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Abstract. By the marginal problem we understand the problem of the
existence of a global (full-dimensional) knowledge representation which
has prescribed less-dimensional representations as marginals. The paper
deals with this problem in several calculi of AI: probabilistic reasoning,
theory of relational databases, possibility theory, Dempster-Shafer’s the-
ory of belief functions, Spohn’s theory of ordinal conditional functions.
The following result, already known in probabilistic framework and in
the framework of relational databases, is shown also for the other calculi:
the running intersection property is the necessary and sufficient condi-
tion for pairwise compatibility of prescribed less-dimensional knowledge
representations being equivalent to the existence of a global representa-
tion. Moreover, a simple method of solving the marginal problem in the
possibilistic framework and its subframeworks is given.

1 Introduction

Dealing with integration of knowledge in probabilistic expert systems one en-
counters the problem of consistency well-known as the marginal problem [8]:
having prescribed a collection of less-dimensional probability measures (which
represent pieces of knowledge given by experts - see [11]) one should recognize
whether there exists a joint multidimensional probability measure having the
prescribed less-dimensional measures as marginals (such a joint measure then
could represent global knowledge kept by an expert system).

Of course, an analogous problem can be expected when one tries to model ex-
pert knowledge within another calculus for uncertainty management. Concretely,
this paper is concerned with the marginal problem in the following branches of
AT

probabilistic reasoning

theory of relational databases

— theory of ordinal conditional functions
— possibility theory

— theory of belief functions.
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As concerns the probabilistic framework® no direct method of solving the
marginal problem is known but there exists an asymptotic method. Using the
collection of prescribed less-dimensional measures one can define by means of
the so-called iterative proportional fitting procedure [3] a sequence of multidi-
mensional probability measures which is proved in [2] to converge iff there exists
a joint measure having the prescribed measures as marginals. The limit measure
then has the prescribed marginals and minimizes I-divergence within the class
of such joint measures.

Nevertheless, one can sometimes evade this iterative procedure as the global
consistency is under a certain structural condition put on the collection of under-
lying attribute sets* equivalent to the condition of pairwise compatibility which
is easy to verify or disprove. Kellerer [9] showed that the global consistency is
equivalent with the pairwise compatibility iff the collection S of underlying sets
satisfies the running intersection property (see also [10, 8]):

there exists an ordering Si,...,.S, of S such that
Vi>2 di 1<i<y Sjm(Uk<jSk)CSi.

This condition has a meaning of acyclicity of the hypergraph S (this terminology
was accepted in [1]). For example, the chain figured below satisfies the running
intersection property.

CHCOICED

On the other hand, the cycle below does not satisfy it.

3 In this paper we restrict our attention to probability measures on finite sets.

4 By an attribute we understand an elementary symptom or variable in consideration of
an expert system. The corresponding knowledge is represented differently in different
calculi. In probabilistic reasoning it is represented by a one-dimensional probability
measure. Every expert can give evidence concerning certain area, i.e. his statements
refer to a small set of attributes. Thus, the piece of knowledge given by an expert is
represented by a less-dimensional probability measure embracing exactly attributes
from the mentioned set (= the underlying attribute set).
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Similar results were later shown in the theory of relational databases. A sim-
ple direct method of solving the marginal problem in this framework is known —
see [10]. It consists in verifying whether a certain multidimensional database re-
lation, made of the prescribed less-dimensional database relations by a concrete
procedure, has the prescribed relations as marginals. Moreover, the running in-
tersection property was also shown to be a necessary and sufficient condition for
pairwise compatibility being equivalent to global consistency in this framework
[1].

The aim of this paper is to show the results concerning the running inter-
section property for the other mentioned calculi as well. Note that this result
for the calculus of ordinal conditional functions was recently proved in [16]. The
procedure from [16] can also be used in all the other calculi — one only has to
give several basic constructions (specific for a calculus). This is done in this pa-
per in order to make a comprehensive survey. Moreover, the above mentioned
simple direct method of solving the marginal problem for relational databases is
extended to the possibilistic calculus in this paper.

The next section recalls how knowledge is represented in all the calculi. The
third section then describes the mentioned method of solving the marginal prob-
lem in the possibilistic calculus and gives an example showing that the global
consistency of a collection of possibility measures is indeed strictly stronger than
its global consistency in sense of Dempster-Shafer theory. In the fourth section
the main constructions allowing us to show the main results are given.

2 Basic definitions

This section recalls how knowledge is represented in all the mentioned calculi
of AI. The most of these calculi are constructed to be as general as possible
and some readers can object that the definitions below are restrictive. But they
express the essence of these calculi and make possible certain unifying point of
view: the calculus of Dempster-Shafer theory is considered to be the most general
framework and the other approaches are incorporated as its subframeworks.



All above mentioned calculi will have some common setting in this paper. In
the following we suppose that N is a nonempty finite set of attributes. Moreover,
a nonempty finite set X; called the frame® corresponds to each attribute i € N.
Whenever ) # S C N the symbol Xg denotes the cartesian product IT;cs X;.
Having an element z € Xx and § # S C N the projection of z to Xg (i.e. the
element of Xg whose components coincide with the components of z) will be
denoted by xg. The power set of a set Y will be denoted by exp Y.

We start, our definition survey with the probabilistic calculus which is prob-
ably the most developed approach for dealing uncertainty in Al.

Definition 1 (probability measure)

A probability distribution over N is a nonnegative real function P : Xy — (0, 00)
satisfying ) {P(z); € Xy} = L. The formula

P(A) =3{P(x); z € A} (for A C X)
then defines a set function (on exp Xy) called a probability measure over N.

Whenever ) # S C N and P is a probability measure over N, then its marginal
on S is a probability measure P° over S defined as follows (of course PV = P):

PS(A) = P(A x Xpys) for AC Xg, 0 #S # N,

Note that a marginal on a set of attributes will be always denoted by the
symbol of the original (knowledge representation) having moreover as the upper
index the symbol of the attribute set (the same principle will be followed also in
the other calculi).

Another framework where the marginal problem has already been studied is
the theory of relational databases.

Definition 2 (database relation)
A database relation over N is a nonempty subset of X . Whenever ) # S C N

and R is a database relation over IV, then its marginal on S is a database relation
R over S defined as follows (RY = R):

u € R¥ & [ (u,v) € R for some v € X g]
whenever u € Xg.

A further theory in our focus is Spohn’s theory of ordinal conditional func-
tions [15]. This theory gives a tool for mathematical description of dynamic
handling of deterministic epistemilogy and in this sense it constitutes a counter-
part of the probabilistic approach. Researchers in AT paid attention especially
to a special class of natural conditional functions [7, 14]:

Definition 3 (natural conditional function)
Having a nonnegative integer function x : Xy — {0, 1, ...} satisfying min{x(z); = €
Xn} =0, the formula

k(A) = min{k(z); z € A} (for 0 # A C Xn)

5 The frame is the set of “possible” values for the considered attribute.



defines a set function on (exp Xy) \ {0} called a natural conditional function
(NCF) over N. Whenever f # S C N and & is an NCF over N, then its marginal
on S is an NCF x“ over S defined as follows (k" = k):
KJS(A) = KJ(A X XN\S)

for #AC Xs,0#S #N.

The next calculus is possibility theory which was proposed by Zadeh [17] as
a model for quantification of judgements on the basis of fuzzy theory and later
developed by Dubois and Prade [5].

Definition 4 (possibility measure)

A possibility distribution over N is a real function 7 : Xy — (0,1) satisfying
max{r(z); x € Xy} = 1. The formula

m(A) = max{n(z); x € A} (for ) # A C Xy)

then defines a set function on (exp Xn)\ {0} called a possibility measure over N.
Whenever ) #.S C N and 7 is a possibility measure over N, then its marginal

on S is a possibility measure 7% over S defined as follows (7" = 7):
T (A) = 7(A x Xn\5)

forDAACXg,0£AS#N.

One of the most popular approaches for dealing with uncertainty in AT is
Dempster-Shafer theory [3, 13]. Knowledge can be described here in several
equivalent ways (belief or respectively commonality or plausibility function), we
chose the concept of basic probability assignment.

Definition 5 (basic probability assignment)

A basic probability assignment (BPA) over N is a real function m : exp Xy —
(0, 00) satisfying > {m(A4); A C Xy} and m(p) = 0. Whenever f # S C N and
m is a BPA over N, then its marginal on S is a BPA m® over S defined as

follows (of course m" = m):

m?(4) =Y {m(R); RC X5 R% = A4}
for A C Xg, (see Definition 2 for the symbol R¥).
Focal elements are the sets A C Xy with m(A4) > 0.

The calculi above can be compared each other. For example one can assign
a posssibility measure m, to every NCF k by means of the formula:

T (A) = e HA) for p # A C Xy.
The mapping k — 7, is injective and respects marginals i.e.
(me)® = m(s) for NCF k over N, ) #S C N.

If there exists an injective mapping respecting marginals from a calculus to an-
other calculus we shall say that the former calculus is a subframework of the
latter one.

Thus, database relations are a subfamework of possibility measures since a pos-
sibility measure g is assigned to every database relation R:



1 ifANR#D
mr(4) = {0 otherwise

and probability measures are a subframework of BPAs since a BPA mp is as-
signed to every probability measure P:
[ P(z) ifA={z}forzeXn
mp(4) = {0 otherwise
and possibility measures are a subframework of BPAs, since every possibility

measure 7 can be identified with a BPA m, whose collection of focal elements
is a nest® and satisfies the relation

W(:E):Z{mﬂ.(B); ZEGBCXN} forz € Xn.
We left to the reader to verify that m, is determined uniquely by these two

conditions and that all the mappings are injective and respect marginals. Thus,
the situation can be illustrated by the following picture.

0 #ACXn)

possibility probability

Remark The reader may think that database relations are a subframework of
probability measures since one can assign a probability distribution Pg to every
database relation R:
P { (card R) ™! ifzeR

R 0 otherwise.
Nevertheless, this mapping does not respect marginals and therefore it is not

interesting from our 'marginal problem’ point view. Indeed, one can take N =
{1,2}, Xi = X, ={0,1}, R={(0,0),(0,1),(1,0)} and have (PR){l} # P(R{l})'

3 Marginal problem in possibility theory

This section gives a simple direct method of solving the marginal problem in
the possibilistic framework. Moreover, an example shows that a collection of
possibility measures may be globally consistent within the BPA-framework but
not within the possibilistic framework.

Firstly, we give exact definitions of concepts connected with the marginal
problem. They are shared by all the calculi we deal with in this paper.

5ie. AC B or B C A for every two focal elements A, B



Definition 6 (compatibility, consistency)

Let us have in mind any of the calculi mentioned in section 2. Suppose that
{ks; S € S} is a collection of knowledge representations within that calculus
(where the lower index S in kg denotes the nonempty set of underlying at-
tributes). The collection {kg;S € S} is called pairwise compatible if and only
if

VS, T € Swith SNT #0 (k)T = (kr)5"7T.

Moreover, {ks; S € S} is called globally consistent iff there exists a global
knowledge representation k (having the set of underlying attributes N) such
that VS €S k% =ks.

It is evident that global consistency implies pairwise compatibility but the
converse is not true. The following example shows it for all the mentioned calculi.

Example 1 (compatibility 7 consistency)

Consider the global attribute set N = {1,...,n} where n > 3, the frames X; = {0, 1}

for ¢ € N and the collection of attribute sets S = {{1,2},{2,3},...,{n—1,n},{n,1} }.

Further details depend on calculi:

@ probability measures

Define probability distributions {Ps;S € S} as follows:

Ppn,13(00) = Ppp13(11) = 0

Pr,13(01) = P,,13(10) = 0.5

and for remaining S € §

Ps(00) = Ps(11) = 0.5 Ps(01) = Ps(10) = 0.

This collection is not globally consistent: having a probability distribution P over N

with these prescribed marginals, the inequality P(z) < PS(zs) implies 0 < P(z) <

minges Ps(zs) =0 for all z € Xy and this contradicts Y {P(z); z € Xn} = 1.
database relations

Put Ry, = {(0,1),(1,0)} and Rs = {(0,0), (1,1)} for remaining S € S. This collec-

tion is not globally consistent as there is no database relation R over N having these

prescribed marginals. Indeed, no z € Xy satisfies VS € § x5 € Rs and this implies

a contradictory conclusion R = 0.

NCFs

Let us define NCF's as point functions on Xs:

H{n,l}(OO) = K{n,1} (11) =1

H{n,l}(()l) = Ii{nl}(lo) =0

and for remaining S € S

ks(00) = ks(11) =0 ks(01) = ks(10) = 1.

Supposing an NCF & over N has these marginals, the inequality x(z) > ° (zs) implies

k(z) > maxses ks(zs) =1 for all z € Xn and this contradicts min{x(z);z € Xy} =

0.

@ possibility measures

Take 75 = mry, S € S where {Rs; S € S} are database relations from E Suppos-
ing m is a possibility distribution having these prescribed marginals, the inequality
m(z) < TI'S(ZDS) implies 7(z) < minses ws(xzs) =0 for all z € Xy and this contradicts
max{n(z);z € Xy} =1.

E BPAs



Take ms =m,,, S €S where {rs;S € S} are possibility measures from @ To dis-
prove global consistency realize that every mg has only one focal element (with assigned
value 1): my, ;3 has {(01), (10)} as its focal element, any other mg has {(00), (10)}. If
m is a BPA over N having {mg; S € §} as marginals and R is one of its focal elements,
then its marginal RS has to be a focal element of mg (for every S € S). Hence by the

procedure from E derive R = () and this contradicts the definition of BPA.

As mentioned in Introduction, there is no direct method of testing global
consistency within the probabilistic framework. Nevertheless, there exists such
a method in the possibilistic framework.

Proposition 1 Suppose that {7g;S € S} is a collection of possibility distri-
butions (when the lower index denotes the set of underlying attributes). Then
{ms;S € S} is globally consistent if and only if the formula

() = minges ms(zs) for z € Xn
defines a possibility distribution whose marginals are {7g; S € S}.

Proof: The sufficiency is evident. For necessity suppose that 7 is a posibility measure
having {7s; S € S} as marginals. Then

T < e

For each ¢ € Xn and S € S write 7(z) < 7n°(zs) = ns(xs) and use the definition of
T .

T« 1S a possibility distribution

Evidently 0 < . < 1; having o € Xn with w(zo) = 1 the preceding step gives
Tk (:Do) =1.

VSeS (m)S=rns

Having fixed S € § and z € X5 by the definition of marginal find y € Xy with z = ys
and (m.)%(2) = m.(y). Using the definition of m. write m.(y) < ms(ys) = ws(z) ie.
()5 (2) < ms(2) = 7% (2). On the other hand 7°(2) < (m.)%(2) follows from and
therefore (7.)°(2) = ws(2) = 7°(2). m|

The result above gives already published criteria for subframeworks”. A
collection of database relations {Rg;S € S} is globally consistent iff the set
Ri = Nges Rs x Xn\s is a database relation having {Rs; S € S} as marginals
[10]. A collection of NCFs {kg;S € S} is globally consistent iff the function
k«(z) = maxges kg(rs) (for z € Xn) determines an NCF over N having
{ks; S € 8} as marginals [16]. These criteria can be derived from Proposition 1
owing to the following principle: supposing that possibility measures {7g;S € S}
correspond to database relations (resp. NCFs) 7, gives a possibility measure cor-
responding to a database relation (resp. an NCF).

Therefore every collection of database relations (resp. NCFs) is globally con-
sistent iff it is consistent within the possibilistic framework. Similarly, one can

T As concerns the test in the possibilistic framework T only found in [6] p. 6-7 a
procedure where 7, was defined as one step of a procedure of approximate reasoning
[18]. But the mentioned procedure computes one-dimensional marginals of 7. and
the authors of [6, 18] are not interested in the connection to the starting possibility
measures which are not supposed to be pairwise compatible.



show that a collection of probability measures is globally consistent iff it is
consistent within the BPA-framework®. Nevertheless, a collection of possibility
measures need not be globally consistent although it is globally consistent within
the BPA-framework as the following example shows.

Example 2 Put N ={1,2,3},X; ={0,1} fori € N and § = {{1,2},{1,3},{2,3} }.
Consider a collection of possibility distributions {ms;S € S} defined as follows (S € S):
7s(00) = ws(11) = 2 75(01) = ms(10) = 1.

This collection is not globally consistent as the function 7.(z) = minges ws(zs) = %
is not a possibility distribution. But, the collection of BPAs {m.¢;S € S} is globally
consistent as one can consider the BPA m with three focal elements:

{(010), (011), (100), (101) },

{(001), (011), (100), (110) },

{(001), (101), (010), (110) }

with assigned values %

4 Solvable collections

In this section the collections of attribute sets for which pairwise compatibility is equiv-
alent to global consistency are studied. We show that these collections are characterized
within all mentioned calculi by means of the running intersection property.

We start with some definitions which are, of course, shared by all the studied calculi.

Definition 7 (solvable collection, reduced collection)

Having in mind any of the calculi mentioned in section 2 a collection of nonempty
attribute sets S will be called solvable within that calculus iff every pairwise compat-
ible collection of knowledge representations, whose collection of attribute sets is S, is
globally consistent.

S will be called reduced iff

V A,B € S neither A C B nor B C A.

If ) # T C N, then the contraction of S to T denoted by S A T is defined as the
collection of maximal sets® of {SNT; S€S SNT #0}.

The method used in [16] to show the necessity of the running intersection property
for solvable collections within the NCF-framework in fact does not depend on a par-
ticular calculus (see Lemmas 8,9 and Theorem 2 in [16]). One only needs to show that
a collection of attribute sets S is not solvable in two following cases:

S contains a sequence Si,...,S, (n > 3)
[a] { such that Vi=1,...,n  (Sht1 = S1)
SiN St \U(S\ {Si, Sita}) # 0.

® Hint: Without loss of generality suppose N = JS. Projections (=database
marginals) of every focal element of a global BPA m having the prescribed marginals
must be focal elements of marginals i.e. singletons. Hence, every focal element of m
is a singleton.

® A€ T is maximal in T iff [B€ T, AC B]= B = A.



S is reduced, card § > 2 and
[b] Vi,jelJS IS €S with i,j€S.
Also the proof of sufficiency requires only to show that a collection § with card S = 2
is solvable — see [16]. Thus, in the sequel we only verify these facts for all the mentioned
calculi.

Lemma 1 Supposing S is a solvable collection of attribute sets and § # T C N the
contraction S A T is also solvable.

Proof: Supposing {kr; L € S AT} is a pairwise compatible collection of knowledge
representations we are to show that it is globally consistent. To this end we construct
(and this step depends on a calculus) a pairwise compatible collection of knowledge
representations {k%; S € S} such that VL € SAT [L =SNT for some S € S|
implies (k%)Y = kL.
In the sequel we give the corresponding constructions for all studied calculi.
[a] probability measures
Having a pairwise compatible collection of probability distributions {Pr; L € SAT}
select for each ¢ € N\ T a probability distribution @; on X;. Then put (for z € Xg, S €
S):
Pi(z) = (P)*" (zsnr) - HieS\T Qi(x:),
where L € SAT with SNT C L is arbitrarily chosen (take (PL)Q(—) =1= Hiem Qi(—)
).
E database relations
Having pairwise compatible database relations {Rz; L € S AT}, for each S € S with
SNT # 0 find L € SAT with SNT C L and put Rs = (R.)*"' x Xg\r (fSNT =0
then RS = Xs )
NCFs
Having pairwise compatible NCFs {k.; L € SAT}, for each S € § with SNT # 0
find L € SAT with SNT C L and put x5(z) = (k1.)°"7 (zsnr) for z € X5, S€S
(where (k)?(=) = 0).

possibility measures
Having pairwise compatible possibility distributions {77; L € S AT }, put:
ws(x) = (7)) (xsaT) for z€ X5,5€S
(L has the same meaning as in [c], (r2)? (=) =1).
[e] BPAs
Supposing {mr, L € S AT} are pairwise compatible BPAs define for each S € S:
ms'(F) = (mp)5"7(E), whenever F = E x Xg\7 with E C Xsnr (L has the same
meaning as in preceding steps and (mpz)?(—=) = 1),
and mg'(F) = 0 for remaining F C Xs. O

Consequence 1 Supposing [a] a collection of attribute sets S is not solvable.

Proof: Put T = {z;; 4 = 1,...,n} where we chose z; € S; N Si11 \ J(S\ {5, Shq})
Then use Lemma 1 and Example 1 in section 3 to get the desired conclusion.

Lemma 2 Supposing [b] a collection of attribute sets S is not solvable.

Proof: Without loss of generality suppose [|S = 0: otherwise put 7 = N \ (]S and
consider § AT instead of S. In all constructions below we put X; = {0,1}.



@ probability measures
Denote m = card US — 1 and define for each S € § a probability distribution Ps
($ € Xs):

(m—card S)-m="if Y, @i =0
Ps(z)={ m™! if ) cqzi=1

0 if ZiES x; > 2.
It is no problem to verify pairwise compatibility of {Ps;S € S§}. Now, suppose by con-
tradiction that P is a probability distribution over N having {Ps;S € S} as marginals.
Then
(a) PYS(z)=0 for z € Xus, D0 5% > 2.
Indeed: for fixed z € Xys find i,j € |JS with z; = z; = 1 and then S € S with
i,j € S. Hence 0 < PYS(z) < P¥(zs) = 0.
(b) PYS(z)=m"! for z € Xus, D ;e st = 1.
Indeed: for fixed z € Xus take the only ¢ € US with 2; = 1 and consider S € S with
i € S. Then m™' = P%(zs) = PY5(z) + Y, { P"®(zs,y); ¥y € Xus\s ZieuS\Syi >
1}, where the latter sum is zero by (a).
Evidently (b) gives a contradictory conclusion Y { P’*(z);2 € Xus} > (m+1)-m™* >

1.

E database relations

Let us put: Rs = {z € Xs; Zies z; =1} (for S € §). As (RS)V ={z € Xv; Ziev z; <
1} for every proper subset V' C S, {Rs; S € S8} are pairwise compatible. Nevertheless,
no database relation R over N has {Rs; S € S} as marginals:

(a) whenever z € Xy with ). oz > 2 then z R

Indeed: choose 4,5 € | JS with z; = x; =1 and S € S with i,j € S. Then zs ¢ Rs
implies = &€ R.

(b) whenever z € Xy with ). _ sz; <1 then z ¢ R

Indeed: find S € S with Z]‘es z; = 0 (fix contingent i € | JS with z; = 1 and by
(S =0 find S € S with i ¢ S). Evidently zs ¢ Rs implies z ¢ R.

NCFs

Define an NCF ks over N for each S € § as follows:
— 1€S

ks () 1 otherwise

The collection {ks; S € S} is pairwise compatible as for ) ZV C S € S,V £ S it

holds:

0if Y, yi <1
v — iev It —=
(rs)" (1) { 1 otherwise for y € Xv.

for r € Xs.

To disprove global consistency use the criterion mentioned below Proposition 1 and
compute k*(x) = maxses ks(zs) (for = € Xy). Supposing £*(z) = 0 we get
VS €S ks(zs) =0 ie. zs € Rs where Rg is from E - but it was shown there that
no x € Xy satisfies this requirement. Therefore x* = 1.

E possibility measures

One can use for example the collection {nry; S € S} where {Rs; S € S} are database

relations from the item E (see the reasoning before Example 2).
[e] BPAs
One can use {mpg; S € S8} where probability measures {Ps; S € S} are from [a] O

Lemma 3 A collection {I, J} where I, J C N is solvable within all mentioned calculi.



Proof: The constructions depend on calculi.

@ probability measures

Having {Pr, P;} a compatible collection of probability distributions we put:

P(x) =0 if (Pr)"™ (xrns) = 0, and

P(zx) = PI(ml)'PJ(QL‘J)'[(PI)IHJ(Q’JIHJ)]71'HieN\IUJ Qi(z;) otherwise (where (PI)m(—) =
1 and @Q; are arbitrarily chosen one-dimensional probability measures).

E database relations

Having {Rr,Rs} a compatible collection of database relations put R = (Rr x Xp\7) N
(Ry x Xn\g)-

NCFs

Having a couple of compatible NCFs {k;, s} put: k(z) = max{kr(zr),ks(zs)} (for
z € Xn).

E possibility measures

Having compatible possibility distributions {n7,7s} use the formula from Proposition
1:

m(z) = min {mr(z1), 77(zs)} (for z € Xn).

[e] BPAs

Having a compatible collection of BPAs {m;,m;} we can define a BPA m over N
having them as marginals as follows: focal elements of m will have the form G =
(Ex Xa\1) N (F x Xn\s) where E C X7 is a focal element of m;, F C X is a focal
element of my and E'™Y = F'Y (in case I NJ = 0 automatically E> = F?). Put

m(G) = m(E) - my(F) - [(m)"™ (EM7] ", O

Hence, one can conclude using [16]:

Proposition 2 A collection of (nonempty) attribute sets S is solvable within
any of the mentioned calculi iff it satisfies the running intersection property:

there exists an ordering Si,...,S, of S such that
Vi>2 di 1<i<j Sjm(Uk<jSk)CSi.

5 Conclusion

The results proved in this paper have mainly theoretical significance. The study
of the marginal problem was so far limited to probability measures and dabase
relations (resp. to NCFs). How, the horizons in this respect were broadened also
to possibility measures and to the calculus of Dempster-Shafer theory.

The reader can object that the study of “ideal” consistency of input knowl-
edge may be unrealistic, but I think it is useful to be aware of these results. For
example, the results concerning the running intersection property highlight the
significance of decomposable models [11] which correspond uniquely to collections
satisfying this condition. If one is interested in the “internal coherence” of his
(her) procedures (i.e. whether the “input” pieces of knowledge and the “output”
knowledge are coherent) one should take advantage of these models no matter
which calculus one decided on to represent knowledge.

I hope that the method of testing global consistency for possibility measures
is of some benefit, as well.
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