
UAI2001 KOCKA ET AL. 261

On characterizing Inclusion of Bayesian Networks

Tomas Kocka
Laboratory for Intelligent Systems

Univ. of Economics Prague
kocka@vse.cz

Remco R. Bouckaert
Crystal Mountain Inf. Tech.

Milan Studeny
Inst. Info. Theory and Autom.

New Zealand
rrb@xm.co.nz

Acad. Sci. Czech Rep.
studeny@utia.cas.cz

Abstract

The inclusion problem deals with how to
characterize (in graphical terms) whether all
independence statements in the model in­
duced by a DAG K are in the model induced
by a second DAG L. Meek (1997) conjec­
tured that this inclusion holds iff there exists
a sequence of DAGs from L to K such that
only certain 'legal' arrow reversal and 'legal'
arrow adding operations are performed to get
the next DAG in the sequence. In this paper
we give several characterizations of inclusion
of DAG models and verify Meek's conjecture
in the case that the DAGs K and L differ in
at most one adjacency. As a warming up a
rigorous proof of graphical characterizations
of equivalence of DAGs is given.

1 Introduction

Learning Bayesian network structures requires search
in the space of directed acyclic graphs (DAGs). To
prove that such learning algorithms return (local) op­
timal networks, the search space needs to be character­
ized. A natural way of doing this is to consider the set
of conditional independence statements represented by
the DAGs in the search space. Once it is known how
to characterize all the properties of two DAGs K and
L such that independence statements represented in
K are represented in L as well, efficient search algo­
rithms can be designed based on this characterization.
This characterization problem is called the inclusion
problem.

Meek (1997) formulated a conjecture which states
that inclusion holds iff a special sequence of DAGs
G1, .. . , Gn starting with L = G1 and ending with
K = Gn exists. Here, Gi+1 is obtained from G;
either by adding an arrow or by performing a sin­
gle arrow reversal (this arrow reversal is special in

that it does not introduce new represented indepen­
dence statements). Many search algorithms for learn­
ing Bayesian networks rely on this conjecture being
true for optimality of the learned network structures.

In this paper we give an overview of current state of our
research in the inclusion problem. The next section
deals with basic concepts and notation, in Section 3
some of our specific concepts are introduced. Section
4 is devoted to equivalence charaterization, Section 5
is an overview of conditions related to the inclusion
problem and tries to develop some insight in the nature
of the inclusion problem. Section 6 contains the main
result: we characterize the case when two DAGs differ
in only one adjacency.

2 Basic concepts

Throughout the paper the symbol N denotes a non­
empty finite set of variables which are identified with
nodes of graphs. Juxtaposition AB where A, B � N
will stand for the union A U B. Independence and
dependence statements over N correspond to special
disjoint triplets over N. The symbol (A, BIG} de­

notes a triplet of pairwise disjoint subsets A, B, C of
N. The symbol T(N) will denote the class of all dis­
joint triplets over N.

2.1 Graphical concepts

A directed graph G over a set of nodes N is specified
by a collection of arrows, that is a collection A(G) of
ordered pairs (u, v) of distinct nodes u, v E N, u ::j:. v.

We write u -+ v in G or u -+ v [G] to denote that
(u, v) E A(G); the symbol of the graph can be omitted
if it is clear from the context. In an arrow u -+ v,
denoted alternatively by v t- u, u is called the tail
node and v the head node. Furthermore, we say that
u is a parent of v and v is a child of u. The set of
parents of u in G will be denoted by pa0 (u) , the set of
children by cha (u) . A subgraph of a directed graph G

262 KOCKA ET AL. UAI2001

over N is determined by a non-empty set of its nodes
A � N and by the set of its arrows which is a subset
of A(G) n (A x A) (strict inclusion is allowed). The
induced subgraph of G for a non-empty set B � N is
the graph G8 over B having A(GB) =A(G) n(B x B)
as the collection of its arrows.

We write u B v [G] to denote that there is an edge
or an adjacency between distinct nodes u and v in G
which means that either u -+ v in G or u +-- v in G.
The set of edges in a directed graph G is the collection
£(G) = { {u,v} ; u B v [G] } of respective two­
element subsets of N. If there is no edge between u
and v in G then we write u t4 v [G] to denote this
non-adjacency.

A trail in G (between nodes u and v) is a sequence 1r

of (not necessarily distinct) nodes Wt , • • . , w k, k :2:: 1
such that w; t-t Wi+l [G] for every 1 ::; i < k (and
either Wt = u, Wk = v or w1 = v, Wk = u). It is called
a path if all nodes w1, . . . , Wk are distinct. A section
of a path w1, . . . , Wk, k :2:: 1 is a path Wi, ... , Wj where
1 ::; i ::; j ::; k. We say that w;, 1 < i < k is a collider
node of a path 1r if w;_1 -+ w; in G and w; +-- Wi+t in
G. Every other node of 1r is called a non-collider node
of ?t. A path 1t in G is called open if it has no collider
node. We will write Wt - w2 - ... - Wk [G], k :2:: 1
to denote an open path in G.

A trail, resp. a path, is called directed if w; -+ w;+l [G]
for i = 1, ... , k - 1. We say that it is a path from a
node u to a node v (from A� N to B � N) if w1 = u
and Wk = v (w1 E A and wk E B). A node u is called
an ancestor of a node v in G (alternatively v is a de­
scendant of u in G) if there is a directed path from u
to v in G. Observe that every node is its own ancestor
and its own descendant since paths with only a sin­
gle node are regarded as directed paths. The symbol
ana(A) will denote the set of all ancestors of nodes of
a set A � N in G and dsa (u) the set of descendants
of a node u in G.

A directed cycle is a directed trail wr, ... , wk, k :2:: 3
such that w1 = Wk and wr, ... ,Wk-l are distinct
nodes. A directed acyclic graph (DAG or ADG) is a
directed graph without directed cycles. Note that ev­
ery trail (path) in a DAG, which has been defined as a
sequence of nodes, has uniquely determined the (type
of) arrows connecting consecutive nodes and therefore
IA(G)I = I£(G)I for every DAG G. Another observa­
tion is that a subgraph of a DAG is also a DAG. A
well-known equivalent definition of a DAG is as fol­
lows: G is a directed graph and all its nodes can be
ordered into a sequence ur, ... , un, n :2:: 1 such that

paa(u;) � {uj;l::; j < i} for every i = 1, ... ,n.
An ordering of this type is called a causal ordering
for G. A terminal node is a node without children.

Well-known fact is that every DAG has at least one
terminal node. We say that distinct nodes u, v, w

form an immorality in a directed graph G and write
(u, v)_.. w [G] if u --+ w in G, v --+ w in G and
u -i>4 v [G]. In fact, an immorality in a DAG G is
nothing but a special induced subgraph of G.

An undirected graph H over N is specified by a col­
lection .C(H) of two-element subsets of N which are
called lines in H. By the underlying graph o£ a di­
rected graph G over N is understood an undirected
graph H for which C.(H) =£(G).

2.2 Induced models

One of possible ways of associating independence mod­
els with DAGs is by d-separation criterion from (Pearl
1988). Let 1r: w1, . .. ,wk, k :2:: 1 be a path in a DAG
G. The path 1t is called active with respect to a set
C � N (shortly w.r.t. C) if

• every non-collider node of rr is not in C,

• every collider node of 1t has a descendant in C.

Suppose that (A, BIC) E T(N) is a disjoint triplet
over N; one says that A and B are d-connected given
C in a DAG G, written A 1f B I C [G], if there exists
a path between a node a E A and a node b E B in
G which is active w.r.t. C. In the opposite case one
says that A and B are d-separated by C in G which is
denoted by AlL B I C [G]. We also say that (A,BIC)
is represented in G according to the d-separation cri­
terion. The induced independence model I(G) and the
induced dependence model V(G) are as follows:

I(G)= {(A, BIC) E T(N); AlL B I C [G] },

V(G) = {(A, BIG) E 'T(N); A 1f B I c [GJ }.

Note that an alternative to the d-separation criterion
is the moralization criterion introduced by Lauritzen
et. al. (1990).

3 Specific concepts

This section describes some specific concepts we re­
gards as relevant to the inclusion problem. Our con­
cept of dependence complex has, despite its long tech­
nical definition, a good intuitive sense and hopefully
brings insight into the problem. For example, it is
essential for our later Conjecture 2.

3.1 Dependence complex

Let G be a DAG over N , C � N and a, b E N \ C are
distinct nodes. Let 71' : w1, . . • , wk, k :2:: 2 be a path in

UA12001 KOCKAETAL. 263

G between a = w1 and b = Wk which is active w.r.t.
C. Every collider node d of 1r which is not in C has
necessarily a descendant c E C, c =!=din G. By a rope
ford (with respect to 1r) will be understood a directed
path p : t1, . . . , tr, r 2: 2 in G from d = t1 to a node
c = t,. in C such that

• p is outside C with exception of c, i.e.
t1, · . . , tr-1 � C,

• p does not share a node with 1r except d, i.e.
tz, . . . , t,. (/. {wt, ... , wk}.

Let us denote by col (1r, C) the set of collider nodes of
1r which are outside C.

A dependence complex (between a and b) for C in G
is a special subgraph � of G. First, we specify the
collection of arrows of a dependence complex. Each
complex � (for C) is specified by the following items:

• a path 1r in G which is active w.r.t. C,

• a collection of ropes {p(d); d E col (1r, C)} with
respect to 1r,

where every collider node d E col (1r, C) has assigned
only one rope p(d) in � and the ropes for distinct col­
lider nodes do not share a node. The collection of
arrows in � then consists of the arrows involved in 1r

and in p(d) for d E col ('rr, C). Second, we specify the
set of nodes of a dependence complex as the set of head
nodes and tail nodes of the chosen arrows. Thus, � is
a subgraph of G which need not have the whole set
N as the set of nodes. Instead of dependence complex
forCinG we say shortly C-complex in G (between A
and Bin case a E A and bE B).

Let us emphasize that every dependence complex �

uniquely decomposes into the path 1r and the collection
of ropes. Indeed, every node of a given subgraph K of

G (which was constructed as a dependence complex in
G for a set C � N and a, b E N \ C) can be classified
into one of three groups according to the number of
edges of K 'entering ' the node (this number varies from
1 to 3). The conditions required in the definition of a
dependence complex above imply that a node of K has
3 'entering' edges iff it belongs to col (1r, C). Moreover,
a node of this kind is twice a head node and once a tail
node: this determines which of the 'branches' outgoing
the node is a rope.

LEMMA 3.1 Let G be a DAG over N, C o; N and
a, b E N \ C are distinct nodes. Then a 1T b I C [G]
iff there exists a dependence complex in G between a
and b for C.

Proof: A complete proof can be found in (Kocka et.
al. 2001). The main idea of the necessity proof is to
choose an active path 1r with respect to C with mini­
mal number of collider nodes and to choose for every

d E col (1r, C) as a rope a directed path from d to C
with minimal number of arrows. D

Note that the concept of dependence complex corre­
sponds to the concept 'path-with-tails' mentioned by
Matus (1997).

3.2 Composite dependence statements

The point is that every dependence complex ensures
validity of a certain composite dependence statement.
Given a DAG G over N, distinct nodes u, v E N and
disjoint sets S, T � N \ { u, v} we interpret the symbol
u 1T v I + T- S [GJ as the condition

u 1T v I W [G] whenever T � W � N \ { u, v} U S.

In words, u and v are (conditionally) dependent in
G given any superset of T which is disjoint with S.
In case that T respectively S is empty the symbols
+T respectively -S are omitted; if both T and S is
empty we write* instead of +T- S. Observe that if
,._ is a dependence complex between a and b for C in

G, S is the set of non-collider nodes of the respective
active path 1r except a, b and T is the set of nodes of ,._

belonging to C then a 1T b J + T- S [G]. Thus, every
dependence complex ensures validity of a composite
dependence statement but the converse in not true in
general.

We give a certain graphical characterization of some
composite dependence statements of this kind below.
These auxiliary results were proved in (Studeny 1997)
as Lemmas 3.1, 3.2 and 3.3 in wider context of chain
graphs; see also (Verma Pearl 1991).

LEMMA 3.2 Let G be a DAG over Nand u, v E N are
distinct nodes. Then

u lL v I paa (u)paa (v) [G] whenever u y4 v [G].

LEMMA 3.3 Let G be a DAG over N and u, v E N are
distinct nodes. Then

u ++ v ·[G] iff u 1T v I * [G].

LEMMA 3.4 Let G be a DAG over Nand u, v, w E N
are distinct nodes such that u ++ w [G] , v ++ w [G]
and u y4 v [G]. Then

(u, v) """ w [G] iff u 1T v i +w [G].

Note that pure composite dependence statement
u 1T v I + w [G] can be characterized in graphical
terms as follows (Kocka et. al. 2001): either u ++ v [G]
or u -t t +- v in G and t E ana (w) for some t E N.

264 KOCKAETAL UAl2001

Yyvxvxv ---+- a w - w

b a b a

F igure 1: Rope modification (shortening) in L.

Figure 2: Path shortening in L.

4 Equivalence of DAGs

In this section we deal with a well understood special
case of the inclusion problem - the equivalence prob­
lem. It is the problem how to recognize whether two
given DAGs K and L over N induce the same inde­
pendence model. It is of special importance to have an
easy rule how to recognize that two DAGs are equiv­
alent in this sense and an easy way to get from L to
K in terms of some elementary operations on graphs.
These issues were already treated by Verma and Pearl
(199 1), Heckerman et. al. (1994), Chickering (1995)
and Frydenberg (1990) in the context of chain graphs.

By a legal arrow reversal is understood the change of
a DAG L into a directed graph K by replacement of
an arrow a -+ b (in L) by b --1 a (in K) under the
condition that paL(a) U a= paL(b) (here a,b E N are
some distinct nodes).

Note that Chickering (1995) used covered edge and
Meek (1997) covered arc instead. The following ob­
servations follow from Lemma 1 in (Chickering 1995).

OBSERVATION 4.1 The result of a legal arrow reversal
operation is a DAG.

LEMMA 4.1 Let K and L be DAGs over N such that
K is obtained from L by a legal arrow reversal. Then
I(K) = I(L).

An alternative proof of Lemma 4.1 which uses the con­
cept of dependence complex can be found in (Kocka
et. a!. 200 1). Basic idea is to apply Lemma 3.1 to
a lf b I C and show that every C-complex between a
and b in L with minimal number of edges must be in K
(and conversely). To prove this fact by contradiction
modifications (shorthening) of the considered complex
in L indicated by Figures 1 and 2 are made.

LEMMA 4.2 Supposing K and L are DAGs over N the
following three conditions are equivalent:

(I) I(K) = I(L),

(2) £(K) = £(L) and the graphs K and L have the
same immoralities,

(3) there exists a sequence G1, ... , Gm, m > 1 of
DAGs over N such that G1 = L, Gm = K and
G;+I is obtained from G; by legal arrow reversal
for i = I, ... , m - 1.

Note that the equivalence (1) ¢::> (2) was proved in
(Verma Pearll99 1), in the framework of chain graphs
in (Frydenberg 1990); the equivalence (1) {::} (3) was
proved in (Heckerman et. a!. 1994) and (Chickering
1995). Our proof is different in that it is construc­
tive and provides an algorithm for finding the sequence
mentioned in (3). The algorithm can be applied in case
of the inclusion problem - see Section 6.

Proof: We show (I)=? (2) => (3) =? (I). The impli­
cation (1) =? (2) is an easy consequence of Lemmas 3.3
and 3.4 as I(K) = I(L) is equivalent to 'D(K) = 'D(L).

The proof of (2) =? (3) is done by induction on INI.
The induction hypothesis for n 2: 1 is that (2) => (3)
holds for any pair of DAGs K, L over N with INI ::;
n. This is evident for n = 1. Assume n = INI 2: 2
and that the implication holds for DAGs over N' with
IN11 < n. The first step is to choose a terminal node
tEN inK and put P = paL(t), C = chL(t). Observe
that £(K) = t:(L) implies paK(t) = PUC. One can
distinguish two cases

I. C = 0 which means paL(t) = paK(t),

II. C f- 0 which means paK(t) \paL(t) f- 0.

If C = 0 then introduce L' respectively K' as the in­
duced subgraph of L respectively K for N':::: N \ {t}.
By the induction hypothesis a desired sequence of
L' == Gi, ... , G� = K', m 2: 1 exists. Introduce Gi as
the graph over N obtained from Gi by adding a bunch
of arrows from nodes of P to t for i == 1, ... , m. It is
easily seen that Gi+1 is obtained from Gi by a legal
arrow reversal for i ::= 1, ... , m - 1.

If C # 0 then choose c E C such that no other c' E C
is an ancestor of c in L. This choice is always possible
and ensures that pat(c)nC = 0. The second step is to
observe P � padc). Indeed, suppose that p t4 c [L]
for some p E P. Then, p t4 c [K], p ++ t [K] and
c ++ t [K] by [(K) = £(£). Since t is a terminal
node in K one has (p, c) � t [K] and (p, c) � t [L)
by (2). This however contradicts the fact t -t c in L.
Thus, necessarily p ++ c [L]. Since L is acyclic and
p -+ t -+ c in L it implies p --1 c in L. The third
observation is that paL(c) � P U {t}. Indeed, suppose
for contradiction that there exists y E N \ P, y f- t

UAI2001 KOCKA ET AL. 265

in L

Figure 3: Proof of paL (c) <::; P U {t} by contradiction.

such that y -+ c in L (see Figure 3 for illustration
where, however, arrows from P to C are omitted for
sake of lucidity). Since y (j_ P and y (j_ C (because of
the choice of c) one has t t4 y [L]. Thus y -+ c t- t in
L implies (y, t) "-"' c [L] and (y, t) "-t c [K] by (2). This
contradict the fact c -+ t in K. Therefore, necessarily
paL(c) = P U {t}.

The fact padc) = paL(t) U {t} means that the arrow
t-+ c in L can be legally reversed. By Lemma 4.1 and
(1)=H2) the same procedure can be repeated until all
arrows in C are legally reversed. Thus, a sequence
L = G1, ... , G k, k � 2 is constructed by legal arrow
reversals such that t has the same parents in G k as in
K. Then, the case I. occurs for the pair (Gk, K) which
was already solved. This concludes the induction step.

The proof of (3) ::} (1) can be done by repetitive ap­
plication of Lemma 4.1. D

5 Conditions for inclusion

In this section, some characterizations of inclusion are
given in terms of graphical conditions and insight is
obtained on the nature of such conditions. We give an
overview of various necessary conditions on DAGs K
and LoverN for validity of inclusion I(K) <::; I(L).
Everybody who takes up the inclusion problem finds
almost immediately that the following three basic con­
ditions are necessary for inclusion I(K) <::; I(L):

(a) u ++ 11 [L] =::;. u ++ 11 [K],

(b) (u, v) "-"' w [L] ::} u ++ v [K] or (u, v) "-t w [K] ,
(c) (u,11)"-tw [K] =*

u t4 w [L] or w t4 11 [L] or (u, v)""" w [L],

(see Observation 5.1 and 5. 2 below). Note that the
condition (b) respectively (c) can be under (a) equiv­
alently formulated as follows (observe that X =::;. Y is
equivalent to --,y ::} -,X):

(b) u-+ w t-v [L] =* u ++ 11 [K] or u-+ w t-v [K],

(c) u- w- v [L] =? u t-t v [K] or u-w- v [K].

Figure 4: Basic conditions are not sufficient.

The conditions are also sufficient in the following
rather special case where two DAGs have the same
number of edges.

LEMMA 5.1 Suppose that K, L are DAGs over N such
that lt'(K)I ::; I£(L)I. Then the conditions (a), (b) and
(c) arc necessary and sufficient for I(K) <::; I(L).

Proof: This follows from Lemma 4.2. The con­
dition (a) says t'(L) <::; t'(K) which together with
I£(K)I ::; 1£(£) 1 implies £(K) == t'(L). The condi­
tions (b) and (c) then imply that K and L have the
same immoralities. D

Verma and Pearl (1988) formulated (using another no­
tation) in one of their technical reports three necessary
conditions on DAGs K and L over N. We call them
Verma's condi tions.

(i) u ++ v [L] =* u ++ v [K],

(ii) u 1f vI + w [L] => u 1f vI + w [K],

(iii) u 1f v I + w [K], u t+ w [L]' w ++ v [L] ::}

u lf w I + w [L] or u t-t v [K].

Note that (i) is nothing but (a) and one can show
that (iii) is under (a) equivalent to (c) by Lemma 3.4.
However neither the basic conditions nor Verma's con­
ditions are sufficient for I(K) <::; I(L) in general as the
example in Figure 4 shows. Condition (a) evidently
holds since every edge in L is in K. Condition (b)
holds since no configuration (u, v) "-"' w exists in L
and condition (c) applies to (a, d) ""' b for which the
edge b t+ d is missing in L. So, the conditions (a),
(b) and (c) are evidently fulfilled in that case but one
has a J.l. d 10 [K] while a lT d 10 [L] which implies
...,{I(K) <::; I(L)}.

Let K and L are DAGs over N. We will call the fol­
lowing 3 conditions the inclusion conditions for K in
L (here,u, v, w are distinct elements of N):

(a) u t-t v [L] => u t+ v [K],
(b) (u,v)""' w [L] ::} u ++ v [K] or (u,v) "-"' w [K],

(*) (u,v) "-"' w [K] ::} u ll v I paK(u)paK(v) [L].

266 KOCKA ET AL. UAI 2001

Clearly, Lemmas 3.3, 3.4 and 3.2 imply almost imme­
diately the following observation (for (b) use (a)).

OBSERVATION 5.1 The inclusion conditions for K in
L are necessary for validity of I(K) � I(L).

OBSERVATION 5.2 The inclusion conditions for K in
L imply the basic necessary conditions (a), (b), (c).

Proof: It suffices to verify (c). If (u, v) '"'--+ w [K] then
let W = paK(u)paK(v) and observe w rt W. Suppose
that the conclusion of (c) is not valid. This means
either u ++ v [L] which contradicts the fact u <It v [K]
by (a), or u <It v [LJ and the path u, w, v in L has no
collider nodes. This path is then active w.r.t. W (as
w rJ. W) which means u lf vI W [LJ. However, the
condition (*) implies u ll v I W [L] which contradicts
that fact. Thus, the conclusion of (c) must hold. D

CONJECTURE 1 The inclusion conditions for K in L
are sufficient for I(K) � I(L).

The inclusion conditions can be strengthened to get
one necessary and sufficient condition called the en­
forced inclusion condition:

LEMMA 5.2 Let K and L be DAGs over N. Then
I(K) � I(L) iff the enforced inclusion condition (**)
holds.

Proof: If T(K) � I(L) then (**) by Lemma 3.2.
A well-known result from (Verma Pearl 1990) implies
that to show (**) ::} {T(K) <; I(L)} it suffices to
verify LK,B � T(L) for an input list generated by a
causal ordering() : ub ... , Un for K. It can be shown
that (ui, u1 . . . ui-1 \ paK(u;)JpaK(u,)) E I(L) by in­
duction on i = 1, . .. , n. The essential tool for proving
this is the observation that I(L) is a graphoid which
satisfies the composition property from (Pearl 1988).
The details of the proof can be found in (Kocka et. al.
2001). D

Some graphical conditions mentioned above were local
in the sense that their verification depends on sub­
graphs involving only a few nodes. Now, we show
that one cannot expect full characterization of I(K) �
T(L) in terms of conditions of this type. Consider
the independence model whose only non-trivial inde­
pendence statement corresponds to a disjoint triplet
(a, bJ Z). Figure 5 shows a DAG K of that represents
a model of this type. It is very easy to construct a
DAG L such that there is only a single path from a to
bin L which ensures a lf bIZ [£]. Obviously, a path
of this type can be made as long and complex as one
likes which means that plenty of these DAGs L exists.

z

R

Figure 5: A counterexample to locality of conditions.

The key insight here is that this general example shows
that one has to look for a set of conditions in which at
least one has a non-local aspect.

In the case when K and L differ in at most one ad­
jacency, the following set of local graphical conditions
characterize inclusion.

(a) u t-t v [L] =? u B v [K],

(b) u-+ w � v [L] => u +-+ v [K] or u-+ w � v [K],

(c) u- w- v [£] => u +-+ v [K] or u- w- v [K],
(d) u-+ w � t +-+ v [L] =? u +-+ v [K] or u- t-v [K]

or u-+ w � v [K] or u-+ w f- t +-+ v [K],
(e) u- w- t-v [£] =? u B v [K] or u- w- v [K]

or u- t-v [KJ or u- w -t-v [K].

LEMMA 5.3 The conditions (a)-(e) are implied by the
inclusion conditions for K in L. In particular, they are
necessary for I(K) � I(L). Moreover, they remain
valid if K respectively L is replaced by an equivalent
graph.

Proof: The proof is in (Kocka et. al. 2001). The
invariance relative to equivalence can be shown by
reformulating these conditions in terms of respective
minimal dependence complexes, i.e. complexes with­
out proper subcomplexes, which appear to be invari­
ants of equivalence classes of DAGs. D
Later Lemma 6.1 implies that the conditions (a)-(e)
are also sufficient in case I£(K)I :::; 1£(£)1 + 1. Note
that u ++ v ensures u lf vI*, u -+ w +--- v ensures
u lf vI + w, u - w - v ensures u lf vI - w,

u-+ w +--- t ++ v ensures u 1r vI +w-t and u-w-t-v
ensures u lf v I -wt. Thus, (a)-(e) can be intuitively
interpreted as follows. If L has a dependence com­
plex which ensures the validity of a certain compos­
ite dependence statement then K has a 'subcomplex'

UAI 2001 KOCKA ET AL. 267

which also ensures the validity of that composite de­
pendence statement. We think that the idea behind
the construction of these conditions can be extended
to a general case and dare to formulate the following
conjecture.

CoNJECTURE 2 The following condition

(D) Every (minimal) dependence complex in Lhas a
(minimal) subcomplex inK.

is necessary and sufficient for I(K) s; I(L).

However, one has to specify carefully and formally
when a complex in K is a subcomplex of a given com­
plex in L. This involves a lot of technicalities - an
attempt is made in (Kocka et. al. 2001).

6 Meek's conjecture

In this section Meek's conjecture (1997) is recalled and
verified in a special case when DAGs differ in at most
one adjacency.

By legal arrow adding is understood the change of a
DAG L into a directed graph K by adding an arrow
a ---t b in K which is not in L such that the resulting
graph K is a DAG.

The following observation is evident.

OBSERVATION 6.1 If K is obtained from L by legal
arrow adding then I(K) s;; I(L).

CONJECTURE 3 (Meek 1997)
The condition I(K) � I(L) is equivalent to the exis­
tence of a sequence of DAGs G1, ... , Gn, n ? 1 such
that L = G1, K = Gn and Gi+l is obtained from Gi
by applying either the operation legal arrow reversal or
the operation of legal arrow adding for i = 1, ... , n- 1.

Observation 6.1 and Lemma 4.1 imply that the exis­
tence of above sequence implies I(K) � I(L). Cur­
rently there is no known counterexample against the
Meek's conjecture.

REMARK 6.1 One may think that a simpler version
of Meek's conjecture could be valid. Namely that for
two DAGs K and L over N the inclusion I(K) �
I(L) implies that there exists a sequence of DAGs
L, .. . , L., ... , K., . . . , K where L. is obtained from L
by a sequence of legal arrow reversals, K. is obtained
from L. by a sequence of legal arrow addings and K
is obtained from K. by a sequence of legal arrow re­
versals. This is to warn the reader that this is not the
truth. A counterexample is shown in Figure 6. The
example shows two DAGs K and L such that there

U£ M �
Figure 6: Meek's conjecture cannot be simplified.

Figure 7: General starting situation.

are no equivalent DAGs K * and L. which have the
same terminal node (c is always a terminal node in
K. but not in L.). Thus, it is not possible to ob­
tain any K. from any L. by legal arrow addings as
causal orderings of these always differ. On the other
hand, I(K) � I(L) since K can be obtained from L
by adding of b ---+ d, then reversal of c ---+ d and adding
of a ---+ c. 0

LEMMA 6.1 Let K, L are DAGs over N satisfying the
conditions (a)-(e) and the condition

(•) IE(K)I = IE(L)I + L

Then there exists a sequence G1, .. . , Gn, n > 2 of
DAGs over N and 1 :::; m < n such that

• G1 = L, Gi+l is obtained from Gi by legal arrow
reversal for i = 1, . . . , m - 1,

• Gm+l :::::: K. is obtained from Gm :::::: £. by legal
arrow adding,

• GH1 is obtained from Gi by legal arrow reversal
fori = m + 1, .. . , n - 1, Gn = K.

Proof: This is only a sketch of the proof; a complete
proof can be found in (Kocka et. a!. 2001). It is done
by induction on the number of vertices jNj. Assume
that the statement of the lemma is valid for any pair
of DAGs over a set of variables N1 with IN' I< INI·
The first step to verify its validity for N is to choose
a terminal node t in K. It may happen that t ---+ y
in L for some y E N. The second step is to perform
legal arrow reversals of these arrows as long as this is

268 KOCKAET AL. UAI2001

possible. Thus, a sequence L, .. . , L. of DAGs over N
is created by legal arrow reversals. Put

P =paL. (t), C = chL, (t), X = paK(t) \(PUC).

The situation is depicted in Figure 7. By Lemma 4.2 L
and L. are equivalent which means they have the same
underlying graph and immoralities. Since no arrow
t � y in L. can be legally reversed at least one of the
following four cases must occur.

I. C=0=X,

II. C = 0 and X :/:. 0,

III. P \paL. (c) :/:. 0 for some c E C,

IV. paL, (c)\ P U {t} :/:. 0 for some c E C.

In case I. the induction hypothesis is applied to the
induced subgraphs of L. and K for N \ { t} (cf. the
proof of Lemma 4.2).

In the other cases a suitable arrow is added to L. and
the resulting graph K. is shown to be a DAG equiv­
alent to K (with help of the condition (2) of Lemma
4.2). This is done by showing that all new immoral­
ities created in K. are in K as well and that every
immorality in K occurs in K. owing to the choice of
added arrow. The arguments are based on the condi­
tions (a)-(e) only.

Which arrow is added depends on the case which oc­
curs. It is x -+ t for x E X in case II., p -+ c where
c E C, p E P\paL,(c) in case III. and an arrow x-+ t
where for suitable c E C and x E paL. (c)\ P U {t} in
case that IV. holds but III. does not hold. Lemma
4.2 then concludes the proof. D

7 Conclusion

Let us summarize the results and conjectures. The
following conditions on DAGs K and L over N were
shown to be equivalent in case [£(K)[� [£(£)[+1: the
inclusion I(K) � I(L), the inclusion conditions for K
in L, the graphical conditions (a)-(e) and the existence
of a sequence of DAGs L = G1, ... ,Gn = K, n � 1
in which each next DAG is obtained by legal arrow
reversal or adding. We conjecture that the described
ideas can be extended to a general case. Confirmation
of our conjectures could have positive impact on the
methods of learning Bayesian networks.

Acknowledgements

This research was supported by the grants GACR n.
201/01/1482, FRVS n. 2001/1433 and GAAVCR n.
K1019101. The authors benefited from participation

in the seminar "Conditional independence structures"
(Toronto, October 1999) and HSSS research kitchen
"Learning conditional independence models" (Trest,
October 2000). We thank the anonymous reviewers
for useful remarks.

References

M. D. Chickering (1995) A transformational charac­
terization of equivalent Bayesian networks, in Un­
certainty in Artificial Intelligence 11 (P. Besnard, S.
Hanks eds.), Morgan Kaufmann, pp. 87-98.

M. Frydenberg (1990) The chain graph Markov prop­
erty, Scandinavian Journal of Statistics 17, pp. 333-
353.

D. Heckerman, D. Geiger, M. D. Chickering (1994)
Learning Bayesian networks, the combination of
knowledge and statistical data, technical report MSR­
TR-94-09, Microsoft, revised 1995.

T. Kocka, R. R. Bouckaert, M. Studeny (2001) On the
inclusion problem, technical report n. 2010, Institute
of Information Theory and Automation, Prague.

S. L. Lauritzen, A. P. Dawid, B. N. Larsen, H.­
G. Leimer (1990) Independence properties of directed
Markov fields, Networks 20, pp. 491-505.

F. Matus (1997) Conditional independence structures
examined via minors, Annals of Mathematics and Ar­
tificial Inte1ligence 21, pp. 99-128.

C. Meek (1997) Graphical models, selecting causal and
statistical models, PhD thesis, Carnegie Mellon Uni­
versity.

J. Pearl (1998) Probabilistic Reasoning in Intelligent
Systems, Networks of Plausible Inference, Morgan
Kaufmann.

M. Studeny (1997) On recovery algorithm for chain
graphs, International Journal of Approximate Reason­
ing 17, pp. 265-293.

T. Verma, J. Pearl (1988) Influence diagrams and d­
separation, technical report 880052 (R-101), UCLA,
Cognitive Systems Laboratory.

T. Verma, J. Pearl (1990) Causal networks, semantics
and expressiveness, in Uncertainty in Artificial Intelli­
gence 4 (R. D. Schachter, T. S. Lewitt, L. N. Kana!,
J. F. Lemmer eds.), North-Holland, pp. 69-76.

T. Verma, J. Pearl (1991) Equivalence and synthesis of
causal models, in Uncertainty in Artificial Intelligence
6 (P. P. Bonissone, M. Henrion, L. N. Kanal, J. F.
Lemmer eds.), Elsevier, pp. 220-227.

