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Abstract 

In medical decision problems it is very important to use the most relevant piece of information for decision making. 
We focus on a special case of diagnostic decision making when we can measure many symptoms and signs and we 
have to make diagnostic conclusions. We can state the problem as follows. We can measure symptoms and signs of 
a patient, denoted by s,, s2,. . ., sk, and we have to decide about a possible diagnosis d. We know that the symptoms 
and signs have different costs MI,. ~v~,...w~ when they are examined. Of course, each symptom, sign or their 
combination has a different predictive value for the diagnosis, Our task is to find out the combination of symptoms 
from given data with a sufficient informative value for diagnostic decision making. However, simultaneously we look 
for a combination of symptoms and signs with minimal costs among those carrying sufficient information. For that 
reason we will describe approaches based on information measures of statistical dependence and to show the idea of 
the program CORE (constitution and reduction of data) prepared for practical applications in medicine. 0 1997 
Elsevier Science Ireland Ltd. 
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1. Introduction 

A special problem in medical decision 
making occurs when a decision-maker has 
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too much unstructured empirical information 
at his/her disposal. The model situation is a 
large database concerning previous patients 
and involving many symptoms and signs, 
where some of them may have no influence 
on a concrete diagnostic task concerning a 
new patient. In fact, it is a special case of a 
general problem of choice of a relevant piece 
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of information for decision making. This 
general problem has appeared also in in- 
formation theory, where some tools used 
for solving matters were developed. We 
have in mind various information- theoret- 
ical measures of mutual information, 
statistical dependence or conditional statis- 
tical dependence. In this paper we show 
that these measures of dependence can be 
applied also in medical decision making. 

In the following section we will de- 
scribe a general diagnostic situation in 
which our method can be used. We will 
concentrate on two problems, described in 
Section 3. The first problem is the consti- 
tution of data, i.e. the problem which a 
combination of symptoms from a given 
database has sufficient information value 
for diagnostic decision making. The sec- 
ond problem is the reduction of data, i.e. 
the problem of how to remove redundant 
pieces of information that are sometimes 
caused by mutual dependence among rele- 
vant symptoms. In the fourth section we 
will recall some concepts from informa- 
tion theory, namely definitions and prop- 
erties of several concrete measures of 
dependence and conditional dependence. 
Algorithms for constitution and reduction 
of data based on these concepts will then 
be describe.d on a theoretical level in Sec- 
tion 5. Then we show the idea of the 
computer program CORE (constitution 
and reduction of data) prepared for prac- 
tical application in medicine. In the last 
section of the paper we will outline an- 
other possible use of the above mentioned 
information- theoretical measures of depen- 
dence. They can be utilized for estimating 
qualitative models of conditional indepen- 
dence for small groups of variables, i.e. 
for extraction of qualitative information 
from data. 

2. General description of the considered 
situation 

Let us describe the situation we have in 
mind. We already mentioned that diagnoses 
will be based on some measured symptoms or 
signs. Our problem is how to choose relevant 
symptoms for such decision making. 

Let us specify our assumptions more con- 
cretely. We will suppose that a big set of 
symptom variables S = {s,,..., q}, k 2 1 is 
given. Each symptom variable has finitely 
many, but at least two possible values. The 
values can be both quantitative (for example 
the scale of temperature) but also qualitative 
(i.e. presence or absence of a certain factor). 
Moreover, we will suppose that each symp- 
tom tcS is assigned a certain nonnegative 
weight u’, 2 0, describing the cost of obtain- 
ing the value of the variable t. For instance, it 
can reflect monetary expenses of the corre- 
sponding test. Nevertheless, a more general 
point of view on the cost can also be taken: 
certain invasive methods for obtaining data 
can be painful or risky and therefore the 
obtained symptom variable should be consid- 
ered as costly. 

Further our assumption is that a set of 
decision variables D = {d, ,. , d,,, ), m 2 1, dis- 
joint with S, is given, Every decision variable 
should correspond to a concrete diagnostic 
hypothesis, that means its values should rep- 
resent possible outcomes of the decision-mak- 
ing procedure about the diagnostic 
hypothesis. Thus, in case that the decision 
variable corresponds to a simple diagnostic 
hypothesis (for example that the patient has 
tonsillitis) the variable has only two possible 
values: YES or NO. However, one can con- 
sider also a complex hypothesis and in this 
case decision variables can have more than 
two possible values. For example, a patient 
can have rheumatoid arthritis (RA), systemic 
lupus erythematosus (SW, ankylosing 
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spondylitis (AS) or none of these diseases another method of estimation of the ‘under- 
(NO). Then the decision variable has four lying’ probability distribution and apply the 
values: RA, SLE, AS, NO. The set of all same algorithms with the only difference that 
considered variables D u S will be denoted by the information measures will be computed 
V. for these other estimates. 

The decision making will be based on pre- 
vious observations. Thus, our starting point 
will be a large data matrix ./k with y1 rows 
(representing previous observations) and m + 
k; columns. Here, each column corresponds 
to a variable in V and the element of ~2’ in 
the ith row (1 I i I n) and in the column 
corresponding to a variable CE V, denoted by 
xi., is the value of L’ obtained by the ith 
observation. Our idea is that one observation 
represents one previous patient, whose diag- 
noses (i.e. values of decision variables) were 
indubitable and where values of symptom 
variables were obtained by measurement. Of 
course, the number of observations n should 
be so high that one can expect that relation- 
ships among variables are reflected in the 
data matrix. The question whether a data 
matrix has sufficient information value is del- 
icate and should be answered by an experi- 
enced physician or statistician. 

3. Problem description 

The data matrix can serve as a source for a 
frequency estimate of the ‘underlying’ proba- 
bility distribution. Namely, for every vector 
of possible values of considered variables 

LFI-1l.E 1' one can compute the relative fre- 
quency of its occurrence as a row of the data 
matrix ,K, i.e. 

[x:, = J’~. for all CE VJ). 

This defines a probability distribution over 
V. Note that all algorithms described in this 
paper are based on this distribution, more 
exactly on information measures of stochastic 
dependence and conditional stochastic depen- 
dence computed for marginals of that fre- 
quential estimate. Perhaps one can use 

Now, let us assume that a physician has a 
diagnostic hypothesis or a collection of diag- 
nostic hypotheses concerning a new patient. 
We would like to verify it and therefore we 
need to know which symptoms or signs are 
relevant to such decision making. More for- 
mally, a set of decision variables Y c D, 
called the set of dependent variabks is given 
(perhaps Y has just one decision variable). 
Our task is to find out whether it is possible 
to make a justified decision concerning vari- 
ables in Y on the basis of symptom variables 
in S. If yes, we should find a relatively small 
set of symptom variables XC S, called the set 
of independent variables, such that a strong 
stochastic dependence between X and Y al- 
lows us to estimate with high credibility 
probabilities of values of variables in Y on 
the basis of values of variables in X. The 
choice of X should take into account the cost 
of obtaining values, i.e. X,5tX IV, should be as 
low as possible. A more concrete example of 
actual variables from medicine will be given 
in Section 6. Sometimes a physician has al- 
ready indicated symptoms and signs which 
he/she thinks are ‘relevant’ to the considered 
diagnostic decision task. Our method can 
measure their relevance ‘objectively’ on basis 
of medical data. We have experience that 
sometimes the selected symptoms and signs 
are not relevant to the considered decision 
task (because they do not bring sufficient 
relevant information). Thus, we face the 
problem of constitution qf‘ data. That is, we 
should answer the question whether symptom 
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variables together have a sufficient informa- 
tion value for Y. Therefore we can search for 
additional symptoms and signs that will have 
sufficient information value for the decision 
task in a statistical sense (for details see [l]). 

The second step, called the reduction of 
data starts with the set of symptom variables 
S. However, owing to possible strong mutual 
dependencies among variables in S perhaps 
some symptom variables having information 
value for Y can be omitted because the other 
variables in S (namely the variables with 
strong mutual dependency with the omitted 
variables) may keep that information value. 
Thus, the result of the procedure should be a 
set of independent variables Xc S with suffi- 
cient information value for Y and low cost. 
The set with minimal cost among sets having 
sufficient information value would be an 
ideal solution. 

Proper decision-making procedures should 
be based on symptom variables in X. We have 
the following idea how to perform it. First, 
patient values of symptom variables in X will 
be obtained by corresponding medical exami- 
nations. They form a vector of values [z,],~~ 
of independent variables. Second, for each 
vector of possible values bl.]l.E y of dependent 
variables one computes the conditional proba- 
bility of bL,ltit y given [I”~,]~,~~. More exactly, one 
computes an estimate of that conditional 
probability, since the basis of the computation 
is the frequency estimate of the ‘underlying’ 
probability distribution, mentioned in the pre- 
vious section. Thus, the number 

4. Information- theoretical measures of 
statistical dependence 

Our approach is based on information 
measures of stochastic dependence and of 
conditional stochastic dependence. Roughly 
speaking, information measures are nonneg- 
ative numerical characteristics of the 
strength of stochastic dependence between 
two variables (respectively the strength of 
conditional dependence between two vari- 
ables given values of a third variable). A 
basic requirement the information measure 
should fulfil is that it is zero if and only if 
the corresponding random variables are in- 
dependent (or conditionally independent). 
These measures have been developed and 
studied in information theory as tools to 
estimate the Bayes risk. 

Important properties of adequate measures 
of dependence have been pointed out already 
in the 60s by A. Perez [2,3], one of the 
founders of the Czech school of information 
theory. Mainly, the measure of dependence 
based on the classic Shannon’s information 
was studied, but also other measures, based 
on the general concept off-information were 
proposed by I. Vajda [8,9]. However, in this 
paper we will not deal with this general con- 
cept of f-information but with its special 
case, i.e. the classic Shannon’s information. 
Behaviour and suitability of different mea- 
sures of stochastic dependence were later 
studied by J. Zvarova [lO,l I]. Namely, for a 

x!> = z, for all VEX and xb = yr for all UE Y} 
card {i; XL, = zt for all EX} 

is our estimate of the probability that bI?lUEY 
is the vector of patient’s values of dependent 
variables. Acceptance or rejection of the orig- 
inal physician’s hypothesis could be based on 
these estimates. 

large class of information measures it was 
shown that they attain their maximal values 
if and only if so-called c-dependency occurs 
(for details see [l l]), which is often equivalent 
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to strict functional ( = deterministic) depen- 
dency of variables. The concept of multi-in- 
formation, introduced as a measure of 
simultaneous dependence, was studied by M. 
Studeny [5,6]. It was shown that the multi 
information function is closely connected to 
Shannon’s conditional mutual information, 
which serves as a measure of conditional 
stochastic dependence. Application of infor- 
mation measures mainly in connection with 
decision support in medicine was given for 
example in papers [ 12,131. 

Let us recall definitions of several informa- 
tion measures for the discrete case that we 
utilize in this paper. Supposing I’ is a 
nonempty finite set of variables, for every 
variable UE V the symbol R, denotes a finite 
nonempty set of its possible values. For every 
0 #A c V let us denote by R, the Cartesian 
product IICE,, R,. For example, RV denotes 
II lIE ,, R, and R,,, = II,, ,+, R,, where V\A is 
the set of variables belonging to V but not to 
A. 

Let P be a probability distribution on RV. 
Having 0 # A c V, the marginal distribution 
of P on R, denoted by PA is defined by the 
formula 

PA(y) = c {Pty, z); ZEROS,,,,,} 

for every 4’ E R,. 

Note that Pv is simply P and Pi is a short- 
ened form of Ptii where in I’. As C{P(z); 
ZER& = C{P(z); ZER,} is 1 by the defini- 
tion of probability distribution we accept a 
natural convention that PO( - ) = 1 in the 
forthcoming formulas. 

Having 0 #A c V, the entropy H(A) is 
defined by the formula 

WA) = ~V’“O-In&; XER, and 

P”(x) ’ O), 

with the convention H(0) = 0 and the multi- 
information M(A) by the formula 

M(A) = 1 PA([~t’]L.tA) *In ~.I(‘x~~x~~; 
ISA I 

where x,ER, for every VEA and 
PA([~t,],,A) > 0, with a similar convention 
M(0) = 0. Both these functions on the power 
set of V are nonnegative. 

For every couple of disjoint sets A, B c V 
Shannon’s mutual information is the relative 
entropy of PAuB with respect to the product 
of PA and PB: 

PAya, b) 
ItA; B) = ~{PAuB(a, b).ln P~(a).p~(b); 

aeR, and PAuB(a, 6) > O}. 

Note that (see [I 11) 0 I I(A; B) I 

minW(Ah fW1 and therefore Shannon’s 
information measure of A on B, defined by 

d(A/B) = Z(A; B)/H(A) 

is always a real number between 0 and 1. 
Note that in our algorithms we use this mea- 
sure of information as the criterion of 
whether data has sufficient information value 
for considered decision variables. 

For every triplet of disjoint sets A, B, 
C c V Shannon’s conditional mutual informa- 
tion is defined by 

Z,(A; B/C) = ~(PAdB”=(a, b, c) 

P A”B”“(a, b, c)-PC(c). 
‘In pAuC (a, c). PB”C(b, c)’ 

UER, and SERB and 

CER, and 

P A”B”c’(a, b, c) > 0). 

Note that Z,(A; B\0) = Z(A; B) and more- 
over it holds (see [6]). 
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a Decision variables - D 

ImllI Symptom variables - s 

X - independent variables (searched) 

Y - dependent variables (given) 

t - independent variable 

Fig. 1. Forward algorithm. 

l&4; B/C) = M(A u Bu C) + M(C) 

-M(AuC)-M(BuC) 

5. Algorithms 

Our algorithms for finding the set of inde- 
pendent variables XC S for a given set of 
dependent variables Yc D are not al- 
gorithms for finding the solution of a for- 
mally precise minimization problem. They 
have rather a heuristic nature, the choice of 
variables in X is based on conditional mea- 
sures of influence between Y and symptom 
variables which have some interpretation. All 
our algorithms have in common the stop- 
criterion which is based on Shannon’s infor- 
mation measure of stochastic dependence 
h‘( YlX). 

In principle, there is no need to distinguish 
between algorithms for the constitution of 
data and algorithms for reduction of data: 
they both solve the same mathematical prob- 
lem of choosing a subset of a given set of 
symptom variables. The only cosmetic differ- 
ence is that the result of the constitution of 
data may be the conclusion that symptom 
variables have not sufficient information 
value for Y. This should not happen in case 
of the reduction of data since the reduction 

procedure should start with the result of con- 
stitution procedure, which has a sufficient 

information value. However, algorithms are 
based on different heuristics and therefore, 
we consider some of them more suitable for 
constitution and some of them for reduction. 
Each algorithm has a specific scure function 
which assigns to a set of decision variables 
Y c D, to a set of symptom variables XC S 
and to a symptom variable t ES a nonnega- 
tive number K( Y, X, t) generally interpreted 
as measure of influence between Y and the 
single variable t under knowledge of X. Score 
functions we use are defined by means of 
information-theoretical characteristics men- 
tioned in the previous section and each of 
them has special interpretation. 

We can classify algorithms as fbrward al- 
gorithms where one starts with the empty set 
of symptom variables and adds variables, 
backwurd algorithms where one starts with 
the whole original set of symptom variables S 
and removes variables, and combined al- 
gorithms where after application of the for- 
ward procedure the backward procedure is 
used and conversely (see Figs. 1 and 2 for 
illustration). 

The algorithms can also be classified differ- 
ently. If we take influence among variables as 
the primary criterion for choice of relevant 
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q Decision variables - D 
X - independent variables (searched) 

•ll 

Y - dependent variables (given) 

Symptom variables - S f - independent variable 

Fig. 2. Backward algorithm 

symptom variables and the cost (that is the 
weight of symptom variables as mentioned in 
Section 2) as the secondary criterion, then we 
speak about an influence-prejkrring algorithm. 
However, if we take the weight iv, of a chosen 
symptom variable t as the primary criterion 
and influence among variables as the sec- 
ondary criterion, then we speak about a 
weight-preferring algorithm. 

Our algorithms can be classified according 
to the primary criterion, that is to influence- 
preferring and weight-preferring algorithms, 
and according to the way of forming of X, 
that is to forward, backward and combined 
algorithms. 

Concerning the influence -prejkrring forward 
algorithm we offer three possible score func- 
tions, applied in case that t is outside of X: 
l K( Y, A’, t) = I,.( Y; it } IX) is the measure of 

conditional dependence between Y and t 
under condition that X is known, 

l K( Y, A’, t) = I( Y; Xv {t ))is the measure of 
dependence between Y and Xu 1 t 1, 

a K(Y,X,~)=Z(Y; (t))isthemeasureofde- 
pendence between Y and t. 

Moreover, the algorithm uses a parameter 
d,,~(0, 1) which should be close to 1. The 
procedure starts by putting X, = 0, Z,, = S. 
One step of the procedure can be described as 
follows: supposing that X,, Zj c S are disjoint 
sets with X,uZ; = S one finds t~z; such that 

l t maximizes K( Y, X,, t) within Z;, and 
l w, is minimal within the set of variables 

from Zi maximizing K( Y, X,, t). 

No further condition on t is required. 
Whenever two or more variables comply with 
both conditions, we arbitrarily select one 
variable. Then we put Xi+,=Xju{t}, Zj+,= 
Z,\{t>. 

If 6( Y/X;+ 1) > 60, then the procedure 
stops and the set X = A’,, , is the result of the 
algorithm. If 6 ( Y/X;+ ,) I do and i + 1 < card 
S, then we repeat the step with Xi+ I and 
z;,,. If ~(YIX,+,)I~,, and i+l =card S, 
then the procedure stops with the conclusion 
6( Yl,S) I &, i.e. S has not sufficient informa- 
tion value for Y. 

Score functions used in the injluence-pre- 
ferring backward algorithm are applied in 
case that t belongs to X: 
l K( Y, X, t) = I,( Y; {t)lX\{t}) is the mea- 

sure of conditional dependence between Y 
and t under condition that knowledge 
about X\{ t ‘, remain known, 

l K(Y,X,~)=I(Y;X)-I(Y;X\{t}) is the 
decrease of measure of dependence be- 
tween Y and X, when t is removed from X. 

Except the score function the algorithm has a 
parameter d‘,,~(0, 1) close to 1. The procedure 
starts by putting X,, = S, Z, = 0. Supposing 
Xi, Zj is a decomposition of S we compute 
the value of n( Y/X,). If 6( Y/X,,) I &, then 
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the procedure stops with the conclusion that 
S has not sufficient information value for Y. 
If i 2 1 and S( Y/X;) I do, then the procedure 
stops and the set X= Xi-1 is the result of the 
algorithm. If i 2 1 and 6( Y/Xi) > So, then we 
find arbitrary t E& such that 
l t minimizes K( Y, Xiy,, t) within Xi, and 
l M;, is maximal within the set of variables 

from X, minimizing K( Y, Xj, t). 
and put X,,, = X;\{t}, Zi+, =Ziu (t> and 
repeat the step with Xi+ , and Z,, 1. 

Injluence-preferring combined algorithms 
can be obtained when the procedure starts as 
forward algorithm and on its result the back- 
ward algorithm is applied (or conversely). 

The weight-preferring forward algorithm 
has the same score functions as the influence- 
preferring forward algorithm, but also a 
parameter 6,~(0, 1) close to 1. Moreover, it 
has a floating parameter E 2 0. The parame- 
ter E has the role of internal threshold 
(changed during the performance of the al- 
gorithm) used to ‘determine’ whether we will 
consider a symptom variable t sufficiently 
influential with respect to Y under knowledge 
of X (unlike the parameter 6, which is used 
to determine whether the overall information 
in X is sufficient for Y). That is whenever we 
reset the value of E we perform the following 
proper procedure, which gives a set of symp- 
tom variables X as result. 

Proper procedure: We order all variables of 
S into a sequence t, ,. . ., t, such that weights 
of variables increase in this sequence. The 
ordering will remain fixed for future possible 
use of this proper procedure. The procedure 
starts by putting X,, = 0. The step of the 
procedure is simple: suppose X, is determined 
and K(Y,X~,~,.+~)~E we put Xi+,= 
X, u { ti+ ,}, otherwise X, + , = Xi. After all n 
steps we put X= X,. 

Note that for E = 0 the procedure above 
gives J?= S, a higher value of E produces less 
2 and for sufficiently high E is f = 0. Ac- 

cording to the value of 6( Ylm we can decide 
whether we will change the value of the 
parameter E and repeat the proper procedure 
or whether we stop the algorithm. Namely, if 
we start with E = 0 and if then ~?(Ylf) I &, 
then we stop the algorithm with the conclu- 
sion that S has not sufficient information 
value for Y. If 6( YlJ!?) > &, then we choose a 
higher value of E and repeat the proper 
procedure with the new parameter. By gradu- 
ally raising the value of E we reach the 
situation when 6( YlT) I &. Then we again 
decrease the value of E but not below the 
previous value of E. Thus, we alternatively 
decrease and increase the value of E with the 
aim to find minimal 2 for which 6( VI% > 6, 
(it must exist since only a finite number of 
sets 2 may be generated). Then we restart the 
proper procedure with modification that after 
each of its step 6( Ylxi+ J is computed. In the 
case6(YIX,+,)>&ori+l=cardSwestop 
the procedure and put X = X, + , . 

The weight -preferring backward algorithm 
has the same score function as the influence- 
preferring backward algorithm, parameter 
&E(O, 1) close to 1 and also uses a floating 
parameter E 2 0. Like in case of the weight- 
preferring forward algorithm the proper pro- 
cedure below assigns to E a set 2 c S, where 
2 = S for E = 0, higher value of E gives less 
2, and 2 =O’ for sufficiently high E. 

Proper procedure: We order variables of S 
in a sequence tl,. . ., t, with decreasing weights 
and fix the sequence. The procedure starts by 
putting X, = S. Its steps are simple: if 
~(y, x,, 6, ,) < E, then put xi+ I = Xj\{tj+ ,f, 
otherwise Xi + 1 = X,. Finally, we put z = X,. 

Thus, we start with E = 0 and in case 
d(Yp$ Id, we conclude that S has not re- 
quired information value for Y. Otherwise we 
let E float, like in the previous algorithm, 
until we reach minimal d with S( Yin > & 
and then we perform a modified proper pro- 
cedure, where 6( YlX, + ,) is computed after 
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each step. In case 6( YlX,, r) > &, and i + 1 < 
card S we continue with a further step of 
the procedure. In case 6( YlX,, ,) I &, and 
i + 1 < card S we stop the procedure and put 
X= X,. In case i + 1 = card S we stop the 
procedure and put X = X,, , . 

Remark: It is not wise to use the same 
algorithm for reduction of data as for consti- 
tution of data, as it should give the same 
result (provided we did not change the 
parameter 6,). We recommend for constitu- 
tion the inference-preferring backward al- 
gorithm and for reduction the weight- 
preferring forward algorithm. 

6. Program CORE 

Some of the above mentioned algorithms 
have been already implemented in a demo- 
version of the program CORE which is in- 
tended for practical application in medicine. 
The program is written in MS ACCESS and 
has data matrix J&Z, described in Section 2 as 
its input (MS ACCESS is a database system 
from Microsoft). For every A, B c V the 
program computes entropies H(A), H(B), 
Shannon’s mutual information Z(A; B), 
Hoffding’s coefficients of statistical depen- 
dence and minimum probability of error. 
Moreover, Shannon’s information measure of 
dependence 6(A IB), its variance, standard de- 
viation and 95% confidence interval can be 
calculated. A special subprogram computes 
values of multiinformation function for sub- 
sets of V of small cardinality and then Shan- 
non’s conditional mutual information 
IJ.4; BIG) (for every triplet of disjoint sets A, 
B, Cc Vwith card AuBuCI4) which can 
be used for testing conditional independence 
statements. We plan to utilize it for estimat- 
ing conditional independence models for 
small groups of variables (see the next sec- 
tion). 

Moreover, all influence-preferring al- 
gorithms described in the previous section are 
implemented (for some score functions). The 
other algorithms will be included in a later 
version of the program CORE. 

7. Estimating of conditional independence 
models for small groups of variables 

In this section we describe another possible 
application of information-theoretical mea- 
sures of dependence. We already mentioned 
in Section 4 that one can express Shannon’s 
conditional mutual information I,(A; BIG) 
for every triplet A, B, C of disjoint variable 
sets by means of the multiinformation func- 
tion. The number I,(A; BIG) is a measure of 
conditional dependence in the sense that it is 
always nonnegative and is zero if and only if 
variables in A are conditionally independent 
of variables in B given C. This relationship 
has very clear interpretation, often used in 
probabilistic expert systems [4]: provided we 
know values of variables in C, the value of 
variables in B is not relevant to values of 
variables in A. Therefore, when one is inter- 
ested in A and knows already C, it is needless 
to investigate B (this intuition is used in our 
algorithms with Shannon’s conditional mu- 
tual information as score function). 

The program CORE offers the possibility 
to estimate this measure of conditional de- 
pendence and therefore opens the perspective 
of testing of conditional independence state- 
ments on the basis of data. There are several 
reasons why we should limit ourselves to 
small groups of variables-that is up to five 
variables. First, the frequency estimates of 
marginal distributions for small number of 
variables should be more precise than for 
more variables, which demand more data for 
the same accuracy level. Second, the number 
of models of conditional independence struc- 
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ture superexponentially increases with num- 
ber of variables. The case of 4 variables is on 
limit of effective handling (in the case of 4 
variables the number of possible structures of 
conditional independence is around 18 OOO- 
see [7]). However, for its representation in a 
computer one needs in the case of 3 variables 
6 bits, in the case of 4 variables 24 bits and in 
the case of 5 variables 80 bits. Third, it is 
known that the human brain is able to com- 
bine only a few facts simultaneously. Since 
we are interested in estimation of overall 
model of conditional independence structure, 
models involving a lot of variables loose jus- 
tification. 

The above mentioned overall models of 
conditional independence structure have of- 
ten a very concrete interpretation. In the area 
of probabilistic expert systems mainly graphs 
are used to describe the structure and experts 
are asked to draw graphs when one needs to 
elicit structural information from experts. 
The purpose of estimating conditional inde- 
pendence from data is that one can check 
whether expert’s statements about a structure 
are consonant with empirical data. Or con- 
versely, one can elicit from data information 
about structure which can be later either 
confirmed or refused by experts. Anyway, 
measures of conditional dependence provide 
a method how to obtain from unstructured 
quantitative information (data) qualitative in- 
formation (structure). 
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