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Abstract

The contribution recalls basic ideas
of the method of structural imsets
which is a non-graphical method for
describing probabilistic conditional
independence structures based on
the use of special integral (= integer-
valued) vectors. The attention is
devoted to the concept of inde-
pendence implication between struc-
tural imsets defined as the inclusion
of their induced conditional indepen-
dence structures. An algebraic char-
acterization of independence impli-
cation is recalled and implementa-
tion aspects are analyzed in more de-
tails from a theoretical point of view.

Keywords: Conditional indepen-
dence structure, structural imset, in-
dependence implication.

1 Introduction

The general topic of this paper is the descrip-
tion of conditional independence (= CI) struc-
tures. Describing these structures by various
graphs whose nodes correspond to variables
appear not to be satisfactory: graphs are not
able to describe all CI structures induced by
discrete probability measures (for justification
see § 3.6 of [8]). Moreover, the groundless lim-
itation to a restricted class of graphical mod-
els may lead to serious inferential errors in
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statistical learning procedures (for respective
arguments see § 1.1 of [8]).

These observations motivated a non-graphical
method for describing probabilistic CI struc-
tures, namely the method of structural im-
sets. The basic ideas of this approach were al-
ready sketched out in the middle of the 1990’s
[5]. However, further results have since been
achieved which amended, supplemented and
gave more precision to the original idea. The
aim of an upcoming research monograph [8]
is to present didactically the method of struc-
tural imsets in its present state; readers inter-
ested in an outline of the method can consult
the paper [7].

Structural imsets are certain integral (=
integer-valued) vectors whose components
correspond to subsets of the respective set of
variables N . The point is that structural im-
sets are able to describe every probabilistic
CI structure induced by a discrete probabil-
ity measure over N . There are other pay-offs
of this approach: one of them is the ability
to describe inclusion of CI structures, named
independence implication, in algebraic terms,
more specifically, through the arithmetic of
integers.

Because the dimension of structural imsets
grows exponentially with the number of vari-
ables |N | one has to consider implementation
tasks thoroughly. This paper deals with some
theoretical questions related to computer im-
plementation of this method. More specifi-
cally, it is devoted to the question of testing
structural imsets and the question of indepen-
dence implication verification.



The structure of the paper is as follows. In
Section 2 basic concepts are recalled: the con-
cept of a CI structure, the concept of a struc-
tural imset and a closely related concept of
a combinatorial imset. In Section 3 a basic
(direct) algebraic characterization of indepen-
dence implication is recalled and an alterna-
tive (dual) one is mentioned. The core of the
paper is Section 4 which deals with imple-
mentation aspects. It is explained in Sections
4.1 and 4.2 that the task of testing whether
an imset u is structural can be transformed
to the task of decomposing a certain multi-
ple n · u, n ∈ N of the imset into elementary
factors and the maximal constant n only de-
pends on the number of variables |N |. An
analogous result for testing independence im-
plication of structural imsets is mentioned in
Section 4.3. Moreover, the question of how to
get the maximal value of the respective multi-
plicative constant is discussed there. Section
5 is a response to a proposal raised by a re-
viewer. The paper is concluded by Section 6
where two other potential applications of the
method of structural imsets are mentioned.

2 Basic concepts

Let ξi, i ∈ N be a collection of discrete ran-
dom variables indexed by a finite non-empty
set N . Its distribution is a discrete measure
P over N , that is, a probability measure on
XN ≡

∏
i∈N Xi where Xi, i ∈ N are finite non-

empty sets such that ξi takes values in Xi.

CI statements concerning ξi, i ∈ N will corre-
spond to triplet 〈A,B|C〉 of pairwise disjoint
subsets of N : A,B,C ⊆ N , A∩B = A∩C =
B ∩ C = ∅. The class of these triplets will be
denoted by T (N). If A,B ⊆ N are disjoint
then juxtaposition AB will be used to denote
their union A ∪ B. If a ∈ N then the sym-
bol a will also be used to denote the single-
ton {a}. Given 〈A,B|C〉 ∈ T (N) the symbol
A ⊥⊥ B |C [P ] will mean that the respective
CI statement is valid, that is, [ξi]i∈A is con-
ditionally independent of [ξi]i∈B given [ξi]i∈C .
A formal definition in terms of marginal den-
sities of P is recalled here: for every x ∈ XN ,

pABC(xABC)·pC(xC) = pAC(xAC)·pBC(xBC),

where pA denotes the marginal density of P
for A ⊆ N , which is a function on XA ≡∏

i∈A Xi, and xA is the projection of x onto
XA.

Definition 1 The conditional independence
structure (CI structure) induced by P is the
collection of triplets 〈A,B|C〉 ∈ T (N) such
that A ⊥⊥ B |C [P ]. Any collection of triplets
〈A,B|C〉 ∈ T (N) obtained in this way will
briefly be called a (probabilistic) CI structure
over N . ♦

CI structures are typically described by
graphs over N , that is, graphs whose set of
nodes is N . There are several types of graphs
used for this purpose: undirected graphs,
acyclic directed graphs and chain graphs (see
[1]). This is done with the aid of a graphical
criterion which allows one to decide whether
a triplet 〈A,B|C〉 ∈ T (N) is represented in a
graph G over N . If a CI structure over N co-
incides with the set of triplets represented in
G then G is used to describe the CI structure.

The drawback of graphical methods is that
graphs are not able to describe all probabilis-
tic CI structures because the number of dif-
ferent CI structures over N grows much faster
with N than the number of graphs over N .
This fact combined with the careless use of
improper learning procedures may result in
inferential errors as reported in § 1.2 of [8].
The limitation of graphical approaches was
the main motive to introduce an algebraic
method for describing probabilistic CI struc-
tures which uses certain integral vectors. Let
P(N) denote the power set of N , that is, the
class of all subsets of N .

Definition 2 An integer-valued function on
P(N) will be called an imset over N .
Given 〈A,B|C〉 ∈ T (N) the respective imset
u〈A,B|C〉 takes four non-zero values:

u〈A,B|C〉(ABC) = u〈A,B|C〉(C) = +1 ,

u〈A,B|C〉(AC) = u〈A,B|C〉(BC) = −1 .

An elementary imset is any imset u〈a,b|C〉
where a, b ∈ N , a 6= b and C ⊆ N \ ab. The
collection of elementary imsets over N will be
denoted by E(N).
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Figure 1: An elementary imset over N = {a, b, c}.

An imset u over N will be called combinato-
rial if it is a combination of elementary imsets
with non-negative integral coefficients:

u =
∑

v∈E(N)

kv · v where kv ∈ Z+ .

The class of combinatorial imsets over N will
be denoted by C(N).

An imset u over N will be called structural if
it is a combination of elementary imsets with
non-negative rational coefficients:

u : P(N)→ Z, u =
∑

v∈E(N)

kv · v , kv ∈ Q+ .

The class of structural imsets over N will be
denoted by S(N). ♦

Note that the word imset is an abbreviation
for integer-valued multiset. Imsets over a
small set N can be visualized by special di-
agrams, namely the Hasse diagrams of P(N)
labelled by numberical values – see Figure 1
for a diagram showing an elementary imset
u〈a,b|c〉 over N = {a, b, c}.

Evidently, every elementary imset is combina-
torial and every combinatorial imset is struc-
tural. Note that, at the present time, no ex-
ample of a structural imset which is not com-
binatorial is known. Thus, it may be the case
that C(N) = S(N); it is true for |N | ≤ 4.

Structural imsets can describe probabilistic
CI structures through an algebraic criterion.
It is an analogue of a graphical criterion used
in graphical modelling.

Definition 3 Let u be a structural imset
over N and 〈A,B|C〉 ∈ T (N). We say that
〈A,B|C〉 is represented in the imset u if there
exists a natural number k ∈ N such that
k · u − u〈A,B|C〉 ∈ S(N) and denote this by
A ⊥⊥ B |C [u]. The set of triplets 〈A,B|C〉 ∈
T (N) represented in u ∈ S(N) will be de-
noted by Mu.

A discrete probability measure P over N will
be called Markovian with respect to u if, for
every 〈A,B|C〉 ∈ T (N),

A ⊥⊥ B |C [u] ⇒ A ⊥⊥ B |C [P ] .

If the converse implication also holds

A ⊥⊥ B |C [u] ⇔ A ⊥⊥ B |C [P ] ,

then P will be called perfectly Markovian. ♦

Thus, if a probability measure P is perfectly
Markovian with respect to u ∈ S(N) then u
can be used to describe the CI stucture in-
duced by P . The point is that every proba-
bilistic CI structure over N can be described
in this way.

Theorem 1 Let P be a discrete probability
measure over N . Then there exists a struc-
tural imset u over N such that P is perfectly
Markovian with respect to u.

The above result follows from Theorem 5.2 in
[8] which is more general: the same conclusion
can be made even for some other classes of
probability measures.

3 Independence implication

Another important concept is the concept of
independence implication.

Definition 4 Let u, v ∈ S(N). We say that
u i-implies v (here i- stands for independence)
and write u ⇀ v ifMv ⊆Mu. We say that u
and v are independence equivalent if and write
u
 v if Mu =Mv. ♦

Note that in the original series of papers [5]
this implication was called ‘facial implication’
and denoted in another way. Clearly, one has
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Figure 2: A combinatorial imset u = u〈a,bc|∅〉.

u 
 v iff [u ⇀ v and v ⇀ u]. Thus, indepen-
dence equivalence can be viewed as a special
case of independence implication. In particu-
lar, the following direct algebraic characteri-
zation of independence implication can be ap-
plied to independence equivalence as well.

Lemma 1 Given u, v ∈ S(N) one has u ⇀ v
iff

∃ l ∈ N l · u− v ∈ S(N) . (1)

If, moreover, v ∈ C(N), then it is equivalent
to the condition

∃ k ∈ N k · u− v ∈ C(N) . (2)

For a proof see § 6.2.1 in [8]. Lemma 1 implies
that, given 〈A,B|C〉 ∈ T (N) and u ∈ S(N),
one has 〈A,B|C〉 ∈ Mu iff u ⇀ u〈A,B|C〉.
Thus, testing for whether a triplet is repre-
sented in u is a special case of testing inde-
pendence implication.

To illustrate the result let us consider the im-
set u = u〈a,bc|∅〉 over N = {a, b, c} shown in
Figure 2. By Lemma 1 u i-implies the elemen-
tary imset v = u〈a,b|c〉. Indeed, for l = 1 one
has l ·u−v = u〈a,c|∅〉 ∈ E(N) ⊆ C(N) ⊆ S(N).
Note that in this case l = 1 but it may be the
case that the constant l must exceed 1 - an
example is given in § 6.2.1 of [8].

Remark 1 Note that there exists an alter-
native algebraic characterization of indepen-
dence implication. This dual characteriza-
tion, named skeletal characterization in [8],
is based on the existence of a certain special

finite collection K�` (N) of non-negative im-
sets over N , called the `-skeleton, such that
an imset u over N is structural iff, for every
m ∈ K�` (N),

〈m,u〉 ≡
∑
S⊆N

m(S) · u(S) ≥ 0 .

Nevertheless, although the existence of K�` (N)
was proved (see § 5.2.2 of [8]) its concrete form
is only known for |N | ≤ 5. Moreover, some
results suggest that the number of elements of
the `-skeleton grows superexponentially with
|N | (see § 5.2 in [2] for related discussion). It is
shown in § 6.2.2 of [8] that, given u, v ∈ S(N),
one has u ⇀ v iff, for every m ∈ K�` (N),

〈m, v〉 > 0 ⇒ 〈m,u〉 > 0 . (3)

This alternative characterization of indepen-
dence implication is, therefore, applicable
only when the number of variables in a prob-
lem is small.

4 Implementation aspects

The aim of this section is to analyze im-
plementation aspects related to testing in-
dependence implication of structural imsets.
Lemma 1 allows one to transform testing in-
dependence implication to a series of tasks of
deciding whether an imset is structural. Thus,
one needs to analyze this question from a the-
oretical point of view. The first step is to an-
alyze the same task for combinatorial imsets.

4.1 Testing combinatorial imsets

A basic observation is as follows (for a proof
see Proposition 4.3 in [8]).

Lemma 2 Given u ∈ C(N), let∑
v∈E(N)

lv · v = u =
∑

v∈E(N)

kv · v, lv, kv ∈ Z+,

be two decompositions of u into elementary
imsets. Then

∑
v∈E(N) lv =

∑
v∈E(N) kv. This

number, called the degree of u and denoted by
deg(u), can be obtained as follows:

deg(u) = 〈m∗, u〉, (4)

where m∗(S) = 1
2 · |S| · (|S| − 1) for every

S ⊆ N .



Given an imset u overN , the formula (4) gives
an integer. If u ∈ C(N) then it is non-negative
and coincides with the degree of u. There-
fore, the complexity of testing whether u is
combinatorial ultimately depends on 〈m∗, u〉,
provided it is non-negative. The only com-
binatorial imset of degree 0 is the zero imset
u ≡ 0. Moreover, it is clear that an imset
u over N is a combinatorial imset of degree
n, n ∈ N if there exists u〈a,b|C〉 ∈ E(N) such
that u − u〈a,b|C〉 is a combinatorial imset of
degree n − 1. In particular, the only combi-
natorial imsets of degree 1 are elementary im-
sets which are known. The above fact means
that a test for a combinatorial imset of de-
gree n can be transfomed into a number of
tests for combinatorial imsets of smaller de-
gree. Therefore, testing combinatorial imsets
can be done recursively.

Let me explain that the above observation
does not mean that testing combinatorial im-
sets is an easy task from a practical point of
view. It may be time-consuming if the num-
ber 〈m∗, u〉 is very high. What is important is
that testing combinatorial imsets can be per-
formed in a finite number of steps and the
number of these steps can be estimated in ad-
vance! In particular, if the number 〈m∗, u〉 is
low then testing whether u ∈ C(N) is quite
simple even if |N | is very high.

4.2 Testing structural imsets

It was mentioned in Remark 1 that structural
imsets can be recognized by means of a spe-
cial skeletal criterion which is, however, ap-
plicable only if the number of variables is at
most 5. Therefore, one needs to look for other
ways of testing structural imsets. The follow-
ing lemma allows one to reduce this question
to the quesion of testing combinatorial imsets
– at least, from a theoretical point of view.

Lemma 3 There exists a constant n ∈ N, de-
pending on |N |, such that, for every imset u
over N ,

u ∈ S(N) ⇔ n · u ∈ C(N) . (5)

For a proof see § 6.3.1 in [8] – it uses some spe-
cial facts from theory of integer programming

[3], namely the existence of so-called Hilbert
basis of a rational cone.

The above result is a theoretical one; for prac-
tical purposes one needs to know the value of
the least constant n ∈ N satisfying (5). The
fact that S(N) = C(N) for |N | ≤ 4 verified in
[4] implies that n = 1 for |N | ≤ 4. Since no
example of u ∈ S(N) \ C(N) is known, it may
be the case that n = 1 for any |N |. There-
fore, it is quite important either to verify or
to disprove the hypothesis that structural and
combinatorial imsets coincide for any |N |. If
the hypothesis is confirmed then the question
of testing structural imsets will be essentially
simplified.

4.3 Testing independence implication

It follows from Lemma 1 that u ⇀ v for
u, v ∈ S(N) iff there exists l ∈ N such that
l · u − v ∈ S(N). A natural question arises
if there is an upper limit for the constant
l. If l · u − v ∈ S(N) then one can show
using Lemma 2 and the fact that m∗ be-
longs to the convex cone generated to K�` (N)
that l · deg(u) ≥ deg(v). This indicates that
there is no hope for an upper limit of l un-
less the degree of v is limited. Thus, let us
consider the the same question assuming that
deg(v) = 1, that is, v is an elementary imset.
Then one can easily observe the following fact
(see § 6.3.2 in [8]).

Lemma 4 There exists the least constant l ∈
N, depending on |N |, such that, for every u ∈
S(N) and v ∈ E(N),

u ⇀ v ⇔ l · u− v ∈ S(N) . (6)

For practical purposes one needs to know
what is the actual value of the least constant
l. It is known for |N | ≤ 5: one has l = 1 if
|N | ≤ 4 and l = 7 for |N | = 5 (this can be
shown with the aid of an example in § 4.3 of
[6]). Actually, I have a hypothesis that the
least constant l can be obtained on basis of
the `-skeleton (see Remark 1) as the follow-
ing number, called the grade and denoted by
gra(N):

max{ 〈m, v〉 ; m ∈ K�` (N), v ∈ E(N) } .



The hypothesis was verified for |N | ≤ 5. An-
other supportive argument for the hypothe-
sis is a theoretical result (Lemma 6.4 in [8])
which allows one to express, on basis of the
`-skeleton, the minimal constant l such that
(6) is true for every u ∈ C(N) and v ∈ E(N).
Actually, if S(N) = C(N) and another hy-
pothesis saying that, for every m ∈ K�` (N),

min { 〈m,w〉 ; w ∈ E(N), 〈m,w〉 6= 0 } = 1,

is true then the above mentioned result im-
plies that the minimal constant l satisfying
the condition in Lemma 4 is just the grade
gra(N).

5 Linear programming approach

One of the reviewers draw my attention to
another method for testing independence im-
plication (in addition to those mentioned in
§ 4.3 and in Remark 1). The basic idea is
to transform the implication task to a classic
maximization problem of linear programming.
This idea of Yeung was already mentioned by
Matúš in the end of § 5 of [2] in slightly differ-
ent but analogous framework and later elabo-
rated in § 13.2–13.5 of [9] as a tool for deriving
information-theoretical inequalities.

To explain the idea in the framework of
this paper consider the class K`(N) of `-
standardized supermodular functions on the
power set of N , that is, the class of functions
m : P(N)→ R such that

m(S) = 0 whenever |S| ≤ 1 ,
〈m,w〉 ≥ 0 for every w ∈ E(N).

As m ≥ 0 for every m ∈ K`(N) the class
K`(N) is a pointed rational cone. Note that
the elements of the `-skeleton K�` (N) men-
tioned in Remark 1 correspond to extreme
rays of K`(N). One can show (see Lemma
6.2 in [8]) that, given u, v ∈ S(N), one has
u ⇀ v iff

〈m,u〉 = 0 ⇒ 〈m, v〉 = 0

for every m ∈ K`(N). Therefore, one can con-
sider the maximization problem

max { 〈m, v〉 ; m ∈ K`(N) 〈m,u〉 = 0} (7)

and observe that the maximum in (7) is 0 iff u
i-mplies v; note that the function to be max-
imized is non-negative on the respective do-
main. The reviewer thinks that one can com-
pute the maximum in (7) by means of stan-
dard software packages (based on the simplex
method) and this is feasible beyond the case
|N | ≤ 5. I am not as optimistic as the re-
viewer is. Let me give two reasons why I am
more sceptical about the effectiveness of this
approach.

First, I have checked how the proposed
method works in a very simple special case
N = {a, b, c}, u = u〈a,bc|∅〉 and v1 = u〈a,c|∅〉,
respectively v2 = u〈b,c|∅〉. I have used the
simplex method with a known vertex of the
respective domain described in § 11.1 of [3].
While the methods described in Remark 1 and
§ 4.3 give an immediate result in these two
cases the application of the simplex method
requires a lot of computation. To give the
reader some idea let me explain that the con-
sidered simplex method is iterative and, if ap-
plied to (7), in each iteration a plenty of arith-
metic operations are done. More specifically,
in each iteration, a system of linear equations
A · x = y is solved twice, where A is a reg-
ular matrix of the rank 2|N | − |N | − 1, scalar
products 〈m,w〉, w ∈ E(N) are computed for
certain m : P(N) → R, some coefficients are
computed and their minimum is found. In
the considered example, one needs 3 iterations
to derive u ⇀ v1 and 4 iterations to show
¬(u ⇀ v2). This is quite complicated way of
verifying it and one can hardly believe that
the same method will work effectively if the
number of variables increases.

The second argument for my scepticism is
intuitive. However, because reviewer’s opin-
ion is also based on his intuitive belief rather
than on a real experiment, I think that rele-
vant intuitive counter-arguments should also
be mentioned. The underlying idea of the
classic simplex method is that one moves from
one vertex of a polytope to another one untill
an optimal vertex is reached. In the context
of (7) it corresponds to the effort to find an
optimal extreme ray of the cone which serves
as the domain in (7). Note that because the



domain is a face of K`(N) this optimal ray is
also an extreme ray of K`(N). To that end
several tentative moves from the original zero
vector m0 ≡ 0 are generated and tested for
feasibility – the resulting vector m must be-
long to the domain of (7). Every iteration of
the simplex method corresponds to a tenta-
tive move of this kind. The argument to show
that the maximum in (7) is greater that 0,
that is, to disprove u ⇀ v, is that an element
m ∈ K�` (N) is found such that 〈m,u〉 = 0 and
〈m, v〉 > 0. However, this is the same argu-
ment which is behind the method mentioned
in Remark 1!

Using the results of Chapter 5 of [8] I can
show that for every element m′ ∈ K�` (N) of
the `-skeleton, there exists u, v ∈ S(N) such
that the only elements of K`(N) which can be
used to disprove u ⇀ v are non-zero multi-
ples of m′. That means, in order to be able
to disprove the independence implication the
simplex method has to be able to find every
element of the `-skeleton. From this point of
view, the main difference between the simplex
method and the method mentioned in Remark
1 is that, in the former case, a suitable ele-
ment of K�` (N) is searched following a certain
blind scenario, while in the latter case all ele-
ments of K�` (N) were obtained in advance and
one only needs to compute scalar products
of u and v with them. Thus, the disadvan-
tage of the simplex method seems to be that
time-consuming computation of extreme rays
of K`(N) is repeated during the testing pro-
cedure while its advantage seems to be that
the fixing imsets u and v may perhaps avoid
moves towards ‘wrong’ extreme rays. I am not
an expert in the simplex method for which
reason I can hardly estimate which of these
two phenomena will appear to be more influ-
ential. Despite my scepticism I agree that the
linear programming approach deserves a com-
parison with the other two methods of testing
independence implication; for example, by a
thorough computer experiment.

To conclude my comment let me explain that
the aim of this paper is to explore a theoreti-
cal basis for computer testing of independence
implication. Because I am a mathematician,

my primary goal is deeper understanding of
the problem from the theoretical point of view
rather than the immediate use of any available
method. The intution obtained as a result of
a theoretical analysis can hopefully be utilized
to propose an effective method for testing in-
dependence implication. I hope that a long-
term research effort in this direction will re-
sult in a more effective method than the blind
use of such kind of an algorithm for which it
is not known how much time is needed to get
an answer.

6 Discussion

The reader may find it surprising, but the
method of structural imsets can even find
some applications in the area of graphical
models. I think that two of them deserve men-
tioning.

1. One of common problems in the area
of Bayesian networks is to recognize in-
dependence equivalent acyclic directed
graphs, that is, graphs describing the
same CI structure. The method of struc-
tural imsets offers, through the concept
of a standard imset, a fairly good alge-
braic criterion to recognize this equiv-
alence of acyclic directed graphs – see
Corollary 7.1 in [8]. Actually, there
is also an algebraic criterion for testing
inclusion of CI structures described by
those graphs (Lemma 8.6 of [8]).

2. An algebraic point of view brings a new
simplifying perspective to some existing
methods of learning Bayesian networks,
namely those based on the maximization
of a suitable quality criterion – for details
see Chapter 8 of [8]. The point is that
usual criteria used in practice appear to
be affine functions of the respective stan-
dard imsets. It seems that this point of
view can be extended and can lead to a
proposal of a general method for learning
CI structures.

Of course, there are many interesting open
problems related to the method of structural



imsets, both theoretical and practical ones –
see Chapter 9 of [8] for their overview. They
will be a topic of a future research.
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