
Marginal Problem in Di�erent Calculi of AI?Milan Studen�y??Czech Academy of Sciences, Inst. Inform. Theory and Automation,Pod vod�arenskou v�e�z�� 4, 182 08 Prague 8, Czech RepublicAbstract. By the marginal problem we understand the problem of theexistence of a global (full-dimensional) knowledge representation whichhas prescribed less-dimensional representations as marginals. The paperdeals with this problem in several calculi of AI: probabilistic reasoning,theory of relational databases, possibility theory, Dempster-Shafer's the-ory of belief functions, Spohn's theory of ordinal conditional functions.The following result, already known in probabilistic framework and inthe framework of relational databases, is shown also for the other calculi:the running intersection property is the necessary and su�cient condi-tion for pairwise compatibility of prescribed less-dimensional knowledgerepresentations being equivalent to the existence of a global representa-tion. Moreover, a simple method of solving the marginal problem in thepossibilistic framework and its subframeworks is given.1 IntroductionDealing with integration of knowledge in probabilistic expert systems one en-counters the problem of consistency well-known as the marginal problem [8]:having prescribed a collection of less-dimensional probability measures (whichrepresent pieces of knowledge given by experts - see [11]) one should recognizewhether there exists a joint multidimensional probability measure having theprescribed less-dimensional measures as marginals (such a joint measure thencould represent global knowledge kept by an expert system).Of course, an analogous problem can be expected when one tries to model ex-pert knowledge within another calculus for uncertainty management. Concretely,this paper is concerned with the marginal problem in the following branches ofAI:{ probabilistic reasoning{ theory of relational databases{ theory of ordinal conditional functions{ possibility theory{ theory of belief functions.?? E-mail: studeny@utia.cas.cz? Supported by the grant n. 201/94/0471 \Marginal problem and its application" ofthe Grant Agency of Czech Republic.



As concerns the probabilistic framework3 no direct method of solving themarginal problem is known but there exists an asymptotic method. Using thecollection of prescribed less-dimensional measures one can de�ne by means ofthe so-called iterative proportional �tting procedure [3] a sequence of multidi-mensional probability measures which is proved in [2] to converge i� there existsa joint measure having the prescribed measures as marginals. The limit measurethen has the prescribed marginals and minimizes I-divergence within the classof such joint measures.Nevertheless, one can sometimes evade this iterative procedure as the globalconsistency is under a certain structural condition put on the collection of under-lying attribute sets4 equivalent to the condition of pairwise compatibility whichis easy to verify or disprove. Kellerer [9] showed that the global consistency isequivalent with the pairwise compatibility i� the collection S of underlying setssatis�es the running intersection property (see also [10, 8]):there exists an ordering S1; : : : ; Sn of S such that8j � 2 9i 1 � i < j Sj \ (Sk<j Sk) � Si :This condition has a meaning of acyclicity of the hypergraph S (this terminologywas accepted in [1]). For example, the chain �gured below satis�es the runningintersection property.�� ���� ���� ��u u u u
On the other hand, the cycle below does not satisfy it.3 In this paper we restrict our attention to probability measures on �nite sets.4 By an attribute we understand an elementary symptom or variable in consideration ofan expert system. The corresponding knowledge is represented di�erently in di�erentcalculi. In probabilistic reasoning it is represented by a one-dimensional probabilitymeasure. Every expert can give evidence concerning certain area, i.e. his statementsrefer to a small set of attributes. Thus, the piece of knowledge given by an expert isrepresented by a less-dimensional probability measure embracing exactly attributesfrom the mentioned set (= the underlying attribute set).
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Similar results were later shown in the theory of relational databases. A sim-ple direct method of solving the marginal problem in this framework is known {see [10]. It consists in verifying whether a certain multidimensional database re-lation, made of the prescribed less-dimensional database relations by a concreteprocedure, has the prescribed relations as marginals. Moreover, the running in-tersection property was also shown to be a necessary and su�cient condition forpairwise compatibility being equivalent to global consistency in this framework[1]. The aim of this paper is to show the results concerning the running inter-section property for the other mentioned calculi as well. Note that this resultfor the calculus of ordinal conditional functions was recently proved in [16]. Theprocedure from [16] can also be used in all the other calculi { one only has togive several basic constructions (speci�c for a calculus). This is done in this pa-per in order to make a comprehensive survey. Moreover, the above mentionedsimple direct method of solving the marginal problem for relational databases isextended to the possibilistic calculus in this paper.The next section recalls how knowledge is represented in all the calculi. Thethird section then describes the mentioned method of solving the marginal prob-lem in the possibilistic calculus and gives an example showing that the globalconsistency of a collection of possibility measures is indeed strictly stronger thanits global consistency in sense of Dempster-Shafer theory. In the fourth sectionthe main constructions allowing us to show the main results are given.2 Basic de�nitionsThis section recalls how knowledge is represented in all the mentioned calculiof AI. The most of these calculi are constructed to be as general as possibleand some readers can object that the de�nitions below are restrictive. But theyexpress the essence of these calculi and make possible certain unifying point ofview: the calculus of Dempster-Shafer theory is considered to be the most generalframework and the other approaches are incorporated as its subframeworks.



All above mentioned calculi will have some common setting in this paper. Inthe following we suppose that N is a nonempty �nite set of attributes. Moreover,a nonempty �nite set Xi called the frame5 corresponds to each attribute i 2 N .Whenever ; 6= S � N the symbol XS denotes the cartesian product �i2S Xi.Having an element x 2 XN and ; 6= S � N the projection of x to XS (i.e. theelement of XS whose components coincide with the components of x) will bedenoted by xS . The power set of a set Y will be denoted by expY .We start our de�nition survey with the probabilistic calculus which is prob-ably the most developed approach for dealing uncertainty in AI.De�nition 1 (probability measure)A probability distribution over N is a nonnegative real function P : XN ! h0;1)satisfying PfP (x); x 2 XNg = 1. The formulaP (A) =PfP (x); x 2 Ag (for A � XN)then de�nes a set function (on expXN ) called a probability measure over N .Whenever ; 6= S � N and P is a probability measure over N , then its marginalon S is a probability measure PS over S de�ned as follows (of course PN � P ):PS(A) = P (A�XNnS) for A � XS ; ; 6= S 6= N .Note that a marginal on a set of attributes will be always denoted by thesymbol of the original (knowledge representation) having moreover as the upperindex the symbol of the attribute set (the same principle will be followed also inthe other calculi).Another framework where the marginal problem has already been studied isthe theory of relational databases.De�nition 2 (database relation)A database relation over N is a nonempty subset of XN . Whenever ; 6= S � Nand R is a database relation overN , then its marginal on S is a database relationRS over S de�ned as follows (RN = R):u 2 RS , [ (u; v) 2 R for some v 2 XNnS ] whenever u 2 XS .A further theory in our focus is Spohn's theory of ordinal conditional func-tions [15]. This theory gives a tool for mathematical description of dynamichandling of deterministic epistemilogy and in this sense it constitutes a counter-part of the probabilistic approach. Researchers in AI paid attention especiallyto a special class of natural conditional functions [7, 14]:De�nition 3 (natural conditional function)Having a nonnegative integer function � : XN ! f0; 1; : : :g satisfying minf�(x); x 2XNg = 0, the formula�(A) = minf�(x); x 2 Ag (for ; 6= A � XN)5 The frame is the set of \possible" values for the considered attribute.



de�nes a set function on (expXN ) n f;g called a natural conditional function(NCF) over N . Whenever ; 6= S � N and � is an NCF over N , then its marginalon S is an NCF �S over S de�ned as follows (�N � �):�S(A) = �(A�XNnS) for ; 6= A � XS ; ; 6= S 6= N .The next calculus is possibility theory which was proposed by Zadeh [17] asa model for quanti�cation of judgements on the basis of fuzzy theory and laterdeveloped by Dubois and Prade [5].De�nition 4 (possibility measure)A possibility distribution over N is a real function � : XN ! h0; 1i satisfyingmaxf�(x); x 2 XNg = 1. The formula�(A) = maxf�(x); x 2 Ag (for ; 6= A � XN )then de�nes a set function on (expXN )nf0g called a possibility measure over N .Whenever ; 6= S � N and � is a possibility measure over N , then its marginalon S is a possibility measure �S over S de�ned as follows (�N � �):�S(A) = �(A �XNnS) for ; 6= A � XS ; ; 6= S 6= N .One of the most popular approaches for dealing with uncertainty in AI isDempster-Shafer theory [3, 13]. Knowledge can be described here in severalequivalent ways (belief or respectively commonality or plausibility function), wechose the concept of basic probability assignment.De�nition 5 (basic probability assignment)A basic probability assignment (BPA) over N is a real function m : expXN !h0;1) satisfying Pfm(A);A � XNg and m(;) = 0. Whenever ; 6= S � N andm is a BPA over N , then its marginal on S is a BPA mS over S de�ned asfollows (of course mN �m):mS(A) =Pfm(R); R � XN RS = Agfor A � XS , (see De�nition 2 for the symbol RS).Focal elements are the sets A � XN with m(A) > 0.The calculi above can be compared each other. For example one can assigna posssibility measure �� to every NCF � by means of the formula:��(A) = e��(A) for ; 6= A � XN .The mapping �! �� is injective and respects marginals i.e.(��)S = �(�S) for NCF � over N , ; 6= S � N .If there exists an injective mapping respecting marginals from a calculus to an-other calculus we shall say that the former calculus is a subframework of thelatter one.Thus, database relations are a subfamework of possibility measures since a pos-sibility measure �R is assigned to every database relation R:



�R(A) = �1 if A \ R 6= ;0 otherwise (; 6= A � XN)and probability measures are a subframework of BPAs since a BPA mP is as-signed to every probability measure P :mP (A) = �P (x) if A = fxg for x 2 XN0 otherwiseand possibility measures are a subframework of BPAs, since every possibilitymeasure � can be identi�ed with a BPA m� whose collection of focal elementsis a nest6 and satis�es the relation�(x) =Pfm�(B); x 2 B � XNg for x 2 XN .We left to the reader to verify that m� is determined uniquely by these twoconditions and that all the mappings are injective and respect marginals. Thus,the situation can be illustrated by the following picture.
NCFs databasepossibility probabilityBPAs
��� @@@��� @@@

Remark The reader may think that database relations are a subframework ofprobability measures since one can assign a probability distribution PR to everydatabase relation R:PR = � (cardR)�1 if x 2 R0 otherwise.Nevertheless, this mapping does not respect marginals and therefore it is notinteresting from our 'marginal problem' point view. Indeed, one can take N =f1; 2g; X1 = X2 = f0; 1g; R = f(0; 0); (0; 1); (1; 0)g and have (PR)f1g 6= P(Rf1g).3 Marginal problem in possibility theoryThis section gives a simple direct method of solving the marginal problem inthe possibilistic framework. Moreover, an example shows that a collection ofpossibility measures may be globally consistent within the BPA-framework butnot within the possibilistic framework.Firstly, we give exact de�nitions of concepts connected with the marginalproblem. They are shared by all the calculi we deal with in this paper.6 i.e. A � B or B � A for every two focal elements A;B



De�nition 6 (compatibility, consistency)Let us have in mind any of the calculi mentioned in section 2. Suppose thatfkS ; S 2 Sg is a collection of knowledge representations within that calculus(where the lower index S in kS denotes the nonempty set of underlying at-tributes). The collection fkS ;S 2 Sg is called pairwise compatible if and onlyif8S; T 2 S with S \ T 6= ; (kS)S\T = (kT )S\T .Moreover, fkS; S 2 Sg is called globally consistent i� there exists a globalknowledge representation k (having the set of underlying attributes N) suchthat 8S 2 S kS = kS .It is evident that global consistency implies pairwise compatibility but theconverse is not true. The following example shows it for all the mentioned calculi.Example 1 (compatibility 6) consistency)Consider the global attribute set N = f1; : : : ; ng where n � 3, the frames Xi = f0; 1gfor i 2 N and the collection of attribute sets S = f f1; 2g; f2; 3g; : : : ; fn�1; ng; fn; 1g g.Further details depend on calculi:a probability measuresDe�ne probability distributions fPS ;S 2 Sg as follows:Pfn;1g(00) = Pfn;1g(11) = 0Pfn;1g(01) = Pfn;1g(10) = 0:5and for remaining S 2 SPS(00) = PS(11) = 0:5 PS(01) = PS(10) = 0.This collection is not globally consistent: having a probability distribution P over Nwith these prescribed marginals, the inequality P (x) � PS(xS) implies 0 � P (x) �minS2S PS(xS) = 0 for all x 2 XN and this contradictsP fP (x); x 2 XNg = 1.b database relationsPut Rfn;1g = f(0; 1); (1; 0)g and RS = f(0; 0); (1; 1)g for remaining S 2 S. This collec-tion is not globally consistent as there is no database relation R over N having theseprescribed marginals. Indeed, no x 2 XN satis�es 8S 2 S xS 2 RS and this impliesa contradictory conclusion R = ;.c NCFsLet us de�ne NCFs as point functions on XS :�fn;1g(00) = �fn;1g(11) = 1�fn;1g(01) = �fn1g(10) = 0and for remaining S 2 S�S(00) = �S(11) = 0 �S(01) = �S(10) = 1.Supposing an NCF � over N has these marginals, the inequality �(x) � �S(xS) implies�(x) � maxS2S �S(xS) = 1 for all x 2 XN and this contradicts minf�(x);x 2 XNg =0.d possibility measuresTake �S � �RS , S 2 S where fRS ;S 2 Sg are database relations from b . Suppos-ing � is a possibility distribution having these prescribed marginals, the inequality�(x) � �S(xS) implies �(x) � minS2S �S(xS) = 0 for all x 2 XN and this contradictsmaxf�(x);x 2 XNg = 1.e BPAs



TakemS �m�S , S 2 S where f�S ;S 2 Sg are possibility measures from d . To dis-prove global consistency realize that everymS has only one focal element (with assignedvalue 1): mfn;1g has f(01); (10)g as its focal element, any other mS has f(00); (10)g. Ifm is a BPA over N having fmS ;S 2 Sg as marginals and R is one of its focal elements,then its marginal RS has to be a focal element of mS (for every S 2 S). Hence by theprocedure from b derive R = ; and this contradicts the de�nition of BPA.As mentioned in Introduction, there is no direct method of testing globalconsistency within the probabilistic framework. Nevertheless, there exists sucha method in the possibilistic framework.Proposition 1 Suppose that f�S ;S 2 Sg is a collection of possibility distri-butions (when the lower index denotes the set of underlying attributes). Thenf�S ;S 2 Sg is globally consistent if and only if the formula��(x) = minS2S �S(xS) for x 2 XNde�nes a possibility distribution whose marginals are f�S ;S 2 Sg.Proof: The su�ciency is evident. For necessity suppose that � is a posibility measurehaving f�S ;S 2 Sg as marginals. Then1. � � ��For each x 2 XN and S 2 S write �(x) � �S(xS) = �S(xS) and use the de�nition of�� .2. �� is a possibility distributionEvidently 0 � �� � 1; having x0 2 XN with �(x0) = 1 the preceding step gives��(x0) = 1.3. 8S 2 S (��)S = �SHaving �xed S 2 S and z 2 XS by the de�nition of marginal �nd y 2 XN with z = ySand (��)S(z) = ��(y). Using the de�nition of �� write ��(y) � �S(yS) = �S(z) i.e.(��)S(z) � �S(z) = �S(z). On the other hand �S(z) � (��)S(z) follows from 1. andtherefore (��)S(z) = �S(z) = �S(z). 2The result above gives already published criteria for subframeworks7. Acollection of database relations fRS;S 2 Sg is globally consistent i� the setR� = TS2S RS �XNnS is a database relation having fRS;S 2 Sg as marginals[10]. A collection of NCFs f�S;S 2 Sg is globally consistent i� the function��(x) = maxS2S �S(xS) (for x 2 XN ) determines an NCF over N havingf�S;S 2 Sg as marginals [16]. These criteria can be derived from Proposition 1owing to the following principle: supposing that possibility measures f�S ;S 2 Sgcorrespond to database relations (resp. NCFs) �� gives a possibility measure cor-responding to a database relation (resp. an NCF).Therefore every collection of database relations (resp. NCFs) is globally con-sistent i� it is consistent within the possibilistic framework. Similarly, one can7 As concerns the test in the possibilistic framework I only found in [6] p. 6{7 aprocedure where �� was de�ned as one step of a procedure of approximate reasoning[18]. But the mentioned procedure computes one-dimensional marginals of �� andthe authors of [6, 18] are not interested in the connection to the starting possibilitymeasures which are not supposed to be pairwise compatible.



show that a collection of probability measures is globally consistent i� it isconsistent within the BPA-framework8. Nevertheless, a collection of possibilitymeasures need not be globally consistent although it is globally consistent withinthe BPA-framework as the following example shows.Example 2 Put N = f1; 2; 3g; Xi = f0; 1g for i 2 N and S = f f1; 2g; f1; 3g; f2; 3g g.Consider a collection of possibility distributions f�S ;S 2 Sg de�ned as follows (S 2 S):�S(00) = �S(11) = 23 �S(01) = �S(10) = 1.This collection is not globally consistent as the function ��(x) = minS2S �S(xS) = 23is not a possibility distribution. But, the collection of BPAs fm�S ;S 2 Sg is globallyconsistent as one can consider the BPA m with three focal elements:f (010); (011); (100); (101) g;f (001); (011); (100); (110) g;f (001); (101); (010); (110) gwith assigned values 13 .4 Solvable collectionsIn this section the collections of attribute sets for which pairwise compatibility is equiv-alent to global consistency are studied. We show that these collections are characterizedwithin all mentioned calculi by means of the running intersection property.We start with some de�nitions which are, of course, shared by all the studied calculi.De�nition 7 (solvable collection, reduced collection)Having in mind any of the calculi mentioned in section 2 a collection of nonemptyattribute sets S will be called solvable within that calculus i� every pairwise compat-ible collection of knowledge representations, whose collection of attribute sets is S, isglobally consistent.S will be called reduced i�8A;B 2 S neither A � B nor B � A.If ; 6= T � N , then the contraction of S to T denoted by S ^ T is de�ned as thecollection of maximal sets9 of fS \ T ; S 2 S S \ T 6= ;g.The method used in [16] to show the necessity of the running intersection propertyfor solvable collections within the NCF-framework in fact does not depend on a par-ticular calculus (see Lemmas 8,9 and Theorem 2 in [16]). One only needs to show thata collection of attribute sets S is not solvable in two following cases:[a] (S contains a sequence S1; : : : ; Sn (n � 3)such that 8 i = 1; : : : ; n (Sn+1 � S1)Si \ Si+1 nS(S n fSi; Si+1g) 6= ;:8 Hint: Without loss of generality suppose N = SS. Projections (=databasemarginals) of every focal element of a global BPAm having the prescribed marginalsmust be focal elements of marginals i.e. singletons. Hence, every focal element of mis a singleton.9 A 2 T is maximal in T i� [B 2 T ; A � B]) B = A.



[b] �S is reduced, cardS � 2 and8i; j 2 SS 9S 2 S with i; j 2 S:Also the proof of su�ciency requires only to show that a collection S with cardS = 2is solvable { see [16]. Thus, in the sequel we only verify these facts for all the mentionedcalculi.Lemma 1 Supposing S is a solvable collection of attribute sets and ; 6= T � N thecontraction S ^ T is also solvable.Proof: Supposing fkL; L 2 S ^ Tg is a pairwise compatible collection of knowledgerepresentations we are to show that it is globally consistent. To this end we construct(and this step depends on a calculus) a pairwise compatible collection of knowledgerepresentations fk0S ; S 2 Sg such that 8L 2 S ^ T [L = S \ T for some S 2 S]implies (k0S)L = kL.In the sequel we give the corresponding constructions for all studied calculi.a probability measuresHaving a pairwise compatible collection of probability distributions fPL; L 2 S ^ Tgselect for each i 2 N nT a probability distribution Qi on Xi. Then put (for x 2 XS ; S 2S):P 0S(x) = (PL)S\T (xS\T ) �Qi2SnT Qi(xi),where L 2 S^T with S\T � L is arbitrarily chosen (take (PL);(�) = 1 =Qi2; Qi(�)).b database relationsHaving pairwise compatible database relations fRL; L 2 S ^ Tg, for each S 2 S withS\T 6= ; �nd L 2 S^T with S\T � L and put R0S = (RL)S\T �XSnT (if S\T = ;then R0S = XS ).c NCFsHaving pairwise compatible NCFs f�L; L 2 S ^ Tg, for each S 2 S with S \ T 6= ;�nd L 2 S ^ T with S \ T � L and put �0S(x) = (�L)S\T (xS\T ) for x 2 XS ; S 2 S(where (�L);(�) = 0).d possibility measuresHaving pairwise compatible possibility distributions f�L; L 2 S ^ T g, put:�0S(x) = (�L)S\T (xS\T ) for x 2 XS ; S 2 S(L has the same meaning as in c , (�L);(�) = 1).e BPAsSupposing fmL; L 2 S ^ Tg are pairwise compatible BPAs de�ne for each S 2 S:mS 0(F ) = (mL)S\T (E), whenever F = E � XSnT with E � XS\T (L has the samemeaning as in preceding steps and (mL);(�) = 1),and mS 0(F ) = 0 for remaining F � XS . 2Consequence 1 Supposing [a] a collection of attribute sets S is not solvable.Proof: Put T = fzi; i = 1; : : : ; ng where we chose zi 2 Si \ Si+1 nS(S n fSi; Si+1g).Then use Lemma 1 and Example 1 in section 3 to get the desired conclusion. 2Lemma 2 Supposing [b] a collection of attribute sets S is not solvable.Proof: Without loss of generality suppose TS = ;: otherwise put T = N nTS andconsider S ^ T instead of S. In all constructions below we put Xi = f0; 1g.



a probability measuresDenote m = card SS � 1 and de�ne for each S 2 S a probability distribution PS(x 2 XS):PS(x) =8<: (m� card S) �m�1 ifPi2S xi = 0m�1 ifPi2S xi = 10 ifPi2S xi � 2:It is no problem to verify pairwise compatibility of fPS ;S 2 Sg. Now, suppose by con-tradiction that P is a probability distribution over N having fPS ;S 2 Sg as marginals.Then(a) P[S(x) = 0 for x 2 X[S ;Pi2[S xi � 2.Indeed: for �xed x 2 X[S �nd i; j 2 SS with xi = xj = 1 and then S 2 S withi; j 2 S. Hence 0 � P[S(x) � PS(xS) = 0.(b) P[S(x) = m�1 for x 2 X[S ;Pi2[S xi = 1.Indeed: for �xed x 2 X[S take the only i 2 SS with xi = 1 and consider S 2 S withi 2 S. Then m�1 = PS(xS) = P[S(x) +P fP[S(xS; y); y 2 X[SnS Pi2[SnS yi �1 g, where the latter sum is zero by (a).Evidently (b) gives a contradictory conclusionPfP[S(x);x 2 X[Sg � (m+1)�m�1 >1.b database relationsLet us put: RS = fx 2 XS ;Pi2S xi = 1g (for S 2 S). As (RS)V = fx 2 XV ;Pi2V xi �1g for every proper subset V � S, fRS; S 2 Sg are pairwise compatible. Nevertheless,no database relation R over N has fRS ;S 2 Sg as marginals:(a) whenever x 2 XN withPi2[S xi � 2 then x 62 RIndeed: choose i; j 2 SS with xi = xj = 1 and S 2 S with i; j 2 S. Then xS 62 RSimplies x 62 R.(b) whenever x 2 XN withPi2[S xi � 1 then x 62 RIndeed: �nd S 2 S with Pj2S xj = 0 (�x contingent i 2 SS with xi = 1 and byTS = ; �nd S 2 S with i 62 S). Evidently xS 62 RS implies x 62 R.c NCFsDe�ne an NCF �S over N for each S 2 S as follows:�S(x) = � 0 if Pi2S xi = 11 otherwise for x 2 XS .The collection f�S ; S 2 Sg is pairwise compatible as for ; 6= V � S 2 S; V 6= S itholds:(�S)V (y) = � 0 if Pi2V yi � 11 otherwise for y 2 XV .To disprove global consistency use the criterion mentioned below Proposition 1 andcompute ��(x) = maxS2S �S(xS) (for x 2 XN ). Supposing ��(x) = 0 we get8S 2 S �S(xS) = 0 i.e. xS 2 RS where RS is from b - but it was shown there thatno x 2 XN satis�es this requirement. Therefore �� � 1.d possibility measuresOne can use for example the collection f�RS ; S 2 Sg where fRS ; S 2 Sg are databaserelations from the item b (see the reasoning before Example 2).e BPAsOne can use fmPS ; S 2 Sg where probability measures fPS ; S 2 Sg are from a . 2Lemma 3 A collection fI; Jg where I; J � N is solvable within all mentioned calculi.



Proof: The constructions depend on calculi.a probability measuresHaving fPI ; PJg a compatible collection of probability distributions we put:P (x) = 0 if (PI)I\J(xI\J) = 0, andP (x) = PI(xI)�PJ(xJ)�[(PI)I\J(xI\J)]�1�Qi2NnI[J Qi(xi) otherwise (where (PI);(�) =1 and Qi are arbitrarily chosen one-dimensional probability measures).b database relationsHaving fRI ;RJg a compatible collection of database relations put R = (RI �XNnI) \(RJ �XNnJ ).c NCFsHaving a couple of compatible NCFs f�I ; �Jg put: �(x) = maxf�I(xI); �J (xJ)g (forx 2 XN ).d possibility measuresHaving compatible possibility distributions f�I ; �Jg use the formula from Proposition1:��(x) = min f�I(xI); �J(xJ)g (for x 2 XN ).e BPAsHaving a compatible collection of BPAs fmI ;mJg we can de�ne a BPA m over Nhaving them as marginals as follows: focal elements of m will have the form G =(E �XNnI ) \ (F� XNnJ ) where E � XI is a focal element of mI ; F � XJ is a focalelement of mJ and EI\J = FI\J (in case I \ J = ; automatically E; = F;). Putm(G) =mI(E) �mJ (F) � [(mI)I\J(EI\J ]�1. 2Hence, one can conclude using [16]:Proposition 2 A collection of (nonempty) attribute sets S is solvable withinany of the mentioned calculi i� it satis�es the running intersection property :there exists an ordering S1; : : : ; Sn of S such that8j � 2 9i 1 � i < j Sj \ (Sk<j Sk) � Si :5 ConclusionThe results proved in this paper have mainly theoretical signi�cance. The studyof the marginal problem was so far limited to probability measures and dabaserelations (resp. to NCFs). How, the horizons in this respect were broadened alsoto possibility measures and to the calculus of Dempster-Shafer theory.The reader can object that the study of \ideal" consistency of input knowl-edge may be unrealistic, but I think it is useful to be aware of these results. Forexample, the results concerning the running intersection property highlight thesigni�cance of decomposable models [11] which correspond uniquely to collectionssatisfying this condition. If one is interested in the \internal coherence" of his(her) procedures (i.e. whether the \input" pieces of knowledge and the \output"knowledge are coherent) one should take advantage of these models no matterwhich calculus one decided on to represent knowledge.I hope that the method of testing global consistency for possibility measuresis of some bene�t, as well.
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