency model I on any index set N it holds:[I 2 CIR(N) i� I is closed under all (A:r) r = 0; 1; . . .].Proof. Given r = 0; 1; . . ., an index set N; u1; . . . ; ur+1 2 T (N) we de�ne:(u1; . . . ; ur+1) 2 Ar(N) () (1) 8 I 2 CIR(N) u1; . . . ; ur 2 I implies ur+1 2 I(2) 8 S  fu1; . . . ; urg 9 I 2 CIR(N) S � I & ur+1 =2 I(3) u1; . . . ; ur are distinctThus, the set of 2{rules (A:r) r = 0; 1; . . . is introduced.



8 M. Studen�yI Given r = 0; 1; . . ., v : K ! L injective it holds Ar(K) = (v�1)Ar(L) (i. e. (A:r) is regular)Indeed: Equivalently, given u1; . . . ; ur+1 2 T (K) we need to show(u1; . . . ; ur+1) 2 Ar(K) i� (v(u1); . . . ;v(ur+1)) 2 Ar(L)It makes no problem verify it using Lemma 3. 
II I 2 CIR(N)) I is closed under (A:r) r = 0; 1; . . .Indeed: having (u1; . . . ; ur+1) 2 Ar(N) u1; . . . ; ur 2 I, by the condition (1) we deriveur+1 2 I: 
III Let I � T (N) be closed under (A:r) r = 0; 1; . . .. Then I 2 CIR(N).Indeed: Owing to Lemma 1 it su�ces to show: for every u 2 T (N) n I there exists J 2CIR(N) with I � J and u =2 J (note that T (N) is �nite). Equivalently, for every u 2T (N) n I the system Vu = fK � I; 8 J 2 CIR(N) K � J implies u 2 Jg is empty. Incase Vu 6= ; we take some its minimal element K0 = fv1; . . . ; vkg. It is easy to verify(v1; . . . ; vk; u) 2 Ak(N). Hence, u 2 I (as I is closed under (A:k)) and it contradicts theoriginal selection of u. 
IV A0(N) = TI2CIR(N) I = T (N) n T�(N)Indeed: The �rst equality is evident. Having u 2 T (N) n T�(N) the de�nition of CIRs givesu 2 TI2CIR(N) I. On the other hand u 2 T�(N) implies u =2 TI2CIR(N) I by Lemma 4(with V = ;). 
V Ar(N) � T�(N)r+1 whenever r � 1Indeed: Let (u1; . . . ; ur+1) 2 Ar(N). By (2) for S = ; we getur+1 =2 TI2CIR(N) I � T (N)nT�(N) (see IV). Suppose that uj =2 T�(N) for some j � r andput S = fu1; . . . ; urgnfujg. By (3), (2) we �nd I 2 CIR(N) such that S � I and ur+1 =2 I.By IV uj 2 I i. e. fu1; . . . ; urg � I. It contradicts (1). 
VI u1; . . . ; ur+1 2 T (N) r � 1 (u1; . . . ; ur+1) 2 Ar(N) implies [ur+1] � Sri=1 [ui]Indeed: Supposing [ur+1] n Sri=1 [ui] 6= ; we put V = Sri=1 [ui] and u = ur+1 and applyLemma 4 to �nd I 2 CIR(N) with u1; . . . ; ur 2 I and ur+1 =2 I. It contradicts the condition(1). 45 SYNTACTIC DESCRIPTION OF CIFirstly, we are going to introduce the notion of deductive system to be a tool for syntactic descriptioninstead of the notion of formal axiomatic theory (see [9], chap. 1, sec. 4). Actually, these notionsare almost coincident but the notion of deductive system is more general. We omit the principalrequirement claimed on a formal axiomatic theory that is recursivity (i.e. e�ective determination offormulas, axioms and inference rules).De�nition 1 (deductive system).Deductive system D is de�ned when the following conditions are satis�ed:(1) A countable set of symbols S is given. Finite sequences of symbols are called expressions of D.(2) There is a subset F of the set of expressions called the set of formulas of D.(3) A set of formulas A is set aside and called the set of axioms of D.(4) There is a �nite set R = fR1; . . . ;Rng of relations among formulas, called inference rules. Foreach Ri there is a unique positive integer j such that Ri is (j + 1){nary relation, i. e. Ri is aset of (j + 1){tuples of formulas. If (
1; . . . ; 
j ; �) 2 Ri, then � is called a direct consequence off
1; . . . ; 
jg by virtue of Ri. The formulas 
1; . . . ; 
j are called antecedents, � the consequent.



M. Studen�y 9Having �nite � � F and � 2 F we shall say that � is a consequence of � in D (write � ` �) i� thereexists a sequence of formulas �1; . . . ; �m 2 F (m � 1) such that �m = � and, for each �i, either �i 2 A(set of axioms) or �i 2 � or �i is a direct consequence of some of the preceding formulas by virtue ofsome inference rule. Such a sequence is called a deduction of � from �.We shall say that a deductive system D = hS; F;A;Ri is regular i� it holds�1; . . . ; �j+1 2 F (�1; . . . ; �j+1) 2 R 2 R implies �i =2 A for i = 1; . . . ; j + 1 :(5.1)In this case it can be easily shown:� 2 A i� ; ` � for every � 2 F :(5.2)The presented de�nition is very general. In [9] the notion of formal theory is concretized by thenotion of �rst{order theory. We give another concrete example here. It is simpler and can serve as adeductive system for describing of ordinary (unconditional) stochastic independence.Example 1.(1) We have two classes of symbols: numerals and special symbols. Numerals are usual �gures usedfor notation of nonnegative integers (for example 52 or 0 or 3). Here is the list of seven specialsymbols: ; ; ; ) ( j I(2) To de�ne the set of formulas we introduce the notion of term. Term is either the symbol ;(empty term) or a �nite sequence of distinct numerals separated by commas and ordered inlexicographical ordering i. e. according their numerical values (for example 1,5,11 or 0 or 12,13but not 3,1). We shall say that terms A and B are disjoint i� there is no numeral involved bothin A and B. The formula is a sequence I(A;Bj;) where A and B are disjoint terms.(3) The axiom is a formula I(A;Bj;) where either A or B is empty.(4) To describe the inference rules we introduce some operations with terms. Having terms A and Bwe de�ne their conjunction A?B as the term involving exactly those numerals which are involvedeither in A or in B (it is uniquely determined by this requirement). For empty A and B the A?Bis also empty. We write B � A if every numeral involved in B is involved in A. We considerthree inference rules. Here are their informal schemes:(R:1) I(A;Bj;) �! I(B;Aj;)(R:2) I(A;Bj;) �! I(A; Cj;) whenever C � B(R:3) I(A;Bj;) I(A ? B; Cj;) �! I(A; B ? Cj;) . 4A deductive system describes syntactic aspects only. To clarify semantic aspects we need to specifytwo matters:- the \�eld" we want describe by a system under consideration- the \way" how the theory is related with the �eld.Only then we can de�ne the concept of completeness and further important concepts. The \�eld" willbe described by some class of models with distinguished propositions. The aim of a deductive systemis to describe formal (logical) relationships among these propositions. The \way" will be realized byinterpretations setting up the correspondence between a deductive system and the class of models.Now, we are going to explain our general conception of these matters. Lately, the concrete de�nitionswill be given for our speci�c �elds (for CI de�nitions 3 and 4, for EMVD de�nition 5). Our approachis analogical to the classic approach in mathematical logic (see interpretations of �rst{order theory in[9] chap. 2 sec. 2) but it is slightly modi�ed because we have speci�c objective.



10 M. Studen�yDe�nition 2 (syntactic aspects).Except a deductive system D = hS; F;A;Ri we consider a class of models M. Every model M 2 Mhas quali�ed certain class of propositions PM concerning it. Remind that proposition is a statementwhich has truth value i. e. either TRUE or FALSE.For every modelM 2 M we consider a class of mappings INT (M) called interpretations of M . Everyinterpretation � 2 INT (M) has certain set of formulas D� � F as its domain and some propositionconcerning the model M assigns to every formula from D� . We suppose that PM is covered by therange � for every � 2 INT (M). In case that for every M 2 M and � 2 INT (M) the range of � isexactly PM we say that the deductive system D is simple.Given a model M 2 M and its interpretation � 2 INT (M) we can say that � 2 D� is satis�ed in Mby � i� the proposition �(�) has value TRUE. Having �nite � � F and � 2 F we shall say that � is alogical consequence of � (write � j= �) i� for every M 2 M and � 2 INT (M) with � [ f�g � D� itholds:whenever all formulas � are satis�ed in M by � , then also � is satis�ed in M by � .A deductive system D is called sound (for a class of modelsM) i� � ` � entails � j= � for every �nite� � F and � 2 F . Conversely, it is called complete (for a class of models M) i� � j= � entails � ` �for every �nite � � F and � 2 F .Remark 1. For our purposes we can limit ourselves to regular deductive systems only. Indeed,we can replace every original system D1 = hS; F;A1; R1i by another regular one D2 = hS; F;A2; R2i(with same symbols and formulas) which is equivalent in the following sense:� `1 � i� � `2 � whenever �nite � � F; � 2 F(5.3)To show it we put A2 = f� 2 F ; ; `1 �g. Evidently A1 � A2 and it holds:�1; . . . ; �r+1 2 F (�1; . . . ; �r+1) 2 R 2 R1 �1; . . . ; �r 2 A2 implies �r+1 2 A2 :(5.4)We assign a �nite set of new inference rules LR to every R 2 R1. Take R � F r+1, denote V =f1; . . . ; r+1g and putRS = R\KS where KS =Qi2S (F n A2)�Qi2V nS A2 for every S � V . Clearly,fRS; S � V g is a decomposition of R and by (5.4) Rfr+1g = ;. Having S � V with s = cardS � 1de�ne LS � (F n A2)s as the corresponding projection of RS:LS = n[�i]i2S ; 9 [�i]i2V nS (�1; . . . ; �r+1) 2 RSoFinally, we put LR = fLS; S � V cardS � 2 & (r + 1) 2 Sg and R2 = S fLR; R 2 R1g. Evidently,the new deductive system is regular. The condition (5.3) can be veri�ed with a little e�ort, too. AsD1 and D2 have same formulas we can consider the original models and interpretations for D2. Owingto (5.3) the notions of soudness and completeness of the system are transferred.Example 2.Let us consider the deductive system described in Example 1. Every model M 2 M is given by a(�nite{valued) random vector [�i]i2N (2 � cardN <1). The class PM is indexed by couples hA;Bi ofdisjoint subsets of N . If both A and B are nonempty then the corresponding proposition pM(hA;Bi)express whether [�i]i2A is stochastically independent of [�i]i2B ; pM (hA; ;i) and pM (h;; Bi) have alwaysvalue TRUE.Consider a �xed modelM = [�i]i2N and specify the class of its interpretations. Every � 2 INT (M)is determined by a one{to{one mapping z : Z ! N where Z is a set of numerals with cardZ = cardN .



M. Studen�y 11Its domain D� is the set of formulas whose terms involve only numerals from Z. As z can be consideredas a one{to{one mapping which assigns a subset of N to every such term we de�ne � as follows:I (A;Bj;) 7!� pM (hz(A); z(B)i)It can be shown using the completeness result from [4] (theorem 3) that the above described deductivesystem is simple, sound and complete for the described class of models. Note that we can similarlyutilize the characterization of �xed{contex CI{statements (see [3], [6]). The reader can �nd ideas ofthese procedures in Remark 2. 4Now, we are going to deal with the question how to describe CI syntactically. Firstly, we clarifywhat we shall understand by a deductive system for description CI.De�nition 3 (models for CI).Models for CI are given by �nite{valued random vectors [�i]i2N where N is an index set. Given amodel M = [�i]i2N we consider the proposition pM (hA;B;Ci) for every hA;B;Ci 2 T (N). In casethat A;B;C are nonempty:pM(hA;B;Ci) � � � [�i]i2A is conditionally independent of [�i]i2B given [�i]i2C .In case that C = ; and A;B nonempty:pM(hA;B; ;i) � � � [�i]i2A is independent of [�i]i2B.In case A or B is empty, pM(hA;B;Ci) has always value TRUE.Thus, PM = fpM(u); u 2 T (N)g. Every proposition from PM will be called CI{statement.Having two random vectors [�i]i2K and [�i]i2L with cardK � cardL we would like to considerM = [�i]i2K as a submodel of ~M = [�i]i2L. Indeed, in this case there exists an injective mappingv : K ! L. It can be considered as an injective mapping v : T (K)! T (L)hA;B;Ci 7�!v hv(A); v(B); v(C)i whenever hA;B;Ci 2 T (K)or as an injection v̂ : PM ! P ~M �pM(u) 7�!v̂ p ~M (v(u)) for u 2 T (K)�.Thus, models for CI have some structure. Every reasonable deductive system for describing CIshould re
ect it in some sense. Now, we are going to motivate and formulate �ve minimal requirementsof such system.Natural claim is that \interpretations can be transferred to submodels". It means that if cer-tain formulas are interpreted in a model ~M by some CI{statements then the same formulas can beinterpreted as the corresponding CI{statements in a submodel M of ~M (supposing that M has thecorresponding CI{statements). This requirement is exactly formulated by the following condition:(�:1) 8<: 8 M = [�i]i2K ~M = [�i]i2L v : K ! L injective � 2 INT ( ~M)there exists � 2 INT (M) such that ��1 (PM ) = ��1 (v̂(PM))and v̂ � �(�) = �(�) for every � 2 ��1 (PM) :The dual requirement is that \interpretations can be extended to supermodels". Formally:(�:2) 8<: 8 M = [�i]i2K ~M = [�i]i2L v : K ! L injective � 2 INT (M)there exists � 2 INT ( ~M) such that ��1 (PM ) = ��1 (v̂(PM))and v̂ � �(�) = �(�) for every � 2 ��1 (PM) :Further natural claim can be described as follows. If all formulas interpreted as CI{statements bysome interpretation � can be interpreted by another interpretation � (perhaps in another model), then



12 M. Studen�y� can be characterized as an extension of �. Formally:(�:3) 8<: 8 M = [�i]i2K � 2 INT (M) ~M = [�i]i2L � 2 INT ( ~M)with ��1 (PM ) � ��1 �P ~M� there exists v : K ! L injectivesuch that ��1 (PM ) = ��1 (v̂(PM)) and v̂ � �(�) = �(�) for every � 2 ��1 (PM ) :Having a set of formulas � interpretable as CI{statements in a modelM = [�i]i2N (by � 2 INT (M))we can naturally introduce its context as the set S
2� f[u]; u 2 T (N) with pM(u) = �(
)g � N . Ourfurther requirement is \consistency of interpretations with context". It means that whenever a setof formulas has full context in some model M and can be interpreted by some interpretation � (inanother model ~M), then we can interpret (by �) formulas describing remaining CI{statements (inPM ). Formally:(�:4) � 8 M = [�i]i2K � 2 INT (M) � � F with K = S�2� f[u]; �(�) = pM(u)g8 ~M = [�i]i2L � 2 INT ( ~M) � � ��1 �P ~M� implies ��1 (PM ) � ��1 �P ~M� :The last requirement is \consistency of interpretations with inference rules of the deductive system".It means that is some formula is derivable from interpretable formulas (by some interpretation �) thenit is also interpretable by � , too. Formally:(�:5) � 8 M = [�i]i2N � 2 INT (M) R inference rule �1; . . . ; �r+1 formulas(�1; . . . ; �r+1) 2 R; �1; . . . ; �r 2 D� implies �r+1 2 D� :De�nition 4 (deductive system for describing CI).We shall say that a regular deductive system D is a deductive system for describing CI i� for everymodel M for CI a nonempty collection of mappings INT (M) is given such that1. every � 2 INT (M) maps certain set D� of formulas onto a set of propositions F� concerning Msatisfying PM � F�2. the conditions (�:1)� (�:5) are satis�ed3. D is sound for class of models for CI.Moreover, D is simple i� F� = PM for every model M and every � 2 INT (M).D is complete i� it is complete for the class of model for CI.The main result of this section says that the existence of a simple and complete deductive systemfor describing CI is equivalent with the possibility of characterization of CIRs by �nite number ofregular 2{rules. The necessity is contained in the following lemma, the su�ciency in Remark 2.Lemma 5. Let there exists a simple and complete deductive system D = hS; F;A;Ri for describingCI. Then CIRs can be characterized as dependency models closed under a �nite set of regular 2{rules.Proof:I Firstly we de�ne that set of 2{rules.As D is simple D� = ��1(PM ) for every model M and � 2 INT (M). Thus, we can correctlyde�ne for every index set N :



M. Studen�y 13K(N) = �k : F ! T (N) partial mapping ; 9 M = [�i]i2N 9 � 2 INT (M)such that Dk = D� and �(�) = pM(k(�)) for every � 2 D�o .It makes no problem to see that K(N) 6= ; and every k 2 K(N) maps Dk onto T (N).Using (�:1) (take K = L = N , v identical mapping) we get:8M = [�i]i2N � 2 INT (M) i� � = pM � k for some k 2 K(N):(5.5)Further, the condition (�:1)� (�:5) can be rewritten:(�:1) � 8 K;L v : K ! L injective 8 l 2 K(L) 9 k 2 K(K)such that Dk = k�1 (v(T (K))) and l(�) = v � k(�) for � 2 Dk(�:2) � 8 K;L v : K ! L injective 8 k 2 K(K) 9 l 2 K(L)such that Dk = l�1 (v(T (K))) and l(�) = v � k(�) for � 2 Dk(�:3) � 8 K;L 8k 2 K(K) l 2 K(L) with Dk � Dl 9 v : K ! L injectivesuch that Dk = l�1 (v(T (K))) and l(�) = v � k(�) for � 2 Dk(�:4) � 8 K;L 8k 2 K(K) and � � F with K = S�2� [k(�)]whenever l 2 K(L) satis�es � � Dl; then Dk � Dl(�:5) � 8 N 8 k 2 K(N) 8 R 2 R �1; . . . ; �r+1 2 F (r � 1)(�1; . . .�r+1) 2 R and �1; . . . ; �r 2 Dk implies �r+1 2 Dk :The �rst 2{rule has no antecedents (r = 0) and corresponds to the set of axioms A:N index set �! A0(N) � Sk2K(N) k �A \Dk� � T (N)Every other 2{rule corresponds to some inference rule Rj � F r+1 (here r � 1):N index set �! Aj(N) � Sk2K(N) k �Rj \Dr+1k � � T (N)r+1where k : Dr+1k �! T (N)r+1 is de�ned by k (�1; . . . ; �r+1) = (k(�1); . . . ;k(�r+1))It makes no problem to verify using (�:1), (�:2) that the above de�ned 2{rules are regular. 
II Let K be an index set, k 2 K(K); � � F with K = S�2� [k(�)]. Then for each model M = [�i]i2Land � 2 INT (M) with � � D� there exists v : K ! L injective such that �(�) = pM(v(k(�)))whenever � 2 Dk.Indeed: Apply (5.5) to M = [�i]i2L and � 2 INT (M) and �nd l 2 K(L) with � = pM � l. As� � Dl we can use (�:4) to derive Dk � Dl. Then use (�:3). 
III Having �xed index set N it holds A0(N) = T (N) n T�(N).Indeed: Let u 2 A0(N) i.e. 9 k 2 K(N) 9 � 2 A\Dk k(�) = u. By Lemma 4 (for V = ;) andLemma 1 we �nd a model M = [�i]i2N such that pM(w) has value TRUE i� w 2 T (N) n T�(N).Further, � � pM �k 2 INT (M) by (5.5) and � 2 D� . But � 2 A implies ; ` � and it gives ; j= �(D is sound). The de�nition of ; j= � (see Def. 2) applied to M and � says pM(u) ! TRUE.Hence, u 2 T (N) n T�(N).Conversely, let u 2 T (N) n T�(N); put K = [u]. Fix some l 2 K(N) and choose � 2 Dl withl(�) = u. Take identical mapping i : K ! N and by (�:1) �nd k 2 K(K) with � 2 Dk andk(�) = i�1(u). Consider any modelM = [�i]i2L and � 2 INT (M) with � 2 D� . By II (� = f�g)there exists v : K ! L injective such that � = pM �v�i�1. As u is trivial, v�i�1(u) is trivial, too.Hence �(�)! TRUE (see Def. 3). Thus, we have veri�ed ; j= �. It gives ; ` � (D is complete)and consecutively � 2 A (D is regular see (5.2)). Hence u 2 Sl2K(N) l(A \Dl) = A0(N). 




14 M. Studen�yIV Given index set N every I 2 CIR(N) is closed under all de�ned 2{rules.Indeed: Every CIR contains T (N) n T�(N). Hence, by III I is closed under the �rst 2{ruleA0(N). Consider a 2{rule given by Aj(N) � T (N)r+1 (r � 1 corresponding Rj 2 R). Supposeu1; . . . ; ur+1 2 T (N) with u1; . . . ; ur 2 I and (u1; . . . ; ur+1) 2 Aj(N). By the de�nition of Aj(N)there exists k 2 K(N) and (�1; . . . ; �r+1) 2 Rj with �i 2 Dk; k(�i) = ui (i = 1; . . . ; r+1). SinceI 2 CIR(N) there exists M = [�i]i2N such thatpM(w) �! TRUE i� w 2 I whenever w 2 T (N):(5.6)Take M = [�i]i2N and � = pM � k 2 INT (M) (see (5.5)). As u1; . . . ; ur 2 I we have pM(ui)! TRUEfor i = 1; . . . ; r. But f�1; . . . ; �rg ` �r+1 implies f�1; . . . ; �rg j= �r+1 (D is sound). Apply it to M and� and get pM(ur+1)! TRUE i. e. ur+1 2 I by (5.6). 
V Let N be an index set and I � T (N) is closed under all de�ned 2{rules. Then I 2 CIR(N).Indeed: By Lemma 1 it su�ces to �nd (for every u 2 T (N) n I) some model ~M = [�i]i2N suchthat: p ~M(u) �! FALSE and p ~M(w) �! TRUE for every w 2 I:(5.7)Take k 2 K(N), choose � � Dk �nite with k(�) = I and � 2 Dk with k(�) = u. We shall verify that:� 6` �:(5.8)By contradiction: Let �1; . . . ; �m be a deduction of � from �. Put ~� = k�1(I). Find minimal �swhich does not belong to ~� [ A (note that � =2 A, otherwise the de�nition of A0(N) givesu 2 A0(N) � I). Clearly, �s is a direct consequence of preceding formulas by virtue someRj 2 R. As D is regular, they belong to ~�. Thus, we found �1; . . . ; �r 2 ~� and �r+1 2 F n ~�such that (�1; . . . ; �r+1) 2 Rj. As �1; . . . ; �r 2 ~� � Dk by (�.5) we derive �r+1 2 Dk. Hence(k(�1); . . . ;k(�r+1)) 2 Aj(N). As k(�1); . . . ;k(�r) 2 I and I is closed under all 2{rules wederive k(�r+1) 2 I i.e. �r+1 2 ~� { it contradicts the de�nition �r+1.But (5.8) implies � 6j= � (D is complete). By the de�nition of � 6j= � we �nd M = [�i]i2L and� 2 INT (M) with � [ f�g � D� such that �(�) ! FALSE and �(
) ! TRUE for 
 2 �. By IIIT (N)nT�(N) = A0(N) � I and hence N = Su2I [u] = S�2�[k(�)]. We can use II (for K = N) to �ndv : N ! L injective such that �(
) = pM �v �k(
) for 
 2 Dk. Consider a new model ~M = ��v(i)�i2N .Evidently, it holdsp ~M (w) �! TRUE i� pM(v(w)) �! TRUE for every w 2 T (N):(5.9)For each w 2 I we take 
 2 � with w = k(
). As pM � v � k(
) = pM � l(
) = �(
)! TRUE by (5.9)we get p ~M(w) = p ~M � k(
)! TRUE. Analogously, p ~M(u)! FALSE. Thus, ~M satis�es (5.7). 4Consequence 2. There is no simple and complete deductive system for describing CI.Proof. Combine Consequence 1 and Lemma 5. 4Remark 2. In Example 2 we mentioned that a characterization for some subclass of CI{statementscan be utilize for its syntactic description. The following consideration underlines the principles ofthese procedures. It shows how a hypothetic simple syntactical description of CI would have looked.Let us suppose that we have a characterization of CIRs by means of �nite number of regular 2{rules(A:0)� (A:s) where



M. Studen�y 15a) every (A:r) is given by Ar(N) � T (N)r+1 (r = 0; . . . ; s N index set)b) A0(N) = T (N) n T�(N)c) Ar(N) � T�(N)r+1 whenever r � 1d) r � 1; (u1; . . . ; ur+1) 2 Ar(N) implies [ur+1] � Sri=1 [ui] .These additional demands would be partially justi�ed by Proposition 2 (although we have not provedthat the existence of a �nite characterization implies the existence of the special one). Now we canconstruct a simple syntactic description of CI as follows.Deductive systemThe set of symbols is the same as in Example 1. We undertake the notion of term also. Considerformulas of the form I(A; BjC) where A;B; C are pairwise disjoint terms. To specify axioms andinference rules we introduce (for every N) the class �(N) as the collection of all one{to{one mappingsz : Z ! N where Z is a set of numerals with cardZ = cardN . Note that every element z 2�(N) can be considered as a partial mapping z : F ! T (N) (the domain Dz is the set of formulasinvolving variables from z�1(N) and I(A; BjC) 7!z hz(A); z(B); z(C)i), i.e. an element of K(N) {see the proof of Lemma 5. Moreover, it can be considered as a mapping z : F r+1 ! T (N)r+1 forr � 1 : z (�1; . . . ; �r+1) = (z(�1); . . . ;z(�r+1)). Then we specify the set of axioms:A =[N [z2�(N) (z�1)A0(N) � FFurther, for every r = 1; . . . ; s we de�ne an inference ruleRr =[N [z2�(N)(z�1)Ar(N) � F r+1Models and interpretationsThe class of models is described in Def. 3. Given a model M = [�i]i2N every its interpretation� 2 INT (M) is given by an element z 2 �(N):D� = Dz and �(�) = pM(z(�)) for � 2 D� , i. e. I(A; BjC) 7!� pM (hz(A); z(B); z(C)i).I The deductive system is regular.Indeed: It easily follows from b):I(A; BjC) 2 A()A or B is empty term.Hence, c) gives: (�1; . . . ; �r+1) 2 Rr; r � 1 =) �i =2 A for i = 1; . . . ; r + 1: 
II (�:1)� (�:5) holds.Indeed: Clearly, the conditions (�:1) � (�:5) mentioned in the proof of Lemma 5 are satis�ed((�:5) follows from d)). Hence, (�:1)� (�:5) can be easily derived. 
III Let (
1; . . . ; 
r+1) 2 Rr M = [�i]i2N � 2 INT (M) with 
1; . . . ; 
r+1 2 D��(
1); . . . ; �(
r)! TRUE. Then � (
r+1)! TRUE.Indeed: Consider k 2 �(N) given by the equality � = pM � k.Put I = fu 2 T (N); pM(u) ! TRUEg. Evidently k(
1); . . . ;k(
r) 2 I. As I 2 CIR(N) itis closed under (A:r). Hence, to derive � (
r+1) ! TRUE i.e. k (
r+1) 2 I we need to show(k(
1); . . . ;k(
r+1)) 2 Ar(N). As (
1; . . . ; 
r+1) 2 Rr there exists an index set L; z 2 �(L)and (w1; . . . ; wr+1) 2 Ar(L) such that z(wi) = 
i. We can suppose L = Sr+1i=1 [wi] (by (�:1)and regularity of (A:r)). Further, using (�:4) and (�:3) we �nd v : L ! N injective such thatk(
) = v � z(
) for 
 2 Dk. Hence, by regularity of (A:r) (k(
1); . . . ;k(
r+1)) 2 Ar(N). 




16 M. Studen�yIV � ` � implies � j= � (� � F �nite, � 2 �)Indeed: It can be derived from (�:5) and regularity of the deductive system:� ` � =) 8 M model 8 � 2 INT (M) with � � D� � 2 D� [ A(5.10)Consider M = [�i]i2N and � 2 INT (M) with � [ f�g � D� and �(�) ! TRUE for 
 2 �. Itsu�ces to show �(�)! TRUE. Thus, take a deduction �1; . . . ; �m of � from � and prove by inductionthat �(�i)! TRUE i = 1; . . . ;m. If �i 2 � it is evident. If �i 2 A, then �(�i) = pM(u) for a trivialtriplet u and pM(u)! TRUE by de�nition. Let �i be a direct consequence of preceding formulas byvirtue of some inference rule Rr. They are not axioms by I and by (5.10) belong to D� . We can useIII to derive �(�i)! TRUE. 
V � j= � implies � ` � (� � F �nite; � 2 �)Indeed: As � is �nite we easily �nd an index set N and z 2 �(N) such that � [ f�g � Dz. Itcan be easily derived from � j= � and the de�nition of interpretations:8 I 2 CIR(N) z(�) � I implies z(�) 2 I(5.11)Further, we de�neK = fu 2 T (N); there exists a sequence u1; . . . ; um 2 T (N) where um = u and for each uieither ui 2 z(�) or (ui1; . . . ; uir ; ui) 2 Ar(N) for some r � 0 and some preceding tripletsgEvidently K is closed under (A:0) � (A:s) and contains z(�). Hence K 2 CIR(N) and by (5.11)contains z(�). Let u1; . . . ; um be the corresponding sequence. Put �i = z�1(ui) i = 1; . . . ;m. It makesno problem to verify (using the de�nitions of A and Rr) that �1; . . . ; �m is a deduction of � from �.
VI We can summarize I - V: the constructed deductive system would give simple syntactic descriptionof CI. 46 ANALOGY WITH EMVDAs we have mentioned that questions concerning CI{statements have analogy in the theory of relationaldatabases namely in questions concerning embedded multivalued dependencies (EMVDs). This modelis speci�ed by the following de�nition.De�nition 5 (models for EMVD).Every model is given by an index setN (2 � cardN <1), by a collection of nonempty sets fXi; i 2 Ngand by a nonempty subset R �Qi2N Xi ( R is called database relation).Given hA;B;Ci 2 T (N) we write C !! A jB in R i�8 x; y 2 R with xC = yC 9 z 2 R zA[C = xA[C & zB[C = yB[C(6.1)(here xC denotes [xi]i2C whenever C � N and x = [xi]i2N 2Qi2N Xi).We speak about EMVD{statements.Remark. EMVD{statements are usually de�ned (see [15]) for triplets hA;B;Ci satisfyingA \ B � C (by the same requirement). But it holds: C !! A jB in R if and only if



M. Studen�y 17C !! (A n C) j (B n C) in R for every such triplet and database relation R. Thus, our de�nition is notrestrictive.A lot of e�ort was exerted to characterize formal relationships among EMVD{statements. Forexample in [1] multivalued dependencies (subclass of EMVDs C !! A jB with N = A [ B [ C) wereaxiomatized. Analogical result for crosses (EMVDs C !! A jB with C = ;) is in [11]. The article [15]gives a method how test inferring among Z{EMVDs (EMVDs C !! A jB with �xed B) and showsthat the class of all EMVDs has no complete axiomatization. Note that although all these authorsspeak about axiomatization they did not give a formal axiomatic theory in sense of mathematical logic.By axiomatization they understand a characterization by means of a �nite number of 2{rules (in ourterminology).Considering a natural correspondence pM(hA;B;Ci) � � �C !! AjB above mentioned results veryresemble the results concerning special subclasses of CI{statements ([3], [4], [6], [7]):It leads to a hypothesis that formal relationships among CI{statements and those among EMVD{statements are identical. More precisely, the hypothesis can be formulated as follows:(?) 8<: We conjecture that for every index set N and I � T (N)I 2 CIR(N) i� I = fhA;B;Ci 2 T (N); !! A jB in Rg for somedatabase relation R on N �i.e. R �Qi2N Xi� :Many arguments support this hypothesis:- it is con�rmed in case cardN � 3- in some special case the mentioned concepts coincide. Indeed, let M = [�i]i2N be a random vector(�i takes values in Xi) such that every marginal of its distribution P is uniformly distributed onits support. De�ne R �Qi2N Xi as the support of P :R = �x 2Qi2N Xi; P (x) > 0	. Then it holds:pM (hA;B;Ci) �! TRUE i� C !! AjB in R whenever hA;B;Ci 2 T (N)- the characterization for MVDs (see [1]) is identical with the characterization of the correspondingclass of CI{statements i. e. �xed{contex ([3], [6]).- analogical case occurs for crosses (see [11]) and marginal CI{statements ([4], [7])- even our result (Consequence 1) is analogical to negative result from [15]. We have derived (inProposition 1) the same property for CI{statements as Sagiv and Walecka for EMVD{statements.Nevertheless, we refuse both implications in our hypothesis (?). Example 3 disclaims su�ciency,Example 4 necessity.Example 3. (2{rule holds for CI 6) it holds for EMVD)It was shown in [16] that every CIR is closed under the following 2{rule:[I(A; B jC [D) & I(C; D jA) & I(C;D jB) & I(A; B j ;)] �! I(C; D j ;):(6.2)But is fails in the case of EMVD. Take N = f1; 2; 3; 4g; Xi = f0; 1g, for i 2 N , and R � Qi2N Xigiven by the following list: ( 0; 0; 0 0 )( 0; 0; 0 1 )( 0; 1; 0 0 )( 1; 0; 0 0 )( 1; 1; 0 0 )( 1; 1; 1 0 )



18 M. Studen�yIt makes no problem to verify that EMVDs f3; 4g !! f1g j f2g; f1g !! f3g j f4g;f2g !! f3g j f4g; ; !! f1g j f2g hold in R. But EMVD ; !! f3g j f4g does not hold in R.Thus, I = fhA;B;Ci;C !! A jB in Rg is a dependency model given by a database relation which isnot CIR. 4Example 4. (2{rule holds for EMVD 6) it holds for CI)Firstly, we shall show that every dependency I model given by a database relation satis�es the following2{rule: [I(A; B jC [D) & I(C; D jA) & I(C; D jB)] �! I(C; D jA [ B)(6.3)Indeed: Consider R � Qi2N Xi satisfying antecedents of (6.3). We want verify A [ B !! C jDin R. Thus, take x; y 2 R with xA[B = yA[B and construct z 2 R with zA[B[C = xA[B[C andzA[B[D = yA[B[D. As xA = yA by A !! C jD we �nd v 2 R with vA[C[D = [xA; xC; yD] =[yA; xC; yD]. As xB = yB by B !! C jD we �nd w 2 R with wB[C[D = [xB; xC; yD] = [yB; xC; yD].As vC[D = wC[D by C [D !! A jB we �nd z 2 R with zA[C[D = vA[C[D and zB[C[D = wB[C[D.Evidently zA[B[C[D = [xA; xB; xC; yD] = [yA; yB; xC; yD]. 
But (6.3) fails in case CI. Take N = f1; 2; 3; 4g; Xi = f0; 1g for i 2 N and de�ne a probabilitymeasure on Qi2N Xi as follows: ( 0; 0; 0 0 ) �! 0:2( 0; 0; 1 0 ) �! 0:2( 0; 0; 0 1 ) �! 0:2( 0; 0; 1 1 ) �! 0:1( 0; 1; 1 1 ) �! 0:1( 1; 0; 1 1 ) �! 0:1( 1; 1; 1 1 ) �! 0:1The corresponding CIR contains triplets hf1g; f2g; f34gi; hf3g; f4g; f1gi and hf3g; f4g; f2gi but itdoes not contain hf3g; f4g; f12gi. By (6.3) it is not a dependency model given by a database relation.47 CONCLUDING REMARKSAll this paper was more or less engaged in the following problem:Can we describe formal properties of CIRs by means of a complete formal axiomatic theory?In the �fth section we have shown that syntactic description by means of a simple deductive system(i. e. a system whose formulas correspond to individual CI{statements) is equivalent to characterizationof CIRs by means of �nite number of 2{rules.Existence result in Proposition 2 speaks about characterization of CIRs by means of countablymany 2{rules. But it can be utilized only in case when one would have had a \list" of all CIRs at hisdisposal.By Consequence 1 CIRs cannot be characterized by �nite number of 2{rules and hence they cannotbe described by a simple deductive system, especially by such a formal theory. Nevertheless our resultdoes not refuse the possibility to describe formal properties of CIRs by a complete deductive systemwhich is not simple. If we forsake this demand and allow that the system can have a wider class of
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