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We recall the basic idea of an algebraic approach to learning Bayesian network (BN) struc-
tures, namely to represent every BN structure by a certain (uniquely determined) vector,
called a standard imset. The main result of the paper is that the set of standard imsets is
the set of vertices (=extreme points) of a certain polytope. Motivated by the geometric
view, we introduce the concept of the geometric neighborhood for standard imsets, and,
consequently, for BN structures. Then we show that it always includes the inclusion neigh-
borhood, which was introduced earlier in connection with the greedy equivalence search
(GES) algorithm. The third result is that the global optimum of an affine function over
the polytope coincides with the local optimum relative to the geometric neighborhood.

To illustrate the new concept by an example, we describe the geometric neighborhood in
the case of three variables and show it differs from the inclusion neighborhood. This leads
to a simple example of the failure of the GES algorithm if data are not ‘‘generated” from a
perfectly Markovian distribution. The point is that one can avoid this failure if the search
technique is based on the geometric neighborhood instead. We also found out what is
the geometric neighborhood in the case of four and five variables.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The motivation for this theoretical paper is learning a Bayesian network (BN) structure from data by the method of max-
imizing a quality criterion (=the score and search method). By a quality criterion, also named a score metric or simply a score
by some other authors, we mean a real function Q of the BN structure, usually represented by a graph G, and of the database
D. The value QðG;DÞ ‘‘evaluates” how the BN structure given by G fits the observed database D.

An important related question is how to represent a BN structure in the memory of a computer. Formerly, each BN struc-
ture was represented by an arbitrary acyclic directed graph defining it, which led to the non-uniqueness in its description.
Later, researchers calling for methodological simplification came up with the idea to represent every BN structure with a
unique representative. The most popular graphical representative is the essential graph. It is a chain graph describing shared
features of acyclic directed graphs defining the BN structure. The adjective ‘‘essential” was proposed by Andersson et al. [2],
who gave a graphical characterization of (graphs that are) essential graphs.

Since direct maximizing a quality criterion Q seems, at least at first sight, to be infeasible, various local search methods
have been proposed. The basic idea is that one introduces a neighborhood relation between BN structure representatives,
also named neighborhood structure by some authors [3]. Then one is trying to find a local maximum with respect to the cho-
sen neighborhood structure. This is an algorithmically simpler task because one can utilize various greedy search techniques
for this purpose. On the other hand, the algorithm can get stuck in a local maximum and fail to find the global maximum. A
. All rights reserved.
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typical example of these techniques is the greedy equivalence search (GES) algorithm proposed by Meek [12]. The neighbor-
hood structure utilized in this algorithm is the inclusion neighborhood, which comes from the conditional independence
interpretation of BN structures. Chickering [5] proposed a modification of the GES algorithm, in which he used essential
graphs as (unique) BN structure representatives.

There are two important technical requirements on a quality criterion Q brought in connection with the local search
methods, namely to make them computationally feasible. One of them is that Q should be score equivalent [3], which means
it ascribes the same value to equivalent graphs (=defining the same BN structure, that is, having ascribed the same essential
graph). The other requirement is that Q should be decomposable [5], which means that QðG;DÞ decomposes into contribu-
tions which correspond to the factors in the factorization according to the graph G.

The basic idea of an algebraic approach to learning BN structures, presented in Chapter 8 of [18], is to represent both the
BN structure and the database with real vectors. More specifically, an algebraic representative of the BN structure defined by
an acyclic directed graph G is a certain integer-valued vector uG, called the standard imset (for G). It is also a unique BN struc-
ture representative because uG ¼ uH for equivalent graphs G and H. Another advantage of standard imsets is that one can
read practically immediately from the differential vector uG � uH whether the BN structures defined by graphs G and H
are neighbors in the sense of inclusion neighborhood. However, the crucial point is that every score equivalent and decom-
posable criterion Q is an affine function (=linear function plus a constant) of the standard imset. More specifically, it is shown
in Section 8.4.2 of [18] that one has
1 Thi
QðG;DÞ ¼ sQD � htQD ; uGi;
where sQD is a real number, tQD a vector of the same dimension as the standard imset uG (these parameters both depend solely
on the database D and the criterion Q) and h�; �i denotes the scalar product. The vector tQD is named the data vector (relative to
the criterion Q).

We believe that the above-mentioned result paves the way for future application of efficient linear programming meth-
ods in the area of learning BN structures. This paper is a further step in this direction: its aim is to enrich the algebraic ap-
proach by a geometric view. One can imagine the set of all standard imsets over a fixed set N of variables (=the set of nodes for
graphs) as the set of points in the corresponding Euclidean space (of a higher dimension). The main result of the paper is that
it is the set of vertices (=extreme points) of a certain polytope P. We derive this geometric fact from former theoretical results
on BNs. A consequence of the result is as follows: since every ‘‘reasonable” quality criterion Q can be viewed as (the restric-
tion of) an affine function on the corresponding Euclidean space, the task to maximize Q over BN structures is equivalent to
the task to maximize an affine function over the above-mentioned polytope.

This maximization problem has been treated thoroughly within the linear programming community. Deep algorithmic
theory was developed and fast software codes are available that can handle problems with vectors having thousands or even
millions of components. A classic tool to solve linear programming problems is the simplex method [15]. One of possible
interpretations of this method is that it is a kind of an augmentation algorithm (=a search method), in which one moves be-
tween vertices of a polytope along its edges (in the geometric sense) until an optimal vertex is reached. Although it has not
yet been decided whether the simplex method can be modified to get a polynomial-time algorithm,1 it performs extremely
well in practice.

In order to apply the (classic) simplex method, one needs an explicit description of the polytope via finitely many linear
inequalities. Such a description always exists by Weyl–Minkowski theorem [15], which says that any polytope can equiva-
lently be introduced as a (bounded) polyhedron, that is, the intersection of finitely many (affine) half-spaces. Note that the
implicit knowledge about these inequalities is often enough to solve a linear program at hand. As concerns the standard im-
set polytope P, for jNj ¼ 3 and jNj ¼ 4 a minimal such system has 13 and 154 inequalities, respectively. However, it is already
a challenge to existing software packages to find such a minimal inequality description of P for jNj ¼ 5 (given by 8782 ver-
tices). Thus, for general jNj, one definitely needs to classify these inequalities implicitly in order to apply the classic tools
from linear programming.

Because such a ‘‘polyhedral” description of the polytope P is not available for arbitrarily high jNj we propose an alterna-
tive approach that mimics the walk along the edges in the simplex method. The basic idea is to introduce the concept of geo-
metric neighborhood for standard imsets, and, therefore, for BN structures as well. The standard imsets uG and uH will be
regarded as (geometric) neighbors if the line-segment connecting them is an edge of the polytope P in the geometric sense.
An important observation is that the above-mentioned inclusion neighborhood is always contained in the geometric one.
Nevertheless, the crucial fact is that, for any affine function, its local maximum relative to the geometric neighborhood is
necessarily its global maximum over the polytope. We give the proof of both these observations in the paper.

Thus, once one succeeds in characterizing explicitly or implicitly the geometric neighborhood structure, one can apply the
following augmentation algorithm: start at a standard imset (=a vertex of P), for example uG ¼ 0, and keep moving to (geo-
metrically) adjacent standard imsets (=via edges of P) with a higher value of the criterion Q until one reaches its local max-
imum relative to the geometric neighborhood. Thus, by the above-mentioned observation, the global maximum of Q over the
standard imsets must be found. Note that the resulting standard imset can then be transformed to the corresponding essen-
tial graph by a polynomial-time algorithm described in [19].
s is a long-standing open question in linear programming.



M. Studený et al. / International Journal of Approximate Reasoning 51 (2010) 573–586 575
We have succeeded to compute the geometric neighborhood structure for jNj ¼ 3; 4; 5. Our computations suggest that,
for most standard imsets, there are many more geometric neighbors than the inclusion neighbors. To illustrate the concept of
the geometric neighborhood we characterize it for three variables in the paper. The notions of the inclusion neighborhood
and of the geometric one already differ in this elementary case. This observation has a simple but notable consequence: the
GES algorithm, which is based on the inclusion neighborhood, may fail to find the global maximum of a quality criterion. We
give such an example and claim that this is an inevitable defect of the inclusion neighborhood, which may occur whenever a
special data faithfulness assumption is not guaranteed. In our view, the data faithfulness relative to a perfectly Markovian dis-
tribution is a very strong unrealistic assumption except for the case of artificially generated data.

In the Conclusions we discuss further research directions.
2. Basic concepts

In this section we recall basic concepts and some results concerning learning BN structures.

2.1. Bayesian network structures

One of the possible definitions of a (discrete) Bayesian network is that it is a pair ðG; PÞ, where G is an acyclic directed graph
over a (non-empty finite) set of nodes (=variables) N and P a discrete probability distribution over N that (recursively) fac-
torizes according to G [13]. A well-known fact is that P factorizes according to G if and only if it is Markovian with respect to
G, which means it satisfies the conditional independence restrictions determined by the graph G through the corresponding
(directed) separation criterion [14,11]. Having fixed (non-empty finite) individual sample spaces Xi for variables i 2 N, the
respective (BN) statistical model is the class of all probability distributions P on the joint sample space XN �

Q
i2NXi that fac-

torize according to G. To name the shared features of the distributions in this class one can use the phrase ‘‘BN structure”. Of
course, the structure is determined by the graph G, but it may happen that two different graphs over N describe the same
structure.

2.1.1. Equivalence of graphs
Two acyclic directed graphs over N will be named Markov equivalent if they define the same BN statistical model. To avoid

trivial cases and troubles, throughout (the rest of) the paper we assume jXijP 2 for every i 2 N, that is, every variable has at
least two different possible values. In this case, the graphs are Markov equivalent iff they are independence equivalent, by
which is meant they determine the same collection of conditional independence restrictions – cf. Section 2.2 in [13]. Both
Frydenberg [8], and Verma and Pearl [20] gave a classic graphical characterization of independence equivalence: two acyclic
directed graphs G and H over N are independence equivalent if and only if they have the same underlying undirected graph
and immoralities, that is, induced subgraphs of the form a! c b, where ½a; b� is not an edge in the graph.

2.1.2. Learning a BN structure
The goal of (structural) learning is to determine the BN structure on the basis of data. These are assumed to have the form

of a complete database D : x1; . . . ; xd of the length d P 1, that is, of a sequence of elements of the joint sample space XN . Pro-
vided the individual sample spaces Xi with jXijP 2 for i 2 N are fixed, let DATAðN; dÞ denote the collection of all databases
over N of the length d. Moreover, let DAGSðNÞ denote the collection of all acyclic directed graphs over N. Then we take a real
function Q on DAGSðNÞ � DATAðN; dÞ for a quality criterion. The value QðG;DÞ should reflect how the statistical model deter-
mined by G is suitable for explaining the (occurrence of the) database D. The learning procedure based on Q then consists in
maximizing the function G#QðG;DÞ over G 2 DAGSðNÞ if the database D 2 DATAðN; dÞ; d P 1 is given.

A classic example of a quality criterion is Jeffreys–Schwarz Bayesian information criterion (BIC), defined as the maximum of
the likelihood minus a penalty term, which is a multiple of the number of free parameters in the statistical model [16]. To
give a direct formula for BIC (in our case) we need a notational convention. Given i 2 N, let rðiÞ denote the cardinality
jXij; paGðiÞ � fj 2 N; j! ig the set of parents of i in G 2 DAGSðNÞ, and qði;GÞ � j

Q
j2paGðiÞXjj the number of parent configura-

tions for i (in G).2 Provided i 2 N is fixed, the letter k will serve as a generic symbol for (the code of) an element of Xi (=a node
configuration) while j as a generic symbol for (the code of) a parent configuration. Given a database D of the length d P 1 let dijk

denote the number of occurrences in D of the (marginal) parent-node configuration encoded by j and k; put dij ¼
PrðiÞ

k¼1dijk. Here
is the formula – see Corollary 8.2 in [18]:
2 If p
BICðG;DÞ ¼
X
i2N

Xqði;GÞ
j¼1

XrðiÞ
k¼1

dijk � ln
dijk

dij
� ln d

2
�
X
i2N

qði;GÞ � ½rðiÞ � 1�: ð1Þ
In this brief overview we omit the question of statistical consistency of quality criteria; we refer the reader to the literature
on this topic [5,13]. However, we recall two other important concepts. A quality criterion Q will be named score equivalent
[3] if, for every D 2 DATAðN; dÞ; d P 1,
aGðiÞ ¼ ; then qði;GÞ ¼ 1 by a convention, because the only parent configuration for i is the empty configuration then.
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QðG;DÞ ¼ QðH;DÞ if G;H 2 DAGSðNÞ are independence equivalent:
Moreover, Q will be called decomposable [5] if there exists a collection of functions qijB : DATAðfig [ B; dÞ ! R, where i 2 N,
B # N n fig; d P 1, such that, for every G 2 DAGSðNÞ; D 2 DATAðN; dÞ; d P 1 one has
QðG;DÞ ¼
X
i2N

qijpaGðiÞðDfig[paGðiÞÞ;
where DA : x1
A; . . . ; xd

A denotes the projection of the database D to the marginal space XA �
Q

i2AXi for ;–A # N.

2.1.3. Inclusion neighborhood
The basic idea of local search methods for maximizing a quality criterion (=score and search methods) has already been

explained in the Introduction. Now, we define the inclusion neighborhood formally. Given G 2 DAGSðNÞ, let IðGÞ denote the
collection of conditional independence restrictions determined by G. Given G;H 2 DAGSðNÞ, if IðHÞ � IðGÞ,3 but there is no
F 2 DAGSðNÞwith IðHÞ � IðFÞ � IðGÞ, then we say H and G are inclusion neighbors. Of course, this terminology can be extended
to the corresponding BN structures and their representatives.

Note that one can test graphically whether G;H 2 DAGSðNÞ are inclusion neighbors; this follows from transformational
characterization of inclusion IðHÞ#IðGÞ provided by Chickering [5].

2.1.4. Essential graphs
Given an (independence) equivalence class G of acyclic directed graphs over N, the respective essential graph G� is a hybrid

graph (=a graph with both directed and undirected edges) defined as follows:

	 a! b in G� if a! b in every G 2 G,
	 a � b in G� if there are G;H 2 G such that a! b in H and a b in G.

It is always a chain graph (=an acyclic hybrid graph); this follows from graphical characterization of (graphs that are)
essential graphs by Andersson et al. [2]. Chickering [5] used essential graphs as unique graphical BN structure representa-
tives in his version of the GES algorithm.

2.2. Standard imsets

By an imset u over N will be meant an integer-valued function on the power set of N, that is, on PðNÞ � fA; A # Ng. We will
regard it as a vector whose components are integers and are indexed by subsets of N. Actually, any real function
m : PðNÞ ! R can be interpreted as a (real) vector in the same way, that is, identified with an element of RPðNÞ. The symbol
hm;ui will denote the scalar product of two vectors of this type:
hm; ui �
X
A # N

mðAÞ � uðAÞ:
A trivial example of an imset is the zero imset, which ascribes the value zero to every subset A # N; to denote it we use the
universal zero symbol 0. To write formulas for imsets we introduce a natural notational convention. Given A # N, the symbol
dA will denote the following basic imset (=vector):
dAðBÞ ¼
1 if B ¼ A;

0 if B–A;

�
for B # N:
The collection of imsets fdA; A # Ng forms a linear basis of the Euclidean space RPðNÞ. This allows one to express any imset
over N as a linear combination of these basic terms.

By an elementary imset is meant an imset
uha;bjCi ¼ dfa;bg[C þ dC � dfag[C � dfbg[C ;
where C # N and a; b 2 N n C are distinct. It is quite simple imset, it has only four non-zero values: it ascribes +1 to C and
fa; bg [ C and �1 to fag [ C and fbg [ C. In our algebraic framework this imset encodes an elementary conditional indepen-
dence statement a 
 bjC.

Given G 2 DAGSðNÞ, the standard imset for G, denoted by uG, is given by the formula
uG ¼ dN � d; þ
X
i2N

dpaGðiÞ � dfig[paGðiÞ
� �

: ð2Þ
Note that, in this formula, the terms can both cancel each other and sum up. For example, there is always at least one i 2 N
with paGðiÞ ¼ ; and, therefore, the term �d; cancels against one of the terms dpaGðiÞ with paGðiÞ ¼ ;. However, there could be
e, I � J denotes strict inclusion, that is, I#J but I–J.
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several i 2 N with paGðiÞ ¼ ;; thus, the value uGð;Þ will be the number of i 2 N with paGðiÞ ¼ ; minus one. To illustrate the
formula (2) observe that the standard imset for the empty graph over N has the form
u ¼ dN �
X
i2N

di þ ðjNj � 1Þ � d;;
and the standard imset for any complete (acyclic directed) graph over N is the zero imset. Another interesting observation is
that any elementary imset is the standard imset for a special acyclic directed graph.

It follows from (2) that uG has at most 2 � jNj non-zero values. Hence, one can only keep its non-zero values in the memory
of a computer, which means that the memory demands for representing standard imsets are polynomial in the number of
variables.

Note that every standard imset uG can be written (in a non-unique way) as the sum of elementary imsets, possibly an
empty sum (for the zero imset). However, the number of summands in such decomposition only depends on uG. This number
will be called the degree of uG and denoted by degðuGÞ. The degree corresponds to the number aðGÞ of arrows in G as follows:
degðuGÞ ¼
1
2
� jNj � ðjNj � 1Þ � aðGÞ; ð3Þ
and can be computed from uG directly by a special formula
degðuGÞ ¼ hm�;uGi; where m� : PðNÞ ! Z ð4Þ
is given by m�ðAÞ ¼ 1
2 � jAj � ðjAj � 1Þ for A # N; for the proofs of these facts see Lemma 7.1 and Section 4.2 in [18]. To illustrate

the formulas (3) and (4) recall that the degree of the zero imset is 0 while the maximal degree 1
2 � jNj � ðjNj � 1Þ among standard

imsets over N is achieved by the above-mentioned imset for the empty graph. Of course, elementary imsets have the degree 1.
It was shown as Corollary 7.1 in [18] that, given G;H 2 DAGSðNÞ, one has uG ¼ uH if and only if they are independence

equivalent. Moreover, Corollary 8.4 in [18] implies that G;H 2 DAGSðNÞ are inclusion neighbors if and only if either
uG � uH or uH � uG is an elementary imset. Finally, Lemmas 8.3 and 8.7 in [18] together claim that every score equivalent
and decomposable criterion Q necessarily has the form:
QðG;DÞ ¼ sQD � tQD ;uG
� �

for G 2 DAGSðNÞ; D 2 DATAðN;dÞ; d P 1; ð5Þ
where the constant sQD 2 R and the data vector tQD : PðNÞ ! R do not depend on G. These parameters only depend on the data-
base D and the criterion Q.

The reader may object that the dimension of tQD grows exponentially with jNj, making the method unfeasible for many
‘‘real-world” problems. However, since 2jNj 6 jXNj, the representation of a database D in the form of a data vector may even
appear to be more effective than (one of the traditional ways of its representation) in the form of a table of counts (=contin-
gency table)! Another point is that to compute htQD ;uGi one only needs at most 2 � jNj components of the data vector (since uG

has at most 2 � jNj non-zero values). Thus, one can decide to compute the necessary components of tQD only when one actually
needs them during a search procedure. In brief, we believe that whenever one is able to represent the database in the mem-
ory of a computer then one should be able to take care of the data vector as well.

3. Some geometric concepts

Here we recall some well-known concepts and facts from the theory of convex polytopes. For a more thorough treatment
and proofs see for example [15,22].

3.1. Polytopes and polyhedra

Polytopes and polyhedra are special subsets of the Euclidean vector space RK for some non-empty finite set K. The points
in this space are vectors v ¼ ½v s�s2K . Given x; v 2 RK their scalar product is hv; xi ¼

P
s2Kv s � xs.

We call P # RK a polytope if there is a finite set V # RK such that P equals the convex hull convðVÞ of V, that is, if P is the set
of all finite convex combinations

P
tkt � vt (with kt P 0 for all t and

P
tkt ¼ 1) of elements vt 2 V. If there exists a finite set

V # Q
K with P ¼ convðVÞ then P is called a rational polytope.

We call P # RK a (convex) polyhedron if it is the intersection of finitely many affine half-spaces of RK . Herein, an affine half-
space in RK is a set of the form fx 2 RK ; hv; xi 6 ag for some 0–v 2 RK and a 2 R. Consequently, P is the set of solutions to a
finite system of linear inequalities over RK . Note that the parameters v and a defining a half-space are unique up to a positive
scaling factor. If all half-spaces defining P can be represented via rational parameters v and a, the polyhedron P is called ra-
tional. A polyhedron is bounded if it does not contain a ray fxþ a � w; a P 0g for any x;w 2 RK ; w–0.

A non-trivial fundamental result in polyhedral geometry relates these two notions:

Theorem 1. A set P # RK is a (rational) polytope if and only if it is a bounded (rational) polyhedron.

It is a challenging algorithmic task to change between an inner description P ¼ convðVÞ and an outer description
P ¼ fx 2 RK ; A � x 6 bg, where A 2 RL�K ; b 2 RL (L–; finite), and back. Standard software packages that allow one to switch
between both descriptions are for example 4ti2 [1], cdd [7], or Convex [6].
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The dimension dimðPÞ of a set P # RK is the dimension of its affine hull affðPÞ, that is, affðPÞ is the set of all finite affine
combinations

P
tkt � vt (with kt 2 R for all t and

P
tkt ¼ 1) of elements vt 2 V. By a convention, the dimension of the empty set

is �1. A polytope is full-dimensional if dimðPÞ ¼ jKj.

3.2. Faces of a polytope

Faces are special sub-polytopes of a polytope; they play an important role both for its inner and outer description. We
recapitulate the notion of a face and prove an elementary observation to be used later.

Given v 2 RK and a 2 R, we call the inequality hv; xi 6 a valid for P # RK if it is satisfied for every x 2 P, that is, if P belongs
to the affine half-space fx 2 RK ; hv; xi 6 ag. If hv; xi 6 a is valid for a polytope P, we call the set F ¼ P \ fx 2 RK ; hv; xi ¼ ag a
face of P. Then we call the hyperplane fx 2 RK ; hv; xi ¼ ag a supporting hyperplane of F.

The sets ; and P are always faces of a polytope P, defined by the valid inequalities h0; xi 6 1 and h0; xi 6 0, respectively. All
faces of a polytope P are polytopes and can be classified by their dimension. Faces of the dimension 0 are points in RK , called
vertices. Faces of the dimension 1 are line-segments, called edges. Faces of the dimension dimðPÞ � 1 are called facets. Since
the vertices of faces are vertices of P, one has only finitely many faces for each polytope. We wish to emphasize for later use
that one can conclude from the definition that v is a vertex of P iff it is an extreme point of P, that is, if v cannot be written as a
convex combination of elements in P n fvg. Another observation is that a line-segment
4 To
each in
½u; v� � fa � uþ ð1� aÞ � v; a 2 ½0;1�g;
is an edge of P iff u; v are distinct vertices of P and P n ½u; v� is convex.

Theorem 2. Every polytope P is the convex hull of its vertices and the vertices of P are the unique inclusion-minimal set V with
P ¼ convðVÞ. Every full-dimensional polytope P can be represented as a polyhedron using only the valid inequalities defining the
facets of P. The facet-defining inequalities form a unique (up to positive scalar factors) inclusion-minimal inequality system
defining P.

The following elementary result will be needed below.

Lemma 3. Let P # RK be a polytope and V the set of its vertices. If u; v 2 V are distinct then the following three conditions are
equivalent:

(a) the line-segment ½u; v� is an edge of P,
(b) there exists a linear function U on RK such that UðuÞ > UðvÞ > UðwÞ for any w 2 V n fu; vg,
(c) there exists a linear function L on RK such that LðuÞ < LðvÞ 6 LðwÞ for any w 2 V n fu; vg.

Proof. ðaÞ ) ðbÞ If ½u; v� is an edge, there exists a valid inequality ha; xi 6 a for P defining it as a 1-dimensional face of P. As u

is a vertex of P there exists a valid inequality hb; xi 6 b for P defining it as a 0-dimensional face. We put
e ¼ min
w2Vnfu;vg

½ha; vi � ha;wi� > 0; q ¼ max
w2Vnfug

½hb;wi � hb; vi�P 0
and choose c > q
e P 0. Then the linear function UðxÞ ¼ c � ha; xi þ hb; xi satisfies the required conditions from (b).

Indeed, UðuÞ > UðvÞ since ha; ui ¼ ha; vi ¼ a and b ¼ hb; ui > hb; vi. Moreover, for w 2 V n fu; vg, the inequality
c � ½ha; vi � ha;wi�P c � e > q P hb;wi � hb; vi
gives UðvÞ ¼ c � ha; vi þ hb; vi > c � ha;wi þ hb;wi ¼ UðwÞ.
ðbÞ ) ðcÞ is evident; put L ¼ �U.
ðcÞ ) ðaÞ Let L be the linear function from (c). Since v is a vertex of P there exists a linear function V on RK such that

VðvÞ < VðxÞ for any x 2 P n fvg. Observe that b � LðvÞ�LðuÞ
VðuÞ�VðvÞ > 0 and consider the affine function
QðxÞ ¼ LðxÞ � LðvÞ þ b � ½VðxÞ � VðvÞ� for x 2 RK :
Then QðvÞ ¼ QðuÞ ¼ 0 and QðwÞ > 0 for w 2 V n fu; vg. Since Q has the property Qð
P

w2Vaw � wÞ ¼
P

w2Vaw � QðwÞ whenever
aw P 0;

P
w2Vaw ¼ 1, one has QðxÞ ¼ 0 for x 2 convðfu; vgÞ ¼ ½u; v� and QðxÞ > 0 for any x 2 P n ½u; v�. This already implies that

½u; v� is an edge of P. h
4. Main result

In this section we give the main result and illustrate it by an example with three variables. Let S denote the set of standard
imsets4 over N:
avoid misunderstanding recall that distinct G;H 2 DAGSðNÞ may give the same standard imset uG ¼ uH; however, the set S contains only one vector for
dependence equivalence class of graphs.



M. Studený et al. / International Journal of Approximate Reasoning 51 (2010) 573–586 579
S � fuG; G 2 DAGSðNÞg# RPðNÞ:
Theorem 4. The set S of standard imsets over N is the set of vertices of a rational polytope P # RPðNÞ. The dimension of the
polytope is 2jNj � jNj � 1.

The proof is given in the Appendix A; it is based on some information-theoretical tools from [18] and certain classic re-
sults on BNs.

Example 1. Let us describe the situation in the case of three variables. Then one has 11 standard imsets and they break into
five types (=permutation equivalence classes). They can also be classified by their degrees, that is, by the numbers of edges in
the corresponding essential graph. More specifically:

	 The zero imset u ¼ 0 has the degree 0 and corresponds to the complete (undirected) essential graph.
	 Six elementary imsets have the degree 1. They break into two types, namely uha;bj;i � d; � da � db þ dab and uhb;cjai � da�

dab � dac þ dabc; the respective essential graphs are a! c  b and b —— a —— c.
	 Three ‘‘semi-elementary” imsets of the form uhb;acj;i � d; � db � dac þ dabc define one type of the degree 2. The correspond-

ing essential graphs have just one undirected edge.
	 The imset 2 � d; �

P
i2fa;b;cgdi þ dabc has the degree 3 and corresponds to the empty essential graph.

The situation is illustrated by Fig. 1, where the lines between the graphs indicate the inclusion neighbors.
By Theorem 4, the dimension of the polytope generated by these 11 imsets is 4. To get its outer (=polyhedral) description

one should embed it (as a full-dimensional polytope) into a 4-dimensional space. We decided to identify every standard im-
set over N with its restriction to K � fA # N; jAjP 2g. Then we used the computer package 4ti2 [1] to get all 13 facet-defin-
ing inequalities. They break into seven types and can be classified as follows:

	 Five inequalities hold with equality for the zero imset. They break into three types: 0 6 2 � uðabcÞ þ uðabÞþ
uðacÞ þ uðbcÞ; 0 6 uðabcÞ þ uðabÞ and 0 6 uðabcÞ.

	 Eight inequalities achieve equality for the standard imset for the empty graph. They break into four types, namely
uðabcÞ 6 1; uðabcÞ þ uðabÞ 6 1; uðabcÞ þ uðabÞ þ uðacÞ 6 1 and uðabcÞ þ uðabÞ þ uðacÞ þ uðbcÞ 6 1.
Fig. 1. The essential graphs and (some) standard imsets in the case of three variables.



Fig. 2. The geometric and inclusion neighborhood in the case of three variables.
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We also made analogous computation in the case jNj ¼ 4. In this case one has 185 standard imsets breaking into 20 types.
The dimension of the polytope is 11. The number of corresponding facet-defining inequalities is 154 – see vertex-facet table
in [21].

Thus, in the case of three and four variables, the polyhedral description of the polytope P was found. In particular, the task
to maximize a (score equivalent and decomposable) quality criterion Q is, by (5), equivalent to a standard linear program-
ming problem, namely to minimize a linear function u#htQD ;ui over the domain specified by those 13, respectively 154,
inequalities. Note that the formula for the data vector relative to BIC is also known, see (8.39) in [18]:
5 Tha
tBIC
D ðAÞ ¼ d � H bPAj

Y
i2A

bPi

 !
� ln d

2
� jAj � 1þ

Y
i2A

rðiÞ �
X
i2A

rðiÞ
( )

for A # N;
where HðPjQÞ is the relative entropy of P with respect to Q and bPA the marginal empirical distribution given by (the projec-
tion of the database) DA.

5. Geometric neighborhood

We say that two standard imsets u;v 2 S are geometric neighbors if the line-segment connecting them in RPðNÞ is an edge
of the polytope P (generated by S). Given u 2 S the set of its geometric neighbors will be denoted by geoðuÞ. The motivation
for this concept has already been explained in the Introduction. The concept of geometric neighborhood can be extended to
the corresponding BN structures, and to the essential graphs as well.

An important observation concerning the geometric neighborhood is that it includes the inclusion neighborhood (see
Section 2.1.3).

Theorem 5. If two standard imsets u;v 2 S are inclusion neighbors5 then they are geometric neighbors.

The proof is given in the Appendix B; it is a kind of extension of the proof of Theorem 4.
However, the substantial statement is as follows.

Theorem 6. Let P denote the convex hull of the set of standard imsets S over N and u 2 S. If an affine function Q on RPðNÞ achieves
its local maximum relative to the geometric neighborhood in u, that is, if
t means, the corresponding BN structures are inclusion neighbors.
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QðuÞP QðvÞ for every v 2 geoðuÞ;
then it achieves in u its global maximum over P, that is,
QðuÞP QðxÞ for every x 2 P:
In particular, the global maximum of Q over S (� over P) coincides with the local maximum of Q relative to the geometric
neighborhood.

In the Appendix C, we give a proof of this fact for any polytope P in RK and a linear function L on RK . Obviously, this im-
plies what is said in Theorem 6. Recall that every score equivalent and decomposable criterion Q has the required form (see
(5) in Section 2.2); thus, Theorem 6 is applicable to Q.

Example 2. We characterized the geometric neighborhood in the case of three variables and compared it with the inclusion
neighborhood. The result is depicted in Fig. 2, in which BN structures are represented by essential graphs, solid lines join
inclusion neighbors and dashed lines geometric neighbors that are not inclusion neighbors. Different levels correspond to the
degrees of the corresponding standard imsets.
We made similar computations also in the case of four variables – see vertex–vertex table in [21]. Our method was as
follows: we first computed the outer description of P by standard software packages and then, on basis of that, we computed
the edges of P by our own computer program. In that computer program, we have utilized the following two simple facts.
First, a line connecting vertices is an edge iff it is the intersection of facets. Second, every face is characterized by the list of
vertices contained in it. For more details see the description in [21]. This method, however, was not able to get the results in
reasonable time for five variables.

Nevertheless, computing for 2.5 days on a Sun Fire V890 Ultra Sparc IV, 1200 MHz, we have found the geometric neigh-
borhood for jNj ¼ 5 by another method that avoids computing the outer description of P. For this, we used the following sim-
ple fact. If V denotes the set of vertices of P and if u; v 2 V, then the line-segment ½u;v � is an edge of P if and only if v � u is
not a non-negative linear combination of the vectors fw� u : w 2 V n fu;vgg. But this can be tested for each pair u;v 2 V

using linear programming software such as Cplex [10]. The results for jNj ¼ 5 are also downloadable through [21]; however,
they are not in the form of a neat table intended for human users. The case of six variables seems to be a challenge to existing
software packages.

6. GES failure

What does it mean that standard imsets u;v 2 S are geometric but not inclusion neighbors? It follows from Lemma 3(b)
that then there exists a linear function U on RPðNÞ such that UðuÞ > UðvÞ > UðwÞ for any w 2 S n fu;vg. Thus, provided u and v
are not inclusion neighbors, U achieves in v its local maximum relative to the inclusion neighborhood structure; however, its
global maximum over S is achieved in u.

It has already been explained in the Introduction that every ‘‘reasonable” quality criterion Q is (the restriction of) an affine
function on RPðNÞ. Thus, the reader may ask whether the above phenomenon may occur with Q in place of U. Indeed, this is
the case for three variables, the imset u ¼ uha;bj;i, which corresponds to an ‘‘immorality” bGab : a! c b and the imset v cor-
responding to the empty graph G; – see Fig. 2.

Example 3. There exists a database D (of the length d ¼ 4) over N ¼ fa; b; cg such that the BIC criterion (see Section 2.1.2)
achieves its local maximum relative to the inclusion neighborhood in the empty graph G; and its global maximum in (any of)
the graph(s) bG of the type a! c  b. Put Xi ¼ f0; 1g for i 2 N and D : x1; x2; x3; x4, where
x1 ¼ ð0; 0; 0Þ; x2 ¼ ð0; 1; 1Þ; x3 ¼ ð1; 0; 1Þ; x4 ¼ ð1; 1; 0Þ:
Now, the direct computation of BIC values using the formula (1), which is left to the reader, gives
BICðbGÞ ¼ �14 ln 2; BICðG;Þ ¼ �15 ln 2 and BICðGÞ ¼ �16 ln 2
for any graph G over N having just one edge. Thus, BIC achieves its local maximum relative to the inclusion neighborhood in
G;, but it is not the global maximum since BICðbGÞ > BICðG;Þ (see Fig. 2 for illustration). Note that BIC exhibits the same
behavior if the database D is multiplied,6 which is a kind of simulation of the situation the data are ‘‘generated” from the empir-
ical distribution bP given by D, whose density p̂ : XN ! ½0;1Þ is given by
p̂ð0; 0; 0Þ ¼ p̂ð0; 1; 1Þ ¼ p̂ð1; 0; 1Þ ¼ p̂ð1; 1; 0Þ ¼ 1=4
and p̂ðxÞ ¼ 0 for remaining x 2 XN .
t means, D : x1; . . . ; xd , d ¼ 4 � r for r > 1, where xi ¼ xi�4 for 5 6 i 6 d.
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Now, let us recapitulate a few details concerning the GES algorithm from [5]. It always starts with the empty graph. In the
first phase, it searches for the increase in the value of the criterion among the lower inclusion neighbors, in the second phase
among the upper inclusion neighbors.7 Thus, it follows from the description of the algorithm, that, in Example 3, the GES algo-
rithm will immediately end with its starting iteration G;. On the other hand, it is clear that (any of the graphs) bG is a more
appropriate BN structure approximation of the ‘‘actual” conditional independence structure given by bP . Indeed, this is because
none of the conditional independence statements a 
 bjc; a 
 cjb and b 
 cja is valid with respect to bP .

The reader may object that this is perhaps a rare casual example because of a very special form of the database. However,
we have some arguments why (we think) this is, actually, the asymptotic behavior of any (statistically) consistent score
equivalent decomposable criterion Q, provided the database is ‘‘generated” from the empirical distribution bP given by D.
First, we re-formulate informally the definition of a consistent criterion from [13]. It is a criterion Q that satisfies two
conditions:

(i) If we have G;H 2 DAGSðNÞ such that the ‘‘generating” distribution P for the database (of the length d) belongs to the
statistical model given by G (see Section 2.1) but not to the statistical model given by H, then with d!1, the prob-
ability that QðG;DðxÞÞ > QðH;DðxÞÞ approaches to 1.8

(ii) If we have G;H 2 DAGSðNÞ such that P is contained in the both statistical models but the underlying graph for H strictly
includes the underlying graph for G, then, again, with d!1, the probability that QðG;DðxÞÞ > QðH;DðxÞÞ approaches
to 1.

Now, let us come back to Example 3 and consider the distribution bP . This distribution is contained in the statistical mod-
els given by any of the graphs bG and the full graph G	. Indeed, this is because each of conditional independence statements
a 
 bj;; a 
 cj; and b 
 cj; is valid with respect to bP . On the other hand, bP is not contained in any other statistical model of
BN structure over N ¼ fa; b; cg. This is because, for any G 2 DAGSðNÞ defining such a BN structure, the conditional indepen-
dence restrictions determined by G involve one of the statements a 
 bjc; a 
 cjb and b 
 cja, none of which is valid with
respect to bP . Hence, given a consistent criterion Q, by the condition (i), the global maximum of Q should be ‘‘asymptotically”
among graphs of the type bG and G	. Moreover, by the condition (ii), one should have ‘‘asymptotically”
QðbG;DðxÞÞ > QðG	;DðxÞÞ. That is, the global maximum of Q should be within the graphs of the type bG.

The point of our consideration is that if Q is score equivalent and decomposable then, by formula (5),
8D 2 DATAðN; dÞ; d P 1, one has
7 If G
8 Her
9 By
QðbGab;DÞ �QðG	;DÞ ¼ � tQD ;uha;bj;i
� �

¼ QðG;;DÞ �QðGab;DÞ;

QðbGac;DÞ �QðG	;DÞ ¼ � tQD ;uha;cj;i
� �

¼ QðG;;DÞ �QðGac;DÞ;

QðbGbc;DÞ �QðG	;DÞ ¼ � tQD ;uhb;cj;i
� �

¼ QðG;;DÞ �QðGbc;DÞ:
In particular, by the condition (ii), Q should ‘‘asymptotically” have the local maximum in G; – see Fig. 2 for illustration.
The reader may ask how the arguments above are related to the result from [5] about the asymptotic optimality of the

GES algorithm. Recall that it says that if the database is ‘‘generated” from a distribution which is perfectly Markovian with
respect to some G 2 DAGSðNÞ then, with d!1, the probability that the GES algorithm ends with the essential graph for G
approaches to 1. Herein, a distribution is called perfectly Markovian with respect to G if it satisfies those and only those con-
ditional independence restrictions that are given by G. The point is that the distribution bP in Example 3 is not perfectly Mar-
kovian with respect to any acyclic directed graph.

In our view, the above-mentioned example of the failure of the GES algorithm may occur whenever a disputable data
faithfulness assumption is not fulfilled.9 This assumption is ‘‘valid” if data are artificially generated, but, in our view, one can
hardly ensure its validity for ‘‘real” data.

The point of our example is that the GES algorithm is based on the inclusion neighborhood. It follows from Theorem 6 that
this cannot happen if the greedy search technique is based on the geometric neighborhood. Therefore, we think the concept
of geometric neighborhood is quite important.
7. Conclusions

We have introduced the standard imset polytope P and showed that the problem of learning a BN structure (by the score
and search method) is equivalent to the task to maximize a linear function over this polytope. A better understanding of the
underlying geometry of the problem is important in itself and may lead to new solution approaches or improvements in
existing algorithms.

Therefore, an important open question is to characterize (all) facets and edges of P for general jNj in order to employ a
dual simplex method or a (greedy) augmentation algorithm based on the geometric neighborhood. We have already made
;H 2 DAGSðNÞ are inclusion neighbors with IðHÞ � IðGÞ then G is named the upper inclusion neighbor, and H the lower inclusion neighbor.
e, a random sample from the distribution P is substituted for the database. To indicate the dependence on a random event x we write DðxÞ instead of D.
this we mean the assumption that data are ‘‘generated” from a distribution which is perfectly Markovian with respect to an acyclic directed graph.
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some basic observations. For example, it is not difficult to show that the geometric neighbors of the zero imset u ¼ 0 coincide
with its inclusion neighbors, that is, with elementary imsets. Consequently, the facet-defining inequalities of P containing
u ¼ 0 coincide with the facet-defining inequalities of the polyhedral cone generated by elementary imsets. In other words,
P is a ‘‘cut” out of that cone.

We showed in this paper that the inclusion neighbors are always geometric ones. Thus, the GES algorithm can be inter-
preted as an augmentation algorithm that moves only along those edges of P that correspond to the inclusion neighbors. Our
computations for jNj ¼ 3; 4; 5 (for results see [21]) show that the number of inclusion neighbors is much smaller than the
number of geometric neighbors and this proportion decreases as jNj gets bigger. Therefore, from the geometric point of view,
it is quite probable (and not surprising at all) that the GES algorithm will fail to reach an optimal vertex of P, which means,
the GES algorithm will fail to come with an optimal BN structure.

Note that what we propose is not the only option for finding the global maximum of a quality criterion. In [17] another
method based on dynamic programming was presented, and quite impressively, it is claimed there that it is possible to use
that method to learn optimal BN structures with about 30 variables. However, due to its enumerative nature, the problem
sizes that can be handled by that approach (also in future) are clearly bounded and new ideas are needed to push these
bounds. Moreover, this dynamic programming approach cannot take advantage of a good or even optimal solution obtained
via some heuristics.

Obviously, a quick and good starting solution can tremendously speed up any augmentation algorithm such as the one we
suggest using the geometric neighborhood. Often one generates heuristically an optimal solution (without knowing it) and is
left with the task of proving its optimality. From the theoretical point of view, the complexity of solving the full optimization
problem and the complexity of proving optimality of a given candidate solution differ only by a polynomial factor. From a
practical point of view, however, even such a polynomial factor can make a huge difference.

Our approach can easily be modified to some cases of restricted learning. For example, one may wish to restrict oneself to
learning BN structures that are given by graphs which have a prescribed upper limit for the number of arrows. In our context
it leads to an elegant simplification step, namely considering a sub-polytope of P determined by a subset of its vertices.

Let us gather some important open questions concerning P:

(1) Characterize all facets and edges of P. An interesting related conjecture is that the only lattice points (=vectors whose
components are integers) within P are its extreme points, that is, standard imsets.

(2) Characterize differential imsets uG � uH , where G;H 2 DAGSðNÞ, for geometric neighbors. Find out whether they can be
interpreted in graphical terms. In other words: What is the relation between the corresponding essential graphs if uG

and uH are geometric neighbors?
(3) Apply the presented geometric approach to restricted learning BN structures. Again, we face the task to describe (all)

facets and edges of some polytopes, but these polytopes can appear to be much simpler than P.

All these questions concern the complexity of a potential future (greedy) search procedure for maximization of a quality
criterion Q based on the geometric neighborhood. We hope that the analysis of the results for jNj 6 5 will give a clue for the
(mathematical) characterization of the geometric neighborhood, which is a great theoretical challenge.
Acknowledgements
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Appendix A. The proof of Theorem 4

We introduce P # RPðNÞ as the convex hull of the set of standard imsets S. Obviously, it is a rational polytope and the set of
extreme points of P has to be a subset of S. Throughout the rest of the proof we assume jNjP 2 because if jNj ¼ 1 then S only
contains the zero imset, P ¼ S and the claims in Theorem 4 are trivial.

To show the first statement, claiming that each u ¼ uG 2 S; G 2 DAGSðNÞ, is a vertex of P, it suffices to construct a sup-
porting hyperplane for the face fug. This is equivalent to constructing a linear function L on RPðNÞ that is uniquely minimized
in u 2 P, that is, LðuÞ < LðvÞ for any v 2 S n fug.10 The function will be of the form LðxÞ ¼ hm; xi; x 2 RPðNÞ, where m : PðNÞ ! R

is a suitable real function (=a point in RPðNÞ).
In the construction we utilize the properties of the multiinformation function mP for a (discrete) probability distribution P

over N – see Section 2.3.4 in [18]. It is a function mP : PðNÞ ! ½0;1Þ which ascribes to every A # N the multiinformation of
the corresponding marginal PA of P for A.11 The basic property of the multiinformation function mP is that it is supermodular12

and characterizes conditional independence statements in P by algebraic identities. In particular, the independence structure
10 Note it implies LðuÞ < LðxÞ for any x 2 P n fug.
11 The multiinformation of R (over A) is the relative entropy HðRjQÞ of R with respect to the product Q ¼

Q
i2ARi of its one-dimensional marginals.

12 This means mPðC [ DÞ þmPðC \ DÞP mPðCÞ þmPðDÞ for any C;D # N.
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MðmPÞ produced by mP through the respective algebraic test13 coincides with the collection IðPÞ of conditional independence
statements represented in P : MðmPÞ ¼ IðPÞ.14

A further preparatory observation concerns standard imsets. Lemma 7.1 in [18] says that every standard imset u ¼ uG for
G 2 DAGSðNÞ belongs to a wider class of combinatorial imsets, and, therefore, to an even wider class of structural imsets – see
Section 4.2.3 in [18].15 Moreover, Lemma 7.1 [18] also says that the independence structure MðuGÞ induced by the imset uG

through the respective algebraic criterion coincides with the collection IðGÞ of conditional independence restrictions in G
(determined by the respective graphical separation criterion): MðuGÞ ¼ IðGÞ.

In the sequel, we will use the following notation: given v 2 S the symbol IðvÞ will denote the collection of conditional
independence restrictions IðHÞ determined by (any) graph H 2 DAGSðNÞ with v ¼ uH .16 A further observation is that, for
every u;v 2 S the (strict) inclusion IðvÞ � IðuÞ implies degðvÞ < degðuÞ. Indeed if u ¼ uG and v ¼ uH , where G;H 2 DAGSðNÞ,
then IðHÞ � IðGÞ. Thus, it follows from the characterization of inclusion in [5] that H has a higher number of arrows than
G : aðHÞ > aðGÞ. Hence, by (3), one has degðuHÞ < degðuGÞ.

Since now we fix u 2 S and one of the graphs G 2 DAGSðNÞ with u ¼ uG. Let us put
13 We
14 See
15 Aga

conside
16 The
17 The
18 Giv

to this
SðuÞ ¼ fv 2 S; IðvÞ#IðuÞg:
The crucial step in our proof is that we utilize a well-known result [9] on the existence of a perfectly Markovian distribution
for an acyclic directed graph. If this result is applied to our fixed G 2 DAGSðNÞ it says there exists a discrete probability dis-
tribution P over N such that IðPÞ ¼ IðGÞ. We take such a distribution P, fix it, consider its multiinformation function mP and
interpret it as a point in RPðNÞ.

The next step is to realize that hmP;viP 0 for any v 2 S and one has hmP;vi ¼ 0 if and only if v 2 SðuÞ. The first claim
follows from Proposition 5.1(i) in [18] saying that h ~m;viP 0 for any supermodular function ~m and a structural imset v.
As explained above, these assumptions are valid for mP and any v 2 S. As concerns the second claim, Proposition 5.6 in
[18] says, under the same assumptions, that hmP;vi ¼ 0 if and only if MðvÞ#MðmPÞ. However, as explained above, one
has MðmPÞ ¼ IðPÞ and provided that v ¼ uH; H 2 DAGSðNÞ one also has MðvÞ ¼MðuHÞ ¼ IðHÞ ¼ IðvÞ. Thus, hmP ;vi ¼ 0
if and only if IðvÞ#IðPÞ. However, since IðPÞ ¼ IðGÞ ¼ IðuÞ the inclusion IðvÞ#IðPÞ means IðvÞ#IðuÞ, that is,
v 2 SðuÞ.

Thus, because hmP;vi > 0 for any v 2 S n SðuÞ we know that
k � min
v2SnSðuÞ

hmP ;vi > 0:
Put R �maxv2SdegðvÞ. Actually, we know by (3) that R ¼ 1
2 � jNj � ðjNj � 1Þ, and, therefore, R > 0. Let us choose e > 0 with e < k

R
and put
m � mP � e �m�;
where m� : PðNÞ ! Z is the function from (4). Finally, we define a linear function L : RPðNÞ ! R by the formula
LðxÞ � hm; xi for x 2 RPðNÞ: ðA:1Þ
It follows from (4) that 8v 2 S one has LðvÞ ¼ hmP ;vi � e � degðvÞ. In particular, LðuÞ ¼ �e � degðuÞ. If v 2 S n SðuÞ then
LðvÞ ¼ hmP; vi � e � degðvÞP k� e � R > 0 P LðuÞ: ðA:2Þ
Moreover, if v 2 SðuÞ; v–u then IðvÞ � IðuÞ17 and, by the above observation, degðuÞ > degðvÞ. Hence, since hmP ;vi ¼ 0 ¼
hmP ;ui one has
LðvÞ � LðuÞ ¼ e � ðdegðuÞ � degðvÞÞ > 0: ðA:3Þ
Thus, LðuÞ < LðvÞ for any v 2 S n fug, which concludes the proof of the first statement of Theorem 4.
As concerns the second statement, realize every standard imset u : PðNÞ ! Z satisfies

P
A # NuðAÞ ¼ 0 and

P
A # N;i2AuðAÞ ¼

0 for every i 2 N. In particular, u is uniquely determined by its restriction to K � fA # N; jAjP 2g. This defines a one-to-one
linear transformation between RK and a linear subspace of RPðNÞ containing S. Thus, to prove what is desired it suffices to
show that the linear hull of K-restrictions of standard imsets is just RK, which has the dimension jKj ¼ 2jNj � jNj � 1.
Because every elementary imset is standard,18 it is enough to show that, for every A 2K, the (K-restriction of the) imset
dA is a linear combination of K-restrictions of elementary imsets. This can be done easily by induction on jAj.
omit the definition of that algebraic test because these details are not necessary to understand the arguments given in this paper.
Proposition 5.3 in [18] for the respective arguments.
in, we omit the definitions of these imsets and of the independence structures defined by them. These definitions are not substantial in our
rations.
definition is correct since one has uG ¼ uH if and only if G;H 2 DAGSðNÞ are independence equivalent (cf. Section 2.2).
unique v 2 S with IðvÞ ¼ IðuÞ is u itself.

en a 
 bjC, consider a total order of N in which C precedes fa; bg and fa; bg precedes N n ðC [ fa; bgÞ, direct edges of the complete graph over N according
order and remove the arrow between a and b.
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Appendix B. The proof of Theorem 5

Assume without loss of generality that u ¼ uG and v ¼ uH for G;H 2 DAGSðNÞ such that IðHÞ � IðGÞ, but there is no
F 2 DAGSðNÞ with IðHÞ � IðFÞ � IðGÞ. Thus, it follows from the characterization of inclusion by Chickering [5] that H
has just one more arrow than G : aðHÞ ¼ aðGÞ þ 1. Hence, by (3), one has degðuÞ ¼ degðvÞ þ 1.

Now, we can repeat the considerations from the proof of Theorem 4 and, having fixed u ¼ uG, define a linear function L on
RPðNÞ by the formula (A.1). Thus, it follows from (A.2) and (A.3) that LðwÞ > 0 for w 2 S n SðuÞ while LðwÞ ¼ �e � degðwÞ for
w 2 SðuÞ. In particular,
19 Rea
LðuÞ ¼ �e � degðuÞ < �e � degðvÞ ¼ LðvÞ 6 LðwÞ for any w 2 S n fu;vg:
Indeed, for w 2 S n SðuÞ one has LðvÞ 6 0 < LðwÞ while, for w 2 SðuÞ n fug; degðwÞ 6 degðuÞ � 1 ¼ degðvÞ and
LðvÞ ¼ �e � degðvÞ 6 �e � degðwÞ ¼ LðwÞ.

Thus, by Lemma 3(c), the line-segment connecting u and v is an edge of P, that is, u and v are geometric neighbors.

Appendix C. The proof of Theorem 6

Let P # RK ; K–; finite, be a polytope. The set of its vertices will be denoted by V � vertðPÞ throughout Section C. Given
(distinct) z;w 2 RK , we accept a shorthand notation for the interior of the line-segment ½z;w�:
ðz;wÞ � fa � zþ ð1� aÞ � w; a 2 ð0;1Þg:
We will also utilize the following equivalent definition of a face of P (use Theorem 7.5 in [4]): it is a (closed) convex subset
F # P such that one has
8z;w 2 P if ðz;wÞ \ F–; then z;w 2 F:
Given x 2 V, let us denote by nePðxÞ the set of those vertices y 2 V such that the line-segment ½x; y� connecting x and y in RK is
an edge of P.

We base our proof on the next observation, mentioned as Lemma 3.6 in [22].

Lemma 7. Given a polytope P # RK and x 2 vertðPÞ one has
P # xþ coneðfy� x; y 2 nePðxÞgÞ;
where coneðAÞ �
P

x2Aax � x; ax P 0
� �

denotes the cone generated by a finite set A # RK .

The geometric meaning of Lemma 7 is that the polytope P belongs to the cone with the origin x and with the rays deter-
mined by the edges of P coming out of x. Lemma 7 has the following consequence.

Corollary 8. Let Q # RK be a polytope, u 2 vertðQÞ and L is a linear function on RK . If LðuÞ ¼ LðvÞ for any v 2 neQðuÞ then L is
constant on Q, that is, LðxÞ ¼ LðuÞ for any x 2 Q.

Proof. Let us put c � LðuÞ; the assumption says that, for every v 2 neQðuÞ, the function L has the same value c for two distinct
points in the ray Rv ¼ fuþ a � ðv� uÞ; a P 0g. Since L is linear, it has to be constant on Rv with the value c. Because every
point in the set uþ coneðfv� u; v 2 neQðuÞgÞ is a convex combination of the points in the rays Rv; v 2 neQðuÞ, it implies L
has the same value c in the whole cone. In particular, by Lemma 7, L has the same value c in the whole set
Q # uþ coneðfv� u; v 2 neQðuÞgÞ. h

Now, we are ready to show the following property which clearly implies what is said in Theorem 6, because an affine
function differs from a linear function by a constant.

Lemma 9. Given a polytope P # RK with the vertex set V � vertðPÞ; u 2 V and a linear function L on RK , the condition
LðuÞP LðvÞ for every v 2 nePðuÞ; ðC:1Þ
implies that L achieves in u its global maximum over P, that is,
LðuÞP LðxÞ for every x 2 P: ðC:2Þ
Proof. Let us put c ¼ LðuÞ and Q ¼ P \ fx 2 RK ; LðxÞP cg. Obviously, Q is a bounded polyhedron, and, therefore, a non-
empty polytope. Moreover, u is a vertex of Q : u 2 vertðQÞ.19 To show (C.1))(C.2) we only need to show that (C.1) implies
LðxÞ ¼ c for x 2 Q. By Corollary 8, to this end it is enough to show LðvÞ ¼ c for every v 2 neQðuÞ. Thus, assume for a contradiction
9v 2 neQðuÞ LðvÞ > c; ðC:3Þ
lize that this means the same as an extreme point of Q.
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while (C.1) holds.20 To get a contradictory conclusion it suffices to observe that ½u; v� is an edge of P.21 That means, we have to
show (see above)
20 Sin
21 Bec
22 If x
23 Thi
24 A li
if z;w 2 P are such that ðz;wÞ \ ½u; v�–; then z;w 2 ½u; v�: ðC:4Þ
To show that choose x 2 ðz;wÞ \ ½u; v� and observe x–u.22 This implies LðxÞ > c.23 However, x 2 ðz;wÞ and the linearity of L on
½z;w� gives maxfLðzÞ; LðwÞg > c.24 Without loss of generality assume LðwÞ > c, that is, w 2 Q. Observe by a contradiction that then
LðzÞP c.

Indeed, if LðzÞ < c then the linearity of L on ½z; x�# ½z;w� implies there exists unique y 2 ðz; xÞ such that LðyÞ ¼ c. Then
y;w 2 Q and x 2 ðy;wÞ \ ½u; v�. Since ½u; v� is an edge of Q, this implies y;w 2 ½u; v�. Hence, y 2 ½u; v� while LðyÞ ¼ c. But the only
point in ½u; v� having c as the value of L is just u. Therefore y ¼ u. This, however, means u 2 ðz;wÞ for z;w 2 P; z–w contradicting
u 2 vertðPÞ.

Thus, LðzÞP c means z 2 Q. Therefore, z;w 2 Q and ðz;wÞ \ ½u; v�–;. Because ½u; v� is an edge of Q we observe z;w 2 ½u; v�,
which was desired to verify (C.4). h
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