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Abstract 

The inclusion problem deals with how to 
characterize (in graphical terms) whether all 
independence statements in the model in
duced by a DAG K are in the model induced 
by a second DAG L. Meek (1997) conjec
tured that this inclusion holds iff there exists 
a sequence of DAGs from L to K such that 
only certain 'legal' arrow reversal and 'legal' 
arrow adding operations are performed to get 
the next DAG in the sequence. In this paper 
we give several characterizations of inclusion 
of DAG models and verify Meek's conjecture 
in the case that the DAGs K and L differ in 
at most one adjacency. As a warming up a 
rigorous proof of graphical characterizations 
of equivalence of DAGs is given. 

1 Introduction 

Learning Bayesian network structures requires search 
in the space of directed acyclic graphs (DAGs). To 
prove that such learning algorithms return (local) op
timal networks, the search space needs to be character
ized. A natural way of doing this is to consider the set 
of conditional independence statements represented by 
the DAGs in the search space. Once it is known how 
to characterize all the properties of two DAGs K and 
L such that independence statements represented in 
K are represented in L as well, efficient search algo
rithms can be designed based on this characterization. 
This characterization problem is called the inclusion 
problem. 

Meek (1997) formulated a conjecture which states 
that inclusion holds iff a special sequence of DAGs 
G1, .. . , Gn starting with L = G1 and ending with 
K = Gn exists. Here, Gi+1 is obtained from G; 
either by adding an arrow or by performing a sin
gle arrow reversal (this arrow reversal is special in 

that it does not introduce new represented indepen
dence statements). Many search algorithms for learn
ing Bayesian networks rely on this conjecture being 
true for optimality of the learned network structures. 

In this paper we give an overview of current state of our 
research in the inclusion problem. The next section 
deals with basic concepts and notation, in Section 3 
some of our specific concepts are introduced. Section 
4 is devoted to equivalence charaterization, Section 5 
is an overview of conditions related to the inclusion 
problem and tries to develop some insight in the nature 
of the inclusion problem. Section 6 contains the main 
result: we characterize the case when two DAGs differ 
in only one adjacency. 

2 Basic concepts 

Throughout the paper the symbol N denotes a non
empty finite set of variables which are identified with 
nodes of graphs. Juxtaposition AB where A, B � N 
will stand for the union A U B. Independence and 
dependence statements over N correspond to special 
disjoint triplets over N. The symbol (A, BIG} de

notes a triplet of pairwise disjoint subsets A, B, C of 
N. The symbol T(N) will denote the class of all dis
joint triplets over N. 

2.1 Graphical concepts 

A directed graph G over a set of nodes N is specified 
by a collection of arrows, that is a collection A(G) of 
ordered pairs ( u, v) of distinct nodes u, v E N, u ::j:. v. 

We write u -+ v in G or u -+ v [G] to denote that 
( u, v) E A( G); the symbol of the graph can be omitted 
if it is clear from the context. In an arrow u -+ v, 
denoted alternatively by v t- u, u is called the tail 
node and v the head node. Furthermore, we say that 
u is a parent of v and v is a child of u. The set of 
parents of u in G will be denoted by pa0 ( u) , the set of 
children by cha ( u) . A subgraph of a directed graph G 
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over N is determined by a non-empty set of its nodes 
A � N and by the set of its arrows which is a subset 
of A(G) n (A x A) (strict inclusion is allowed). The 
induced subgraph of G for a non-empty set B � N is 
the graph G8 over B having A(GB) =A( G) n(B x B) 
as the collection of its arrows. 

We write u B v [ G] to denote that there is an edge 
or an adjacency between distinct nodes u and v in G 
which means that either u -+ v in G or u +-- v in G. 
The set of edges in a directed graph G is the collection 
£(G) = { {u,v} ; u B v [G] } of respective two
element subsets of N. If there is no edge between u 
and v in G then we write u t4 v [G] to denote this 
non-adjacency. 

A trail in G (between nodes u and v) is a sequence 1r 

of (not necessarily distinct) nodes Wt , • • .  , w k, k :2:: 1 
such that w; t-t Wi+l [G] for every 1 ::; i < k (and 
either Wt = u, Wk = v or w1 = v, Wk = u). It is called 
a path if all nodes w1, . . . , Wk are distinct. A section 
of a path w1, . . . , Wk, k :2:: 1 is a path Wi, ... , Wj where 
1 ::; i ::; j ::; k. We say that w;, 1 < i < k is a collider 
node of a path 1r if w;_1 -+ w; in G and w; +-- Wi+t in 
G. Every other node of 1r is called a non-collider node 
of ?t. A path 1t in G is called open if it has no collider 
node. We will write Wt - w2 - ... - Wk [G], k :2:: 1 
to denote an open path in G. 

A trail, resp. a path, is called directed if w; -+ w;+l [G] 
for i = 1, ... , k - 1. We say that it is a path from a 
node u to a node v (from A� N to B � N )  if w1 = u 
and Wk = v (w1 E A and wk E B). A node u is called 
an ancestor of a node v in G (alternatively v is a de
scendant of u in G) if there is a directed path from u 
to v in G. Observe that every node is its own ancestor 
and its own descendant since paths with only a sin
gle node are regarded as directed paths. The symbol 
ana( A) will denote the set of all ancestors of nodes of 
a set A � N in G and dsa ( u) the set of descendants 
of a node u in G. 

A directed cycle is a directed trail wr, ... , wk, k :2:: 3 
such that w1 = Wk and wr, ... ,Wk-l are distinct 
nodes. A directed acyclic graph (DAG or ADG) is a 
directed graph without directed cycles. Note that ev
ery trail (path) in a DAG, which has been defined as a 
sequence of nodes, has uniquely determined the (type 
of) arrows connecting consecutive nodes and therefore 
IA(G)I = I£(G)I for every DAG G. Another observa
tion is that a subgraph of a DAG is also a DAG. A 
well-known equivalent definition of a DAG is as fol
lows: G is a directed graph and all its nodes can be 
ordered into a sequence ur, ... , un, n :2:: 1 such that 

paa(u; ) � {uj;l::; j < i} for every i = 1, ... ,n. 
An ordering of this type is called a causal ordering 
for G. A terminal node is a node without children. 

Well-known fact is that every DAG has at least one 
terminal node. We say that distinct nodes u, v, w 

form an immorality in a directed graph G and write 
( u, v) ...._.. w [ G] if u --+ w in G, v --+ w in G and 
u -i>4 v [G]. In fact, an immorality in a DAG G is 
nothing but a special induced subgraph of G. 

An undirected graph H over N is specified by a col
lection .C(H) of two-element subsets of N which are 
called lines in H. By the underlying graph o£ a di
rected graph G over N is understood an undirected 
graph H for which C.(H) =£(G). 

2.2 Induced models 

One of possible ways of associating independence mod
els with DAGs is by d-separation criterion from (Pearl 
1988). Let 1r: w1, . .. ,wk, k :2:: 1 be a path in a DAG 
G. The path 1t is called active with respect to a set 
C � N (shortly w.r.t. C) if 

• every non-collider node of rr is not in C, 

• every collider node of 1t has a descendant in C. 

Suppose that (A, BIC) E T(N ) is a disjoint triplet 
over N; one says that A and B are d-connected given 
C in a DAG G, written A 1f B I C [G], if there exists 
a path between a node a E A and a node b E B in 
G which is active w.r.t. C. In the opposite case one 
says that A and B are d-separated by C in G which is 
denoted by AlL B I C [G]. We also say that (A,BIC) 
is represented in G according to the d-separation cri
terion. The induced independence model I( G) and the 
induced dependence model V(G) are as follows: 

I( G)= {(A, BIC) E T(N ); AlL B I C [G] }, 

V(G) = {(A, BIG) E 'T(N); A 1f B I c [GJ }. 

Note that an alternative to the d-separation criterion 
is the moralization criterion introduced by Lauritzen 
et. al. (1990). 

3 Specific concepts 

This section describes some specific concepts we re
gards as relevant to the inclusion problem. Our con
cept of dependence complex has, despite its long tech
nical definition, a good intuitive sense and hopefully 
brings insight into the problem. For example, it is 
essential for our later Conjecture 2. 

3.1 Dependence complex 

Let G be a DAG over N ,  C � N and a, b E N \ C are 
distinct nodes. Let 71' : w1, . . •  , wk, k :2:: 2 be a path in 
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G between a = w1 and b = Wk which is active w.r.t. 
C. Every collider node d of 1r which is not in C has 
necessarily a descendant c E C, c =!=din G. By a rope 
ford (with respect to 1r) will be understood a directed 
path p : t1, . . .  , tr, r 2: 2 in G from d = t1 to a node 
c = t,. in C such that 

• p is outside C with exception of c, i.e. 
t1, · . . , tr-1 � C, 

• p does not share a node with 1r except d, i.e. 
tz, . . .  , t,. (/. {wt, ... , wk}. 

Let us denote by col ( 1r, C) the set of collider nodes of 
1r which are outside C. 

A dependence complex (between a and b) for C in G 
is a special subgraph � of G. First, we specify the 
collection of arrows of a dependence complex. Each 
complex � (for C) is specified by the following items: 

• a path 1r in G which is active w.r.t. C, 

• a collection of ropes {p(d); d E col (1r, C)} with 
respect to 1r, 

where every collider node d E col (1r, C) has assigned 
only one rope p(d) in � and the ropes for distinct col
lider nodes do not share a node. The collection of 
arrows in � then consists of the arrows involved in 1r 

and in p( d) for d E col ('rr, C). Second, we specify the 
set of nodes of a dependence complex as the set of head 
nodes and tail nodes of the chosen arrows. Thus, � is 
a subgraph of G which need not have the whole set 
N as the set of nodes. Instead of dependence complex 
forCinG we say shortly C-complex in G (between A 
and Bin case a E A and bE B). 

Let us emphasize that every dependence complex � 

uniquely decomposes into the path 1r and the collection 
of ropes. Indeed, every node of a given subgraph K of 

G (which was constructed as a dependence complex in 
G for a set C � N and a, b E N \ C) can be classified 
into one of three groups according to the number of 
edges of K 'entering ' the node (this number varies from 
1 to 3). The conditions required in the definition of a 
dependence complex above imply that a node of K has 
3 'entering' edges iff it belongs to col (1r, C). Moreover, 
a node of this kind is twice a head node and once a tail 
node: this determines which of the 'branches' outgoing 
the node is a rope. 

LEMMA 3.1 Let G be a DAG over N, C o; N and 
a, b E N \ C are distinct nodes. Then a 1T b I C [G] 
iff there exists a dependence complex in G between a 
and b for C. 

Proof: A complete proof can be found in (Kocka et. 
al. 2001). The main idea of the necessity proof is to 
choose an active path 1r with respect to C with mini
mal number of collider nodes and to choose for every 

d E col ( 1r, C) as a rope a directed path from d to C 
with minimal number of arrows. D 

Note that the concept of dependence complex corre
sponds to the concept 'path-with-tails' mentioned by 
Matus (1997). 

3.2 Composite dependence statements 

The point is that every dependence complex ensures 
validity of a certain composite dependence statement. 
Given a DAG G over N, distinct nodes u, v E N and 
disjoint sets S, T � N \ { u, v}  we interpret the symbol 
u 1T v I  + T- S [GJ as the condition 

u 1T v I W [G] whenever T � W � N \ { u, v} U S. 

In words, u and v are (conditionally) dependent in 
G given any superset of T which is disjoint with S. 
In case that T respectively S is empty the symbols 
+T respectively -S are omitted; if both T and S is 
empty we write* instead of +T- S. Observe that if 
,._ is a dependence complex between a and b for C in 

G, S is the set of non-collider nodes of the respective 
active path 1r except a, b and T is the set of nodes of ,._ 

belonging to C then a 1T b J + T- S [G]. Thus, every 
dependence complex ensures validity of a composite 
dependence statement but the converse in not true in 
general. 

We give a certain graphical characterization of some 
composite dependence statements of this kind below. 
These auxiliary results were proved in (Studeny 1997) 
as Lemmas 3.1, 3.2 and 3.3 in wider context of chain 
graphs; see also (Verma Pearl 1991). 

LEMMA 3.2 Let G be a DAG over Nand u, v E N are 
distinct nodes. Then 

u lL v I paa (u)paa (v) [G] whenever u y4 v [G]. 

LEMMA 3.3 Let G be a DAG over N and u, v E N are 
distinct nodes. Then 

u ++ v ·[G] iff u 1T v I  * [G]. 

LEMMA 3.4 Let G be a DAG over Nand u, v, w E N 
are distinct nodes such that u ++ w [G] , v ++ w [G] 
and u y4 v [G]. Then 

(u, v) """ w [G] iff u 1T v i  +w [G]. 

Note that pure composite dependence statement 
u 1T v I  + w [G] can be characterized in graphical 
terms as follows (Kocka et. al. 2001): either u ++ v [G] 
or u -t t +- v in G and t E ana ( w) for some t E N. 
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F igure 1: Rope modification (shortening) in L. 

Figure 2: Path shortening in L. 

4 Equivalence of DAGs 

In this section we deal with a well understood special 
case of the inclusion problem - the equivalence prob
lem. It is the problem how to recognize whether two 
given DAGs K and L over N induce the same inde
pendence model. It is of special importance to have an 
easy rule how to recognize that two DAGs are equiv
alent in this sense and an easy way to get from L to 
K in terms of some elementary operations on graphs. 
These issues were already treated by Verma and Pearl 
(199 1), Heckerman et. al. (1994), Chickering (1995) 
and Frydenberg (1990) in the context of chain graphs. 

By a legal arrow reversal is understood the change of 
a DAG L into a directed graph K by replacement of 
an arrow a -+ b (in L) by b --1 a (in K) under the 
condition that paL(a) U a= paL(b) (here a,b E N  are 
some distinct nodes). 

Note that Chickering (1995) used covered edge and 
Meek (1997) covered arc instead. The following ob
servations follow from Lemma 1 in (Chickering 1995). 

OBSERVATION 4.1 The result of a legal arrow reversal 
operation is a DAG. 

LEMMA 4.1 Let K and L be DAGs over N such that 
K is obtained from L by a legal arrow reversal. Then 
I(K) = I(L). 

An alternative proof of Lemma 4.1 which uses the con
cept of dependence complex can be found in (Kocka 
et. a!. 200 1). Basic idea is to apply Lemma 3.1 to 
a lf b I C and show that every C-complex between a 
and b in L with minimal number of edges must be in K 
(and conversely). To prove this fact by contradiction 
modifications (shorthening) of the considered complex 
in L indicated by Figures 1 and 2 are made. 

LEMMA 4.2 Supposing K and L are DAGs over N the 
following three conditions are equivalent: 

(I) I(K) = I(L), 

(2) £(K) = £(L) and the graphs K and L have the 
same immoralities, 

(3) there exists a sequence G1, ... , Gm, m > 1 of 
DAGs over N such that G1 = L, Gm = K and 
G;+I is obtained from G; by legal arrow reversal 
for i = I, ... , m - 1. 

Note that the equivalence (1) ¢::> (2) was proved in 
(Verma Pearll99 1), in the framework of chain graphs 
in (Frydenberg 1990); the equivalence (1) {::} (3) was 
proved in (Heckerman et. a!. 1994) and (Chickering 
1995). Our proof is different in that it is construc
tive and provides an algorithm for finding the sequence 
mentioned in (3). The algorithm can be applied in case 
of the inclusion problem - see Section 6. 

Proof: We show (I)=? (2) => (3) =? (I). The impli
cation (1) =? (2) is an easy consequence of Lemmas 3.3 
and 3.4 as I(K) = I(L) is equivalent to 'D(K) = 'D(L). 

The proof of (2) =? (3) is done by induction on INI. 
The induction hypothesis for n 2: 1 is that (2) => (3) 
holds for any pair of DAGs K, L over N with INI ::; 
n. This is evident for n = 1. Assume n = INI 2: 2 
and that the implication holds for DAGs over N' with 
IN11 < n. The first step is to choose a terminal node 
tEN inK and put P = paL(t), C = chL(t). Observe 
that £(K) = t:(L) implies paK(t) = PUC. One can 
distinguish two cases 

I. C = 0 which means paL(t) = paK(t), 

II. C f- 0 which means paK(t) \paL(t) f- 0. 

If C = 0 then introduce L' respectively K' as the in
duced subgraph of L respectively K for N':::: N \ {t}. 
By the induction hypothesis a desired sequence of 
L' == Gi, ... , G� = K', m 2: 1 exists. Introduce Gi as 
the graph over N obtained from Gi by adding a bunch 
of arrows from nodes of P to t for i == 1, ... , m. It is 
easily seen that Gi+1 is obtained from Gi by a legal 
arrow reversal for i ::= 1, ... , m - 1. 

If C # 0 then choose c E C such that no other c' E C 
is an ancestor of c in L. This choice is always possible 
and ensures that pat(c)nC = 0. The second step is to 
observe P � padc). Indeed, suppose that p t4 c [L] 
for some p E P. Then, p t4 c [K], p ++ t [K] and 
c ++ t [K] by [(K) = £(£). Since t is a terminal 
node in K one has (p, c) � t [K] and (p, c) � t [L) 
by (2). This however contradicts the fact t -t c in L. 
Thus, necessarily p ++ c [L]. Since L is acyclic and 
p -+ t -+ c in L it implies p --1 c in L. The third 
observation is that paL(c) � P U {t}. Indeed, suppose 
for contradiction that there exists y E N \ P, y f- t 
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in L 

Figure 3: Proof of paL (c) <::; P U {t} by contradiction. 

such that y -+ c in L (see Figure 3 for illustration 
where, however, arrows from P to C are omitted for 
sake of lucidity). Since y (j_ P and y (j_ C (because of 
the choice of c) one has t t4 y [L]. Thus y -+ c t- t in 
L implies (y, t) "-"' c [L] and (y, t) "-t c [K] by (2). This 
contradict the fact c -+ t in K. Therefore, necessarily 
paL(c) = P U {t}. 

The fact padc) = paL(t) U {t} means that the arrow 
t-+ c in L can be legally reversed. By Lemma 4.1 and 
(1)=H2) the same procedure can be repeated until all 
arrows in C are legally reversed. Thus, a sequence 
L = G1, ... , G k, k � 2 is constructed by legal arrow 
reversals such that t has the same parents in G k as in 
K. Then, the case I. occurs for the pair (Gk, K) which 
was already solved. This concludes the induction step. 

The proof of (3) ::} (1) can be done by repetitive ap
plication of Lemma 4.1. D 

5 Conditions for inclusion 

In this section, some characterizations of inclusion are 
given in terms of graphical conditions and insight is 
obtained on the nature of such conditions. We give an 
overview of various necessary conditions on DAGs K 
and LoverN for validity of inclusion I(K) <::; I(L). 
Everybody who takes up the inclusion problem finds 
almost immediately that the following three basic con
ditions are necessary for inclusion I(K) <::; I(L): 

(a) u ++ 11 [L] =::;. u ++ 11 [K], 

(b) (u, v) "-"' w [L] ::} u ++ v [K] or (u, v) "-t w [K] , 
(c) (u,11)"-tw [K] =* 

u t4 w [L] or w t4 11 [L] or (u, v)""" w [L], 

(see Observation 5.1 and 5. 2 below). Note that the 
condition (b) respectively (c) can be under (a) equiv
alently formulated as follows (observe that X =::;. Y is 
equivalent to --,y ::} -,X): 

(b) u-+ w t-v [L] =* u ++ 11 [K] or u-+ w t-v [K], 

(c) u- w- v [L] =? u t-t v [K] or u-w- v [K]. 

Figure 4: Basic conditions are not sufficient. 

The conditions are also sufficient in the following 
rather special case where two DAGs have the same 
number of edges. 

LEMMA 5.1 Suppose that K, L are DAGs over N such 
that lt'(K)I ::; I£(L)I. Then the conditions (a), (b) and 
(c) arc necessary and sufficient for I(K) <::; I(L). 

Proof: This follows from Lemma 4.2. The con
dition (a) says t'(L) <::; t'(K) which together with 
I£(K)I ::; 1£(£) 1 implies £(K) == t'(L). The condi
tions (b) and (c) then imply that K and L have the 
same immoralities. D 

Verma and Pearl (1988) formulated (using another no
tation) in one of their technical reports three necessary 
conditions on DAGs K and L over N. We call them 
Verma's condi tions. 

(i) u ++ v [L] =* u ++ v [K], 

(ii) u 1f vI + w [L] => u 1f vI + w [K], 

(iii) u 1f v I + w [K], u t+ w [L]' w ++ v [L] ::} 

u lf w I + w [L] or u t-t v [K]. 

Note that (i) is nothing but (a) and one can show 
that (iii) is under (a) equivalent to (c) by Lemma 3.4. 
However neither the basic conditions nor Verma's con
ditions are sufficient for I(K) <::; I(L) in general as the 
example in Figure 4 shows. Condition (a) evidently 
holds since every edge in L is in K. Condition (b) 
holds since no configuration ( u, v) "-"' w exists in L 
and condition (c) applies to (a, d) ""' b for which the 
edge b t+ d is missing in L. So, the conditions (a), 
(b) and (c) are evidently fulfilled in that case but one 
has a J.l. d 10 [K] while a lT d 10 [L] which implies 
...,{I(K) <::; I(L)}. 

Let K and L are DAGs over N. We will call the fol
lowing 3 conditions the inclusion conditions for K in 
L (here,u, v, w are distinct elements of N): 

(a) u t-t v [L] => u t+ v [K], 
(b) (u,v)""' w [L] ::} u ++ v [K] or (u,v) "-"' w [K], 

(*) (u,v) "-"' w [K] ::} u ll v I paK(u)paK(v) [L]. 
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Clearly, Lemmas 3.3, 3.4 and 3.2 imply almost imme
diately the following observation (for (b) use (a)). 

OBSERVATION 5.1 The inclusion conditions for K in 
L are necessary for validity of I(K) � I(L). 

OBSERVATION 5.2 The inclusion conditions for K in 
L imply the basic necessary conditions (a), (b), (c). 

Proof: It suffices to verify (c). If (u, v) '"'--+ w [K] then 
let W = paK(u)paK(v) and observe w rt W. Suppose 
that the conclusion of (c) is not valid. This means 
either u ++ v [L] which contradicts the fact u <It v [K] 
by (a), or u <It v [LJ and the path u, w, v in L has no 
collider nodes. This path is then active w.r.t. W (as 
w rJ. W) which means u lf vI W [LJ. However, the 
condition ( *) implies u ll v I W [L] which contradicts 
that fact. Thus, the conclusion of (c) must hold. D 

CONJECTURE 1 The inclusion conditions for K in L 
are sufficient for I(K) � I(L). 

The inclusion conditions can be strengthened to get 
one necessary and sufficient condition called the en
forced inclusion condition: 

LEMMA 5.2 Let K and L be DAGs over N. Then 
I( K) � I( L) iff the enforced inclusion condition ( **) 
holds. 

Proof: If T(K) � I(L) then (**) by Lemma 3.2. 
A well-known result from (Verma Pearl 1990) implies 
that to show (**) ::} {T(K) <; I(L)} it suffices to 
verify LK,B � T(L) for an input list generated by a 
causal ordering() : ub ... , Un for K. It can be shown 
that (ui, u1 . . . ui-1 \ paK(u;)JpaK(u,)) E I(L) by in
duction on i = 1, . .. , n. The essential tool for proving 
this is the observation that I(L) is a graphoid which 
satisfies the composition property from (Pearl 1988). 
The details of the proof can be found in (Kocka et. al. 
2001). D 

Some graphical conditions mentioned above were local 
in the sense that their verification depends on sub
graphs involving only a few nodes. Now, we show 
that one cannot expect full characterization of I(K) � 
T(L) in terms of conditions of this type. Consider 
the independence model whose only non-trivial inde
pendence statement corresponds to a disjoint triplet 
(a, bJ Z). Figure 5 shows a DAG K of that represents 
a model of this type. It is very easy to construct a 
DAG L such that there is only a single path from a to 
bin L which ensures a lf bIZ [£]. Obviously, a path 
of this type can be made as long and complex as one 
likes which means that plenty of these DAGs L exists. 

z 

R 

Figure 5: A counterexample to locality of conditions. 

The key insight here is that this general example shows 
that one has to look for a set of conditions in which at 
least one has a non-local aspect. 

In the case when K and L differ in at most one ad
jacency, the following set of local graphical conditions 
characterize inclusion. 

(a) u t-t v [L] =? u B v [K], 

(b) u-+ w � v [L] => u +-+ v [K] or u-+ w � v [K], 

(c) u- w- v [£] => u +-+ v [K] or u- w- v [K], 
(d) u-+ w � t +-+ v [L] =? u +-+ v [K] or u- t-v [K] 

or u-+ w � v [K] or u-+ w f- t +-+ v [K], 
(e) u- w- t-v [£] =? u B v [K] or u- w- v [K] 

or u- t-v [KJ or u- w -t-v [K]. 

LEMMA 5.3 The conditions (a)-(e) are implied by the 
inclusion conditions for K in L. In particular, they are 
necessary for I(K) � I(L). Moreover, they remain 
valid if K respectively L is replaced by an equivalent 
graph. 

Proof: The proof is in (Kocka et. al. 2001). The 
invariance relative to equivalence can be shown by 
reformulating these conditions in terms of respective 
minimal dependence complexes, i.e. complexes with
out proper subcomplexes, which appear to be invari
ants of equivalence classes of DAGs. D 
Later Lemma 6.1 implies that the conditions (a)-(e) 
are also sufficient in case I£(K)I :::; 1£(£)1 + 1. Note 
that u ++ v ensures u lf vI*, u -+ w +--- v ensures 
u lf vI + w, u - w - v ensures u lf vI - w, 

u-+ w +--- t ++ v ensures u 1r vI +w-t and u-w-t-v 
ensures u lf v I -wt. Thus, (a)-(e) can be intuitively 
interpreted as follows. If L has a dependence com
plex which ensures the validity of a certain compos
ite dependence statement then K has a 'subcomplex' 
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which also ensures the validity of that composite de
pendence statement. We think that the idea behind 
the construction of these conditions can be extended 
to a general case and dare to formulate the following 
conjecture. 

CoNJECTURE 2 The following condition 

(D) Every (minimal) dependence complex in Lhas a 
(minimal) subcomplex inK. 

is necessary and sufficient for I(K) s; I(L). 

However, one has to specify carefully and formally 
when a complex in K is a subcomplex of a given com
plex in L. This involves a lot of technicalities - an 
attempt is made in (Kocka et. al. 2001). 

6 Meek's conjecture 

In this section Meek's conjecture (1997) is recalled and 
verified in a special case when DAGs differ in at most 
one adjacency. 

By legal arrow adding is understood the change of a 
DAG L into a directed graph K by adding an arrow 
a ---t b in K which is not in L such that the resulting 
graph K is a DAG. 

The following observation is evident. 

OBSERVATION 6.1 If K is obtained from L by legal 
arrow adding then I(K) s;; I(L). 

CONJECTURE 3 (Meek 1997) 
The condition I(K) � I(L) is equivalent to the exis
tence of a sequence of DAGs G1, ... , Gn, n ? 1 such 
that L = G1, K = Gn and Gi+l is obtained from Gi 
by applying either the operation legal arrow reversal or 
the operation of legal arrow adding for i = 1, ... , n- 1. 

Observation 6.1 and Lemma 4.1 imply that the exis
tence of above sequence implies I(K) � I(L). Cur
rently there is no known counterexample against the 
Meek's conjecture. 

REMARK 6.1 One may think that a simpler version 
of Meek's conjecture could be valid. Namely that for 
two DAGs K and L over N the inclusion I(K) � 
I(L) implies that there exists a sequence of DAGs 
L, .. . , L., ... , K., . . .  , K where L. is obtained from L 
by a sequence of legal arrow reversals, K. is obtained 
from L. by a sequence of legal arrow addings and K 
is obtained from K. by a sequence of legal arrow re
versals. This is to warn the reader that this is not the 
truth. A counterexample is shown in Figure 6. The 
example shows two DAGs K and L such that there 

U£ M � 
Figure 6: Meek's conjecture cannot be simplified. 

Figure 7: General starting situation. 

are no equivalent DAGs K * and L. which have the 
same terminal node ( c is always a terminal node in 
K. but not in L.). Thus, it is not possible to ob
tain any K. from any L. by legal arrow addings as 
causal orderings of these always differ. On the other 
hand, I(K) � I(L) since K can be obtained from L 
by adding of b ---+ d, then reversal of c ---+ d and adding 
of a ---+ c. 0 

LEMMA 6.1 Let K, L are DAGs over N satisfying the 
conditions (a)-(e) and the condition 

(•) IE(K)I = IE(L)I + L 

Then there exists a sequence G1, .. . , Gn, n > 2 of 
DAGs over N and 1 :::; m < n such that 

• G1 = L, Gi+l is obtained from Gi by legal arrow 
reversal for i = 1, . . . , m - 1, 

• Gm+l :::::: K. is obtained from Gm :::::: £. by legal 
arrow adding, 

• GH1 is obtained from Gi by legal arrow reversal 
fori = m + 1, .. . , n - 1, Gn = K. 

Proof: This is only a sketch of the proof; a complete 
proof can be found in (Kocka et. a!. 2001). It is done 
by induction on the number of vertices jNj. Assume 
that the statement of the lemma is valid for any pair 
of DAGs over a set of variables N1 with IN' I< INI· 
The first step to verify its validity for N is to choose 
a terminal node t in K. It may happen that t ---+ y 
in L for some y E N. The second step is to perform 
legal arrow reversals of these arrows as long as this is 
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possible. Thus, a sequence L, .. . , L. of DAGs over N 
is created by legal arrow reversals. Put 

P =paL. (t), C = chL, (t), X = paK(t) \(PUC). 

The situation is depicted in Figure 7. By Lemma 4.2 L 
and L. are equivalent which means they have the same 
underlying graph and immoralities. Since no arrow 
t � y in L. can be legally reversed at least one of the 
following four cases must occur. 

I. C=0=X, 

II. C = 0 and X :/:. 0, 

III. P \paL. (c) :/:. 0 for some c E C, 

IV. paL, (c)\ P U {t} :/:. 0 for some c E C. 

In case I. the induction hypothesis is applied to the 
induced subgraphs of L. and K for N \ { t} ( cf. the 
proof of Lemma 4.2). 

In the other cases a suitable arrow is added to L. and 
the resulting graph K. is shown to be a DAG equiv
alent to K (with help of the condition (2) of Lemma 
4.2). This is done by showing that all new immoral
ities created in K. are in K as well and that every 
immorality in K occurs in K. owing to the choice of 
added arrow. The arguments are based on the condi
tions (a)-(e) only. 

Which arrow is added depends on the case which oc
curs. It is x -+ t for x E X in case II., p -+ c where 
c E C, p E P\paL,(c) in case III. and an arrow x-+ t 
where for suitable c E C and x E paL. (c)\ P U {t} in 
case that IV. holds but III. does not hold. Lemma 
4.2 then concludes the proof. D 

7 Conclusion 

Let us summarize the results and conjectures. The 
following conditions on DAGs K and L over N were 
shown to be equivalent in case [£(K)[ � [£(£)[+1: the 
inclusion I(K) � I(L), the inclusion conditions for K 
in L, the graphical conditions (a)-( e) and the existence 
of a sequence of DAGs L = G1, ... ,Gn = K, n � 1 
in which each next DAG is obtained by legal arrow 
reversal or adding. We conjecture that the described 
ideas can be extended to a general case. Confirmation 
of our conjectures could have positive impact on the 
methods of learning Bayesian networks. 
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