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ABSTRACT

The hypothesis of existence of a finite characterization of conditional-independence relations (CIRs)
is refused. This result is shown to be equivalent with the non—existence of a simple deductive system
describing relationships among Cl-statements (it is certain type of syntactic description). However,
under the assumption that CIRs are grasped the existence of a countable characterization of CIRs is
shown. Finally, the problem of characterization of CIRs is shown to be diverse from an analogical
problem of axiomatization EMVDs arising in the theory of relational databases.

INTRODUCTION

LCt [E'i]ieN

components are finite—valued random variables. Then we can define a ternary disjoint relation I on

be a random vector (2 < card N < oco) and let us suppose for simplicity that its

exp N (disjoint means that its domain is the set of triplets of pairwise disjoint subsets of N):

I(A; B|C) holds iff [¢;];- 4 is conditionally independent of [&;];- 5 given [§];c(

We shall call this relation the conditional-independence relation (CIR) corresponding to [§i];c y as it

describes all conditional-independence relationships among its subvectors.
Our question is whether it is possible to characterize CIRs as ternary disjoint relations satisfying a
set of properties of the following type:

o [[(A1, B1]CY) & I(As, By|Cs) & -+ & I(A,, B,|C.)] — I(Ari1, Brt1|Cri1)

This task was called problem of characterization of CIRs in [16]. Many authors dealing with related
problems ([4], [6]) speak about aziomatization of conditional independence (CI). Indeed, finding a finite
set of such properties characterizing CIRs it is possible to describe relationships among Cl-statements
syntactically in simple way (i.e. by means of a deductive system — this notion paraphrases the notion
of formal axiomatic theory from mathematical logic). We shall discuss it in §5.

Nevertheless, in this article we prove that CIRs cannot be characterized by a finite set of properties
of the type O. More exactly, we shall find for every 4 < n = card N some property of CIRs (of
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the type O) which cannot reveal in lower dimensions. Then we shall use this result to show that
no deductive system whose formulas correspond to individual Cl-statements (we speak about simple
deductive system for describing CI) can completely comprehend relationships among Cl-statements.

The situation has analogy in the theory of relational databases where embedded multivalued depen-
dencies (EMVDs) were shown have no complete axiomatization [15]. One can formulate a hypothesis
that CIRs and complexes of EMVDs can be characterized by the same set of properties of the type O.
We give two examples to refuse it. The former O—property holds for CIRs but fails in case of EMVD,
the latter one holds in case of EMVD but does not hold for CIRs.

The first section deals with sources and history of the problem and gives the corresponding refer-
ences. The second section gives basic definitions, the third one contains some preparatory results. The
main result is proved in the fourth section. It is supplied by a construction of a countable characteri-
zation of CIRs by O—properties (however applicable only in case that all CIRs are grasped). The fifth
section is devoted to syntactical description of CI. We discuss how a formal axiomatization for CI can
look and show that no simple complete deductive system for CI exists. The sixth section analyses the
analogy with the theory of relational databases and gives the promised examples. In the last section
(concluding remarks) we summarize the article and propose a plan of further investigation.

1 HISTORY OF THE PROBLEM

The conditional independence (CI) is one of the basic concepts of probability theory. Its importance
in modern statistics was accentuated by Dawid [2] twelve years ago, where some formal properties of
CT was noticed. Since that time many articles have been concerned with those properties (for example

[10], [14)).

Our interest in this problem is motivated by its expected profit in the theory of probabilistic expert
systems. The notion of CI can be interpreted as certain (nonnumerical) relationship among symptoms
(which are described by random variables) and thus it promises the possibility to determine the proper
structure of the expert system directly by asking experts (see [16], [13]).

The importance of CI for probabilistic expert systems was explicitly discerned and highlighted espe-
cially by Pear]l who in [12] formulated a concrete conjecture for characterization of CIRs corresponding
to random vectors whose distributions are strictly positive measures. This conjecture was refused in
[16] by finding a new independent property of CIRs. Note that another task motivated by the same
work was solved in [5].

Nevertheless, some positive results were achieved in this respect, namely certain subclasses of CI-
statements were characterized. In [4] and independently in [7] a complete characterization for the class
of “marginal” Cl-statements (i. e. statements I(A; B|C) with fixed C') was found. In [3] and also in [6]
(using different formal description) the class of “fixed—context” Cl-statements (i.e. I(A; B|C) where
AU BUUC is fixed) was characterized. In connection with these result we would like to bring readers
attention to the article [8] where special classes of CIRs (“monotonic” in condition) are characterized.

The situation is similar to the situation in the theory of relational databases where attempts to
axiomatize miscellaneous types of dependencies were made. Relationships among multivalued depen-
dencies (MVDs) were completely characterized in [1]. We can consider certain analogy, where the
axiomatization of MVDs corresponds with the characterization for the class of “fixed—context” CI-
statement, and axiomatization of embedded multivalued dependencies (EMVD) corresponds with the
problem of characterization of CIRs. Thus, this article gives a result quite analogical to the result
from [15] saying that EMVDs have no complete axiomatization. Indeed, we found inspiration in [15].
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On the other hand the analogy is not absolute as the reader can see from the examples in the sixth
section.

2 BASIC DEFINITIONS

In all this article inder set will be any finite set having at least two elements. Given an index set IV let
us denote by T'(N) the set of all ordered triplets of pairwise disjoint subsets of N. Every subset of T'(N)
will be called dependency model on N (terminology borrowed from [3]). Given u = (A, B,C) € T(N)
its conteut is the set AU B UC. It will be denoted by [u]. We shall say that v = (A, B,C) € T(N) is
triviel iff A or B is empty. The set of non trivial triplets will be denoted by TL(N).

Let K and L be two index sets and v : K — L an injective mapping (necessarily card K < card L).
Then it can be considered as an injective mapping v : T(K) — T(L):
(A,B,C) =" (v(A),v(B),v(C)) whenever (A,B,C) e T(K).

Moreover, for every positive integer + > 1 it can be considered as an injection v : T(K)"* — T(L)"+1:

(U, .vy Upsy) 0 (v(uy)y...,v(upy1)) whenever Uy Upr € T(K).

For every index set N we introduce the class of N—dimensional measures P(N). Every element of
P(N) is specified by a collection of finite nonempty sets {X;; ¢ € N} and by a probability measure on
[Licy Xi (endowed with the o-algebra of all subsets). Another possible view: elements of P(NV) are
distributions of N—dimensional random vectors [{;] ;en Where &; takes values in Xj.

Having an index set N and P € P(N) we define a dependency model T on N as follows:

- if (A, B,C) € T.(N) and C # 0 then (A,B,C) eI it ~ pAYBUC. pC — pAUC. pBUC
(PA denotes the marginal measure of P on HieA X))

- if (A,B,C) € T.(N) and C = then (A, B,0) eI iff  pAYB =pA.pB
- if (A,B,C) € T(N)\ T.(N) then we postulate (A, B,C) € I

We shall call this dependency model the conditional-independence relation (abbreviation CIR) corre-
sponding to P. The symbol CIR(N) will be used to denote the class of CIRs corresponding to all
measures from P(N). We shall sometimes use the symbol I(A4; B|C) instead of (4, B,C) € I.

Informally, by O rule we shall understand the schema:
H [I(Al By |Cl) & - & I(A, BI|CI)] - I(A%Hw Bv‘+l |Cr+l)

The triplets I(A1, B1|C1),.... I(A,, B,|C,) are called antecedents, the triplet I(A, 41, B,41|Crt1) the

consequent. Of course, we are supposed to be able to substitute concrete elements of T(N) for
I(A;; Bi|C;) (for every index set N). Certainly, this notion requires a precise definition. Thus, a
O—rule is specified by a nonnegative integer r and by a collection of (r + 1)—nary relations on T'(N):
{A(N) C T(N)"t; N is an index set}

For example, take r = 1 and put (for every N):

AJN)={[(A,B,C), (B,A,C)]; A, B,C C N are pairwise disjoint} .
This O rule we easily express by the schema [I(A; B|C)] — I(B; A|C).
Another examples of O rules are described here:

[[(A: B|CUD) & I(A;C|D)] — I(A;BUC|D) [] — I(0;B|C).
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All these O-rules meet the following special property. A O-rule (determined by A(N) C T(N)"+! for
any N) is reqular iff

(2.1) V K, L index set v: K — L injective A(K)= (v_1) A(L).

Given an index set N and a O rule we shall say that a dependency model I C T (N) is closed under
this O-rule iff it holds: whenever uy,...,u,411 can be substituted for antecedents and consequent of
this O-rule, then {uy,...,u,} C I implies u,41 € I (exactly uy,...,u, € I & (uy,...,upq1) € A(N)
implies w41 € I). It seems to us that rule is more adequate term that axiom used in [4] and [6] (see

§ 5 Remark 2).

In the sequel we shall often meet the index set N = {0,1,....n} where n > 3. In that situation we
shall consider the following operation of successor suc: {1,...,n} —{1,...,n}:
suc (i) =141 whenever +=1,...,n—1 suc (n) = 1.

3 AUXILIARY RESULTS CONCERNING CIRs

Firstly, we mention a trivial property of CIRs namely symmetry. Given an indexset N and I € CIR(N)
it holds:

(3.1) (A,B,C) el iff (B.A,C)el whenever (A,B,C) € T(N)

In the sequel we construct some concrete examples of CIRs. But constructions of probability
measures are given only. The verification that the corresponding CIRs meet our requirements is left
to the reader. Note that it can be easily done using techniques from [18].

The first lemma contains a construction borrowed from [3] which simplifies our tasks.

Lemma 1. Let N be an index set and I,J € CIR(N). Then INJ € CIR(N) (asI,J C T(N) also
INJCT(N)).

Proof. Suppose that P € P(N) (on [[;cn Xi) gives I as its corresponding CIR and @ € P(N)
(on [[;cn Yi) gives J. Define R € P(N) on [[,cnx Xi X Y; as follows:

R ([:I:,,j, yi]ieN) =P ([:lfi]ieN) - Q ([yi]ieN) where , € X, 4, €Y

It can be verified that I N J is the CIR corresponding to R. A
Lemma 2. Supposing N ={0,1,...,n} (n>3) and s € {1,...,n} we put:
I= {J (0.5 sucs)), (4,0, suc())} U[T(N) \ T-(N)].
JE{lm P\ {s}

Then I € CIR(N).

Proof. Firstly we give three auxiliary constructions.

I Having D C N, card D > 2 it holds
Ip={{(A.B.C)eT(N); AND=0or BND=0 or DZg AUBUC} € CIR(N).

Indeed: Put X; = {0,1} for 2 € D and X; = {0} for i € N\ D and define a distribution P on [[,. 5 X;
as follows: 1 -
A it Y .., xiiseven
P([x'i]iEN) = . ZleD Z . ®
0 if Y icp xiis odd.
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IT There exists K € CIR(N) satisfying
- (0,4,j) € K whenever ¢,7 € {l,...,n}i#j
- (1,7,0) ¢ K whenever ¢, 7€ {l,...,n} i #j
- (A,B,0) ¢ K  whenever A, B# .
Indeed: Define P € P(N) on [[;cy Xi where X; = {0,1} (for each i € N) as follows:

(0,0,0,....0) — a1

(1,0,0,....0) — a
0,1,1,....1) — ag
(1,1,1,....1) — ay
where a1,....a4 >0, a1+ +as =1, a1 - a4 # az - as. ®

ITT There exists J € CIR(N) satisfying

- (0,7, suc(y)) € J whenever j7=1,...,n—1
- (0, suc(j),7) ¢ J whenever j=1,...,n—1.

Indeed: Put X; = {1,...,i} for i € {1,...,n} and Xo = X,,. Define a',...,a" € [];cy Xi as follows:
ok = (aé’, aé’, ces ,af;) where a](‘j =k and aé? = min{k, j} whenever j = 1,...,n. Consider the uniform

k

distribution on {a], ey a'"’} i.e. afF — n~! for every k € {1,...,n}. ®

IV Clearly, without loss of generality we can suppose s = n. Thus, we denote
n—1

I=|J {(0.4. suc (), (j.0. suc(5))} U [T(N) \ Tu(N)].

j=1
Our task is to show I € CIR(N). For this purpose we put D = D U D2 where

Dy = {DCN; cardD =14}

Dy = {DCN;cardD=3& D #{0,j,suc(j)} forevery j=1,...,n—1}.
Consider dependency models I for D € D (see I), K from II and J from III. By Lemma 1
KEnJN\pep Ip € CIR(N). Evidently I C KNJN(),ep Ip. To verify the reversed inclusion
consider u = (A, B,C) € T(N)\ I and show u ¢ KNJN(\pep Ip:

- if card [u] > 4 then u & (Vcp, Ip (see I)
- if C =0 (special case card [u] = 2) then u ¢ K (see II)

- card [u] = 3 & [u] € Do then u & () ep, Ip (see )
Thus, consider card[u] = 3 & [u] ¢ D2 & C # 0. Then [u] = {0,j,suc(y)} for some

j€{l,...,n— 1} and only two cases can occur:
- u € {{7,suc(y),0), (suc(y),7,0)}... then u ¢ K (see II)
- u € {(0,suc(y),7), (suc(y),0,7)}... then u & J (see III) A

Lemma 3. Let K. L be index sets, v: K — L an injective mapping.

a) Given I € CIR(K) there exists J € CIR(L) such that
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(3.2) uw€el << v(u)elJ whenever u€eT(K)

b) Given J € CIR(L) there exists I € CIR(K) such that (3.2) holds.

Proof.

a) Let P € P(K) (on [[;cx Xi) gives I as its corresponding CIR. Put V; = X, 1) for 7 € v(K)
and Y; = {0} for j € L'\ v(K). The natural injection of [, X; into [];c; Yj is a one—to-one
mapping and transfers P to a measure ) on [] jer Y;. Take J as the CIR (‘onebpon(hng to

Q €P(L).

b) Let Q € P(L) (on HjeL Yj) gives J € CIR(L). Put X; =Y, for 2 € K. The natural bijection
between [];c, Xi and Hjev([() Y; transfers the marginal of ) on HjEU(K) Y; to some prob.
measure P on [[, ., X;. Define I as its corresponding CIR. A

Lemma 4. Let N be an index set, V. C N and u € T.(N) with [u] \ V' # 0. Then there exists
I € CIR(N) such that u ¢ I and
wel whenever  w € T(N),[w] C V.

Proof. Put D = [u] and use part I of the proof of Lemma 2. A

4 MAIN RESULTS

A new property of CIRs is derived in the following proposition.

Proposition 1. Let K = {0,....k} where k > 3. Consider the operation of successor on {1,...,k}.
Let I € CIR(N) where K C N. Then the following conditions are equivalent:

() Vi=1,...k I(0; jlsuc(y))
(b) Vji=1,...,k I(0; suc(j)|y)
Proof. We shall use the following result from [16]: We can assign the multiinformation function
I, : exp N — (0,00) satistying the following conditions (4.1), (4.2) to every P € P(N):
(4.1) I1,][AU BUC]+ 1,[C] > I,,][AUC] + L,,,[BUC] for every (A, B,C) € T(N)
(4.2) I(A; B|C) holds iff the equality in (4.1) holds (I denotes the CIR corresponding to P).

The condition (a) can be written by (4.2) as follows:
Vi=1,....k I,[0,4, suc(y)]+ Ly[suc (j)] = I,,]0, suc (5)] — L,[7, suc (5)] =0

Hence, we get:
k

0 = Z{ I,,]0, 7, suc (§)] + Ly [suc (4)] = Lu[0, suc (§)] = L[4, suc ()] } =
j—l

k
= Z 1,10, 4, suc ()] —i—Z Iy, [suc ( Z I,,]0, suc ( Z I,[7, suc(
7=1
k
= Z Im / suc /)]"‘Z Im[/] Z InL[O J Z Im / suc /)] =
j=1 j=1

k
- Z{ 1[0, 3, suc (] + In[j] = Lm0, 5] = L[5, suc (5)] }
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According to (4.1) every expression in braces in the last sum is nonnegative. Thus, it vanishes and
using (4.2) we easily derive (b).
The implication (b) = (a) can be verified analogously. A

Hence, we derive our main result.

Consequence 1. No finite system (A.1) — (A.p) of O-rules can characterize CIRs in sense that for
every dependency model I on any index set N it holds

[I € CIR(N) iff I is closed under (A.1) — (A.p)].

Proof: Let (A.1),...,(A.p) be a finite set of O-rules. Suppose that every CIR is closed under
(A1) — (A.p). Tt suffices to find a dependency model closed under (A.1) — (A.p) which is not CIR for
any probability measure.

Let n > 3 exceeds the maximal number of antecedents of (A7) (¢ = 1,...,p). Put N = {0,...,n},
consider the operation of successor on N and define I C T'(N) as follows:

n

I={J {0, 4. suc(5)), (4. 0, suc ()} UT(N)\ Tu(N)].
j=1
To show that T is closed under (A.7) (¢ = 1,...,p) consider a set K C I that can be substituted for
antecedents of (A.7). Let uw € T(N) can be substituted for the corresponding consequent. As K C [
and card K < n, according to Lemma 2 we can find J € CIR(N) such that K C J C I. Certainly,

J is closed under (A.i). Hence K C J gives w € J C I. Thus, I is closed under (A.7). Nevertheless,
according to Proposition 1 I ¢ CIR(N). A

Although CIRs cannot be characterized by finite number of O-rules they can be characterized by
countably many regular O rules provided we can grasp CIRs. The construction is contained in the
following proposition.

Proposition 2. Let us suppose that we have a list of elements CIR(N) for any index set N at our
disposal. Then we can construct a countable set of regular O—rules (A.r) r = 0,1,... satisfying the
conditions a) — d):

a) every (A.r) has exactly r antecedents i. e. it is given by A.(N) C T(N)"*!
b) Ay(N)=T(N)\T.(N) ( (A.0) includes exactly trivial triplets)

c) A, (N)C T (N)+! whenever r > 1

d) every (A.r) for r > 1 respects the context i.e.

(ul,...,upg1) € A (N) implies  [up11) C U, [ui]

such that for every dependency model I on any index set N it holds:

[l € CIR(N) iff I isclosed under all (A.r)r=20,1,...].

Proof. Given r =0,1,..., an index set N, uy,...,ur11 € T(N) we define:

(ug,...,upg1) € A (N) <= (1) VI€CIR(N) uj,...,u. €I implies wu,41 €1
(2) vS¢{uy,....,u.} ITE€CIR(N) SCl&up41¢1

(3) wuy,...,u, are distinct

Thus, the set of O-rules (A.r) r =0,1,... is introduced.
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I Givenr =0,1,...,v: K — L injective it holds A,(K) = (v_-1) A, (L) (i.e. (A.r) is regular)
Indeed: Equivalently, given uy,...,uy11 € T(K) we need to show

(ug,...,urp1) € A (K) iff (v(u1),...,v(uy1)) € A.(L)

It makes no problem verify it using Lemma 3. ®
II T € CIR(N) = I is closed under (A.r) r=0,1,...

Indeed: having (ui,....up41) € A (N) uy,...,u,. € I, by the condition (1) we derive

Upt1 € 1. ®
IIT Let I C T(N) be closed under (A.r) r =0,1,.... Then I € CIR(N).

Indeed: Owing to Lemma 1 it suffices to show: for every u € T'(N) \ I there exists J €

CIR(N) with I C J and u ¢ J (note that T(N) is finite). Equivalently, for every u €

T(N)\ I the system V, = {K CI;VJeCIRN)K CJimpliesu € J} is empty. In

case V, # 0 we take some its minimal element Ky = {vy,...,v;}. It is easy to verify
(V1. vk, u) € Ap(N). Hence, u € I (as I is closed under (A.k)) and it contradicts the
original selection of w. ®

IV Ay(N) = Myecrn) L= TN)\ TL(N)
Indeed: The first equality is evident. Having u € T'(N )\ T.(N) the definition of CIRs gives
u € (Nrecrpyy I On the other hand w € To(N) implies v ¢ (Ve gy I by Lemma 4

(with V = 0). ®
V A.(N)CT.N)*" whenever r > 1
Indeed: Let (up,...,ur11) € A.(N). By (2) for S = () we get

Uyl & mIeC'IB(N) I =T(N)\T.(N) (see IV). Suppose that u; ¢ Ty(N) for some j < r and

put 8 = {ui,...,u.}\{u;}. By (3), (2) we find I € CIR(N ) such that S C I and u,41 ¢ I.

By IV u; € I'i.e. {uy,...,u,} C 1. It contradicts (1). ®
VI up,....upp1 €ET(N) 7 >1 (ug,...,ur41) € A (N) implies [uy41] C Uiy [wi]

Indeed: Supposing [u, 1] \ Uj_; [wi] # 0 we put V = J;_; [v;] and v = u,4 and apply

Lemma 4 to find I € CIR(N) with uy,...,u, € I and u,41 ¢ I. It contradicts the condition

(1). A

5 SYNTACTIC DESCRIPTION OF CI

Firstly, we are going to introduce the notion of deductive system to be a tool for syntactic description
instead of the notion of formal axiomatic theory (see [9], chap. 1, sec. 4). Actually, these notions
are almost coincident but the notion of deductive system is more general. We omit the principal
requirement claimed on a formal axiomatic theory that is recursivity (i.e. effective determination of
formulas, axioms and inference rules).

Definition 1 (deductive system).
Deductive system D is defined when the following conditions are satisfied:

(1
(2
(3
(4

) A countable set of symbols S is given. Finite sequences of symbols are called expressions of D.

) There is a subset F' of the set of expressions called the set of formulas of D.

) A set of formulas A is set aside and called the set of axioms of D.

) There is a finite set R = {R1,..., Ry} of relations among formulas, called inference rules. For
each R; there is a unique positive integer j such that R; is (j + 1)—nary relation, i.e. R; is a
set of (j + 1)~tuples of formulas. If (y1,...,7;,0) € R;, then o is called a direct consequence of
{7,--.,7j} by virtue of R;. The formulas v1,...,v; are called antecedents, o the consequent.
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Having finite I' C F' and o € F we shall say that o is a consequence of I' in D (write I' & o) iff there
exists a sequence of formulas «y, ..., a, € F (m > 1) such that «,, = o and, for each «;, either a; € A
(set of axioms) or a; € T' or «; is a direct consequence of some of the preceding formulas by virtue of
some inference rule. Such a sequence is called a deduction of ¢ from T'.

We shall say that a deductive system D = (S, F, A, R) is regular iff it holds

(5.1) at,...,0j41 €F (a1,...,aj41) E R € R implies a; ¢ A for i =1,...,5+1.

In this case it can be easily shown:

(5.2) o€ A iff 0Fo forevery o€ F.

The presented definition is very general. In [9] the notion of formal theory is concretized by the
notion of first order theory. We give another concrete example here. It is simpler and can serve as a
deductive system for describing of ordinary (unconditional) stochastic independence.

Example 1.

(1) We have two classes of symbols: numerals and special symbols. Numerals are usual figures used
for notation of nonnegative integers (for example 52 or 0 or 3). Here is the list of seven special
symbols: 0, ;) (][]

(2) To define the set of formulas we introduce the notion of term. Term is either the symbol ()
(empty term) or a finite sequence of distinct numerals separated by commas and ordered in
lexicographical ordering i.e. according their numerical values (for example 1,5,11 or 0 or 12,13
but not 3,1). We shall say that terms A and B are disjoint iff there is no numeral involved both
in A and B. The formula is a sequence I(A; B|()) where A and B are disjoint terms.

(3) The axiom is a formula I(.A; B|})) where either A or B is empty.

(4) To describe the inference rules we introduce some operations with terms. Having terms A and B
we define their conjunction AxB as the term involving exactly those numerals which are involved
either in A or in B (it is uniquely determined by this requirement). For empty A and B the AxB
is also empty. We write B C A if every numeral involved in B is involved in A. We consider
three inference rules. Here are their informal schemes:

(R.1) I(A; B|0) — 1(B; A|0)
(R.2) I(A; B|0) — I(A;C|0) whenever C C B
(R.3) I(A; BI0) I(A% B;C|) — I(A; B*C|0).

A

A deductive system describes syntactic aspects only. To clarify semantic aspects we need to specify
two matters:

- the “field” we want describe by a system under consideration
- the “way” how the theory is related with the field.

Only then we can define the concept of completeness and further important concepts. The “field” will
be described by some class of models with distinguished propositions. The aim of a deductive system
is to describe formal (logical) relationships among these propositions. The “way” will be realized by
interpretations setting up the correspondence between a deductive system and the class of models.
Now, we are going to explain our general conception of these matters. Lately, the concrete definitions
will be given for our specific fields (for CI definitions 3 and 4, for EMVD definition 5). Our approach
is analogical to the classic approach in mathematical logic (see interpretations of first—order theory in
[9] chap. 2 sec. 2) but it is slightly modified because we have specific objective.
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Definition 2 (syntactic aspects).

Except a deductive system D = (S, F, A, R) we consider a class of models M. Every model M € M
has qualified certain class of propositions Py concerning it. Remind that proposition is a statement
which has truth value i. e. either TRUE or FALSE.

For every model M € M we consider a class of mappings INT (M) called interpretations of M. Every
interpretation T € INT(M) has certain set of formulas D, C F as its domain and some proposition
concerning the model M assigns to every formula from D.. We suppose that Py is covered by the
range T for every T € INT(M). In case that for every M € M and 7 € INT(M) the range of T is
exactly Py we say that the deductive system D is simple.

Given a model M € M and its interpretation 7 € INT(M) we can say that o € D, is satisfied in M
by 7 iff the proposition 7(o) has value TRUE. Having finite I' C F' and 0 € F we shall say that o is a
logical consequence of ' (write I' |= o) iff for every M € M and 7 € INT(M) with'U{c} C D, it
holds:

whenever all formulas T' are satisfied in M by 7, then also o is satisfied in M by 7.

A deductive system D is called sound (for a class of models M) iff T' - o entails T' = o for every finite
I' C F and 0 € F. Conversely, it is called complete (for a class of models M) iff I' |= o entails I' - o
for every finite ' C F and o € F.

Remark 1. For our purposes we can limit ourselves to regular deductive systems only. Indeed,
we can replace every original system Dy = (S, F, A1, R1) by another regular one Do = (S, F, Ay, Ro)
(with same symbols and formulas) which is equivalent in the following sense:

(5.3) I'kio iff T'koo whenever finite I'CF, o € F

To show it we put Ap = {0 € F; 0 k1 o}. Evidently A; C Ay and it holds:
(5.4) aly .oyl €EF (ap,...,0p11) ERER) ai,...,q. € Ay implies a1 € Ay

We assign a finite set of new inference rules Li to every R € R;. Take R C F "1 denote V =
{1,...,7+1} and put Rg = RNKg where Kg = [[;c¢ (F\ A2) x HieV\S Ao for every S C V. Clearly,
{Rg, S CV}is a decomposition of R and by (5.4) Rig1y = (. Having S C V with s = cardS > 1
define Lg C (F\ A2)® as the corresponding projection of Rg:

Ls= {[”i]ies? 3 [Uz’]ieV\s (01, 0r41) € RS}

Finally, we put Lg = {Lg; SCV cardS >2 & (r+1) € S} and Ry = |J{Lgr, R € R1}. Evidently,
the new deductive system is regular. The condition (5.3) can be verified with a little effort, too. As
Dy and D> have same formulas we can consider the original models and interpretations for Do. Owing
to (5.3) the notions of soudness and completeness of the system are transferred.

Example 2.

Let us consider the deductive system described in Example 1. Every model M € M is given by a
(finite valued) random vector [{;];cy (2 < card N < oo). The class Py is indexed by couples (A, B) of
disjoint subsets of N. If both A and B are nonempty then the corresponding proposition pas((A, B))
express whether [£;]; 4 is stochastically independent of [¢;],. 51 par((A.0)) and pas ({0, B)) have always
value TRUE.

Consider a fixed model M = [{;]; y and specify the class of its interpretations. Every 7 € INT (M)
is determined by a one to one mapping z : Z — N where Z is a set of numerals with card Z = card N.
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Its domain D is the set of formulas whose terms involve only numerals from Z. As z can be considered
as a one—to—one mapping which assigns a subset of N to every such term we define 7 as follows:

I(A:B|0) =" par ((2(A), 2(B)))

It can be shown using the completeness result from [4] (theorem 3) that the above described deductive
system is simple, sound and complete for the described class of models. Note that we can similarly
utilize the characterization of fixed contex CI statements (see [3], [6]). The reader can find ideas of
these procedures in Remark 2. A

Now, we are going to deal with the question how to describe CI syntactically. Firstly, we clarify
what we shall understand by a deductive system for description CI.

Definition 3 (models for CI).

Models for CI are given by finite valued random vectors [{;];cx where N is an index set. Given a
model M = [§;];cy we consider the proposition py ((A, B.C)) for every (A, B,C) € T(N). In case
that A, B, C are nonempty:

pu({A, B,C)) - [&i];c 4 is conditionally independent of [{;];. p given [i];cc

In case that C' =0 and A, B nonempty:

pu((A, B,0)) - [&];c 4 s independent of [§];c -

In case A or B is empty, py ((A, B,C)) has always value TRUE.

Thus, Pyr = {pm(u); w € T(N)}. Every proposition from Py will be called Cl-statement.

Having two random vectors [¢;] and [1;];c; with card K < card L we would like to consider

e

M = [&];cie as a submodel of M = [1;] Indeed, in this case there exists an injective mapping

€L
v: K — L. It can be considered as an injective mapping v : T(K) — T'(L)

(A, B,C) " {(v(A), v(B), v(C)) whenever (A,B,C) e T(K)
or as an injection v : Py — Py (pM (u) v Py (v(u)) for u € T(K))

Thus, models for CI have some structure. Every reasonable deductive system for describing CI
should reflect it in some sense. Now, we are going to motivate and formulate five minimal requirements
of such system.

Natural claim is that “interpretations can be transferred to submodels”. It means that if cer-
tain formulas are interpreted in a model M by some Cl-statements then the same formulas can be
interpreted as the corresponding CI statements in a submodel M of M (supposing that M has the
corresponding Cl-statements). This requirement is exactly formulated by the following condition:

VM =[lick M = Milicr v : K — Linjective 7 € INT(M)
(a.1) there exists p € INT (M) such that p_1 (Py) = 7—1 (0(Pum))
and v o p(a) = 7(a) for every a € p_1 (Par) .

The dual requirement is that “interpretations can be extended to supermodels”. Formally:

VM= [k M = ilicr v : K — Linjective p € INT(M)

(.2) there exists 7 € INT (M) such that p_; (Py) = 7—1 (0(Pum))
and v o p(a) = 7(«a) for every « € p—1 (Par) .

Further natural claim can be described as follows. If all formulas interpreted as Cl-statements by
some interpretation p can be interpreted by another interpretation 7 (perhaps in another model), then
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7 can be characterized as an extension of p. Formally:

| VM=[ic,x pEINT(M) M=[n),c; 7€INT(M)
(.3) with p_1 (Par) C 71 (73‘47,) there exists v : K — L injective
such that p_1 (Py) = 7—1 (9(Par)) and v o p(a) = 7(«) for every a € p_1 (Pur) .

Having a set of formulas I interpretable as CI-statements in a model M = [¢];c v (by p € INT(M))
we can naturally introdt}ce its context as the set | o {[u]; uw € T(N) with py(u) = p(y)} CN. Our
further requirement is “consistency of interpretations with context”. It means that whenever a set
of formulas has full context in some model M and can be interpreted by some interpretation 7 (in

another model M), then we can interpret (by 7) formulas describing remaining CI statements (in
Pur). Formally:

() v M = [llice PEINT(M) T CF with K =, cpi[u]; p(o) =pu(u)}
VM=nc, TEINT(M) T Cr14 (73117,) implies p_1 (Payr) C 71 (73‘47,) .

The last requirement is “consistency of interpretations with inference rules of the deductive system”.

It means that is some formula is derivable from interpretable formulas (by some interpretation 7) then
it is also interpretable by 7, too. Formally:

(@.5) VM =[]y T€INT(M) R inference rule  «i,. .., a1 formulas
' (@1, . 041) ER, a1,... 0, € Dy implies a1 € D,

Definition 4 (deductive system for describing CI).
We shall say that a regular deductive system D is a deductive system for describing CI iff for every
model M for CI a nonempty collection of mappings INT (M) is given such that

1. every 7 € INT(M) maps certain set D, of formulas onto a set of propositions F; concerning M
satistying Py C Fr

2. the conditions (a.1) — («a.b) are satisfied
3. D is sound for class of models for CI.

Moreover, D is simple iff F; = Py for every model M and every 7 € INT(M).
D is complete iff it is complete for the class of model for CI.

The main result of this section says that the existence of a simple and complete deductive system
for describing CI is equivalent with the possibility of characterization of CIRs by finite number of
regular O-rules. The necessity is contained in the following lemma, the sufficiency in Remark 2.

Lemma 5. Let there exists a simple and complete deductive system D = (S, F, A, R) for describing
CI. Then CIRs can be characterized as dependency models closed under a finite set of regular O-rules.

Proof:

I Firstly we define that set of O rules.

As D is simple D, = 7_1(Pys) for every model M and 7 € INT(M). Thus, we can correctly
define for every index set N:
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K(N)= {k: : F — T'(N) partial mapping : 3 M = [§],cy 37 € INT(M)
such that Dy, = D; and 7(0) = puy(k(0)) for every o € DT} .

It makes no problem to see that K(N) # () and every k € K(N) maps Dy, onto T(N).
Using (a.1) (take K = L = N, v identical mapping) we get:

(5.5) VM = [£il;eny T E€INT(M) iff 7 = py o k for some k € KC(N).

Further, the condition («.1) — (@.5) can be rewritten:

VK, L v:K— L injective V1 € K(L) Tk € K(K)

(A1) { such that Dy, =k (v(T(K))) and l(c) =vok(c) for o € Dy,
(5.2) VK, L v:K— L injective Vk € C(K) 31 € K(L)

' such that Dy, =1_1 (v(T(K))) andl(c) =wvok(o) for o € Dy,
(3.3) V K,LVkeK(K) leK(L)with D, C Dj 3 v:K — L injective

' such that Dy, =11 (v(T(K))) and l(c) = v o k(o) for o € Dy,
(5.4) VKL Vkc€K(K)andI' C F with K =, [k(0)]

o whenever | € K(L) satisfies I' C Dy, then Dy, C Dy

VN VEe K(N) VReER «w,...,ap1 €F (r>1)

(8.5) {

(@1,...0p01) €ER and a1, ..., € Dy, implies a1 € Dy, .

The first O—rule has no antecedents (r = 0) and corresponds to the set of axioms A:

N index set — Ag(N) = Uke)c(N) k(AN Dk;) CT(N)
Every other O rule corresponds to some inference rule R; C F' "+ (here r > 1):

N index set — AJ(N) = Ukie/C(N) k (RJ N D;C+l) C T(N)T’+l

where k : D;:l — T(N)™t is defined by k (01, ....0,41) = (k(o1), ..., k(0,11))

It makes no problem to verify using ((.1), (3.2) that the above defined O rules are regular. ®

IT Let K be an index set, k € K(K), I' C F' with K =, [k(c)]. Then for each model M = [n;];c,
and 7 € INT(M) with I' C D, there exists v : K — L injective such that 7(o) = py(v(k(0o)))
whenever o € Dy,.

Indeed: Apply (5.5) to M = [{i];c; and 7 € INT(M) and find I € K(L) with 7 = pyrol. As
I' C Dy we can use ((.4) to derive Dy, C Dy. Then use (4.3). ®

IIT Having fixed index set N it holds Ag(N) =T(N)\ T(N).
Indeed: Let u € Ag(N)ie. Ik € K(N) o€ ANDy, k(o) =u. By Lemma 4 (for V = ) and
Lemma 1 we find a model M = [¢;],. v such that py(w) has value TRUE iff w € T(N) \ T(N).
Further, 7 = ppyok € INT(M) by (5.5) and 0 € D,. But 0 € A implies ) F o and it gives ) = o
(D is sound). The definition of } = o (see Def. 2) applied to M and 7 says py(u) — TRUE.
Hence, u € T(N )\ T(N).

Conversely, let v € T(N) \ Tu(N); put K = [u]. Fix some ! € K(N) and choose o € Dp with
l(0) = u. Take identical mapping 4 : K — N and by (8.1) find k € K(K) with ¢ € Dy, and
k(o) = i_1(u). Consider any model M = [1;];,c; and 7 € INT(M) with o € D,. By Il (I' = {0})
there exists v : K — L injective such that 7 = pyjovoi_j. As w is trivial, vot_j(u) is trivial, too.
Hence 7(0) — TRUE (see Def. 3). Thus, we have verified § | 0. It gives } F o (D is complete)
and consecutively o € A (D is regular see (5.2)). Hence u € Ule/C(N) (AN Dy) = Ap(N). ®
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IV Given index set N every I € CIR(N) is closed under all defined O-rules.
Indeed: Every CIR contains T(N) \ T.(N). Hence, by III I is closed under the first O-rule
Ay(N). Consider a O-rule given by A;(N) C T(N)"*! (r > 1 corresponding R; € R). Suppose
Uly ooy Upp] € T(N) with ug, ..., u, € I and (uy,. .., tr4+1) € Aj(N). By the definition of A;(N)
there exists k € KK(N) and (01,...,0,41) € R; with o; € Dy, k(0;) =u; (i =1,...,7+1). Since

I € CIR(N) there exists M = [{;];c y such that

(5.6) py(w) — TRUE iftwel whenever w € T(N).

Take M = [{];cy and 7 = pyrok € INT(M) (see (5.5)). As uy,...,u, € I we have py(u;) — TRUE
fore=1,..., r. But {o1,...,0,.} F 0,11 implies {o1,....0,} E 0,41 (D is sound). Apply it to M and
7 and get py(ur41) — TRUE i.e. w41 € I by (5.6). ®

V Let N be an index set and I C T(N) is closed under all defined O-rules. Then I € CIR(N).
Indeed: By Lemma 1 it suffices to find (for every w € T(N) \ I) some model M = [1;],.y such

that:
(5.7) py(w) — FALSE and p;(w) — TRUE for every w € I.
Take k € IC(N), choose T' C Dy, finite with k(T') = I and o € Dy, with k(o) = u. We shall verify that:
(5.8) ' o.
By contradiction: Let «y,...,a, be a deduction of o from I Put T = k_1(I). Find minimal «;

which does not belong to I' U A (note that o ¢ A, otherwise the definition of Ag(N) gives
u € Ag(N) C I). Clearly, «ay is a direct consequence of preceding formulas by virtue some

R; € R. As D is regular, they belong to L. Thus, we found fi,.... 0, € I and Gry1 € F'\ r
such that (f1.....6,41) € Rj. As f1,...,06, € I' C Dy, by (8.5) we derive 3,41 € Dy,. Hence
(k(B1).... k(Br+1)) € Aj(N). As k(B1),....k(B;) € I and I is closed under all O-rules we

derive k(f,41) € I i.e. B,41 € ' — it contradicts the definition ;.

But (5.8) implies I' = o (D is complete). By the definition of I' = o we find M = [£;],., and
T € INT(M) with T' U {o} C D, such that 7(0) — FALSE and 7(y) — TRUE for v € I'. By III
T(N)\T«(N) = Ag(N) C I and hence N = J,c;[u] = U, cr[k(o)]. We can use II (for K = N) to find
v: N — L injective such that 7(y) = pyprovok(y) for v € Dj,. Consider a new model M= [fv(i)]
Evidently, it holds

iENT

(5.9) py(w) — TRUE iff py(v(w)) — TRUE for every w € T(N).

For each w € I we take v € I' with w = k(y). As pyyovok(y) =puol(y) = T(N’}/) — TRUE by (5.9)
we get p o (w) =py ok(y) — TRUE. Analogously, p ;(u) — FALSE. Thus, M satisfies (5.7). A

Consequence 2. There is no simple and complete deductive system for describing CI.

Proof. Combine Consequence 1 and Lemma, 5. A

Remark 2. In Example 2 we mentioned that a characterization for some subclass of Cl-statements
can be utilize for its syntactic description. The following consideration underlines the principles of
these procedures. It shows how a hypothetic simple syntactical description of CI would have looked.

Let us suppose that we have a characterization of CIRs by means of finite number of regular O-rules

(A.0) — (A.s) where
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a) every (A.r)is given by A,(N) C T(N)™t! (r =0,....s N index set)

b) Ag(N)=T(N)\ T.(N)
c) A.(N)C T (N)*+! whenever r > 1
d) r>1, (ur,...,urs1) € A (N) implies [u,41] C Ui [wi] -

These additional demands would be partially justified by Proposition 2 (although we have not proved
that the existence of a finite characterization implies the existence of the special one). Now we can
construct a simple syntactic description of CI as follows.

Deductive system

The set of symbols is the same as in Example 1. We undertake the notion of term also. Consider
formulas of the form I(A; B|C) where A, B,C are pairwise disjoint terms. To specify axioms and
inference rules we introduce (for every N) the class k() as the collection of all one—to—one mappings
z . 4 — N where Z is a set of numerals with card Z = card N. Note that every element z €
k(N') can be considered as a partial mapping z : F — T(N) (the domain Dz is the set of formulas
involving variables from z_i(N) and I(A; B|C) —% (z2(A), z(B), z(C))), i.e. an element of KX(N) —

see the proof of Lemma 5. Moreover, it can be considered as a mapping z : F't! — T(N)™*! for

r>1: Z(ag,...,a41) = (2(a1),...,2(ar41)). Then we specify the set of axioms:
A=U U (z-1) Ag(N)C F
N  zer(N)
Further, for every r = 1, ..., s we define an inference rule
R.=J) U E-na.(v)crt!
N zew(N)

Models and interpretations

The class of models is described in Def. 3. Given a model M = [{;],cy every its interpretation
T € INT(M) is given by an element z € x(N):
D, =Dy and 7(0)=py(2(0)) for o€ D, i.e. I(A; B|C) —" par ({(z(A), z(B), z(C))).

I The deductive system is regular.
Indeed: It easily follows from b):
I(A; B|IC) € A <= A or B is empty term.
Hence, ¢) gives: (o1,...,0,41) ERp, r>1=0; ¢ Afori=1,....r+ 1. ®

IT («.1l) — (@.5) holds.
Indeed: Clearly, the conditions (3.1) — (/3.5) mentioned in the proof of Lemma 5 are satisfied
((8.5) follows from d)). Hence, (.1) — (.5) can be easily derived. ®

ITI Let (yi,....%+41) €E Ry M =[§licy 7€ INT(M) with y1,..., 741 € D

7(v1),...,7(y-) — TRUE. Then 7 (y,4+1) — TRUE.

Indeed: Consider k € k(N) given by the equality 7 = pys o k.

Put I = {u € T(N);pu(u) — TRUE}. Evidently k(y1),....k(v.) € I. As I € CIR(N) it
is closed under (A.r). Hence, to derive 7 (y,41) — TRUE i.e. k(y,+1) € I we need to show
(E(y1)y--. . k(yr+1)) € Ar(N). As (71,...,7%+1) € R, there exists an index set L, z € x(L)
and (wy,...,wyy1) € A.(L) such that z(w;) = ;. We can suppose L = U;Ll[wl] (by (5.1)
and regularity of (A.r)). Further, using (5.4) and (3.3) we find v : L — N injective such that
k(y) = v o z(y) for y € D},. Hence, by regularity of (A.r) (k(y1),...,k(y41)) € An(N). ®
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IV I' - o implies I' = o (I’ C F finite, 0 € T)
Indeed: It can be derived from (a.5) and regularity of the deductive system:

(5.10) 'Fo= V Mmodel V7€ INT(M)withT C D, oceD,UA

Consider M = [{];cy and 7 € INT(M) with T U{o} C D; and 7(¢) — TRUE for vy € T. It
suffices to show 7(0) — TRUE. Thus, take a deduction aq, ..., a,, of ¢ from I and prove by induction
that 7(o;) = TRUE i =1,...,m. If o; € T" it is evident. If o; € A, then 7(«;) = pyr(u) for a trivial
triplet uw and pyr(u) — TRUE by definition. Let «; be a direct consequence of preceding formulas by

virtue of some inference rule R,.. They are not axioms by I and by (5.10) belong to D,;. We can use
ITT to derive 7(a;) — TRUE. ®

V I'=o implies T'Fo (I'C F finite, 0 € T)
Indeed: As I' is finite we easily find an index set N and z € x(N) such that 'U {o} C Dz. It
can be easily derived from I' |= ¢ and the definition of interpretations:

(5.11) VIeCIR(N) z(I')CcI implies z(o) el

Further, we define
K = {u € T(N); there exists a sequence uy, ..., tuy € T(N) where uy,, = u and for each wu;

either u; € z(T') or (ug,...,u;,,u;) € A.(N) for some r > 0 and some preceding triplets}
Evidently K is closed under (A.0) — (A.s) and contains z(I'). Hence K € CIR(N) and by (5.11)
contains z(o). Let uq,...,u, be the corresponding sequence. Put o; = z_1(u;) i =1,..., m. It makes

no problem to verify (using the definitions of A and R,.) that a1,...,a,, is a deduction of ¢ from I'.®

VI We can summarize I - V: the constructed deductive system would give simple syntactic description

of CL A

6 ANALOGY WITH EMVD

As we have mentioned that questions concerning Cl-statements have analogy in the theory of relational
databases namely in questions concerning embedded multivalued dependencies (EMVDs). This model
is specified by the following definition.

Definition 5 (models for EMVD).
Every model is given by an index set N (2 < card N < o0), by a collection of nonempty sets {X;; 1 € N}

and by a nonempty subset R C [[;.y Xi ( R is called database relation).
Given (A, B,C) € T(N) we write C — A|B in R iff

(6.1) Vaz,ye Rwithze =yc J2z€R  zauc =zauc & zpuc = ysuc

(here x¢ denotes [x;],. whenever C C N and x = [z];cy € [[;en Xi)-
We speak about EMVD-statements.

Remark. EMVD-statements are usually defined (see [15]) for triplets (A, B, C') satisfying
AN B C C (by the same requirement). But it holds: C'—— A| B in R if and only if
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C — (A\C)|(B\C) in R for every such triplet and database relation R. Thus, our definition is not
restrictive.

A lot of effort was exerted to characterize formal relationships among EMVD-statements. For
example in [1] multivalued dependencies (subclass of EMVDs C' —— A| B with N = AU BUC) were
axiomatized. Analogical result for crosses (EMVDs C' —— A | B with C' = () is in [11]. The article [15]
gives a method how test inferring among Z-EMVDs (EMVDs C — A| B with fixed B) and shows
that the class of all EMVDs has no complete axiomatization. Note that although all these authors
speak about axiomatization they did not give a formal axiomatic theory in sense of mathematical logic.
By axiomatization they understand a characterization by means of a finite number of O—rules (in our
terminology).

Considering a natural correspondence py ({4, B,C))---C —— A|B above mentioned results very
resemble the results concerning special subclasses of Cl-statements ([3], [4], [6], [7]):
It leads to a hypothesis that formal relationships among Cl-statements and those among EMVD-
statements are identical. More precisely, the hypothesis can be formulated as follows:

We conjecture that for every index set N and I C T(N)
(7) I'eCIR(N) ifft I={(A,B,C)€T(N); = A|Bin R} for some
database relation R on N (19 RC HieN X,,j) .

Many arguments support this hypothesis:
- it is confirmed in case card N < 3

- in some special case the mentioned concepts coincide. Indeed, let M = [{;];c 5 be a random vector
(& takes values in X;) such that every marginal of its distribution P is uniformly distributed on
its support. Define R C [];cy Xi as the support of P :

R={xz €[l,ex Xi; P(z) > 0}. Then it holds:
pu ((A,B.C)) — TRUE iff C — A|Bin R whenever (A, B.C) € T(N)

- the characterization for MVDs (see [1]) is identical with the characterization of the corresponding
class of Cl-statements i. e. fixed—contex ([3], [6]).

- analogical case occurs for crosses (see [11]) and marginal CI statements ([4], [7])

- even our result (Consequence 1) is analogical to negative result from [15]. We have derived (in
Proposition 1) the same property for Cl-statements as Sagiv and Walecka for EMVD-statements.

Nevertheless, we refuse both implications in our hypothesis (7). Example 3 disclaims sufficiency,
Example 4 necessity.

Example 3. (O-rule holds for CI # it holds for EMVD)

It was shown in [16] that every CIR is closed under the following O rule:
(6.2) [I(A; B|CUD) & I(C; D|A) & I(C,D|B) & I(A; B|0)] — I(C; D|0).

But is fails in the case of EMVD. Take N = {1,2,3,4}, X; = {0,1}, for + € N, and R C [,y Xi
given by the following list:

(0, 0, 0 0)
(0, 0, 0 1)
(0, 1, 0 0)
(1, 0, 0 0)
(1, 1, 0 0)
(1, 1, 1 0)
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It makes no problem to verify that EMVDs {3,4} — {1}|{2}, {1} — {3} |{4},

{2} — {3} {4}, 0 — {1} | {2} hold in R. But EMVD § — {3} | {4} does not hold in R.

Thus, I = {{(A,B,C);C — A| B in R} is a dependency model given by a database relation which is
not CIR. A

Example 4. (O-rule holds for EMVD # it holds for CI)

Firstly, we shall show that every dependency I model given by a database relation satisfies the following
O-rule:

(6.3) [I(A; B|CUD) & I(C; D|A) & I(C; D|B)] — I(C; D|AU B)

Indeed: Consider R C [[;cy X satisfying antecedents of (6.3). We want verify AU B — C|D
in R. Thus, take z,y € R with zaup = yaup and construct z € R with zaupuc = Zaupuc and
zauBup = Yaupup. As x4 = ya by A — C|D we find v € R with vaucup = [ra, ¢, yp] =
[ya, o, yp]. As g =yp by B — C'| D we find w € R with wpycup =[5, o, yp] = [yB, o, YD)
As voup = woyup by CUD —— A| B we find z € R with zqucup = vaucup and zpucup = wWBLUCUD-
Evidently zausucup = [za, T8, o, yp] = [Ya, yu, xc, Y] ®

But (6.3) fails in case CI. Take N = {1,2.3,4}, X; = {0,1} for ¢ € N and define a probability
measure on [ [,y X as follows:

(0, 0, 0 0) — 0.2
(0, 0, 1 0) — 0.2
(0, 0, 0 1) — 0.2
(0, 0, 1 1) — 0.1
(0, 1, 1 1) — 0.1
(1, 0, 1 1) — 0.1
(1, 1, 1 1) — 0.1

The corresponding CIR contains triplets ({1}, {2}, {34}), ({3}, {4}, {1}) and ({3}, {4}, {2}) but it
does not contain ({3}, {4}, {12}). By (6.3) it is not a dependency model given by a database relation.
A

7 CONCLUDING REMARKS

All this paper was more or less engaged in the following problem:

Can we describe formal properties of CIRs by means of a complete formal axiomatic theory?

In the fifth section we have shown that syntactic description by means of a simple deductive system
(i.e. a system whose formulas correspond to individual CI-statements) is equivalent to characterization
of CIRs by means of finite number of O-rules.

Existence result in Proposition 2 speaks about characterization of CIRs by means of countably
many O rules. But it can be utilized only in case when one would have had a “list” of all CIRs at his
disposal.

By Consequence 1 CIRs cannot be characterized by finite number of O-rules and hence they cannot
be described by a simple deductive system, especially by such a formal theory. Nevertheless our result
does not refuse the possibility to describe formal properties of CIRs by a complete deductive system
which is not simple. If we forsake this demand and allow that the system can have a wider class of
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formulas (for example formulas can correspond with finite conjunctions of Cl-statements) then our
arguments cannot be used since all our new formal properties can be embraced in one inference rule!
Then our result (and similarly the analogical result [15] concerning EMVDs) gives only relatively
negative conclusion: CIRs cannot be characterized in classic way.

Thus, the plan of further investigation is to seek for a more wider formal system describing CIRs.
Some attempt in this respect was made in [17] (the concept of M-relation).

Examples 3 and 4 document that our problem is not equivalent to an analogical problem in the
theory of relational databases namely decidability of testing implications of EMVDs (see [15]).
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