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Abstract This paper deals with faces and facets of the family-variable poly-
tope and the characteristic-imset polytope, which are special polytopes used in
integer linear programming approaches to statistically learn Bayesian network
structure. A common form of linear objectives to be maximized in this area
leads to the concept of score equivalence (SE), both for linear objectives and
for faces of the family-variable polytope.

We characterize the linear space of SE objectives and establish a one-to-one
correspondence between SE faces of the family-variable polytope, the faces of
the characteristic-imset polytope, and standardized supermodular functions.
The characterization of SE facets in terms of extremality of the corresponding
supermodular function gives an elegant method to verify whether an inequality
is SE-facet-defining for the family-variable polytope.

We also show that when maximizing an SE objective one can eliminate
linear constraints of the family-variable polytope that correspond to non-SE
facets. However, we show that solely considering SE facets is not enough as a
counter-example shows; one has to consider the linear inequality constraints
that correspond to facets of the characteristic-imset polytope despite the fact
that they may not define facets in the family-variable mode.
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1 Introduction

The motivation for our paper is learning Bayesian network (BN) structure
statistically. Bayesian networks are popular models used in statistics [14] and
probabilistic reasoning [18]. Directed acyclic graphs, whose nodes correspond
to random variables in consideration, are used to describe the probabilistic
conditional independence structures behind the statistical models [19].

Specifically, our motivation comes from the integer linear programming
(ILP) approach to the statistical learning task to determine the structural
model on the basis of observed data. Nowadays, the most popular is the score-
based approach consisting in maximizing a scoring criterion G 7→ Q(G,D),
where G is a directed acyclic graph, D the observed database and the value
Q(G,D) says how much the BN structure defined by the graph G explains the
occurrence the database D [15].

The point of the ILP approach is that the criteria used in practice can be
viewed as (the restrictions of) affine functions of suitable vector representatives
of BN structures. The most common is the family-variable vector representa-
tion of directed acyclic graphs suggested independently in [13] and [7]. Very
good running times have recently been achieved using this vector representa-
tion and the branch-and-cut approach [1,9]. The corresponding family-variable
polytope, defined as the convex hull of these vector representatives, is one of
the topics of interest in this paper.

Another ILP approach based on the characteristic-imset vector representa-
tion of BN structures was suggested in [12]; its motivational sources date back
to [19]. Unlike the family-variable vectors, the characteristic imsets uniquely
correspond to BN structures. This ILP approach is also feasible [23], but
has not resulted in better running times than those achieved using GOB-
NILP software [9]. The other polytope we are interested in this paper is the
characteristic-imset polytope, defined as the convex hull of all characteristic
imsets.

Our paper is devoted to the comparison of facet-defining inequalities for
the two above-mentioned polytopes, because such inequalities appear to be
the most useful ones in the cutting plane approach to solving ILP problems
[26]. There were some former results on this comparison topic in [22], but the
present paper brings further and deeper findings.

The structure of the paper is as follows. In Section 2 we introduce our
notation and recall basic concepts; elementary facts on polytopes we need
later are gathered in Section 3. Some fundamental observations on facets of
the family-variable polytope, on which our later considerations are based, are
in Section 4; some of these facts are also shown using different arguments in a
parallel paper [10].
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In Section 5 we pinpoint the concept of score equivalence (SE), both for
linear objectives to be maximized and for faces of the family-variable poly-
tope. We characterize the linear space of SE objectives in Section 6. Later, in
Section 7, we establish a one-to-one correspondence between SE faces of the
family-variable polytope and standardized supermodular set functions. The
most beneficial seems to be the characterization of SE facets as those that
correspond to extreme supermodular functions.

Section 8 deals with well-known (generalized) cluster inequalities applied
dominantly in contemporary ILP approaches to BN structure learning. We find
the corresponding supermodular functions and show they are extreme. This
gives a simple proof that the generalized cluster inequalities are facet-defining
for the family-variable polytope; note that another proof of this fact, based
on different arguments, will appear in [10]. We also interpret the generalized
cluster inequalities in terms of connected uniform matroids.

Another one-to-one correspondence between SE faces of the family-variable
polytope and faces of the characteristic-imset polytope is then established
in Section 9. To illustrate this correspondence we derive the form of cluster
inequalities in the characteristic-imset mode. A few simple examples of the
polytopes and their facet-defining inequalities are given in Section 10.

Further important observations of ours are in Section 11: when maximizing
an SE objective, one actually need not apply the linear facet-defining con-
straints on the family-variable polytope that are not SE. We also reveal the
hidden importance of the linear constraints that correspond to facets of the
characteristic-imset polytope. On the other hand, considering only SE facets
is not enough as a later counter-example in Section 12 shows. Section 13 con-
tains a few remarks on computational aspects whose aim is to explain why
the ILP approach is applicable also in the case of higher number of nodes (in
the graphs). We also pinpoint the significance of our theoretical results and
observations for (the design of) practical ILP learning procedures.

The appendix contains the proof of an auxiliary combinatorial identity
(Section A), a catalogue of SE facets in the case of four BN variables (Sec-
tion B) and a catalogue of remaining facets of the characteristic-imset polytope
in the case of four BN variables (Section C).

2 Notation and basic concepts

Let N be a finite non-empty set of BN variables; n := |N | <∞, consider the
non-trivial case 2 ≤ n. Let DAGS (N) denote the collection of directed acyclic
graphs over N , that is, directed graphs which have N as the set of nodes and
are without directed cycles. Note that we follow common usage in terminology
even though the unambiguous term “acyclic directed graph” is perhaps more
appropriate from a grammatical point of view. An example of such a graph is
the empty graph, which is a graph over N without adjacencies. By a complete
graph we will mean any directed acyclic graph over N in which every pair
of distinct nodes is adjacent. Given G ∈ DAGS (N) and a node a ∈ N , the
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symbol paG(a) := {b ∈ N : a ← b in G} will denote the parent set of the
node a. A well-known equivalent definition of acyclicity of a directed graph G
over N is the existence of a total order a1, . . . , an of nodes in N such that, for
every i = 1, . . . , n, paG(ai) ⊆ {a1, . . . , ai−1}; we say then that the order and
the graph are consonant. An immorality in G is an induced subgraph of G of
the form a→ c← b, where the nodes a and b are not adjacent in G.

The symbol G ∼ H for G,H ∈ DAGS (N) will mean that the graphs G
and H are Markov equivalent, that is, in graphical terms, they have the same
adjacencies and immoralities; for references see [14, p. 60] or [19, p. 48-49]. An
example of a Markov equivalence class is the set of complete graphs over N .

A node a together with its parent set B will be called a family. Note that
any directed graph over N is determined by its n = |N | families. Throughout
the paper, the index set of family-variable vectors will be

Υ := { (a |B) : a ∈ N & ∅ 6= B ⊆ N \ {a} } .

Note that families with empty parent sets are not included.
Given b ∈ N and Z ⊆ N \ {b} the symbol Ib←Z will be used to denote the

identifier of this pair, that is, an element of RΥ given by

Ib←Z(a |B) =

{
1 if a = b and B = Z,
0 otherwise,

for any (a |B) ∈ Υ .

In case Z = ∅, for any b ∈ N , Ib←Z = Ib←∅ is the zero vector. The symbol
ηG will be used to denote the family-variable vector encoding G ∈ DAGS (N),
that is, the DAG-code for the (directed acyclic) graph G:

ηG(a |B) =

{
1 if B = paG(a),
0 otherwise,

for (a |B) ∈ Υ .

The family-variable polytope can be defined as the convex hull of the set of all
possible DAG-codes over N :

F := conv ({ ηG ∈ RΥ : G ∈ DAGS (N) }) .

Note that examples of the family-variable polytope F in cases n = 3 and n = 4
are given in Section 10. Clearly, the dimension of F, defined as the dimension
of its linear hull, is dim(F) = |Υ | = n · (2n−1− 1). It is easy to see that none of
the DAG-codes is a non-trivial convex combination of the others. In particular,
the set of vertices (= extreme points) of F is just the set of DAG-codes.

Given two vectors v, w ∈ RΓ , where Γ is a non-empty finite index set, say
Γ = Υ , their scalar product will be denoted by 〈v, w〉Γ , or just by 〈v, w〉 if
there is no danger of confusion. We also consider alternative index sets.

Specifically, the characteristic imset of G ∈ DAGS (N), introduced in [12]
and denoted below by cG, is an element of RΛ with

Λ := {S ⊆ N : |S| ≥ 2 } .
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Recall from [22, § 3.3.2] and [1, § 2] that cG is a many-to-one linear function
of ηG; the transformation is η 7→ cη, where

cη(S) =
∑
a∈S

∑
B :S\{a}⊆B⊆N\{a}

η(a |B) for any S ⊆ N , |S| ≥ 2. (1)

A further fundamental observation is that G ∼ H for G,H ∈ DAGS (N) iff
cG = cH ; see [12, § 3] for more detailed justification. The characteristic-imset
polytope is defined as follows:

C := conv ({ cG ∈ RΛ : G ∈ DAGS (N) }) .

Examples of the characteristic-imset polytope C for n = 3 and n = 4 are also
given in Section 10. One can show that dim(C) = |Λ| = 2n − n− 1. Of course,
C is the image of F by the linear map (1).

Moreover, the power set P(N) := {A : A ⊆ N} will serve as an index set
for vectors, used as auxiliary tools in a later proof in Section 9. Given A ⊆ N ,
let us denote its indicator vector by

δA(S) =

{
1 if S = A ,
0 if S ⊆ N, S 6= A ,

and define the standard imset for G ∈ DAGS (N) as an element of RP(N):

uG := δN − δ∅ +
∑
a∈N

{
δpaG(a) − δ{a}∪paG(a)

}
. (2)

Recall from [22, § 3.3] that cG is a one-to-one affine function of uG, specifically

cG(T ) = 1−
∑

S:T⊆S⊆N

uG(S) for T ⊆ N , |T | ≥ 2. (3)

In particular, the combination of a former characterization [20, Theorem 4]
of the vertices of the standard-imset polytope with (3) implies that the set
of vertices (= extreme points) of the characteristic-imset polytope C is just
the set of characteristic imsets cG for G ∈ DAGS (N). In other words, no
characteristic imset is a non-trivial convex combination of the others.

3 Elementary facts on facets and some conventions

Recall the basic concept of a face/facet of a polytope.

Definition 1 (dimension, face, facet)
Let P be a polytope in RΓ , where Γ 6= ∅ is finite. Its dimension is defined as
the dimension of its affine hull, which is a translate of a linear subspace of RΓ .
A set F ⊆ P is called a face of P if there exists a vector o ∈ RΓ and a constant
u ∈ R such that

– P ⊆ { v ∈ RΓ : 〈o, v〉 ≤ u }, and
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– F = { v ∈ P : 〈o, v〉 = u } .

We say then that the face F is defined by the inequality 〈o, v〉 ≤ u. Every face
of a polytope is a (possibly empty) polytope, as well; thus, its dimension is
defined. A facet of P is a face of dimension dim(P)− 1.

The function v ∈ RΓ 7→ 〈o, v〉, where o ∈ RΓ , is typically a linear objective
to be maximized by a linear program; with a small abuse of terminology we
will call o ∈ RΓ an objective.

Note that the dimension of a face is one less than the maximum number of
affinely independent vectors in the face. An alternative equivalent definition
of a facet is that it is a sub-maximal face with respect to inclusion.

Lemma 1 Given a polytope P in RΓ , 0 < |Γ | < ∞, a face F ⊂ P is a facet
of P iff the only face F ′ of P with F ⊂ F ′ is F ′ = P itself.

Proof The sufficiency follows from the fact that, for every pair of faces F1 ⊂ F2

of P with dim(F1) < d < dim(F2), a face F3 of P exists with F1 ⊂ F3 ⊂ F2

and dim(F3) = d; see, for example, [4, Corollary 9.7]. For the necessity realize
that, if F1 ⊂ F2 are faces of P then dim(F1) < dim(F2); see [4, Corollary 5.5].

The consequence is an auxiliary observation, applied later in the paper.

Corollary 1 Let P ⊆ RΓ , 0 < |Γ | < ∞ be a polytope and let 〈o1, v〉 ≤ u1
and 〈o2, v〉 ≤ u2 be valid inequalities for v ∈ P such that

∃w1 ∈ P : 〈o1, w1〉 < u1 & 〈o2, w1〉 = u2 and ∃w2 ∈ P : 〈o2, w2〉 < u2. (4)

Then no combination of these inequalities 〈α · o1 + β · o2, v〉 ≤ α · u1 + β · u2
with α, β > 0 is a facet-defining inequality for P.

Proof Let F1, F2 and F be the faces of P defined by inequalities 〈o1, v〉 ≤ u1,
〈o2, v〉 ≤ u2 and their combination 〈α·o1+β ·o2, v〉 ≤ α·u1+β ·u2, respectively.
Given v ∈ F one has

α · {〈o1, v〉 − u1︸ ︷︷ ︸
≤0

}+ β · {〈o2, v〉 − u2︸ ︷︷ ︸
≤0

} = 0,

which implies that the expressions in braces must vanish. In other words,
F ⊆ F1 ∩ F2. Assume for a contradiction that F is a facet. By Lemma 1
observe that either F1 = P or F1 = F ; the same for F2. Since (4) implies
w1 ∈ P \ F1 and w2 ∈ P \ F2, one necessarily has F1 = F = F2. However, this
contradicts the existence of w1 ∈ F2 \ F1 assumed in (4).

In this paper we mainly deal with the family-variable polytope F. Every
face of F can be identified with a set of directed acyclic graphs. Specifically:

F ⊆ F a face of F ←→ S = {G ∈ DAGS (N) : ηG ∈ F} .

This correspondence preserves inclusion, that is, F1 ⊆ F2 for faces of F iff
S1 ⊆ S2 for the corresponding sets of graphs Si ⊆ DAGS (N). The identification
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is possible owing to a basic fact from the theory of polytopes that every face
F of a polytope P is the convex hull of the set of vertices of P which belong
to F , see [2, Lemma VI.1.1] or [27, Proposition 2.3(i)]. Since the vertices of F
are just the DAG-codes ηG, where G ∈ DAGS (N), every face F of F can be
identified with a subset of DAGS (N). This leads to the following convention.

Definition 2 (a set of graphs interpreted as a face)
We will call a set S ⊆ DAGS (N) a face (of the family-variable polytope F) if
conv ({ ηG ∈ RΥ : G ∈ S}) is a face of F. Analogously, S ⊆ DAGS (N) will be
called a facet (of F) if conv ({ ηG ∈ RΥ : G ∈ S}) is a facet of F.

A direct method to show that a face S ⊆ DAGS (N) is a facet is to show
that the respective geometric face F has the dimension dim(F) − 1, which
means, to find dim(F) affinely independent vectors in F . Since the vertices of
F are just the family-variable vectors for G ∈ S, the task, more or less, reduces
to the question of finding a subset S′ ⊆ S of cardinality |Υ | = n · (2n−1 − 1)
such that the vectors { ηG ∈ RΥ : G ∈ S′} are affinely independent.

We accept a standardization convention that valid inequalities for vectors
η ∈ F in the family-variable polytope will be written in the upper-bound form:

〈o, η〉 ≤ u where o ∈ RΥ is an objective and u ∈ R an upper bound. (5)

Note that any lower-bound inequality 〈o′, η〉 ≥ l can be replaced by 〈o, η〉 ≤ u
where o = −o′ and u = −l. Since F is a rational polytope, its facets are
defined by inequalities with rational coefficients, that is, by (5) with o ∈ QΥ .
By multiplying it by a suitable positive factor one can get (unique) integer
vector objective o ∈ ZΥ whose components have no common prime divisor.
Since the vertices of F are zero-one vectors, the tight upper bound in (5) must
be then an integer as well: u ∈ Z.

Moreover, a couple of special extension conventions for vectors in RΥ and
RΛ will be accepted to simplify some later formulas:

– for every objective o ∈ RΥ , assume o(b | ∅) = 0 for any b ∈ N ,
– for any m ∈ RΛ, put m(S) = 0 for S ⊆ N , |S| ≤ 1.

4 Observations on facets of the family-variable polytope

In this section, we present a few general facts concerning faces and facets of F
and describe explicitly those facets which contain the empty graph. Note that
some of these basic observations are also mentioned and used in a parallel
paper [10]. We keep the standardization convention from Section 3. The basic
division of facet-defining inequalities is on the basis of the upper bound value
u.

Lemma 2 Assume that (5), that is, the inequality 〈o, η〉 ≤ u with o ∈ RΥ
and u ∈ R, is a valid inequality for all η ∈ F. Then u ≥ 0.



8 Cussens, Haws, and Studený

(i) One has u = 0 iff the corresponding face of F contains the empty graph.

(ii) If u = 0 then the objective coefficients are non-positive:

o(a |B) ≤ 0 for each (a |B) ∈ Υ .

(iii) The facet-defining inequalities tight at the empty graph are just

−η(a |B) ≤ 0 for each (a |B) ∈ Υ . (6)

(iv) If (5) is a facet-defining inequality for F with u > 0 then the objective
coefficients are non-negative and increasing in the following sense:

o(a |B) ≥ o(a |A) ≥ 0 whenever a ∈ N and ∅ 6= A ⊆ B ⊆ N \ {a}.

Note that an alternative proof of Lemma 2(iv) is in [10].

Proof The zero vector in RΥ is the code for the empty graph and, therefore,
belongs to F. The substitution of η = 0 into (5) gives 0 ≤ u. It is clear that
the inequality is tight for η = 0 iff u = 0, which gives (i).

As concerns (ii), assume for a contradiction that (a |B) ∈ Υ such that
o(a |B) > 0 exists in (5) with u = 0. Consider G ∈ DAGS (N) with ηG = Ia←B .
Then 〈o, ηG〉 = o(a |B) > 0 = u contradicts the validity of (5).

As concerns (iii), an elementary fact is that, for every (b |D) ∈ Υ , all the
inequalities in (6) with (a |B) 6= (b |D) are tight for the family-variable vector
η = Ib←D ∈ F but not the inequality corresponding to (b |D). This allows us
to observe that any inequality in (6) is facet-defining for F. Indeed, any such
inequality is valid for F and, having fixed (a |B) ∈ Υ , the respective inequality
−η(a |B) ≤ 0 is tight for |Υ | affinely independent vectors, namely the zero
vector in RΥ and vectors Ib←D for (b |D) 6= (a |B). The second step is to
show that every facet F of F containing the empty graph is defined by (6).
Former observations (i) and (ii) imply that the facet-defining inequality for
F must have the form 〈o, η〉 ≤ 0 with o ∈ (−∞, 0]Υ . Thus, the inequality
is a conic combination of those from (6). Since F is assumed to be a facet,
Corollary 1 can be used to show that at most one coefficient in the combination
is non-zero. Indeed, if two coefficients o(a |B) and o(b |D) are non-zero, the
above elementary fact implies for the inequalities o(a |B) · η(a |B) ≤ 0 and∑

(c |E)6=(a |B) o(c |E) · η(c |E) ≤ 0 that the condition (4) from Corollary 1 is
fulfilled with w1 = Ia←B and w2 = Ib←D. On the other hand, at least one
coefficient must be non-zero, since otherwise F = F. Therefore, the facet F
must be defined by one of the inequalities in (6).

As concerns (iv), owing to the extension convention from Section 3, the
statement means o(a |B) ≥ o(a |A) for a ∈ N and A ⊆ B ⊆ N \ {a}. Assume
for a contradiction that a ∈ N and A ⊂ B ⊆ N \ {a} exist such that one has
o(a |B) < o(a |A) and define õ ∈ RΥ in the following way:

õ(b |D) :=

{
o(b |D) for (b |D) ∈ Υ , (b |D) 6= (a |B),
o(a |A) for (b |D) = (a |B).
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The next observation is that 〈õ, η〉 ≤ u is a valid inequality for F. Specifically,
given G ∈ DAGS (N), construct G̃ ∈ DAGS (N) such that ηG̃(a |B) = 0 and

〈õ, ηG〉 = 〈õ, ηG̃〉. Indeed, if paG(a) 6= B then simply G̃ := G, otherwise put
paG̃(a) = A and paG̃(b) = paG(b) for b ∈ N \ {a}, which gives

〈õ, ηG〉 − 〈õ, ηG̃〉 = õ(a |B)− õ(a |A) = o(a |A)− o(a |A) = 0 .

The definition of õ implies 〈õ, ηG̃〉−〈o, ηG̃〉 = {õ(a |B)−o(a |B)}·ηG̃(a |B) = 0.
Because (5) is valid for ηG̃ one can observe

〈õ, ηG〉 = 〈õ, ηG̃〉 = 〈o, ηG̃〉 ≤ u , which was desired.

Thus, (5) is the sum of the valid inequality 〈õ, η〉 ≤ u with a positive multiple
of the valid inequality −η(a |B) ≤ 0, namely by β := o(a |A) − o(a |B) > 0.
The condition (4) from Corollary 1 is fulfilled with w1 = 0 and w2 = Ia←B ,
which implies a contradictory conclusion that (5) is not facet-defining.

This implies the following observation.

Corollary 2 Let S be a facet of F in the sense of Definition 2 which does not
contain the empty graph. Then S is closed under super-graphs in the sense:

if G ∈ S is a subgraph of H ∈ DAGS (N) then H ∈ S.

Moreover, for every (a |B) ∈ Υ , there exists G ∈ S with paG(a) = B.

The second statement in Corollary 2 is also derived in [10] using slightly
different arguments.

Proof It is enough to verify the first claim when H differs from G in only
one parent set, that is, when a ∈ N exists with A = paG(a) ⊂ paH(a) = B
and paH(b) = paG(b) for b ∈ N \ {a}. By Lemma 2(i), we know that S is
given by the inequality (5) with u > 0. Thus, by Lemma 2(iv), one can write
〈o, ηH〉 − 〈o, ηG〉 = o(a |B)− o(a |A) ≥ 0. Assuming G ∈ S, the inequality (5)
is tight for ηG and one has

u = 〈o, ηG〉 ≤ 〈o, ηH〉 ≤ u because (5) is valid for ηH .

Hence, 〈o, ηH〉 = u, that is, (5) is tight for ηH , saying that H ∈ S.
As concern the second claim assume for a contradiction that (a |B) ∈ Υ

exists with paG(a) 6= B for any G ∈ S. That means, S is contained in the face
defined by −η(a |B) ≤ 0. Since conv ({ ηG ∈ RΥ : G ∈ S}) is a facet of F,
by Lemma 1, observe that it coincides with the face defined by −η(a |B) ≤ 0.
This implies a contradictory conclusion that S contains the empty graph.

An obvious modification of natural convexity constraints gives the following
valid inequalities for the family-variable polytope:∑

B : ∅6=B⊆N\{a}

η(a |B) ≤ 1 for any a ∈ N. (7)

Except for a degenerate case n = 2, these inequalities are facet-defining; see
also [10].
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Lemma 3 If n ≥ 3 then, for every a ∈ N , (7) defines a facet of F.

Proof We find |Υ | affinely independent vectors on the face. Specifically, for
∅ 6= B ⊆ N \ {a} put η(a |B) = Ia←B , while for b ∈ N , b 6= a and (b |D) ∈ Υ
put η(b |D) = Ia←N\{a,b} + Ib←D. These vectors linearly generate RΥ . Hence,
they are linearly independent, and, therefore, affinely independent.

5 Score equivalence concept

The score-based approach to structural learning Bayesian networks consists
in maximization of a function G ∈ DAGS (N) 7→ Q(G,D), where D is the
database of observed values and Q a suitable quality criterion, also called a
scoring criterion [15, p. 437], which evaluates how the graph G fits the database
D. The criteria used in practice turn out to be affine functions of the family-
variable vector, that is, Q(G,D) = k + 〈o, ηG〉Υ with k ∈ R and o ∈ RΥ
encoding both D and Q. Thus, theoretically speaking, the learning task turns
into an LP problem to maximize a linear function over the vertices of the
family-variable polytope F.

Since the goal is typically to learn the structure, described by a Markov
equivalence class of graphs, most of criteria used in practice do not distinguish
between Markov equivalent graphs, that is, one has

Q(G,D) = Q(H,D) whenever G and H are Markov equivalent.

In the machine learning community, quality criteria satisfying the above condi-
tion are called score equivalent [3,6]. This motivates the following terminology.

Definition 3 (score equivalent objective)
We say that a vector o ∈ RΥ is a score equivalent objective (abbreviated below
as an SE objective) if it satisfies

∀G,H ∈ DAGS (N) G ∼ H ⇒ 〈o, ηG〉 = 〈o, ηH〉 . (8)

Clearly, the set of SE objectives is a linear subspace of RΥ .

The faces and facets of F are defined in terms of normal vectors, which
leads to the following concept.

Definition 4 (SE face/facet, closed under Markov equivalence)
We will name a face F of F score equivalent (SE) if there exists an SE objective
o ∈ RΥ and a constant u ∈ R such that two conditions from Definition 1 hold
for P = F. An SE facet is a facet of F which is a score equivalent face.

A related concept is the next one: a set S ⊆ DAGS (N) of directed acyclic
graphs is closed under Markov equivalence if

∀G,H ∈ DAGS (N) G ∼ H G ∈ S ⇒ H ∈ S. (9)
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Remark 1 Note that an objective determining a face is not uniquely deter-
mined. Only in the case of a facet (of a full-dimensional polytope), is it unique
up to a positive multiple. Therefore, one has to be careful when testing score
equivalence of a face F which is not a facet, because one of the face-defining
objectives for F could be SE and another objective for F need not be. Our
definition requires the existence of at least one SE objective defining the face.

The following observation is straightforward.

Lemma 4 A set of graphs on an SE face is closed under Markov equivalence.

Proof Given an SE objective o with F = { η ∈ F : 〈o, η〉 = u} for some u ∈ R
and G ∈ DAGS (N) with 〈o, ηG〉 = u, (8) implies for H ∼ G that 〈o, ηH〉 = u.

An open question is whether the converse is true.

Conjecture 1

Every face S ⊆ DAGS (N) of F closed under Markov equivalence is an SE face.

We managed to confirm the conjecture for facets; see Theorem 1 in Sec-
tion 7. The arguments there are slightly special and do not apply to general
faces. However, we were able to verify Conjecture 1 for n = |N | = 3 by an
exhaustive analysis. By means of a computer, we verified for n = 4 that every
inclusion-submaximal face among those closed under Markov equivalence is
already an SE face. Our computational attempts to find a counter-example
for n = 5 have not been successful.

6 Characterization of SE objectives

Recall that to present the characterization of the linear space of SE objectives
in an elegant way we use the extension conventions from Section 3.

Lemma 5 A vector o ∈ RΥ is an SE objective if and only if either of the
following two conditions (a) and (b) holds. The two conditions are equivalent:
the first one holds if and only if the second one does.

(a) For any Z ⊆ N and a, b ∈ N \ Z, a 6= b one has

o(b | {a} ∪ Z) + o(a |Z) = o(a | {b} ∪ Z) + o(b |Z) . (10)

(b) There exists m ∈ RΛ such that

o(a |B) = m({a} ∪B)−m(B) for any a ∈ N , B ⊆ N \ {a}. (11)

In particular, the dimension of the linear subspace of SE objectives is 2n−n−1.
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Proof The condition (8) for o ∈ RΥ means 〈o, ηG−ηH〉 = 0 ifG,H ∈ DAGS (N)
are such that G ∼ H. A well-known transformational characterization of
Markov equivalence [5, Theorem 2] says that G ∼ H if and only if there
exists a sequence G = G1, . . . , Gm = H, m ≥ 1 in DAGS (N) such that, for
i = 1, . . . ,m − 1, the graph Gi+1 is obtained from Gi by “covered arc rever-
sal”. This means that Gi has an arrow a → b with paGi

(b) = {a} ∪ paGi
(a)

and Gi+1 is obtained from Gi by replacing a → b in Gi by b → a in Gi+1;
the remaining arrows are unchanged. In particular, Gi ∼ Gi+1 and, provided
Z = paGi

(a) one has

ηGi
− ηGi+1

= Ib←{a}∪Z + Ia←Z − Ia←{b}∪Z − Ib←Z .

Hence, we easily derive that (8) holds for o ∈ RΥ iff (10) holds.

It remains to show that (10) is equivalent to the existence of m ∈ RΛ such
that o is given by (11). The sufficiency of (11) is easy: then both the LHS and
the RHS in (10) have the form m({a, b} ∪ Z)−m(Z).

The necessity of (11) can be shown by an inductive construction. Take
Z = ∅ in (10) and get o(b | {a}) = o(a | {b}). One can put m({a, b}) := o(b | {a})
for any pair of distinct a, b ∈ N . Thus, owing to the above conventions, (11)
holds in case |B| ≤ 1. To confirm (11) for B with |B| = r ≥ 2 accept the
inductive hypothesis that it holds for B′ with |B′| ≤ r − 1. The task is to
define m(D) for D ⊆ N with |D| = r + 1 so that (11) holds for B with
|B| ≤ r. Having fixed such a set D, for any pair of distinct elements a, b ∈ D
put Z = D \ {a, b} and observe from (10) by means of the inductive premise:

o(b | {a} ∪ Z) +m({a} ∪ Z)−m(Z) = o(a | {b} ∪ Z) +m({b} ∪ Z)−m(Z) .

The cancellation of m(Z) implies the function b 7→ o(b |D\{b})+m(D\{b}) for
b ∈ D is constant on D. Thus, one can put m(D) := o(b |D \{b})+m(D \{b})
for any such b ∈ D, which verifies the inductive step.

The correspondence between o and m in (11) is evidently a one-to-one
linear mapping, which implies the claim about the dimension.

Corollary 3 Let o ∈ RΥ be an SE objective and let m ∈ RΛ satisfy (11).
Then for any T ∈ Λ and arbitrary b ∈ T with R := T \ {b} one has

∑
∅6=K⊆R

(−1)|R\K| · o(b |K) =
∑

L∈Λ:L⊆T

(−1)|T\L| ·m(L) . (12)

In particular, the LHS of (12) does not depend on the choice of b ∈ T .



Polyhedral aspects of score equivalence 13

Proof Having in mind the extension conventions from Section 3 write by (11):∑
∅6=K⊆R

(−1)|R\K| · o(b |K) = (−1)|R| ·
∑
K⊆R

(−1)|K| · o(b |K)

(11)
= (−1)|R| ·

∑
K⊆R

(−1)|K| · {m({b} ∪K)−m(K) }

= (−1)|R| · (−1) ·
∑
K⊆R

(−1)|K|+1 ·m({b} ∪K)

+ (−1)|R| · (−1) ·
∑
K⊆R

(−1)|K| ·m(K)

= (−1)|T | ·
∑
L⊆T

(−1)|L| ·m(L) =
∑

L∈Λ:L⊆T

(−1)|T\L| ·m(L) ,

which concludes the proof.

Another relevant observation is the following.

Lemma 6 Any face of F containing the whole Markov equivalence class of
complete graphs is given by an SE objective.

Proof Assume 〈o, η〉 ≤ u is an arbitrary defining inequality for such a face F
of F, with o ∈ RΥ , u ∈ R. By Lemma 5(a), it is enough to show o satisfies
(10). Note that, for any Z ⊆ N and distinct a, b ∈ N \ Z, complete graphs
G and H over N exist with ηG − ηH = Ib←{a}∪Z + Ia←Z − Ia←{b}∪Z − Ib←Z .
Hence, 〈o, ηG〉 = u = 〈o, ηH〉 implies that (10) is true for that particular choice
of nodes a, b and the set Z.

It follows from Lemma 6 that every face of F which contains the class of
complete graphs is an SE face. Therefore, no counter-example to Conjecture 1
is among the faces containing a complete graph. Indeed, since they must be
closed under Markov equivalence, they necessarily contain the whole set of
complete graphs.

7 Correspondence to supermodular functions

In this section we characterize those facets of F which contain the set of com-
plete graphs. We show they coincide with SE facets and establish their relation
to extreme supermodular functions.

The previous results allow us to confirm Conjecture 1 for facets.

Theorem 1 The following conditions are equivalent for a facet S ⊆ DAGS (N):

(a) S is closed under Markov equivalence,
(b) S contains the whole equivalence class of complete graphs,
(c) S is SE.
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Proof To show (a)⇒(b) note, by Lemma 2(iii), that S cannot contain the
empty graph, since otherwise it is not closed under Markov equivalence. Clearly,
S must be non-empty, because otherwise it is not a facet of F (note we assume
n = |N | ≥ 2). Thus, G ∈ S exists and one can construct a complete graph
H ∈ DAGS (N) such that G is a subgraph of H. By Corollary 2, H ∈ S.
Since S is closed under Markov equivalence, all complete graphs belong to S.
The implication (b)⇒(c) follows from Lemma 6. The implication (c)⇒(a) was
mentioned as Lemma 4 in Section 5.

The next step is to recall the definition of a supermodular set function.

Definition 5 (standardized supermodular function)
Any vector m ∈ RP(N) can be viewed as a real set function m : P(N) → R.
Such a set function will be called standardized if m(S) = 0 for S ⊆ N , |S| ≤ 1,
and supermodular if

∀U, V ⊆ N m(U) +m(V ) ≤ m(U ∪ V ) +m(U ∩ V ) . (13)

The following (non-negative) characteristics are ascribed to any supermodular
function m: for any a, b ∈ N , a 6= b and Z ⊆ N \ {a, b}, we will denote

∆m(a, b |Z) := m({a, b} ∪ Z) +m(Z)−m({a} ∪ Z)−m({b} ∪ Z) .

It is easy to see that a set function m is supermodular iff ∆m(a, b |Z) ≥ 0
for any respective triplet (a, b |Z); see, for example, [25, Theorem 24(iv)].
The point is that standardized supermodular functions correspond to valid
inequalities for the family-variable polytope that are tight at all complete
graphs.

Lemma 7 An inequality 〈o, η〉 ≤ u, where o ∈ RΥ and u ∈ R, is valid for
all η ∈ F and tight at any complete graph over N iff it corresponds to a
standardized supermodular function m in the sense:

– o is given by (11): o(a |B) = m({a} ∪B)−m(B) for a ∈ N , B ⊆ N \ {a},
– u is the shared value 〈o, ηH〉 for complete graphs H over N .

Moreover, the correspondence is one-to-one and preserves a conic combination.

Proof Given such an inequality, Lemma 6 implies that o is an SE objective
and Lemma 5(b) says it has the form (11). To show that m is necessarily
supermodular observe∆m(a, b |Z) ≥ 0 for any (a, b |Z). To this end, note that,
given a triplet (a, b |Z), a complete graph H over N and G ∈ DAGS (N) exist
such that ηH−ηG = Ib←{a}∪Z−Ib←Z . Indeed, consider a total order of elements
in N in which Z precedes a after which b and N \({a, b}∪Z) follow and take H
as the complete graph consonant with this order and G is the graph obtained
from H by the removal of the arrow a → b. Hence, 〈o, ηG〉 ≤ u = 〈o, ηH〉
implies 0 ≤ 〈o, ηH − ηG〉 = o(b | {a} ∪ Z)− o(b |Z)

(11)
= ∆m(a, b |Z).

Conversely, given a supermodular m, Lemma 5(b) says the objective o
given by (11) is SE and the complete graphs H over N share the value 〈o, ηH〉.
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Thus, it is enough to show that, for any G ∈ DAGS (N), a complete graph H
exists with 〈o, ηG〉 ≤ 〈o, ηH〉. Indeed, consider a total order consonant with G,
denote by pre(a) the set of (strict) predecessors of a ∈ N in that order and by
H the complete graph consonant with the order. Then write

〈o, ηH − ηG〉 =
∑
a∈N
{ o(a |pre(a))− o(a |paG(a)) } =

=
∑
a∈N
{m({a} ∪ pre(a))−m({a} ∪ paG(a))−m(pre(a)) +m(paG(a))︸ ︷︷ ︸

≥0

} ≥ 0 .

Since (11) defines an invertible linear transformation, the last claim is easy.

By the extension convention from Section 3, any vector in m ∈ RΛ could be
identified with a standardized set function. With a small abuse of terminology,
we say that m ∈ RΛ is supermodular if its zero extension m : P(N)→ R is a
supermodular set function. By its definition, the set of supermodular vectors
in RΛ is a polyhedral cone. Since it is pointed, it has finitely many extreme
rays. This motivates the next definition.

Definition 6 (extreme supermodular function)
A standardized supermodular set function m : P(N)→ R is called extreme if
it generates an extreme ray of the standardized supermodular cone.

The following fact follows from a specific characterization of extremality of
supermodular functions.

Lemma 8 Let m1,m2 ∈ RP(N) generate distinct extreme rays of the stan-
dardized supermodular cone. Then the faces of F determined by the corre-
sponding inequalities, as described in Lemma 7, are inclusion-incomparable.

Proof The argument is based on the result saying that a supermodular set
function m is extreme iff the structural independence model produced by m
is sub-maximal; see [19, Lemma 5.6] or [25, Corollary 30]. More specifically, it
says m is extreme iff any supermodular function m′ with

∀ (a, b |Z) ∆m(a, b |Z) = 0 ⇒ ∆m′(a, b |Z) = 0

either satisfies, for any triplet (a, b |Z), ∆m′(a, b |Z) = 0 ⇔ ∆m(a, b |Z) = 0
or even, ∆m′(a′, b′ |Z ′) = 0 for any (a′, b′ |Z ′), which, for a standardized m′,
means that m′ must be a non-negative multiple of m. Since m1,m2 gener-
ate distinct rays, a triplet (a, b |Z) must exist such that ∆m1(a, b |Z) > 0
and ∆m2(a, b |Z) = 0. As in the proof of Lemma 7, construct a complete
graph H over N and G ∈ DAGS (N) with ηH − ηG = Ib←{a}∪Z − Ib←Z . Then
∆m1(a, b |Z) > 0 implies that the inequality 〈o1, η〉 ≤ u1 given by m1 through
(11) is not tight for ηG because

u1−〈o1, ηG〉 = 〈o1, ηH−ηG〉 = o1(b | {a}∪Z)−o1(b |Z)
(11)
= ∆m1(a, b |Z) > 0 ,

while ∆m2(a, b |Z) = 0 implies that 〈o2, η〉 ≤ u2 is tight for ηG. Hence, the
face of F determined by m2 is not contained is the one determined by m1. The
role of generators m1 and m2 is clearly exchangeable.
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Now, we are ready to characterize SE facets.

Theorem 2 An inequality 〈o, η〉 ≤ u for η ∈ F, where o ∈ RΥ and u ∈ R,
defines an SE facet for F iff there exists an extreme standardized supermodular
set function m such that o is determined by (11) and u = m(N).

Proof By Theorem 1(b), 〈o, η〉 ≤ u defines an SE facet iff it is facet-defining for
F and tight at all complete graphs over N . We show this occurs iff an extreme
standardized supermodular set function m exists such that o is determined by
(11) and u is the shared value of 〈o, ηH〉 for complete graphs H over N . Of
course, by (11), one has 〈o, ηH〉 = m(N)−m(∅) = m(N).

Firstly, using Lemma 1, we show that any extreme standardized super-
modular function mi gives a facet of F. Thus, assume F ′ is a face containing
the face Fi determined by mi. Lemma 7 applied to mi says that the face Fi
contains the class of complete graphs, and so F ′ does. Again by Lemma 7
applied to the inequality defining F ′, the face F ′ is given by a supermodular
function m′, which must be a conic combination of finitely many generators
of (all) the extreme rays: m′ =

∑
j αj ·mj , αj ≥ 0.

The assumption Fi ⊆ F ′ implies that, for any k 6= i, the coefficient αk must
vanish. Specifically, one can derive from the last claim in Lemma 7 that αk > 0
forces F ′ ⊆ Fk. Indeed, the inequality defining F ′ is a conic combination
of the inequality corresponding to mk (= defining Fk) and the inequality
corresponding to

∑
j 6=k αj · mj . Any vector η ∈ F ′ is tight for the (conic)

combination of these two inequalities, and, since both these inequalities are
valid for F, η must be tight for both of them (this is the same consideration as
in the proof of Corollary 1). Thus, η is tight for the inequality corresponding
to mk, that is, η ∈ Fk. Thus, when αk > 0 one has Fi ⊆ F ′ ⊆ Fk.

However, for distinct i and k, the respective faces Fi and Fk are inclusion-
incomparable, by Lemma 8. Thus, one has m′ = αi ·mi, which means either
m′ = 0, in which case F ′ = F, or m′ is a positive multiple of mi, in which case
F ′ = Fi. Hence, by Lemma 1, Fi is a facet of F.

Secondly, we show that any facet F of F involving all complete graphs
is given by an extreme standardized supermodular function. Apply Lemma 7
to F and write the respective standardized supermodular function m as a
conic combination m =

∑
j αj · mj , αj ≥ 0 of extreme ones. Let us assume

for a contradiction that αi 6= 0 6= αk for distinct i and k. By Lemma 8, the
faces corresponding to mi and mk are incomparable. In particular, provided
〈oj , η〉 ≤ uj denotes the inequality for η ∈ F corresponding mj , we know
that w1 ∈ F exists satisfying 〈oi, w1〉 = ui and 〈ok, w1〉 < uk, and w2 ∈ F
exists satisfying 〈oi, w2〉 < ui. The inequality corresponding to m is the sum
of
∑
j 6=i αj · 〈oj , η〉 ≤

∑
j 6=i αj · uj and of the αi-multiple of the inequality

〈oi, η〉 ≤ ui. The assumption (4) of Corollary 1 is fulfilled for the vectors w1

and w2 above, which gives a contradictory conclusion that F is not a facet.
Thus, at most one of the coefficients αj is non-zero. Since m must be non-zero,
it is a positive multiple of some mj .

Thus, Theorem 2 transforms the problem of testing certain facets of F into
the task of verifying whether the respective supermodular function is extreme.
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Note that a simple linear criterion for testing extremality of a standardized
supermodular function m has recently been proposed in [25]. The criterion
consists in solving a linear equation system determined by the combinatorial
structure of the so-called core polytope ascribed to m:

C(m) := { [va]a∈N ∈ RN :
∑
a∈N

va = m(N) & ∀S ⊆ N
∑
a∈S

va ≥ m(S) } .

We hope that the criterion from [25] will appear to be useful in our context.

8 Generalized cluster inequalities and uniform matroids

An important class of inequalities for the family-variable polytope is discussed
in this section. We apply Theorem 2 from the previous section to show they
define SE facets and reveal their hidden connection to uniform matroids.

Jaakkola, Sontag, Globerson and Meila introduced in [13] an interesting
class of cluster-based inequalities for F, whose purpose was to express the
acyclicity restrictions. To shorten the terminology we call them the cluster in-
equalities. Specifically, if the family-variable vector ηG encoding G ∈ DAGS (N)
is extended by additional components for the empty parent sets ηG(a | ∅),
a ∈ N , then the inequality ascribed to a cluster C ⊆ N , |C| ≥ 2, has the form

1 ≤
∑
a∈C

∑
B⊆N :B∩C=∅

ηG(a |B) .

The interpretation is clear: since the induced subgraph GC is acyclic, there is
at least one node a in C which has no parent in C. An important fact is that
the only integral vectors in the polyhedron specified by the cluster inequalities,
and, for any a ∈ N , by the convexity constraints ηG(a |B) ≥ 0, B ⊆ N \ {a}
and

∑
B⊆N\{a} ηG(a |B) = 1, are the DAG-codes [22, Lemma 2].

The cluster inequalities have appeared to have a crucial role in the integer
linear programming (ILP) approach learning BN structure. This was confirmed
computationally in [8] by the first author of this paper, who also introduced
generalized cluster inequalities. Specifically, to every cluster C ⊆ N , |C| ≥ 2,
and k = 1, . . . , |C| − 1 one can ascribe the inequality

k ≤
∑
a∈C

∑
B⊆N\{a} : |B∩C|<k

ηG(a |B) .

Its interpretation is analogous: since the induced subgraph GC is acyclic, the
first k nodes in a total order of nodes in C consonant with GC have at most
k − 1 parents in C. Note that for k = |C| and k = 0 the inequalities are
tight at any G ∈ DAGS (N) and are, therefore, omitted. In particular, we only
consider the generalized cluster inequalities for k = 1, . . . , |C| − 1; this also
enforces |C| ≥ 2. To transform them into standardized inequality constraints
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on a vector η in F ⊆ RΥ we use the above convexity equality constraints and
get for any C ⊆ N , |C| ≥ 2, and k = 1, . . . , |C| − 1,∑

a∈C

∑
B⊆N\{a} : |B∩C|≥k

η(a |B) ≤ |C| − k . (14)

The point is that this k-cluster inequality (14) corresponds to an extreme
standardized supermodular set function in sense of Theorem 2.

Lemma 9 For any C ⊆ N , |C| ≥ 2, and k = 1, . . . , |C| − 1, the formula

mC,k(S) = max { 0, |S ∩ C| − k } for any S ⊆ N, (15)

gives an extreme standardized supermodular function which determines through
the formula (11) the objective coefficients in (14).

Proof Easily, the objective coefficient for (a |B) ∈ Υ is

oC,k(a |B)
(11)
= mC,k({a} ∪B)−mC,k(B) =

{
1 if a ∈ C and |B ∩ C| ≥ k,
0 otherwise,

and the value of 〈oC,k, ηH〉 for any complete graph H over N is |C|−k. Hence,
(15) determines through (11) the inequality (14).

It remains to show that mC,k generates an extreme ray of the cone K of
standardized supermodular functions. Recall m is supermodular iff, for any
triplet A,B,Z ⊆ N of pairwise disjoint sets, one has

∆m(A,B |Z) := m(A ∪B ∪ Z) +m(Z)−m(A ∪ Z)−m(B ∪ Z) ≥ 0 ,

which is a re-formulation of (13), but it is enough to verify ∆m(a, b |Z) ≥ 0
for any a, b ∈ N , a 6= b and Z ⊆ N \ {a, b}. It is easy to observe m(S) ≥ 0 for
any m ∈ K and S ⊆ N . Since mC,k(S) = mC,k(S ∩C) for any S ⊆ N , one has

∆mC,k(A,B |Z) = ∆mC,k(A ∩ C,B ∩ C |Z ∩ C) for disjoint A,B,Z ⊆ N.

To show mC,k ∈ K observe that, for any triplet (a, b |Z) with {a, b} ∪ Z ⊆ C,

∆mC,k(a, b |Z) = 1 if |{a, b} ∪ Z| = k + 1, and
∆mC,k(a, b |Z) = 0 otherwise.

We have to verify that, if mC,k = α ·m1+(1−α) ·m2, α ∈ (0, 1) is a non-trivial
convex combination of m1,m2 ∈ K then m1 and m2 are non-negative multiples
of mC,k. To show m = γ ·mC,k for some γ ≥ 0 it is enough to verify:

(i) m(S) = 0 for S ⊆ N with |S ∩ C| ≤ k,
(ii) m(S) = m(S ∩ C) for any S ⊆ N ,
(iii) m(S) = m(T ) for S, T ⊆ C, |S| = |T | = k + 1,
(iv) if γ is the shared value from (iii) then m(S) = γ + m(R) for any pair of

sets R ⊆ S ⊆ C are such that |S| = |R|+ 1 ≥ k + 1.
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To verify (i) for m1,m2 with some such S ⊆ N write

0 = mC,k(S) = α ·m1(S) + (1− α) ·m2(S) .

The RHS here is a convex combination of non-negative terms; therefore, they
both vanish, which means 0 = m1(S) = m2(S). To verify (ii) for m1,m2 with
some S ⊆ N consider (A,B |Z) = (S ∩ C, S \ C | ∅) and observe

0 = ∆mC,k(A,B |Z) = α ·∆m1(A,B |Z) + (1− α) ·∆m2(A,B |Z) .

Hence, for i = 1, 2, ∆mi(A,B |Z) = 0, implying together with (i) for mi that
mi(S) = mi(S ∩ C). To verify (iii) it is enough to observe mi(S) = mi(T ) in
the case |S| = |T | = k+1 with S \T = {s} and T \S = {t}. Choose r ∈ S∩T ,
put R = (S∩T )\{r} and consider the triplets (r, t |R∪{s}) and (r, s |R∪{t}).
Since both 0 = ∆mC,k(r, t |R ∪ {s}) and 0 = ∆mC,k(r, s |R ∪ {t}), one has
0 = ∆mi(r, t |R∪ {s}) = ∆mi(r, s |R∪ {t}), for i = 1, 2. Hence, by (i) for mi,

0 = ∆mi(r, t |R ∪ {s})−∆mi(r, s |R ∪ {t}) = mi(T )−mi(S) .

The condition (iv) can be verified by induction on |S|: (i) and (iii) for mi

say (iv) holds for mi and |S| = k + 1. If |S| > k + 1 and S \ R = {s} then
choose t ∈ R and put T = S \ {t}. Because 0 = ∆mC,k(s, t |R ∩ T ) one gets
0 = ∆mi(s, t |R ∩ T ), that is, mi(S) −mi(R) = mi(T ) −mi(R ∩ T ) = γ for
i = 1, 2, by the inductive assumption.

Corollary 4 Any generalized cluster inequality (14) defines an SE facet of F.

Proof Combine Lemma 9 with Theorem 2.

The rest of this section is an observation which makes sense for a reader fa-
miliar with elementary notions in matroid theory. Thus, we assume the reader
knows basic equivalent definitions of a matroid in terms of independent sets,
bases and the rank function, as given, for example, in [17, Chapter 1].

The link between generalized cluster inequalities and certain matroids is
based on a duality relationship of supermodular functions and their mirror
images, submodular functions. Recall that r ∈ RP(N) is submodular if

r(U ∪ V ) + r(U ∩ V ) ≤ r(U) + r(V ) for any U, V ⊆ N .

In fact, there is a one-to-one linear mapping from the cone K of standardized
supermodular functions onto the cone of submodular functions r : P(N)→ R
satisfying r(∅) = 0 and r(N) = r(N \{a}) for any a ∈ N . The point is that the
rank functions of non-degenerate matroids fall within this submodular cone.
Specifically, one can consider the duality transformation which ascribes to any
m ∈ K the set function r given by

r(T ) = m(N)−m(N \ T ) for any T ⊆ N .
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This self-inverse transformation maps the supermodular function mC,k for
C ⊆ N , |C| ≥ 2, and k = 1, . . . , |C| − 1, onto the submodular function

rC,k(T ) = min { |T ∩ C|, |C| − k } for any T ⊆ N, (16)

which is the rank function of a matroid on N . However, it can be viewed as a
kind of trivial “loop-adding” extension of a matroid which has C as its ground
set. Indeed, the function (16) can be identified with its restriction to P(C),
which is the rank function of the uniform matroid of rank |C| − k on C; see
[17, Example 1.2.7]. The bases of this matroid are just the subsets of C of the
cardinality |C| − k. Two remaining uniform matroids on C, namely those of
the ranks 0 and |C|, differ in the property they are not connected: that means
a set ∅ ⊂ S ⊂ C exists with r(C) = r(S) + r(C \ S), where r is their rank
function; see [17, § 4.2] for this concept. Therefore, one can summarize our
observation by saying that the generalized cluster inequalities for C ⊆ N are
in a one-to-one correspondence with connected uniform matroids on C.

Remark 2 Note that the duality transformation is not the only one-to-one
linear mapping between the considered supermodular and submodular cones;
see [25, § 7.2] for the details. However, this fact is not important in our context
since the use of the other transformation leads to the same conclusion, the
difference is that the uniform matroid on C of the rank k is ascribed to mC,k

instead. On the other hand, the duality transformation has the property that
the vertices of the core polytope ascribed to mC,k, as defined in the end of
Section 7, are just the incidence vectors for bases of the uniform matroid of
rank |C| − k.

Note that the correspondence of generalized cluster inequalities and con-
nected uniform matroids can be extended. It has been recently shown in [24]
on the basis of results of the present paper and some classic results from ma-
troid theory that any connected matroid which has C ⊆ N , |C| ≥ 2, as its
ground set induces an SE facet of F.

9 On the faces of the characteristic-imset polytope

In this section, we introduce a one-to-one correspondence between faces of the
characteristic-imset polytope C and SE faces of the family-variable polytope F.
This allows us to characterize those faces of C that correspond to SE facets.

Let 〈z, c〉Λ ≤ u, where z ∈ RΛ and u ∈ R, be a valid inequality for c in the
characteristic-imset polytope C. It defines a face of C:

F̄ = { c ∈ C : 〈z, c〉Λ = u } .

By substituting (1) into the inequality 〈z, cη〉Λ ≤ u and re-arranging terms
after the components of η one gets an inequality for η ∈ RΥ valid for any
ηG, G ∈ DAGS (N). Indeed, this is because the image of ηG by (1) is just cG.
Moreover, the objective on the LHS of the obtained inequality is SE because
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whenever G ∼ H, one has cG = cG and, therefore, 〈z, cG〉Λ = 〈z, cH〉Λ. Thus,
any face of C defines an SE face of F. Nevertheless, the converse is true.

Lemma 10 Given an SE objective o ∈ RΥ , there exists unique zo ∈ RΛ such
that the following holds:

∀ η ∈ RΥ 〈o, η〉Υ = 〈zo, cη〉Λ . (17)

Specifically, one has

zo(T ) :=
∑
∅6=K⊆R

(−1)|R\K| · o(b |K) (18)

for T ∈ Λ, with any b ∈ T and R := T \ {b}.

In particular, the expression in (18) does not depend on the choice of b ∈ T .

Proof We are going to show that zo ∈ RΛ given by (18) satisfies

∀G ∈ DAGS (N) 〈o, ηG〉Υ = 〈zo, cG〉Λ . (19)

By Corollary 3, we know that zo takes the form

zo(T )
(12)
=

∑
L∈Λ :L⊆T

(−1)|T\L| · m(L) for T ∈ Λ, (20)

where m ∈ RΛ given by (11).

The next step is to note that (20) is equivalent to the relation

m(S) =
∑

T∈Λ :T⊆S

zo(T ) for any S ∈ Λ, (21)

which can be verified by substituting (20) into the RHS of (21). To verify (19)
substitute (11) into the expression for 〈o, ηG〉Υ , then use the definitions of ηG
and that of the standard imset uG (see Section 2):

〈o, ηG〉Υ
(11)
=

∑
(a |B)∈Υ

{m({a} ∪B)−m(B) } · ηG(a |B)

=
∑
∅6=S⊆N

m(S) ·

 ∑
(a |B)

ηG(a |B) · δS({a} ∪B)−
∑

(a |B)

ηG(a |B) · δS(B)


=

∑
∅6=S⊆N

m(S) ·

{∑
a∈N

δS({a} ∪ paG(a))−
∑
a∈N

δS(paG(a))

}
=

∑
∅6=S⊆N

m(S) ·
∑
a∈N

{ δ{a}∪paG(a)(S)− δpaG(a)(S) }

(2)
=

∑
∅6=S⊆N

m(S) · {δN (S)− uG(S)} .
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Further, we substitute the relation (21) into the above expression and get this:

〈o, ηG〉Υ =
∑
∅6=S⊆N

m(S) · {δN (S)− uG(S)} =
∑
S∈Λ

m(S) · {δN (S)− uG(S)}

(21)
=
∑
S∈Λ

∑
T∈Λ :T⊆S

zo(T ) · {δN (S)− uG(S)}

=
∑
T∈Λ

zo(T ) ·
∑

S:T⊆S⊆N

{δN (S)− uG(S)}

=
∑
T∈Λ

zo(T ) · {1−
∑

S:T⊆S⊆N

uG(S)} (3)
=
∑
T∈Λ

zo(T ) · cG(T ) = 〈zo, cG〉Λ .

Since the codes ηG for G ∈ DAGS (N) linearly span RΥ the relation (19) implies
(17). The uniqueness of the vector zo in the formula (17) is easy because the
codes cG for G ∈ DAGS (N) span RΛ.

Every face of the characteristic-imset polytope C can be identified with a
set of directed acyclic graphs closed under Markov equivalence:

F̄ ⊆ C a face of C ←→ S = {G ∈ DAGS (N) : cG ∈ F̄} .

Indeed, the arguments given above Definition 2 are also valid for P = C and,
since the vertices of C are just the characteristic imsets, its faces can be viewed
as sets of characteristic imsets. These, however, correspond to equivalence
classes of graphs over N . Thus, every face of C can be identified with a set
of such graphs, namely with the union of the respective equivalence classes.
These are just the graphs whose characteristic imsets belong to the face. It is
easy to see that the correspondence preserves inclusion: F̄1 ⊆ F̄2 for faces of
C iff S1 ⊆ S2 for the corresponding sets of graphs Si ⊆ DAGS (N).

Corollary 5 There is a one-to-one correspondence between SE faces of F
and faces of C which preserves inclusion: given SE faces F1, F2 of F and the
corresponding faces F̄1, F̄2 of C one has F1 ⊆ F2 if and only if F̄1 ⊆ F̄2.
Specifically, the SE face of F given by an inequality 〈o, η〉Υ ≤ u corresponds
to the face of C given the inequality 〈zo, c〉Λ ≤ u. This correspondence has the
property that the sets of graphs identified with the faces coincide.

Proof It is easy to see that 〈o, η〉Υ ≤ u is valid for η ∈ F iff 〈zo, c〉Λ ≤ u is
valid for c ∈ C. Moreover, by Lemma 10, the set of G ∈ DAGS (N) such that
〈o, η〉Υ ≤ u is tight for ηG coincides with the set of G ∈ DAGS (N) such that
〈zo, c〉Λ ≤ u is tight for cG. Thus, an SE face of F and the corresponding face
of C have the same sets of “belonging” graphs. This observation easily implies
the claim about preserving the inclusion of faces.

There are two distinguished vertices of the characteristic imset polytope C.
One of them is the 0-imset, the zero vector in RΛ, which is the characteristic
imset of the empty graph over N . The other one is the 1-imset, a vector in RΛ
whose all components are ones, which is the characteristic imset of any of the
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complete graphs over N . It plays a crucial role in the description of faces of C
corresponding to SE facets of F.

Corollary 6 SE facets of the family-variable polytope F correspond to those
facets of the characteristic-imset polytope C that contain the 1-imset. None of
those facets of C include the 0-imset.

Proof Let F̄ be a face of C corresponding to an SE facet F of F. We show, using
Lemma 1, that F̄ is a facet of C. For a face F̄ ′ of C with F̄ ⊂ F̄ ′ the respective
SE face F ′ of F satisfies, by Corollary 5, F ⊂ F ′. Thus, necessarily F ′ = F,
which implies F̄ ′ = C. By Theorem 1, F contains the whole equivalence class
of complete graphs and, by Corollary 5, F̄ must contain the 1-imset.

Conversely, let F be an SE face of F which corresponds to a facet F̄ of C
containing the 1-imset. Using Lemma 1 observe that F is a facet of F. Indeed,
since F contains the whole equivalence class of complete graphs, the same is
the case for any face F ′ of F with F ⊂ F ′. By Lemma 6, F ′ is SE; hence, it
has the corresponding face F̄ ′ of C. By Corollary 5 one has F̄ ⊂ F̄ ′; therefore,
F̄ ′ = C, which implies F ′ = F.

The last claim follows easily by contradiction: otherwise the corresponding
SE facet contains the empty graph and, by Lemma 2(iii), it is determined by
(6). But none of these facets of F is SE.

By combining Corollary 6 and Theorem 2 one observes that the facets of
C containing the 1-imset correspond to extreme (standardized) supermodular
functions. On the other hand, it follows from Corollaries 5 and 6 that the SE
faces of F corresponding to facets of C not containing the 1-imset are sub-
maximal SE faces with respect to inclusion, but not SE facets. That means,
these are SE faces F of F such that there is no other SE face F ′ of F such that
F ⊂ F ′ except F ′ = F but F is not a facet of F since dim(F ) < dim(F) − 1.
Example 3 in Section 10 shows what such sub-maximal SE faces look like.

To illustrate Corollary 5 we transform the generalized cluster inequalities
(14) from Section 8 into the characteristic-imset frame. Specifically, having
fixed a cluster C ⊆ N , |C| ≥ 2, and k ∈ {1, . . . , |C| − 1}, the coefficients z(S)
for S ∈ Λ in the transformed corresponding k-cluster inequality vanish outside
subsets of C and only depend on the cardinality of the set S:

z(S) =

{
(−1)|S|−k−1 ·

( |S|−2
|S|−k−1

)
if S ⊆ C and |S| ≥ k + 1,

0 otherwise.
for S ∈ Λ. (22)

The proof is based on an auxiliary combinatorial identity (28) from Section A.

Lemma 11 In the context of the characteristic-imset polytope, the k-cluster
inequality (14) for C ⊆ N , |C| ≥ 2, and k ∈ {1, . . . , |C| − 1}, takes the form∑

S∈Λ
z(S) · c(S) ≤ |C| − k , where z(S) are given by (22). (23)
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Proof By suitable substitutions we re-write (23) into the desired form (14):∑
S∈Λ

z(S) · cη(S)
(22),(1)

=
∑

S⊆C : |S|≥k+1

z(S) ·
∑
a∈S

∑
B :S\{a}⊆B⊆N\{a}

η(a |B)

=
∑
a∈C

∑
B⊆N\{a} : |B∩C|≥k

η(a |B) ·
∑

S : |S|≥k+1, a∈S, S\{a}⊆B∩C

z(S)

︸ ︷︷ ︸
1

.

It remains to show that, for fixed a ∈ C and B ⊆ N \ {a} with |B ∩ C| ≥ k,
the indicated expression is indeed 1. We put ` := |B∩C|, s := `−k and write:∑
S : |S|≥k+1, a∈S, S\{a}⊆B∩C

z(S) =
∑

R⊆B∩C : |R|≥k

z({a} ∪R)

(22)
=

∑
R⊆B∩C, |R|≥k

(−1)|R|−k ·
(
|R|+ 1− 2

|R| − k

)
=
∑̀
r=k

(
`

r

)
· (−1)r−k ·

(
r − 1

r − k

)

=

`−k∑
m=0

(
`

k +m

)
· (−1)m ·

(
m+ k − 1

m

)

=

s∑
m=0

(−1)m ·
(
k + s

k +m

)
·
(
m+ k − 1

m

)
(28)
= 1 ,

which concludes the proof.

Thus, it follows from Lemma 11 using Corollaries 4 and 6 that (23) defines
a facet of C containing the 1-imset.

10 Simple illustrating examples

To illustrate the achieved results we analyze completely the situation in the
case of three BN variables and comment on the case of four BN variables.

We have observed that the following inequalities are facet-defining for the
family-variable polytope F in case |N | = n ≥ 3:

– the non-negativity constraints (6) (see Lemma 2(iii)),
– the modified convexity constraints (7) (see Lemma 3), and
– the generalized cluster inequalities (14) (see Corollary 4).

This is a complete list of facets of F in the case of three BN variables. The fol-
lowing example illustrates the observations from Section 8; we use a shorthand
η(a | bc) for η(a | {b, c}) below.

Example 1 If N = {a, b, c} one has |Υ | = 9. The 9-dimensional polytope F
has 25 vertices and 17 facets. Five of its facets are SE and are defined by the
generalized cluster inequalities. They decompose into 3 permutation types:
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• η(a | b) + η(a | bc) + η(b | a) + η(b | ac) ≤ 1 (3 inequalities of this type),

the (generalized) cluster inequality for C = {a, b} (and k = 1),
the extreme supermodular function is m{a,b},1 = δ{a,b,c} + δ{a,b},

• η(a | bc) + η(b | ac) + η(c | ab) ≤ 1 (1 inequality of this type),

the generalized cluster inequality for C = {a, b, c} and k = 2,
it corresponds to the extreme supermodular function m{a,b,c},2 = δ{a,b,c},

• η(a | b) + η(a | c) + η(a | bc) + η(b | a) + η(b | c) + η(b | ac)
+ η(c | a) + η(c | b) + η(c | ab) ≤ 2 (1 inequality of this type),

the (generalized) cluster inequality for C = {a, b, c} (and k = 1),
the supermodular function is m{a,b,c},1 = 2 ·δ{a,b,c}+δ{a,b}+δ{a,c}+δ{b,c}.

If one adds nine non-negativity constraints

• −η(a | b) ≤ 0 (6 inequalities of this type),

• −η(a | bc) ≤ 0 (3 inequalities of this type),

to those five generalized cluster inequalities then one obtains a polytope with
28 vertices. Besides the 25 vertices of F it has 3 additional integral vertices of
the type Ia←{b} + Ia←{c}. By adding the modified convexity constraints

• η(a | b) + η(a | c) + η(a | bc) ≤ 1 (3 inequalities of this type),

one completes the list of facet-defining inequalities for F.

In the case of four BN variables there are facet-defining inequalities for F
other than those given by (6), (7) and (14). In fact,

– there are SE facets other than those given by clusters in (14),
– there are facets besides the SE facets and those given by the non-negativity

constraints (6) and modified convexity constraints (7).

Example 2 IfN = {a, b, c, d} one has |Υ | = 28 and the 28-dimensional polytope
F has 543 vertices and 135 facets. There exist 37 SE facets of F which decom-
pose into 10 permutation types. In Section B we give the list of those types. Six
of those types are the generalized cluster inequalities (14), but the remaining
four of them are not.

The substantial difference from the case of three BN variables is that the
polyhedron F∗ specified by 37 SE facet-defining inequalities, 28 non-negativity
constraints and 4 modified convexity constraints differs from F. We computed
the vertices of F∗ and found that, besides all the 543 DAG-codes, it has 786
additional fractional vertices in comparison with F, which decompose into 37
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permutation types. Here we give three examples of them:

η1 =
1

2
· Ia←{b} +

1

2
· Ia←{d} +

1

2
· Ib←{a,c} +

1

2
· Ic←{a}

+
1

2
· Ic←{b,d} +

1

2
· Id←{a,b,c},

η2 =
1

3
· Ia←{c} +

1

3
· Ia←{d} +

1

3
· Ia←{b,c,d} +

1

3
· Ib←{a} +

1

3
· Ib←{a,c,d}

+
1

3
· Ic←{b} +

1

3
· Ic←{d} +

1

3
· Ic←{a,b} +

1

3
· Id←{a,b,c},

η3 =
1

6
· Ia←{b} +

1

3
· Ia←{d} +

1

3
· Ib←{c} +

1

3
· Ib←{a,c,d}

+
1

3
· Ic←{a} +

1

3
· Ic←{d} +

1

3
· Ic←{a,b,d} +

1

3
· Id←{b,c}.

Therefore, the family-variable polytope F necessarily has, besides the above
mentioned facets, additional non-SE facets. There are 66 such facet-defining
inequalities which decompose into five permutation types; see [10] for details.

The next example is devoted to the characteristic-imset polytope C and
illustrates the observations from Section 9. In the case |N | = 3, every facet of
C either contains the 1-imset or contains the 0-imset.

Example 3 If N = {a, b, c} one has |Λ| = 4. The 4-dimensional polytope C has
11 vertices and 13 facets; they were already discussed in [22, Examples 5,8].
There are five facet-defining inequalities tight for the 1-imset; they correspond
to SE facets of F mentioned in Example 1. Here is their overview in both
modes; they decompose into 3 permutation types:

• c(ab) ≤ 1 (3 inequalities of this type),

in family variables η(a | b) + η(a | bc) + η(b | a) + η(b | ac) ≤ 1,

• c(abc) ≤ 1 (1 inequality of this type),

in family variables η(a | bc) + η(b | ac) + η(c | ab) ≤ 1,

• c(ab) + c(ac) + c(bc)− c(abc) ≤ 2 (1 inequality of this type)

in family variables
η(a | b) + η(a | c) + η(a | bc) + η(b | a) + η(b | c) + η(b | ac)

+ η(c | a) + η(c | b) + η(c | ab) ≤ 2.

The remaining eight facet-defining inequalities of C are tight for the 0-imset
and decompose into 4 permutation types:

• −c(ab) ≤ 0 (3 inequalities of this type),

in family variables −η(a | b)− η(a | bc)− η(b | a)− η(b | ac) ≤ 0,

• −c(abc) ≤ 0 (1 inequality of this type),

in family variables −η(a | bc)− η(b | ac)− η(c | ab) ≤ 0,

• −c(ab)− c(ac) + c(abc) ≤ 0 (3 inequalities of this type),

in family variables −η(a | b)− η(a | c)− η(a | bc)− η(b | a)− η(c | a) ≤ 0,
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• −c(ab)− c(ac)− c(bc) + 2 · c(abc) ≤ 0 (1 inequality of this type),

in family variables −η(a | b)−η(a | c)−η(b | a)−η(b | c)−η(c | a)−η(c | b) ≤ 0.

These eight inequalities define in family variables sub-maximal SE faces of F
that are not facets: they are implied by the non-negativity constraints. The
η-polyhedron F′ given by all 13 above-mentioned SE inequalities is unbounded,
it has a linear subspace of the dimension 5. This polyhedron is, in fact, the
pre-image of the polytope C by the characteristic transformation (1).

As concerns the case of four BN variables, unlike the case of three BN
variables, there are facets of the characteristic-imset polytope C which neither
contain the 0-imset nor the 1-imset.

Example 4 In case N = {a, b, c, d} one has |Λ| = 11 and the 11-dimensional
polytope C has 185 vertices and 154 facets. Thus, it has 358 fewer vertices than
the family-variable polytope F, but 19 more facets than F. Besides those 37
facets that correspond to SE facets of F and contain the 1-imset (Corollary 6),
there exist 117 facets of C that do not contain the 1-imset. They decompose
into 20 permutation types, which are listed in Section C.

With the exception of one permutation type all these inequalities are tight
for the 0-imset. The exception is

−c(bc)− c(bd)− c(cd)

+c(abc) + c(abd) + c(acd) + 2 · c(bcd)− 2 · c(abcd) ≤ 1, (24)

in family variables + η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd)

−η(b | c)− η(b | d)− η(c | b)− η(c | d)− η(d | b)− η(d | c) ≤ 1,

consisting of 4 inequalities. The η-version of the inequality (24), therefore,
defines an inclusion sub-maximal SE face of F which is not a facet. Clearly,
(24) follows from the modified convexity constraint

η(a | b) + η(a | c) + η(a | d) + η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd) ≤ 1

and the non-negativity constraints −η(a | b) ≤ 0, . . . , −η(d | c) ≤ 0.

11 The sufficiency of SE faces

As explained in Section 5, the statistical task of learning BN structure can be
viewed as an LP problem to maximize an SE objective over the family-variable
polytope F. When solving such problems by means of the tools of (integer) lin-
ear programming an important question is what are the inequalities specifying
the feasible set. The computational complexity depends on how many inequal-
ities we actually/potentially use, how complex they are, how closely we are
able to approximate the true feasible set, which is the family-variable polytope
F in our case.

In general, facet-defining inequalities for a polytope P are suitable when one
maximizes a linear objective over P [26]. Since our goal is to maximize quite
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special linear objectives over F a natural question is whether we really need all
facet-defining inequalities for F. Indeed, the correspondence between SE faces
of F and faces of the characteristic-imset polytope C explained in Section 9
allows one to transform the LP problem to maximize an SE objective over F
into the task to maximize a general linear function over C. This indicates that
those facets of F that are not SE are perhaps superfluous. Note that we know
from Example 2 that there are many non-SE facets of F besides those given
by the non-negativity (6) and modified convexity (7) constraints.

On the other hand, transforming our LP problems completely into the
frame of characteristic imsets does not appear to be advantageous from the
point of view of computational complexity as observed in the conclusions of
[23]. The main theoretical reason is that simple non-negativity and modified
convexity constraints are represented in the characteristic-imset frame by a
much higher number of more complex specific inequalities [22].

This motivates the idea of combining both polyhedral approaches to ben-
efit from their different strengths. The constraints that are tight at the empty
graph are clearly better represented in the family-variable frame while the
constraints that are tight at (all) the complete graphs are more naturally ex-
pressed in the characteristic-imset frame. Why not stay in the family-variable
frame, utilize (6) and (7) there and combine them with SE constraints, which
encode the constraints on the characteristic-imset polytope?

In this section we show that this is indeed possible. However, the original
conjecture we started with, namely that one can limit oneself to the inequalities
defining SE facets and the non-negativity and modified convexity constraints
is false; a counter-example in given in Section 12.

The basic observation is that one can limit to SE faces.

Lemma 12 Let o be an SE objective. Then the LP problem to maximize
η 7→ 〈o, η〉Υ over η ∈ RΥ from the polyhedron F′ specified by the inequalities
defining SE faces of F has the same optimal value as the LP problem to
maximize that function over the family-variable polytope F.

Proof A basic observation is that the image of F by the transformation (1)
is C, which can be viewed as the polyhedron specified through its faces. The
pre-image of C with (1) is, therefore, the polyhedron F′ of η-vectors specified
by the respective inequalities in the η-mode, which are, by Corollary 5, just
those defining SE faces of F. Since both F and F′ have C as its image by (1), it
follows from Lemma 10 that the maximization of η 7→ 〈o, η〉Υ = 〈zo, cη〉Λ over
any of them has the same optimal value as the maximization of c 7→ 〈zo, c〉Λ
over c in the polytope C.

However, most of the inequalities defining SE faces of F are superfluous.
That redundant list can be reduced as follows.

Theorem 3 Let o be an SE objective. Then the LP problem to

maximize η 7→ 〈o, η〉Υ over η ∈ F
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has the same optimal value as the LP problem to maximize the same function
over the polyhedron specified by

– the inequalities defining SE faces that correspond to those facets of C that
do not contain the 0-imset,

– the non-negativity and modified convexity constraints (6) and (7).

Proof We extend the arguments given in the proof of Lemma 12. The polytope
C can be viewed as the polyhedron specified by its facet-defining inequalities.
In particular, the pre-image F′ of C by (1) can equivalently be defined as
the polyhedron specified by the facet-defining inequalities for C which are
re-written into the η-mode.

Of course, the conclusion of Lemma 12 on the same optimal value holds
for any polyhedron F′′ such that F ⊆ F′′ ⊆ F′. Thus, in place of F′′ one can
take the polyhedron specified by the corresponding facet-defining inequalities
for C, the non-negativity and modified convexity constraints.

The last observation is that the facet-defining inequalities for C that are
tight for the 0-imset are implied by the non-negativity constraints. Indeed, the
η-versions of such inequalities are tight at the empty graph and the observa-
tion follows from Lemma 2(i)-(ii). Therefore, they can be dropped from the
specification of F′′.

Thus, our aim, when maximizing an SE objective, to eliminate non-SE
facets of F except for (6) and (7) seems to be achieved. The price for it is that
one has to include inequalities that are not facet-defining for F, namely some
of the facet-defining inequalities for C written in the η-mode.

Remark 3 It follows from the proof of Theorem 3 that the modified convexity
constraints (7) are superfluous there. However, Theorem 3 can be strengthened
using a stronger result from [22] which says that one can exclude the so-called
specific inequalities from the list of the inequalities given by SE objectives.
These specific inequalities are shown in [22, § 4.1] to be exact translations of
the constraints (6) and (7) into the frame of the characteristic imsets. The
list of specific inequalities in case |N | = 4 is given in Section C; only one of
them, namely (24), needs (7) for its derivation. Thus, in that strengthening of
Theorem 3, the modified convexity inequality (7) must be included.

It turns out that, in the case of |N | = 4 the original conjecture, namely
that SE facets plus (6) and (7) are sufficient, is true.

Corollary 7 If |N | = 4 then the LP problem to maximize η 7→ 〈o, η〉Υ over
η ∈ F with an SE objective o ∈ RΥ has the same optimal value as the LP
problem to maximize the same objective over the polyhedron specified by (6)
and (7) and the inequalities defining SE facets.

Proof Use Theorem 3; as shown in Example 4, the only facets of C not implied
solely by (6) are those in (24), implied by the combination of (6) and (7).
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12 A counter-example to the original conjecture

Recall from Section 11 that our original conjecture about the sufficiency of SE
facets was as follows:

for any SE objective o, the maximum of o over the family-variable
polytope F coincides with the maximum of o over a (larger) polyhedron
in RΥ specified by
– non-negativity constraints (6),
– modified convexity constraints (7), and
– inequalities defining SE facets of F.

Now we show that the above hypothesis is not true. Our counter-example is
based on an example by Orlinskaya [16], who disproved Conjecture 1 from
[21] about the facet description of the standard-imset polytope P, a polytope
which is affinely equivalent to the characteristic-imset polytope C.

Specifically, in our context, we can re-phrase the finding from Orlinskaya’s
thesis [16, p. 43] as follows: she found a new facet-defining inequality for the
characteristic-imset polytope C in the case N = {a, b, c, d, e}, which is nei-
ther tight for the 1-imset nor one of the earlier-mentioned specific inequalities,
whose η-versions are derivable from (6) and (7). The inequality has this form:

− c(ab) + 2 · c(ac) + 3 · c(ae) + c(bc)− c(bd) + 2 · c(cd)

+ 5 · c(ce) + 3 · c(de) + 2 · c(abc) + 4 · c(abd) + 3 · c(abe) (25)

+ c(acd)− 2 · c(ace) + 2 · c(bcd)− c(bce)− 3 · c(cde)− 5 · c(abcd)

− 2 · c(abce)− 3 · c(abde)− c(acde) + c(bcde) + 5 · c(abcde) ≤ 16 .

The substitution of (1) gives the family-variable version of the inequality:

− η(a | b) + 2 · η(a | c) + 3 · η(a | e) + 3 · η(a | bc) + 3 · η(a | bd)

+ 5 · η(a | be) + 3 · η(a | cd) + 3 · η(a | ce) + 3 · η(a | de) + 3 · η(a | bcd)

+ 5 · η(a | bce) + 6 · η(a | bde) + 3 · η(a | cde) + 6 · η(a | bcde)
− η(b | a) + η(b | c)− η(b | d) + 2 · η(b | ac) + 2 · η(b | ad)

+ 2 · η(b | ae) + 2 · η(b | cd)− η(b | de) + 2 · η(b | acd) + 2 · η(b | ace)
+ 2 · η(b | ade) + 2 · η(b | cde) + 5 · η(b | acde) + 2 · η(c | a)

+ η(c | b) + 2 · η(c | d) + 5 · η(c | e) + 5 · η(c | ab) + 5 · η(c | ad) (26)

+5 · η(c | ae) + 5 · η(c | bd) + 5 · η(c | be) + 4 · η(c | de) + 5 · η(c | abd)

+ 5 · η(c | abe) + 4 · η(c | ade) + 7 · η(c | bde) + 7 · η(c | abde)− η(d | b)
+ 2 · η(d | c) + 3 · η(d | e) + 3 · η(d | ab) + 3 · η(d | ac) + 3 · η(d | ae)

+ 3 · η(d | bc) + 2 · η(d | be) + 2 · η(d | ce) + 3 · η(d | abc) + 3 · η(d | abe)
+ 2 · η(d | ace) + 4 · η(d | bce) + 5 · η(d | abce) + 3 · η(e | a)

+ 5 · η(e | c) + 3 · η(e | d) + 6 · η(e | ab) + 6 · η(e | ac) + 6 · η(e | ad)

+ 4 · η(e | bc) + 3 · η(e | bd) + 5 · η(e | cd) + 6 · η(e | abc)
+ 6 · η(e | abd) + 5 · η(e | acd) + 5 · η(e | bcd) + 8 · η(e | abcd) ≤ 16 .



Polyhedral aspects of score equivalence 31

Consider the corresponding SE objective o∗ ∈ RΥ , that is, for any (a |B) ∈ Υ ,
o∗(a |B) is the coefficient with η(a |B) in (26). It follows immediately from
Lemma 2(iv) that (26) is not facet-defining for F because some coefficients are
negative. In fact, the respective SE face of F given by 〈o∗, η〉Υ = 16, denoted
below by F∗, has the dimension 53, which is far from 74, the dimension of facets
of F. We checked this fact by means of a computer: we found all 153 codes of
directed acyclic graphs on F∗; at most 54 of them are affinely independent.

On the other hand, the inequality (25) is facet-defining for C. We have
computed 59 characteristic imsets on this face of C, denoted below by F̄∗, and
found 26 of them affinely independent. This implies the dimension of F̄∗ is 25,
which is the dimension of facets of C.

To get the desired counter-example we consider a convex combination η†
of all 153 codes of directed acyclic graphs on F∗ with the coefficients 1

153 :

η† :=
4

153
· Ia←{c} +

4

153
· Ia←{d} +

14

153
· Ia←{e} +

1

153
· Ia←{b,c}

+
10

153
· Ia←{b,d} +

3

153
· Ia←{b,e} +

8

153
· Ia←{c,d} +

7

153
· Ia←{c,e}

+
7

153
· Ia←{d,e} +

1

153
· Ia←{b,c,d} +

3

153
· Ia←{b,c,e} +

24

153
· Ia←{b,d,e}

+
3

153
· Ia←{c,d,e} +

18

153
· Ia←{b,c,d,e} +

8

153
· Ib←{c} +

6

153
· Ib←{e}

+
6

153
· Ib←{c,d} +

6

153
· Ib←{c,d,e} +

66

153
· Ib←{a,c,d,e} +

4

153
· Ic←{a}

+
4

153
· Ic←{b} +

2

153
· Ic←{d} +

33

153
· Ic←{e} +

8

153
· Ic←{a,b}

+
15

153
· Ic←{a,d} +

13

153
· Ic←{a,e} +

11

153
· Ic←{b,d} +

1

153
· Ic←{b,e}

+
2

153
· Ic←{a,b,d} +

1

153
· Ic←{a,b,e} +

21

153
· Ic←{b,d,e}

+
15

153
· Ic←{a,b,d,e} +

4

153
· Id←{a} +

2

153
· Id←{c} +

38

153
· Id←{e}

+
10

153
· Id←{a,b} +

12

153
· Id←{a,c} +

13

153
· Id←{a,e} +

1

153
· Id←{b,c}

+
1

153
· Id←{a,b,c} +

2

153
· Id←{a,b,e} +

6

153
· Id←{b,c,e}

+
13

153
· Id←{a,b,c,e} +

8

153
· Ie←{a} +

3

153
· Ie←{b} +

23

153
· Ie←{c}

+
19

153
· Ie←{d} +

15

153
· Ie←{a,b} +

12

153
· Ie←{a,c} +

17

153
· Ie←{a,d}

+
3

153
· Ie←{b,d} +

2

153
· Ie←{c,d} +

1

153
· Ie←{a,b,c} +

4

153
· Ie←{a,b,d}

+
2

153
· Ie←{b,c,d} +

14

153
· Ie←{a,b,c,d} .

It is tedious but straightforward to verify 〈o∗, η†〉 = 16. One can also easily
check that none of five modified convexity constraints is tight for η†. We also
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verified that the vector c† ∈ RΛ ascribed to η† by (1) is in the relative interior
of F̄∗ ⊆ C. For this purpose, we have first used 59 vertices of F̄∗ to compute
its 55 facets. Then we verified computationally that c† does not belong to any
of the 55 facets of F̄∗.

The above observation implies that none of the SE-facets of F contains η†.
Indeed, assume for a contradiction that η† belongs to some SE-facet F of F.
Then, by Lemma 10 and Corollary 5, c† belongs to the corresponding face F̄
of C, which is, by Corollary 6, a facet of C. The facet F̄ does not fully contain
F̄∗ since otherwise, by Lemma 1 applied to C and F̄∗, one has F̄ = F̄∗ and,
by Corollary 5, F = F∗, contradicting the above mentioned fact that (26) is
not facet-defining for F. Therefore, c† ∈ F̄∗ ∩ F̄ ⊂ F̄∗, which is a contradiction
with c† belonging to the relative interior of F̄∗.

These observations are enough to derive the existence of a counter-example,
which is the vector η? := (1 + ε) · η†, where ε > 0 is small enough. Indeed, η?
satisfies all non-negativity constraints and all other inequalities, namely five
modified convexity constraints and SE-facets of F are valid for η† but not tight
for it: 〈o, η†〉 < u for the respective o ∈ RΥ and u > 0. Since the number of
these inequalities is finite, a small ε-perturbation retains 〈o, η?〉 < u for any of
them. On the other hand, the value of the considered SE objective o∗ ∈ RΥ
for η? is

〈o∗, η?〉 = (1 + ε) · 〈o∗, η†〉 = (1 + ε) · 16 > 16 .

Thus, the maximum of the linear SE objective η 7→ 〈o∗, η〉, η ∈ RΥ on F
is 16, while its value in η?, which satisfies (6), (7) and all SE facet-defining
inequalities for F, exceeds 16. This gives the desired counter-example.

13 Computational point of view

As explained earlier in this paper, the task of learning BN network structure
can be re-formulated in the form of an LP problem to maximize a linear/affine
objective over a polytope, either over the family-variable polytope F or over
the characteristic-imset polytope C. Nevertheless, solving this optimization
task directly as an LP problem is unrealistic for at least two reasons:

– the dimension of both polytopes grows exponentially with the number of
nodes n = |N |,

– the number of inequalities specifying the polytopes seem to grow even more,
as suggested by Theorem 2 and Corollary 6.

In practical computational optimization, the first obstacle is overcome by
means of a special dimension reduction procedure, we name pruning, while
the second obstacle is overcome by the application of advanced methods of
integer linear programming.

We are not going to explain all details of the pruning procedure in this
theoretical paper; we only mention the main idea, elaborated in more detail
in [11]. The point is that typical databases occurring in practice are limited
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in the number of items and an advantageous form of common scoring cri-
teria allows one to conclude that the optimal graph does not have nodes
with really large parent sets. This is based on a simple observation that in
case o(a |B) < o(a |C) for C ⊂ B ⊆ N \ {a} one has ηG(a |B) = 0 in any
G ∈ DAGS (N) maximizing G 7→ 〈o, ηG〉. Hence, one can exclude from con-
sideration many components of η because they have to vanish in the family-
variable vector ηG for an optimal graph G. An analogous conclusion can be
reached in the case of characteristic imsets [23]. The pruning procedure is
time consuming, but useful: as reported in [11, § 6], in practical cases it usu-
ally results in the reduction of the parent set cardinality to at most 5. Thus,
in practical situations the actual length of BN vector representatives is “poly-
nomial” in the number of nodes n = |N |.

As concerns the second obstacle, both considered polytopes are integral,
that is, all their vertices have integers as components. Thus, one can further re-
formulate the optimization task as an integer linear programming problem to
maximize a linear objective over integral vertices within a relaxed polyhedron
P′ for the original polytope P. For example, the basic non-negativity and
modified convexity constraints (6), (7) together with the cluster inequalities
mentioned in Section 8 define a relaxation F′ for the family-variable polytope
F, which has the property that the vectors in F′ having integers as components
coincide with the vertices of F. The problem with the exponential number of
cluster inequalities can be solved by an iterative constraint adding method [13].
Advanced combinatorial optimization methods can be applied in this area, like
the cutting plane approach [8] or its combination with the branch-and-bound
approach, known as the branch-and-cut method [1]. Good running time were
achieved by GOBNILP [9] even in cases where n = |N | approaches 100, which
testifies to the feasibility of the ILP approach to BN structure learning.

Computational experiments have also confirmed empirically the impor-
tance of facet-defining inequalities as predicted theoretically in [26, § 9.1-9.2]:
one can substantially speed up the ILP solving procedure by including them
as potential cutting planes. Thus, although Theorem 2 only gives an implicit
description of SE facets of F, it provides the way of verifying whether a prospec-
tive inequality defines an SE facet and offers a potential method to generate
useful cutting planes. The observation from Theorem 3 about the redundancy
of non-SE facets of F when maximizing an SE objective has also been con-
firmed empirically. To summarize: the theoretical results in our paper can help
one to design computationally efficient ways of doing the BN structure learn-
ing, although one cannot directly “read off” the best practical way of solving
this optimization problem from them.

14 Conclusions

Let us summarize the main achievements of the paper. We dealt with two
distinguished polytopes used in the ILP approach to BN structure learning,
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namely the family-variable polytope and the characteristic-imset polytope. Be-
ing motivated by a common form of linear objective to be maximized in BN
structure learning we introduced the concept of a score equivalent (SE) face
of the family-variable polytope. We further characterized the linear space of
the corresponding SE objectives (Lemma 5). A correspondence has been es-
tablished between SE faces of the family-variable polytope F and the faces
of the characteristic-imset polytope C, which preserves the inclusion of faces
(Corollary 5).

We observed that SE facets of F correspond to those facets of C which
contain a distinguished vector, called the 1-imset (Corollary 6) and succeeded
in characterizing SE facets in terms of the respective collection of graph codes
(Theorem 1). The SE facets of F were also shown to correspond to extreme
supermodular functions, which gives an elegant method to verify that an in-
equality is SE-facet-defining for F (Theorem 2). To illustrate the method we
showed that the well-known (generalized) cluster inequalities are facet-defining
for F (Corollary 4) and derived their form in the context of the characteristic-
imset polytope (Lemma 11). The correspondence with extreme supermodular
set functions may appear to be useful because of a recent extremality criterion
for supermodular functions from [25].

Since a typical linear objective appearing in the ILP approach to learning
BN structure is special, namely SE, we raised the question of whether all
facets of F are needed to specify the feasible sets for (integer) linear programs
when such an objective is maximized. We succeeded in showing that one can
eliminate those facets of F that are not SE, that is, defined by a non-SE
normal vectors (Lemma 12, Theorem 3). Nevertheless, our starting original
conjecture that one can, besides simple non-negativity and modified convexity
constraints, limit oneself only to SE facets of F turned out not to be true (a
counter-example is given in Section 12). The moral is that one has to consider
the inequalities defining facets of the characteristic-imset polytope C although
they may not define facets in the context of the family-variable polytope F.

This leads to a suggestion to use a combined coding of BN structures
in the ILP approach. One can encode a BN structure by a concatenation of
the family-variable vector and the characteristic imset and utilize the linear
relation (1). Linear constraints tight at the empty graph are better represented
by simple non-negativity and modified convexity inequalities in the family-
variable part, while the other SE linear inequality constraints can be more
naturally represented in the characteristic-imset part.

We left some of questions open. One of them is whether a simple condition
of being closed under Markov equivalence characterizes the sets of graph-codes
belonging to SE faces of F (Conjecture 1). However, it looks like the answer
to this question is not essential for the practical application of ILP methods
in BN structure learning.
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of the combinatorial identity from Lemma 13. We also express our gratitude to the reviewer
for valuable comments.

References

1. Bartlett, M., Cussens, J.: Advances in Bayesian network learning using integer
programming. In: Uncertainty in Artificial Intelligence 29, pp. 182-191, AUAI Press, Cor-
vallis (2013).

2. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics 54. American
Mathematical Society, Providence (2002).

3. Bouckaert, R.R.: Bayesian belief networks – from construction to evidence. PhD thesis,
University of Utrecht, 1995.

4. Brøndsted, A.: An Introduction to Convex Polytopes. Springer, New York (1983).
5. Chickering, D.M.: A transformational characterization of equivalent Bayesian network

structures. In: Uncertainty in Artificial Intelligence 11, pp. 87–98, Morgan Kaufmann,
San Francisco (1995).

6. Chickering, D.M.: Optimal structure identification with greedy search. Journal of Ma-
chine Learning Research 3, 505–554 (2002).

7. Cussens, J.: Maximum likelihood pedigree reconstruction using integer programming. In:
Proceedings of the Workshop on Constraint Based Methods for Bioinformatics (WCBMB),
pp. 9–19 (2010).

8. Cussens, J.: Bayesian network learning with cutting planes. In: Uncertainty in Artificial
Intelligence 27, pp. 153–160, AUAI Press, Corvallis (2011).

9. Cussens, J., Bartlett, M.: GOBNILP software; a web page (updated 2016)
www.cs.york.ac.uk/aig/sw/gobnilp/ .

10. Cussens, J., Järvisalo, M., Korhonen, J.H., Bartlett, M.: Bayesian network structure
learning with integer programming: polytopes, facets, and complexity. Submitted to Jour-
nal of Artificial Intelligence Research (2016); available at arxiv.org/abs/1605.04071 .

11. de Campos, C.P., Ji, Q.: Efficient structure learning Bayesian networks using
constraints. Journal of Machine Learning Research 12, 663–689 (2011).
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A Combinatorial identity

Lemma 13 For every non-negative integer s ≥ 0, k ≥ K ≥ 0 one has

s∑
m=0

(−1)
m ·
(
k + s

k +m

)
·
(
m+ k −K

m

)
=

(
s+K − 1

K − 1

)
, (27)

with conventions
(
n
0

)
=
(
n
n

)
= 1 for any n ∈ Z and

(
n
−1
)

=
(
n
n+1

)
= 0 for any

non-negative n ∈ Z. In particular,

∀ s ≥ 0, k ≥ 1 integers

s∑
m=0

(−1)
m ·
(
k + s

k +m

)
·
(
m+ k − 1

m

)
= 1 . (28)

Proof The proof relies on Pascal’s triangle identity(
n

r

)
=

(
n− 1

r

)
+

(
n− 1

r − 1

)
valid for integers n ≥ 1, n ≥ r ≥ 0.

Let us denote the sum in (27) by Σ(s, k,K); the basic idea of the proof is the
induction on s+K. First, we verify (27) in the case s = 0:

Σ(s = 0, k,K) = (−1)
0 ·
(
k + 0

k + 0

)
·
(
k −K

0

)
= 1 =

(
0 +K − 1

K − 1

)
.

Further special easy case is s ≥ 1 and K = 0, in which case

Σ(s ≥ 1, k,K = 0) =

s∑
m=0

(−1)
m ·
(
k + s

k +m

)
·
(
m+ k

m

)

=

s∑
m=0

(−1)
m · (k + s)!

(k +m)! · (s−m)!
· (k +m)!

m! · k!

=
(k + s)!

k! · s!
·

s∑
m=0

(−1)
m · s!

m! · (s−m)!
=

(
k + s

k

)
·

s∑
m=0

(−1)
m ·
(
s

m

)
=

(
k + s

k

)
· (−1 + 1)

s
= 0 =

(
s− 1

−1

)
.

Thus, (27) holds in cases s = 0 and K = 0; in particular, if s + K ≤ 1. In
case s,K ≥ 1 the induction premise means (27) holds for s′,K ′ ≥ 0 with
s′ +K ′ ≤ s+K − 1. To verify the induction step write by the identity(

k + s

k +m

)
=

(
k + s− 1

k +m

)
+

(
k + s− 1

k +m− 1

)
, use

(
k + s− 1

k + s

)
= 0 ,
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apply the induction premise and use Pascal’s triangle identity again:

Σ(s, k,K) =

s∑
m=0

(−1)
m ·
(
k + s

k +m

)
·
(
m+ k −K

m

)

=

s−1∑
m=0

(−1)
m ·
(
k + s− 1

k +m

)
·
(
m+ k −K

m

)

+

s∑
m=0

(−1)
m ·
(
k + s− 1

k +m− 1

)
·
(
m+ k −K

m

)
= Σ(s− 1, k,K) +Σ(s, k − 1,K − 1)

=

(
s+K − 2

K − 1

)
+

(
s+K − 2

K − 2

)
=

(
s+K − 1

K − 1

)
,

which gives the desired result. Putting K = 1 gives (28).

B Catalogue of SE facets in case of four BN variables

There exist 37 SE facets of F in the case N = {a, b, c, d} which decompose
into 10 permutations types. Below we list all the types of the inequalities,
both in the family-variable mode and in the characteristic-imset mode. The
generalized cluster inequalities are indicated by •, the remaining types by ◦.

• the (generalized) cluster inequality for C = {a, b} (and k = 1),

[ η(a | b)+η(a | bc)+η(a | bd)+η(a | bcd) ]+[ η(b | a)+η(b | ac)+η(b | ad)+η(b | acd) ] ≤ 1 ,

(6 inequalities of this type), in characteristic imsets

c(ab) ≤ 1 ,

• the generalized cluster inequality for C = {a, b, c} and k = 2,

[ η(a | bc) + η(a | bcd) ] + [ η(b | ac) + η(b | acd) ] + [ η(c | ab) + η(c | abd) ] ≤ 1 ,

(4 inequalities of this type), in characteristic imsets

c(abc) ≤ 1 ,

• the (generalized) cluster inequality for C = {a, b, c} (and k = 1),

[ η(a | b) + η(a | c) + η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd) ]

+[ η(b | a) + η(b | c) + η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd) ]

+[ η(c | a) + η(c | b) + η(c | ab) + η(c | ad) + η(c | bd) + η(c | abd) ] ≤ 2 ,

(4 inequalities of this type), in characteristic imsets

c(ab) + c(ac) + c(bc)− c(abc) ≤ 2 ,
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• the generalized cluster inequality for C = {a, b, c, d} and k = 3,

[ η(a | bcd) + η(b | acd) + η(c | abd) + η(d | abc) ] ≤ 1 ,

(1 inequality of this type), in characteristic imsets

c(abcd) ≤ 1 ,

• the generalized cluster inequality for C = {a, b, c, d} and k = 2,

[ η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd) ]

+[ η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd) ]

+[ η(c | ab) + η(c | ad) + η(c | bd) + η(c | abd) ]

+[ η(d | ab) + η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 2 ,

(1 inequality of this type), in characteristic imsets

c(abc) + c(abd) + c(acd) + c(bcd)− 2 · c(abcd) ≤ 2 ,

• the (generalized) cluster inequality for C = {a, b, c, d} (and k = 1),

[ η(a | b) + η(a | c) + η(a | d) + η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd) ]

+[ η(b | a) + η(b | c) + η(b | d) + η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd) ]

+[ η(c | a) + η(c | b) + η(c | d) + η(c | ab) + η(c | ad) + η(c | bd) + η(c | abd) ]

+[ η(d | a) + η(d | b) + η(d | c) + η(d | ab) + η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 3 ,

(1 inequality of this type), in characteristic imsets

c(ab) + c(ac) + c(ad) + c(bc) + c(bd) + c(cd)

−c(abc)− c(abd)− c(acd)− c(bcd) + c(abcd) ≤ 3 ,

◦ non-cluster SE inequality with 13 terms

[ η(a | bc) + η(a | bd) + η(a | cd) + 2 · η(a | bcd) ]

+[ η(b | ac) + η(b | ad) + η(b | acd) ]

+[ η(c | ab) + η(c | ad) + η(c | abd) ]

+[ η(d | ab) + η(d | ac) + η(d | abc) ] ≤ 2 ,

(4 inequalities of this type), in characteristic imsets

c(abc) + c(abd) + c(acd)− c(abcd) ≤ 2 ,

◦ non-cluster SE inequality with 16 terms

[ η(a | b) + η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd) ]

+[ η(b | a) + η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd) ]

+[ η(c | ad) + η(c | bd) + η(c | abd) ]

+[ η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 2 ,

(6 inequalities of this type), in characteristic imsets

c(ab) + c(acd) + c(bcd)− c(abcd) ≤ 2 ,
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◦ non-cluster SE inequality with 22 terms

[ η(a | b) + η(a | c) + η(a | d) + 2 · η(a | bc) + 2 · η(a | bd) + 2 · η(a | cd) + 2 · η(a | bcd) ]

+[ η(b | a) + η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd) ]

+[ η(c | a) + η(c | ab) + η(c | ad) + η(c | bd) + η(c | abd) ]

+[ η(d | a) + η(d | ab) + η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 3,

(4 inequalities of this type), in characteristic imsets

c(ab) + c(ac) + c(ad) + c(bcd)− c(abcd) ≤ 3 ,

◦ non-cluster SE inequality with 26 terms

[ η(a | b) + η(a | c) + η(a | d) + η(a | bc) + η(a | bd) + 2 · η(a | cd) + 2 · η(a | bcd) ]

+[ η(b | a) + η(b | c) + η(b | d) + η(b | ac) + η(b | ad) + 2 · η(b | cd) + 2 · η(b | acd) ]

+[ η(c | a) + η(c | b) + η(c | ab) + η(c | ad) + η(c | bd) + 2 · η(c | abd) ]

+[ η(d | a) + η(d | b) + η(d | ab) + η(d | ac) + η(d | bc) + 2 · η(d | abc) ] ≤ 4 ,

(6 inequalities of this type), in characteristic imsets

c(ab) + c(ac) + c(ad) + c(bc) + c(bd)− c(abc)− c(abd) + c(abcd) ≤ 4 .

C Specific inequalities in case of four BN variables

In the case |N | = 4, the characteristic-imset polytope C has, besides 37 facets
containing the 1-imset and listed in Section B, additionally 117 specific facets
that do not contain the 1-imset. They all are defined by means of the so-
called specific inequalities discussed in [22, § 4.1.2]. Each of these inequalities
corresponds to a clutter (= Sperner family = antichain) of non-empty subsets
of N , that is, to a class of inclusion-incomparable subsets of N . The 117 specific
facets decompose into 20 permutation types listed below. Except four facets
belonging to the last type, mentioned earlier in (24), all of them contain the
0-imset.

◦ −c(ab) ≤ 0 (6 inequalities of this type),

Sperner family is I = {ab},
◦ −c(abc) ≤ 0 (4 inequalities of this type),

Sperner family is I = {abc},
◦ −c(abcd) ≤ 0 (1 inequality of this type),

Sperner family is I = {abcd},
◦ −c(ab)− c(ac)− c(bc) + 2 · c(abc) ≤ 0 (4 inequalities of this type),

Sperner family is I = {ab, ac, bc},
◦ −c(ab)− c(acd)− c(bcd) + 2 · c(abcd) ≤ 0 (6 inequalities of this type),

Sperner family is I = {ab, acd, bcd},
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◦ −c(abc)− c(abd)− c(acd) + 2 · c(abcd) ≤ 0 (4 inequalities of this type),

Sperner family is I = {abc, abd, acd},
◦ −c(abc)− c(abd)− c(acd)− c(bcd) + 3 · c(abcd) ≤ 0 (1 inequality),

Sperner family is I = {abc, abd, acd, bcd},
◦ −c(ab)−c(ac)−c(ad)−c(bcd)+c(abc)+c(abd)+c(acd) ≤ 0 (4 inequalities),

Sperner family is I = {ab, ac, ad, bcd},
◦ −c(ab)− c(ac)− c(ad)− c(bc)− c(bd)

+2 · c(abc) + 2 · c(abd) + c(acd) + c(bcd)− 2 · c(abcd) ≤ 0 (6 inequalities),

Sperner family is I = {ab, ac, ad, bc, bd},
◦ −c(ab)− c(ac)− c(ad)− c(bc)− c(bd)− c(cd)

+2 ·c(abc)+2 ·c(abd)+2 ·c(acd)+2 ·c(bcd)−3 ·c(abcd) ≤ 0 (1 inequality),

Sperner family is I = {ab, ac, ad, bc, bd, cd},
◦ −c(ab)− c(ac) + c(abc) ≤ 0 (12 inequalities of this type),

Sperner family is I = {ab, ac},
◦ −c(abc)− c(abd) + c(abcd) ≤ 0 (6 inequalities of this type),

Sperner family is I = {abc, abd},
◦ −c(ab)− c(acd) + c(abcd) ≤ 0 (12 inequalities of this type),

Sperner family is I = {ab, acd},
◦ −c(ab)− c(cd) + c(abcd) ≤ 0 (3 inequalities of this type),

Sperner family is I = {ab, cd},
◦ −c(ab)−c(ac)−c(ad)+c(abc)+c(abd)+c(acd)−c(abcd) ≤ 0 (4 inequalities),

Sperner family is I = {ab, ac, ad},
◦ −c(ab)− c(ac)− c(bd) + c(abc) + c(abd) ≤ 0 (12 inequalities of this type),

Sperner family is I = {ab, ac, bd},
◦ −c(ab)−c(ac)−c(bcd)+c(abc)+c(abcd) ≤ 0 (12 inequalities of this type),

Sperner family is I = {ab, ac, bcd},
◦ −c(ab)− c(ac)− c(bc)− c(cd) + 2 · c(abc) + c(acd) + c(bcd)− c(abcd) ≤ 0

(12 inequalities of this type),

Sperner family is I = {ab, ac, bc, cd},
◦ −c(ab)− c(ad)− c(bc)− c(cd)

+c(abc) + c(abd) + c(acd) + c(bcd)− c(abcd) ≤ 0 (3 inequalities),

Sperner family is I = {ab, ad, bc, cd},
◦ −c(bc)− c(bd)− c(cd) + c(abc) + c(abd) + c(acd) + 2 · c(bcd)−2 · c(abcd) ≤ 1

(4 inequalities of this type),

Sperner family is I = {a, bc, bd, cd}.


