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as certain qualitative relationship among symptoms. This brings the possibility of�nding the adequate structural model of such ES. This role of CI was discerned andhighlighted by the group around J. Pearl [6] (A.Paz, D.Geiger, T.Verma) but manyother researchers dealt more or less explicitly with this concept.Nevertheless, an analogy of the concept of CI was studied (even earlier) is thetheory of relational databases [7]. The counterpart of CI in that theory is the conceptof embedded multivalued dependency (EMVD). Note that an equivalent concept ofqualitative conditional independence also appeared in ES theory [8].Another framework in which the concept of CI appeared, is Spohn's theory ofordinal conditional functions [12]. This theory, motivated from philosophical point ofview, gives a tool for a mathematical description of the dynamic handling of deter-ministic epistemology, in this sense it constitutes a counterpart of the probabilisticdescription of epistemic state. As soon as the concept of CI for ordinal conditionalfunctions was introduced, researchers began to study its properties [4], especially forthe special class of natural conditional functions (NCF) called \disbelief function" in[9] or \ranking function" in [3].One of the most popular approaches to dealing with uncertainty in ES is Dempster{Shafer's theory of belief functions. The concept of CI for variables on which belieffunctions are de�ned (i.e. the parallel with concepts of CI studied in probability theoryand in the theory of NCFs) was introduced lately by Shenoy [10]. Another de�nitionof (unconditional) independence (also for variables) appeared in [1].Further framework in which CI can be studied is Zadeh's possibility theory. Thistheory was formulated in the end of seventies as certain model of qualitative de-scription of subjective judgements. Lately, Shenoy introduced the concept of CI alsoin this �eld. The above mentioned Shenoy's work [10] gives certain unifying pointof view on different calculi dealing with CI. He introduced very abstract concept ofvaluation{based system (VBS) and de�ned CI for VBSs.2 Basic De�nitionsAll above mentioned frameworks for study CI have some common setting. Throughoutthe paper a collection of nonempty �nite sets fXi ; i 2 Ng is supposed to be given.The index set N is also nonempty and �nite. Whenever ; 6= A � N the symbol XAdenotes the cartesian product Qi2AXi. Power set of a set S will be denoted by exp S.The symbol T (N) is reserved for the collection of triplets hA;B;Ci of pairwisedisjoint subsets of N where A 6= ; 6= B. Following Pearl [6] we call every subset ofT (N) dependency model over N. A dependency model is called semigraphoid i� it isclosed under following four inference rules (called axioms by many authors):hA;B;Ci ! hB;A;Ci symmetryhA;B [ C;Di ! hA;C;Di decompositionhA;B [ C;Di ! hA;B;C [Di weak union[ hA;C;Di& hA;B;C [Di ] ! hA;B [ C;Di contraction.Now, we show how dependency models arise in probability theory, the theory ofrelational databases and the theory of conditional functions.



Definition 1 (CI{models in probability theory)Probability measure over N is speci�ed by a nonnegative real functionP : XN ! h0;1) such that P fP (a); a 2 XNg = 1. The formulaP (A) =P fP (a); a 2 Ag whenever A � XNde�nes an additive set function (on expXN ) i.e. probability measure over N. Whenever; 6= S  N and P is a probability measure over N , then its marginal measure on S isa probability measure P S over S de�ned as follows:P S(A) = P (A�XNnS) for A � XS .Moreover, we put PN � P .Having a probability measure P over N and a triplet hA;B;Ci 2 T (N) we say thatA is conditionally independent of B given C in P and write A ? BjC(P ) i�8a 2 XA b 2 XB c 2 XC PA[B[C(abc) � PC(c) = PA[C(ac) � PB[C(bc)(take P ;(�) = 1). The dependency model f hA;B;Ci 2 T (N); A ? BjC(P ) g is thencalled the CI{model induced by P.The concept of CI in the theory of relational databases is known as embeddedmultivalued dependency :Definition 2 (CI{models in the theory of relational databases)Database relation over N is a nonempty subset of XN . Having a database relation; 6= R � XN and ; 6= S  N the marginal relation RS is a database relation over Sde�ned as follows:s 2 RS , [ (s; t) 2 R for some t 2 XNnS] whenever s 2 XS.Of course, RN � R.Having a database relation R over N and hA;B;Ci 2 T (N) write A ? BjC(R) i�8a 2 XA b 2 XB c 2 XC (a; c) 2 RA[C &(b; c) 2 RB[C ) (a; b; c) 2 RA[B[C .The dependency model fhA;B;Ci 2 T (N); A ? BjC(R)g is then called the CI{modelinduced by R.Finally, we de�ne the concept of CI for a special class of ordinal conditional func-tions, namely so-called natural conditional functions (according to Hunter [4]).Definition 3 (CI{models in the theory of ordinal conditional functions)Natural conditional function over N is speci�ed by a nonnegative integer function� : XN ! f0; 1; 2; . . .g satisfying min f�(a); a 2 XNg = 0. The formula�(A) = min f�(a); a 2 Ag whenever ; 6= A � XNthen de�nes a set function on (expXN )nf;g called the natural conditional function(NCF) over N. If moreover ; 6= S  N , then its marginal NCF is an NCF over Sde�ned as follows:�S(A) = �(A�XNnS) for A � XS .Moreover, �N � �:Having an NCF � over N and a triplet hA;B;Ci 2 T (N) write A ? BjC(�) i�8 a 2 XA b 2 XB c 2 XC �A[B[C(abc) + �C(c) = �A[C(ac) + �B[C(bc)(take �;(�) = 0). The dependency model f hA;B;Ci 2 T (N); A ? BjC(�)g iscalled the CI{model induced by �.



3 ComparisonHaving introduced the class of CI{models for some speci�c framework we may askwhich inference rules (or axioms) of the form :[ hA1; B1; C1i & . . . & hAn; Bn; Cni ] ! hAn+1; Bn+1; Cn+1iare sound in this particular framework i.e. whether for every instance � of the frame-work (i.e. probability measure resp. database relation resp. NCF) it holds :if [A1 ? B1jC1(�) & . . . & An ? BnjCn(�)] then An+1 ? Bn+1jCn+1(�).Moreover, we may ask whether there exists a �nite axiomatic characterization ofCI{models i.e. a �nite collection of such inference rules characterizing CI{models (forthe particular framework) as dependency models satisfying that �nite collection ofinference rules. Such characterization (even for subclasses of CI{models) would havegreat importance for reasoning task within the particular framework.Thus, the classes of CI{models arising in 3 above mentioned frameworks can becompared : we may ask which inference rules are sound in each of the frameworks,whether they di�er and whether there exist �nite axiomatic characterizations.At the �rst sight (according to basic results) the classes of CI-models are veryalike: CI-models from all three areas are semigraphoids (for the probabilistic case see[11], for database relations [7], for NCFs [4]). Nevertheless, the classes are indeeddi�erent as the following examples show.Example 1 The following inference rule[ hA;B;C [Di& hC;D;Ai& hC;D;Bi& hA;B; ;i ] �! hC;D; ;iis sound in probabilistic framework but not in the framework of relational databasesand ordinal conditional functions. The probabilistic soundness can be proved usingsome tools of information theory, for details see [14]. To show that it is not sound forrelational databases it su�ces to give an example of a database relation R such that theantecedents are satis�ed i.e. A ? BjC [ D(R); . . . ; A ? Bj;(R) but the consequentis not valid i.e. :[C ? Dj;(R)]. To this end we simply take XA = fa; a0g; XB =fb; b0g; XC = fc; c0g; XD = fd; d0g and de�ne R on XA � XB � XC � XD by thefollowing table (the bullet in a box [ab; cd] means that (abcd) 2 R).R ab ab0 a0b a0b0cd � � � �cd0 �c0d �c0d0Similarly we can refute the soundness of this inference rule for NCFs. Take the samesets XA; . . . ; XD and de�ne an NCF � by the following table (the number in a box[ab; cd] is the value �(abcd) ):� ab ab0 a0b a0b0cd 0 1 1 2cd0 1 1 1 1c0d 0 0 0 0c0d0 2 1 1 0



Note that another example that this inference rule fails in the case of NCFs wasalready given by Spohn [13].Example 2 The following inference rule[ hA;B;C [Di& hC;D;Ai& hC;D;Bi ] �! hC;D;A [ Biis sound in the framework of relational databases but fails for probabilistic measuresand NCFs. Its soundness is easy to see:Suppose (a; b; c) 2 RA[B[C and (a; b; d) 2 RA[B[D. As (a; c) 2 RA[C and (a; d) 2 RA[D byC ? DjA(R) derive (a; c; d) 2 RA[C[D. Similarly by C ? DjB(R) get (b; c; d) 2 RB[C[D and henceusing A ? BjC [D(R) �nally get (a; b; c; d) 2 RA[B[C[D.To refute the probabilistic soundness takeXA; XB ; XC ; XD from Example 1 and de�neon XA �XB �XC �XD the probability measure P as follows (the value in the box[ab; cd] is P (abcd) ):P ab ab0 a0b a0b0cd 0.2 0 0 0cd0 0.2 0 0 0c0d 0.2 0 0 0c0d0 0.1 0.1 0.1 0.1The counterexample refuting soundness for NCFs was already given in Example 1.Example 3 The following inference rule[ hA;B;C [D i& hA;C;B [Di] �! hA;B [ C;Diwell{known as intersection [6] is sound in the framework of ordinal conditional func-tions but fails for probabilistic measures and database relations. Its soundness wasshown in [12] or [4]. To refute the probabilistic soundness put D = ;, take XA =fa; a0g; XB = fb; b0g; XC = fc; c0g and de�ne on XA�XB�XC a probability measureP as follows: P bc bc0 b0c b0c0a 0.5 0 0 0a0 0 0 0 0.5The counterexample for relational databases can be obtained easily :simply take the support R = fx 2 XN ; P (x) > 0g.Note that the intersection inference rule holds also for strictly positive probabilitymeasures. Also further 3 inference rules sound for NCFs (see [13]) hold for strictlypositive probability measures.On the other hand, in all three above mentioned frameworks the following inferencerules are sound (n � 3):[hA;B1; B2i& . . . & hA;Bj; Bj+1i& . . . & hA;Bn�1; Bni& hA;Bn; B1i] �! hA;B2; B1iMoreover, as every proper subset of the collection of antecedents is a CI{model (inall 3 frameworks) this sequence of inference rules can be used to show that for eachn � 3 and every hypothetic complete system S of sound inference rules there existsan inference rule in S with at least n antecedents. These results are proved for theprobabilistic framework in [15], for relational databases in [7] and for NCFs in [16].THEOREM For each of the three above mentioned frameworks there exist no �nitecomplete axiomatic characterization of CI{models.



4 DiscussionLet us mention further frameworks for CI which in some sense comprehend the frame-works above { namely possibility theory and Dempster{Shafer theory. The de�nitionsbelow originate from Shenoy's work [10] where the concept of CI is de�ned for arbitraryframework satisfying certain general system of axioms for so{called valuation{basedsystems. The main result of that work says that every CI{model arising in such aframework is a semigraphoid.Definition 4 (CI{models in possibility theory)Possibility function over N is speci�ed by a real function � : XN ! h0; 1i such thatmax f�(a); a 2 XNg = 1. The formula�(A) = max f�(a); a 2 Ag whenever ; 6= A � XNde�nes a set function on (expXN )nf;g called possibility function over N . Whenever; 6= S  N its marginal function on S is a possibility function over S de�ned asfollows:�S(A) = �(A �XNnS) for ; 6= A � XS .Of course, �N � �.Having a possibility function � over N and hA;B;Ci 2 T (N) write A ? BjC(�) i�8 a 2 XA b 2 XB c 2 XC �A[B[C(abc) � �C(c) = �AC(ac) � �BC(bc) :For empty C put �;(c) = 1. The dependency model fhA;B;Ci 2 T (N);A ? BjC(�)gis called the CI{model induced by �.This framework in fact involves frameworks for relational databases and NCFs.Indeed, we can assign the following possibility function to each database relationR � XN :�R(A) = � 1 in case A \ R 6= ;0 otherwise:It makes no problem to verify that the CI{model induced by R coincides with the CI{model induced by �R. Similarly, to every NCF � over N we can assign the possibilityfunction �� as follows :��(A) = e��(A) whenever ; 6= A � XN .This de�nition ensures that the CI{model induced by � is identical with the CI{model induced by ��. Thus, the class of possibilistic CI{models includes strictly bothdatabase CI{models and CI{models arising in NCF theory (the inclusion is proper byExamples 2 and 3).Shenoy in [10] de�nes CI also in the framework of Dempster{Shafer theory. Thisde�nition specialized to the unconditional case coincides with the concept of indepen-dence for evidence measures from [1].Definition 5 (CI{models in Dempster{Shafer theory)Basic probability assignment (BPA) over N is speci�ed by a real functionm : expXN ! h0;1) such that P fm(A); A � XNg = 1 and m(;) = 0.The sets A � XN satisfying m(A) > 0 are called focal elements. The formulaComm(A) =P fm(B); A � B g whenever A � XNde�nes so{called commonality function which corresponds uniquely to the BPA (i.e.



there exist an inverse formula). Whenever ; 6= S  N and m is a BPA over N , thenits marginal BPA over S is de�ned as follows :mS(A) =P fm(B); B � XN BS = Ag for A � XS(the projection BS was introduced in the second de�nition). Moreover, mN �m.Having a BPA m over N and a triplet hA;B;Ci 2 T (N) write A ? BjC(m) i�8E � XA[B[C CommA[B[C(E) � CommC (EC) = CommA[C(EA[C) � CommB[C(EB[C)(take Comm;(�) = 1). The dependency model f hA;B;Ci 2 T (N); A ? BjC(m) g iscalled the CI{model induced by m.Note that the presented de�nition of CI is in fact one of the equivalent de�nitionsfrom [10] (use Lemma 3.1(v) there); the de�nition can be reformulated in terms ofBPAs but it would be too complicated. Only important fact is that in case A ?BjC(m) the focal elements of mA[B[C have the formF � G = f(a; b; c) ; (a; c) 2 F (b; c) 2 Gg for F � XA[C and G � XB[C with FC = GC .The above de�ned class of CI{models involves both database and probabilistic CI{models. Every database relation R � XN can be identi�ed with a BPA :mR(A) = � 1 in case A = R0 otherwisein such a way that the corresponding CI{models coincide. Similarly, every probabilitymeasure P over N de�nes a BPA mP as follows :mP (A) = � P (x) whenever A = fxg for x 2 XN0 otherwise:Of course, the CI{model induced by P is the CI{model induced by mP . Thus, usingExamples 1 and 2 we can derive that the presented class of CI{models for BPAs hasprobabilistic and database CI{models as proper subsets.Nevertheless, the presented de�nition does not seem to us to be suitable in theframework of Dempster{Shafer theory. We have two objection.Firstly, this CI is not \consistent with marginalization". This means that it mayhappen that for a couple of BPA's m1 over A[C and m2 over B [C which are con-sonant (i.e.mC1 =mC2 ) there exists no BPAm over A[B [C such that mA[C =m1,mB[C =m2 and A ? BjC(m). In all other mentioned frameworks such \conditionalproduct" exists and it is uniquely determined.Secondly, Dempster{Shafer theory was intended to embed both possibility func-tions and probability measures (see [5]). Concretely, every possibility function � overN is identi�ed with a BPA m� whose collection of focal elements is a nest i.e.8A;B � XN with m�(A);m�(B) > 0 either A � B or B � Aby means of the relation �(x) =Pfm�(B);x 2 Bg (for details see [5]). Therefore theconcept of CI for BPAs should generalize CI for possibility functions. Nevertheless,this is not true even in the unconditional case. The reason is clear: if we consider twopossibilistic BPA's with two focal elements then their product has as focal elementscartesian products of \marginal" focal elements { but this class is not a nest i.e. theproduct does not represent possibilistic BPA.We think that the concept CI in Dempster-Shafer theory should comprehend bothprobabilistic and possibilistic CI and be \consistent with marginalization". However,so far we don't �nd an adequate de�nition of CI within this framework.
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