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Abstract. In this paper formal properties of CI in different frameworks
are studied. The first part is devoted to the comparison of three different
frameworks for study CI: probability theory, theory of relational databases and
Spohn’s theory of ordinal conditional functions. Although CI models arising in
these frameworks are very similar (they satisfy semigraphoid axioms) we give
examples showing that their formal properties still differ (each other). On the
other hand, we find that (within each of these frameworks) there exists no finite
complete axiomatic characterization of Cl-models by finding an infinite set of
sound inference rules (the same in all three frameworks). In the second part
further frameworks for CI are discussed: Dempster Shafer theory, possibility
theory and (general) Shenoy’s theory of valuation—based systems.

1 Introduction

The concept of conditional independence (CI) seems to attract attention of researches
in last two decades. The properties of CI were studied in several branches of Al, let
us mention some of them :

e probabilistic reasoning

o theory of relational databases

theory of ordinal conditional functions

theory of belief functions

possibility theory.

The reason is evident — the knowledge concerning independence (resp. dependence)
can simplify many reasoning tasks. Here, we give a short survey of current state.

So far, the most advanced results concerning properties of CI were achieved in the
probabilistic framework. The concept of stochastic CI has been studied in probability
theory and modern statistics for many years (see [2, 11]). Its importance for the theory
of probabilistic ES consists in the fact that any CI statement can be interpreted
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as certain qualitative relationship among symptoms. This brings the possibility of
finding the adequate structural model of such ES. This role of CI was discerned and
highlighted by the group around J. Pearl [6] (A.Paz, D.Geiger, T.Verma) but many
other researchers dealt more or less explicitly with this concept.

Nevertheless, an analogy of the concept of CI was studied (even earlier) is the
theory of relational databases [7]. The counterpart of CI in that theory is the concept
of embedded multivalued dependency (EMVD). Note that an equivalent concept of
qualitative conditional independence also appeared in ES theory [8].

Another framework in which the concept of CI appeared, is Spohn’s theory of
ordinal conditional functions [12]. This theory, motivated from philosophical point of
view, gives a tool for a mathematical description of the dynamic handling of deter-
ministic epistemology, in this sense it constitutes a counterpart of the probabilistic
description of epistemic state. As soon as the concept of CI for ordinal conditional
functions was introduced, researchers began to study its properties [4], especially for
the special class of natural conditional functions (NCF) called “disbelief function” in
[9] or “ranking function” in [3].

One of the most popular approaches to dealing with uncertainty in ES is Dempster—
Shafer’s theory of belief functions. The concept of CI for variables on which belief
functions are defined (i.e. the parallel with concepts of CI studied in probability theory
and in the theory of NCFs) was introduced lately by Shenoy [10]. Another definition
of (unconditional) independence (also for variables) appeared in [1].

Further framework in which CI can be studied is Zadeh’s possibility theory. This
theory was formulated in the end of seventies as certain model of qualitative de-
scription of subjective judgements. Lately, Shenoy introduced the concept of CI also
in this field. The above mentioned Shenoy’s work [10] gives certain unifying point
of view on different calculi dealing with CI. He introduced very abstract concept of
valuation based system (VBS) and defined CI for VBSs.

2 Basic Definitions

All above mentioned frameworks for study CI have some common setting. Throughout
the paper a collection of nonempty finite sets {X;; i € N} is supposed to be given.
The index set NNV is also nonempty and finite. Whenever ) # A C N the symbol X4
denotes the cartesian product .., X;. Power set of a set S will be denoted by exp S.

The symbol T(N) is reserved for the collection of triplets (A, B, C') of pairwise
disjoint subsets of N where A # () # B. Following Pearl [6] we call every subset of
T(N) dependency model over N. A dependency model is called semigraphoid iff it is
closed under following four inference rules (called axioms by many authors):

(A,B,C) — (B,A,C) symmetry
(A,BUC,D) — (A,C,D) decomposition
(A,BUC,D) — (A,B,CUD) weak union
[(A,C,D)& (A, B, C’UD>] — (A, BUC,D) contraction.

Now, we show how dependency models arise in probability theory, the theory of
relational databases and the theory of conditional functions.



DEFINITION 1 (CI-models in probability theory)

Probability measure over NN is specified by a nonnegative real function

P : Xy — (0,00) such that > {P(a);a € Xy} = 1. The formula

P(A)=> {P(a);a € A} whenever A C Xy

defines an additive set function (on exp Xy ) i.e. probability measure over N. Whenever
) £S5 ¢ N and P is a probability measure over N, then its rmarginal measure on S is
a probability measure P over S defined as follows:

P(A) = P(A x Xwms) for A C Xg .

Moreover, we put PV = P.

Having a probability measure P over N and a triplet (A, B,C') € T(N) we say that
A is conditionally independent of B given C' in P and write A L B|C(P) iff

Vae Xy beXp ceX¢ PAYBYC (abe) - PY(c) = PAYY(ac) - PBYC(be)

(take P°(-) = 1). The dependency model { (A, B,C) € T(N); A L B|C(P)} is then
called the CI-model induced by P.

The concept of CI in the theory of relational databases is known as embedded
multivalued dependency :

DEFINITION 2 (CI-models in the theory of relational databases)

Database relation over N is a nonempty subset of Xy. Having a database relation
D#RC Xy and £ S ¢ N the marginal relation RY is a database relation over S
defined as follows:

s €R® & [(s,t) € R for some t € Xy\g] whenever s € X.

Of course, RY =R.

Having a database relation R over N and (A, B, C) € T(N) write A L B|C(R) iff
Voe X, beXp ceXgo (a,¢) € RAYC & (b, ¢) € RPYY = (a,b,c) € RAVBUC
The dependency model {{(A, B,C) € T(N); A L B|C(R)} is then called the CT-model

induced by R.

Finally, we define the concept of CI for a special class of ordinal conditional func-
tions, namely so-called natural conditional functions (according to Hunter [4]).

DEFINITION 3 (CI-models in the theory of ordinal conditional functions)

Natural conditional function over N is specified by a nonnegative integer function
k: Xy — {0,1,2,...} satisfying min {r(a);a € Xy} = 0. The formula

K(A) = min{r(a);a € A} whenever () # A C Xy

then defines a set function on (eaxp Xy )\{0} called the natural conditional function
(NCF) over N. If moreover § # S ¢ N, then its marginal NCF is an NCF over S
defined as follows:

O(A) = k(A X Xy\g) for A C Xg .

Moreover, £ = k.

Having an NCF r over N and a triplet (A, B,C') € T(N) write A L B|C(r) iff
Vae X, beXy ceXe xAVBYC (abe) + kO (¢) = kMY (ac) + KBV (be)

(take x?(-) = 0). The dependency model { (A, B,C) € T(N); A L B|C(r)} is
called the Cl-model induced by k.



3 Comparison

Having introduced the class of CI-models for some specific framework we may ask
which inference rules (or axioms) of the form :
y ) 0 y Y y

[ <fll-/ Bl: Cl> L. & <f1n-/ B‘nv C‘n) ] - <‘4n—|—1v Bn—&-la Cll+1>
are sound in this particular framework i.e. whether for every instance ¢ of the frame-
work (i.e. probability measure resp. database relation resp. NCF) it holds :
if [.41 1 B1 Cl(‘) & ... & fln 1 B7,|Cn(‘)] then .47,,4_1 1 B,1_|_1|C,1+1(‘>.

Moreover, we may ask whether there exists a finite axiomatic characterization of
Cl-models i.e. a finite collection of such inference rules characterizing Cl-models (for

the particular framework) as dependency models satisfying that finite collection of
inference rules. Such characterization (even for subclasses of Cl-models) would have
great importance for reasoning task within the particular framework.

Thus, the classes of CI models arising in 3 above mentioned frameworks can be
compared : we may ask which inference rules are sound in each of the frameworks,
whether they differ and whether there exist finite axiomatic characterizations.

At the first sight (according to basic results) the classes of Cl-models are very
alike: CI-models from all three areas are semigraphoids (for the probabilistic case see
[11], for database relations [7], for NCFs [4]). Nevertheless, the classes are indeed
different as the following examples show.

ExAMPLE 1 The following inference rule

[(A,B,CUD)&{(C,D,A)&{(C,D,B)& (A, B, )] — (C,D, )

1s sound in probabilistic framework but not in the framework of relational databases
and ordinal conditional functions. The probabilistic soundness can be proved using
some tools of information theory, for details see [14]. To show that it is not sound for
relational databases it suffices to give an example of a database relation R such that the
antecedents are satisfied i.e. A L B|C U D(R), ..., A L B|0(R) but the consequent
is not valid i.e. =[C" L D|}(R)]. To this end we simply take X, = {a,d’'}, Xp =
{b,V'}, X¢ = {¢,d}, Xp = {d,d'} and define R on X4 x Xp x X¢ X Xp by the
following table (the bullet in a box [ab, cd] means that (abed) € R).

R ab al/ a'b a't!
cd ° . . Y
cd
dd °
dd

Similarly we can refute the soundness of this inference rule for NCFs. Take the same
sets X4, ..., Xp and define an NCF ~ by the following table (the number in a box
[ab, ed] is the value r(abed) ):

K ab ab/ a'b a't
cd 0 1 1 2
cd 1 1 1 1
d 0 0 0 0
dd 2 1 1 0




Note that another example that this inference rule fails in the case of NCFs was
already given by Spohn [13].

EXAMPLE 2 The following inference rule

[(A,B,CUD)&{(C,D,A)&{(C,D,B)] — (C,D,AUDB)

is sound in the framework of relational databases but fails for probabilistic measures
and NCFs. Its sounduess is easy to see:

Suppose (a,b,c) € RWPYC and (a,b,d) € RY"WBYP. As (a,c) € RAYY and (a,d) € R by
C' L DJA(R) derive (a,c,d) € RAYCYP Similarly by C' L D|B(R) get (b,c,d) € RPYCYP and hence
using A L B|C'U D(R) finally get (a,b,c,d) € RAVBLCVD,

To refute the probabilistic soundness take X 4, Xp, X, Xp from Example 1 and define

on X4 X Xp X X X Xp the probability measure P as follows (the value in the box
[ab, ed] is P(abed) ):

P ab al/ a'b a't!
cd 0.2 0 0 0
cd 0.2 0 0 0
dd 0.2 0 0 0
dd 0.1 0.1 0.1 0.1

The counterexample refuting soundness for NCFs was already given in Example 1.

EXAMPLE 3 The following inference rule

[(A,B,CUD)&(A,C,BUD)] — (A,BUC,D)

well known as intersection [6] is sound in the framework of ordinal conditional func-
tions but fails for probabilistic measures and database relations. Its soundness was
shown in [12] or [4]. To refute the probabilistic soundness put D = (), take X, =
{a,d'}, X ={b,V'}, X¢ = {c, ¢} and define on X4 X X X X a probability measure
P as follows:

P be b be e
a 0.5 0 0 0
a 0 0 0 0.5

The counterexample for relational databases can be obtained easily :
simply take the support R = {z € Xy; P(x) > 0}.

Note that the intersection inference rule holds also for strictly positive probability
measures. Also further 3 inference rules sound for NCFs (see [13]) hold for strictly
positive probability measures.

On the other hand, in all three above mentioned frameworks the following inference

rules are sound (n > 3):
[(A,B,By)& ... & (A, B;,Bjt1)& ... & (A, B,_1,B,) & (A. B,, B1)] — (A, By, By)
Moreover, as every proper subset of the collection of antecedents is a CI model (in
all 3 frameworks) this sequence of inference rules can be used to show that for each
n > 3 and every hypothetic complete system S of sound inference rules there exists
an inference rule in § with at least n antecedents. These results are proved for the
probabilistic framework in [15], for relational databases in [7] and for NCFs in [16].

THEOREM For each of the three above mentioned frameworks there exist no finite
complete axiomatic characterization of CI-models.



4 Discussion

Let us mention further frameworks for CI which in some sense comprehend the frame-
works above — namely possibility theory and Dempster—Shafer theory. The definitions
below originate from Shenoy’s work [10] where the concept of CI is defined for arbitrary
framework satisfying certain general system of axioms for so—called valuation—based
systems. The main result of that work says that every Cl-model arising in such a
framework is a semigraphoid.

DEFINITION 4 (CI-models in possibility theory)

Possibility function over N is specified by a real function 7 : Xy — (0, 1) such that
maz {m(a); a € Xy} = 1. The formula

m(A) = max {r(a); a € A} whenever () # A C Xy

defines a set function on (exp Xy )\{0} called possibility function over N. Whenever
) # S ¢ N its marginal function on S is a possibility function over S defined as
follows:

T (A) = 7(A x Xms) for £ ACXg.

Of course, 7V = 7.

Having a possibility function = over N and (A, B, C) € T(N) write A L B|C(x) iff

V aeXy beXp ceXe aVWBabe) - 7%(c) = 74 (ac) - 78 (be).

For empty C put 7%(c) = 1. The dependency model { (A, B,C) € T(N); A L B|C(x)}
is called the CI model induced by .

This framework in fact involves frameworks for relational databases and NCFs.
Indeed, we can assign the following possibility function to each database relation

RC XN .
"(4):{1 in case ANR#(

TR 0  otherwise.

It makes no problem to verify that the Cl-model induced by R coincides with the CI-
model induced by 7r. Similarly, to every NCF x over N we can assign the possibility
function 7, as follows :

Te(A) = e~ whenever @ # A C Xy.

This definition ensures that the CI model induced by x is identical with the CI
model induced by 7. Thus, the class of possibilistic CI-models includes strictly both
database CI-models and CI-models arising in NCF theory (the inclusion is proper by
Examples 2 and 3).

Shenoy in [10] defines CI also in the framework of Dempster Shafer theory. This
definition specialized to the unconditional case coincides with the concept of indepen-
dence for evidence measures from [1].

DEFINITION 5 (CI models in Dempster Shafer theory)

Basic probability assignment (BPA) over N is specified by a real function
m: exrp Xy — (0,00) such that > {m(A4); A C Xy} =1 and m(@)) = 0.
The sets A C Xy satisfying m(A) > 0 are called focal elements. The formula
Comm(A)=>{m(B); AC B} whenever A C Xy

defines so—called commonality function which corresponds uniquely to the BPA (i.e.



there exist an inverse formula). Whenever () # S ¢ N and m is a BPA over N, then
its marginal BPA over S is defined as follows :

m’(4)=>{m(B), BC Xy B°=A} for A C Xg

(the projection BY was introduced in the second definition). Moreover, m® = m.
Having a BPA m over N and a triplet (A, B,C) € T(N) write A L B|C(m) iff

VE C Xaupue Commavsuc(E) - Compe(EY) = Compave (EAYY) - Comppuc(EPYY)
(take Compye(-) = 1). The dependency model { (A, B,C) € T(N); A L B|C(m) } is
called the CI model induced by m.

Note that the presented definition of CI is in fact one of the equivalent definitions
from [10] (use Lemma 3.1(v) there); the definition can be reformulated in terms of
BPAs but it would be too complicated. Only important fact is that in case A L
B|C(m) the focal elements of m"“#Y“ have the form
FxG={(a,b,c); (a,c) €F (bec)€ G} for FC Xy and G C Xp ¢ with F¥ = G.
The above defined class of CI-models involves both database and probabilistic CI-
models. Every database relation R C Xy can be identified with a BPA :

1 in case A =R
mg(4) = 0  otherwise
in such a way that the corresponding Cl-models coincide. Similarly, every probability
measure P over N defines a BPA mp as follows :

P(x whenever A = {a} for x € Xy
mp(4) = 0( ) otherwise. )
Of course, the Cl-model induced by P is the Cl-model induced by mp. Thus, using
Examples 1 and 2 we can derive that the presented class of Cl-models for BPAs has
probabilistic and database Cl-models as proper subsets.

Nevertheless, the presented definition does not seem to us to be suitable in the
framework of Dempster—Shafer theory. We have two objection.

Firstly, this CI is not “consistent with marginalization”. This means that it may
happen that for a couple of BPA’s m; over AU C' and my over B U C which are con-
sonant (i.e. m{ = m$') there exists no BPA m over AUBUC such that m"“¢ = m,,
m?YY = my, and A L B|C(m). In all other mentioned frameworks such “conditional
product” exists and it is uniquely determined.

Secondly, Dempster—Shafer theory was intended to embed both possibility func-
tions and probability measures (see [5]). Concretely, every possibility function 7 over
N is identified with a BPA m, whose collection of focal elements is a nest i.e.

VA BC Xy withm,(A), m.(B)>0either AC Bor BC A

by means of the relation 7(x) = > {m,(B);x € B} (for details see [5]). Therefore the
concept of CI for BPAs should generalize CI for possibility functions. Nevertheless,
this is not true even in the unconditional case. The reason is clear: if we consider two
possibilistic BPA’s with two focal elements then their product has as focal elements
cartesian products of “marginal” focal elements — but this class is not a nest i.e. the
product does not represent possibilistic BPA.

We think that the concept CI in Dempster-Shafer theory should comprehend both
probabilistic and possibilistic CI and be “consistent with marginalization”. However,
so far we don’t find an adequate definition of CI within this framework.
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