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NOTATION AND BASIC ARRANGEMENTSThroughout this paper the following situation will be delt with:A �nite set N having at least two elements called the basic set is given,i.e. 2 � cardN <1. Having disjoint sets A;B � N the juxtaposition AB will stand fortheir union A [ B in many examples. The class of all subsets of N will be denoted byexpN , the class of its nontrivial subsets i.e. subsets having at least two elements will bedenoted by U : U = fS � N; card S � 2g.Having a set T � N its identi�cator i.e. the zero-one function on expN (possibly restrictedto U) is de�ned as follows:�T (S) = � 1 in case S = T0 in case S 6= T:Having a collection of nonempty �nite sets fXi ; i 2 Ng , an element of the correspondingcartesian product x 2 Qi2NXi and a set ; 6= S � N the projection of x to Qi2SXi will bedenoted by xS:xS 2 Qi2SXi is speci�ed by [ 8i 2 S (xS)i = xi ].Having a pair a; b of real functions on a �nite set X their scalar product will be denotedby ha; bi:ha; bi = Px2X a(x) � b(x).The set of integers will be denoted by Z, the set of nonnegative integers (including zero)by Z+, the set of (strictly) positive integer (sometimes called natural numbers) by N andthe set of real numbers by R.For the sake of brevity, having a probability measure Q on Y (or a function on exp Y )and y 2 Y the symbol Q(y) will be often used instead of Q(fyg).Having a function w : expN ! Z its positive and negative parts will be denoted by w+and w�:w+(S) = max fw(S); 0g for S � Nw�(S) = max f�w(S); 0g for S � N:1. THE PRODUCT FORMULA GIVEN BY AN IMSETThis section contains basic de�nitions and the corresponding comments only. Namely,the concepts of imset, its natural extension and �nite-domain probability measure arespeci�ed. Finally, the product formula given by an imset is introduced and a simpleexample given.Def. 1 (imset)Every integer-valued function on U is called imset (on U).The class of all imsets will be denoted by Z(U).Nonnegative imsets will be called multisets, their class will be denoted by Z+(U).Basic operations with imsets like summing, subtracting and multiplying by integers arede�ned coordinatewisely. An imset u 2 Z(U) is called normalized i� the collection ofnumbers fu(S);S 2 Ug has no common prime divisor.180



Trivial examples of imsets are zero imset (a function ascribing zero to each set from U)denoted by 0 and identi�cators for T 2 U .Remark The term multiset is borrowed from Aigner's book about combinatorial theory[1] while the word imset is our abbreviation for integer-valued multiset.In some cases it will be convenient to regard imsets on U as functions on expN . Thecorrectness of the de�nition of the right extension is based on the following lemma; itsproof is left to the reader.Lemma Every imset u 2 Z(U) has uniquely determined extensionu : expN ! Zsatisfying the following two conditions:(N:1) Pfu(S);S � Ng = 0(N:2) 8r 2 N Pfu(S); r 2 S � Ng = 0.This adjudgement de�nes a one-to-one correspondence between Z(U) and the class ofinteger-valued functions on expN satisfying (N:1)� (N:2).Def. 2 (natural extension)Having an imset u on U the uniquely determined integer-valued function u on expNextending it and satisfying the normalization conditions (N:1)� (N:2) will be called thenatural extension of u. It will be always denoted by u (overline the original symbol).The focus of our study are CI-structures of �nite number of random variables (i.e.random systems). Nevertheless, in this article we limit ourselves to �nite-valued randomvariables. It is a common custom in literature to allude to random variables but in factdeal with probability measures, namely their distributions. In the sequel, we decided bothto allude to and deal with probability measures.Now, the relevant class of probability measures will be speci�ed. As they serve asdistributions of random systems indexed by the basic set N their domains are cartesianproducts indexed by N .Def. 3 (probability measure over N)A probability measure over N (with �nite domain) is speci�ed by a collection of nonempty�nite sets fXi ; i 2 Ng and by a probability measure on the cartesian product Qi2N Xi.Whenever ; 6= S  N the marginal measure of P is the probability measure P S on Qi2SXide�ned by: P S(A) = P (A� Qi2NnSXi) whenever A � Qi2SXi:It will be always denoted by the symbol of the original measure endowed with the upperindex identifying the marginal space. Moreover, the marginal measure P on Qi2NXi isintroduced as P itself, i.e. PN � P .As mentioned above every assumption concerning CI-stucture of a probability measureis equivalent to the validity of certain product formula. Now, we are going to explain howthese formulas look. 181



Def. 4 (product formula given by an imset)Let P be a probability measure over N and u be an imset on U . Say that P satis�es theproduct formula given by u i� it holds:8x 2 Qi2NXi Q;6=S�N(P S(xS))u+(S) = Q;6=S�N(P S(xS))u�(S) (1:1)The condition (1:1) is the above mentioned formula.Remark Another possible way how to write product formulas is to introduce the conven-tional symbol P ;(x;) for 1 and write instead of (1:1) :8x 2 Qi2NXi QS�N(P S(xS))u+(S) = QS�N(P S(xS))u�(S) (1:2)To illustrate this concept a simple example is given.Example 1Consider S; T 2 U with S\T = ; and S[T = N . Put u = �N ��S��T . Then u = u+�;and the product formula given by u looks:8x 2 Qi2NXi P (x) = P S(xS) � P T (xT ) (1:3)2. DESCRIPTION OF CI-STRUCTURESIn this section the concept of CI is recalled and the \classical" ways to description ofCI-structures are mentioned, especially by means of dependency models. The reason todevelop the new approach to description of CI-structures from [25] is explained.Def. 5 (conditional independence)Let P be a probability measure over N and hA;B;Ci is a triplet of pairwise disjointsubsets of N where A and B are nonempty. Say that A is conditionally independent ofB given C in P and write A ? BjC (P ) i�8x 2 Qi2NXi PABC(xABC) � PC(xC) = PAC(xAC) � PBC(xBC).Another phrase \ P obeys the triplet hA;B;Ci " will be often used in the sequel.There are many equivalent formulations of the statement A ? BjC (P ), for example:- 8a; ~a 2Qi2AXi b;~b 2Qi2B Xi c 2 Qi2C XiPABC([a; b; c]) � PABC([~a;~b; c]) = PABC([a;~b; c]) � PABC([~a; b; c])- there exist functions f : Qi2AC Xi ! R and g :Qi2BC Xi ! R such that8x 2 Qi2N Xi PABC(xABC) = f(xAC) � g(xBC)- 8c 2 Qi2C Xi with PC(c) > 0 the conditional probability PABjC(�jc) is a product mea-sure on (Qi2AXi)� (Qi2B Xi). 182



The last condition leads directly to the common interpretation of A ? BjC: \gettingknow the values of variables from C the variables from A and B become independenti.e. their probabilistic pieces of information become unrelevant". Thus, the informationabout CI-structure can be obtained from experts too.To approach CI to human understanding the CI-structures were usually described bymeans of graphs in literature. Two trends are distinguishable: by means of undirectedgraphs (this stems from Markov �eld theory, the corresponding graph is calledMarkov net[2,6,8,12] and by means of directed acyclic graphs (the long tradition started by geneticistS. Wright [28] led to the concepts of in
uence diagram [5,17,18,19] and recursive models[7,27]. Nevertheless both graphical approaches cannot describe all possible probabilisticCI-structures.Thus, another natural way was proposed: to describe a CI-structure simply by the listof valid CI-statements (i.e. triplets obeyed by the corresponding probability measure).This led to the concept of dependency model introduced by Pearl and Paz [15]; theirde�nition is slightly modi�ed here:Def. 6 (dependency model, model of CI-structure)a) Denote by T (N) the set of triplets hA;B;Ci of pairwise disjoint subsets of N where Aand B are nonempty. Every subset of T (N) will be called a dependency model over N .b) Let P be a probability measure over N and I a dependency model over N . Say thatI is a submodel of CI-structure of P i� P obeys every triplet from I.Further, say that I is the model of CI-structure of P i� I is exactly the set of tripletsobeyed by P .This terminology emphasizes the presented view on dependency models. Note thatauthors dealing with dependency models have used also various another phrases:\I is induced by P" in [26], \P is perfect for I" in [4], \I is conditional independencerelation corresponding to P" in [22].Owing to well-known properties of CI (treated by Dawid [3] resp. Spohn [21] re-sp. Smith [19]) some of dependency models cannot serve as (complete) models of CI-structures. Therefore Pearl and Paz [15] introduced the concept of semigraphoid (= de-pendency model satisfying the above mentioned properties) to describe CI-structures. Assemigraphoids were de�ned as dependency models closed under 4 inference rules (calledaxioms by Pearl and Paz) it gives a deductive mechanism to infer valid consequences ofinput information about CI-structure.Unfortunately, the original hypothesis from [16] that semigraphoids coincide with the(complete) models of CI-structures appeared untrue [22]. Later, we even found thatmodels of CI-structures cannot be described as dependency models closed under �nitenumber of inference rules [23]. This was strengthened by Geiger and Pearl [4] who showedthat \disjunctive" inference rules cannot bring help.These results led us to an attempt to develop an alternative way to description of CI-structures, namely by means of faces and imsets [25]. The aim of this paper is to give anequivalent view on \imsetal"models of CI-structures which brings an easier interpretation.183



3. INFORMATION-THEORETICAL APPROACHThis section recalls the information-theoretical concepts of entropic and multiinforma-tion function and indicates how they enable to describe CI-structures by means of imsets.An initial connection with product formulas is established.Entropic and multiinformation functions are real functions on expN . In fact, thevalue of entropic function for a set S is the entropy of the marginal measure P S whilethe value of multiinformation function is the relative entropy of P S with respect to theproduct of its one-dimensional marginals.Def. 7 (entropic function, multiinformation function)Let P a probability measure over N .Its entropic function H : expN ! R is de�ned as follows:H(;) = 0H(S) = Px;P (x)>0P (x) � ln (1=P S(xS)) for ; 6= S � N:Its multiinformation function M : expN ! R is de�ned by:M(;) = 0M(S) = Px;P (x)>0P (x) � ln (P S(xS)= Qi2S P fig(xi)) for ; 6= S � N:The restriction of the multiinformation function M to U will be denoted by m.Remark Multiinformation generalizes the well-known information-theoretical concept ofmutual information and thus it serves as a quantitative characteristic of level of stochasticdependence of more than two random variables. This view led us to accept the name\multiinformation" in [22]. Another name \entaxy" was used in [9].Now, some properties of these functions are mentioned. They explain why thesefunctions are good tools for study of CI. Firstly, a simple computation gives:M(S) = �H(S) +Pi2SH(i) whenever S � N (of course Pi2;H(i) = 0) (3:1)Moreover, it is shown in [22] x4,5:M(ABC) +M(C) �M(AC) +M(BC) whenever hA;B;Ci 2 T (N) (3:2)andM(ABC) +M(C) =M(AC) +M(BC) i� A ? BjC (P ) for hA;B;Ci 2 T (N) (3:3)The idea of application of multiinformation function was the main step in the proof ofvalidity of new properties of CI in [22] and [23]. Nevertheless, the connection of entropicand multiinformation functions with CI was recognized earlier - see [9] and [13].As concerns the ability to describe CI for probability measures with �nite domainthe entropic and multiinformation functions are equivalent (see below). Nevertheless,their further capacities di�er. Entropic function can be also used to describe functionaldependencies hidden in a discrete probabilitymeasure [11] while multiinformation functioncan be applied to study of CI for continous or \mixed" probability measures [22].184



Lemma 1Let P be a probability measure over N and u be an imset. Then the following equalitiesare equivalent:(a) hm;ui = 0(b) hM;ui = 0(c) hH; ui = 0:Proof: (a),(b) is evident as M(S) = 0 for S 2 expNnU . To see (b),(c) simply writeusing (3.1) and (N:2): hM;ui = PS�NM(S) � u(S) = PS�Nf�H(S) +Pi2SH(i)g � u(S) == � PS�NH(S) � u(S) + PS�N Pi2SH(i) � u(S) = �hH; ui+ Pj2N PT�N;j2T H(j) � u(T ) == �hH; ui+ Pj2NH(j) � f PT;j2T u(T )g = �hH; ui: �Def. 8 (probability measure complies with imset)Let P be a probability measure over N and u an imset on U . Say that P complies withu i� any of the conditions (a) - (c) from Lemma 1 is ful�lled.The above de�ned concept is related to the product formula validity as follows:Lemma 2Let P be a probability measure over N and u be an imset on U . Consider the followingconditions:(a) P satis�es the product formula given by u(b) 8 x 2 Qi2NXi with P (x) > 0 it holds: QS�N P S(xS)u(S) = 1(c) P complies with u.Then (a) ) (b) ) (c).Proof: (a))(b) is evident. To show (b))(c) consider some x 2 Qi2NXi with P (x) > 0and write using properties of logarithm:PS�N u(S) � ln P S(xS) = PS�N ln P S(xS)u(S) = ln QS�N P S(xS)u(S) = ln 1 = 0.By multiplying these equalities by P (x) and summing over all such x 2 Qi2N Xi get :0 = Px;P (x)>0P (x) � PS�N u(S) � ln P S(xS) = Px;P (x)>0 PS�N P (x) � u(S) � ln P S(xS) == PS�N u(S) � Px;P (x)>0P (x) � ln P S(xS) = PS�N �u(S) �H(S) = �hH; ui, i.e. the condition (c) from Lemma 1 holds. �4. STRUCTURAL IMSETSThe class of structural imsets is introduced in this section and the correspondingdependency model is de�ned for every such imset. Then it is shown that complying aprobability measure with a structural imset introduced in the preceding section can be in-terpreted as partial description of the CI-structure (namely by means of the corresponding185



dependency model). Special attention is devoted to the question how to recognize struc-tural imsets. Last result says that any possible model of CI-structure can be completelydescribed in such a way by a structural imset.The class of all imsets on U is too wide for our purposes. Certain subclass will beused to describe CI-structures. These imsets, called structural, can be introduced as\combinations" of so-called elementary imsets de�ned below.Def. 9 (elementary imset)An imset u 2 Z(U) is called elementary i� its natural extension has the form:u = �S[T � �S � �T + �S\T where S; T � N cardSnT = card TnS = 1.The set of elementary imsets will be denoted by E.The following example illustrates this concept in case cardN = 4.Example 2Suppose that N = f1; 2; 3; 4g. By de�nition every elementary imset is \produced" by acouple [S; T ], necessarily 1 � card S = card T � cardN � 1.Thus, elementary imsets can be naturally divided into classes according to the cardinalityof \producing" sets. In the considered case three classes can be distinguished:E1 . . . i:e: card S = card T = 1for instance S = f1g and T = f2g gives u = �f1;2g� �f1g� �f2g + �;and hence u = �f1;2g:The corresponding list follows :�f1;2g; �f1;3g; �f2;3g; �f1;4g; �f2;4g; �f3;4g:E2 . . . i:e: card S = card T = 2for instance S = f1; 2g and T = f2; 3g gives u = �f1;2;3g� �f1;2g � �f2;3g + �f2gand hence u = �f1;2;3g� �f1;2g� �f2;3g:The corresponding list follows :�f1;2;3g� �f1;2g � �f2;3g; �f1;2;3g� �f1;2g � �f1;3g; �f1;2;3g� �f1;3g� �f2;3g;�f1;2;4g� �f1;2g � �f2;4g; �f1;2;4g� �f1;2g � �f1;4g; �f1;2;4g� �f1;4g� �f2;4g;�f1;3;4g� �f1;3g � �f1;4g; �f1;3;4g� �f1;3g � �f3;4g; �f1;3;4g� �f1;4g� �f3;4g;�f2;3;4g� �f2;3g � �f2;4g; �f2;3;4g� �f2;3g � �f3;4g; �f2;3;4g� �f2;4g� �f3;4g:E3 . . . i:e: card S = card T = 3for instance S = f1; 2; 3g and T = f1; 2; 4g givesu = u = �N � �f1;2;3g� �f1;2;4g+ �f1;2g:The corresponding list follows :�N � �f1;2;3g� �f1;2;4g+ �f1;2g;�N � �f1;2;3g� �f1;3;4g+ �f1;3g;�N � �f1;2;3g� �f2;3;4g+ �f2;3g;�N � �f1;2;4g� �f1;3;4g+ �f1;4g;�N � �f1;2;4g� �f2;3;4g+ �f2;4g;�N � �f1;3;4g� �f2;3;4g+ �f3;4g:Thus the total number of elementary imsets is 24 in this case.186



It makes no problem to give the formula for total number of elementary imsets:cardN � (cardN � 1) � 2cardN�3.Hint: the couple S; T can be characterized by the set (SnT )[(TnS) of cardinality 2 and by the intersectionS \ T i.e. a subset of the complement.Def. 10 (structural imset)An imset u 2 Z(U) will be called structural i� it holds:9n 2 N kv 2 Z+ (for v 2 E) n � u = Pv2E kv � v (4:1)The following lemma enables to identify CI-statements with structural imsets and toensure the correctness of further de�nition.Lemma Whenever hA;B;Ci 2 T (N) then the imset u 2 Z(U) determined by its naturalextension u = �ABC � �AC � �BC + �C is a structural imset.Hint: This can be shown by induction according to cardAB: Whenever cardAB = 2 then u is anelementary imset. In case cardA � 2 chose x 2 A and \extend" u by �(�ABCnfxg � �ACnfxg), howeverin case cardA = 1 take x 2 B.Def. 11 (dependency model corresponding to imset)a) To every triplet hA;B;Ci 2 T (N) assign the structural imset denoted by i(hA;B;Ci)and speci�ed by its natural extension �ABC � �AC � �BC + �C .b) Let u be a structural imset. The dependency model corresponding to u denoted by Iuis de�ned as follows:hA;B;Ci 2 Iu i� [ 9n 2 N n � u� i(hA;B;Ci) is a structural imset ].Remark that dependency models corresponding to structural imsets are called struc-tural semigraphoids in [25].Lemma 3Let P be a probability measure over N and u a structural imset on U . Then the followingtwo conditions are equivalent:(a) P complies with u(b) Iu is a submodel of CI-structure of P .Proof: Recall that M is the multiinformation function for P and m its restriction to U .I. hm; vi � 0 whenever v is a structural imset.By (3.2) the inequality holds for elementary imsets, then use (4.1).II. hm;ui = 0 ) (b).Consider hA;B;Ci 2 Iu, take the structural imset n � u � i(hA;B;Ci) with n 2 N andwrite: 0 = hm;n � ui = hm;n � u� i(hA;B;Ci)i+ hm; i(hA;B;Ci)i.Owing to I. both terms on the right-hand side are nonnegative and therefore they vanish.Thus 0 = hm; i(hA;B;Ci)i = hM; i(hA;B;Ci) i gives by (3.3) A ? BjC (P ).187



III. (b) ) hm;ui = 0.By Def. 10 write n � u = Pv2E kv � v with n 2 N; kv 2 Z+. Clearly, it su�ces to showhm; vi = 0 for each v 2 E with kv > 0. For this purpose �nd hA;B;Ci 2 T (N) withv = i(hA;B;Ci). By Def. 11 hA;B;Ci 2 Iu and by (b) get A ? BjC (P ); hence by (3.3)derive hm; vi = hM; vi = 0. �The following question arises in connection with computer implementation of struc-tural imsets: how to recognize whether an imset is structural? The presented de�nition ofstructural imset is not suitable for solving this problem. Nevertheless, structural imsetscan be characterized in another more appropriate way. To formulate it some concept hasto be introduced.Def. 12 (completely convex set function)A set function c : U ! R is called a completely convex set function i�its settled extension c (i.e. c(T ) = 0 for T 2 expNnU) satis�es the convexity condition:c(K [ L) + c(K \ L) � c(K) + c(L) whenever K;L � N .Remark The adjective 'convex' is borrowed from game theory [14] while the adverb'completely' indicates that the convexity condition concerns the extension.Assertion 1a) Let C denotes the class of completely convex set functions. Whenever u is an imset,then it holds: [ u is structural ] i� [ 8c 2 C hc; ui � 0 ].Moreover, C is the largest class satisfying the previous condition.b) There exists the least �nite set of normalized imsetsA such that for each imset u 2 Z(U)it holds: [ u is structural ] i� [ 8a 2 A ha; ui � 0 ].(According to the �rst part necessarily A � C.)Proof: The �rst part of previous assertion is proved in [25] as Theorem 2.4b. The sec-ond part is also mentioned in [25] as Assertion 1.4a, but the essential proof is in [24],Proposition 7b. �Thus from the theoretical point of view a clear criterion to recognize a structural imsetu is given: simply to check the validity of all inequalities ha; ui � 0 for a 2 A.The following result says that structural imsets can describe all possible CI-structures:Assertion 2Whenever P is a probability measure over N and I the model of CI-structure of P thenthere exists a structural imset u such that I corresponds to u.Proof: see Consequence 2.9 in [25]. �Remarksa) It may happen that di�erent structural imsets have the same corresponding depen-dency model. Nevertheless, the pertinent equivalence of structural imsets can be grasped188



by means of the set A from Assertion 1b, for details see [25].b) Our original conjecture that the models of CI-structures coincide with the dependencymodels corresponding to structural imsets appeared unfortunately untrue (see [25]).c) However, the theory developed in [25] seems to admit modi�cations which promise togive �tting description of CI-structures for some special \nice" subclasses of probabilitymeasures.5. EQUIVALENCE RESULTThe aim of this paper is to show that a probability measure complies with a structuralimset u i� it satis�es the product formula given by u. This result can be shown undercertain formal additional assumption on u, called regularity. All structural imsets in casecardN � 4 are shown to be regular; we conjecture that every structural imset satis�esthis condition. The main theorem contains the desired equivalence result.Def. 13 (regular structural imset)Consider a structural imset u and put:Au = fS � N ; S � T for some T � N with u(T ) < 0gBu = fS � N ; S � T for some T � N with u(T ) > 0g.Say that u is regular i� only E � Bu satisfying the following three conditions:[a] E is heriditary (i.e. K � L 2 E ) K 2 E)[b] Au � E[c] whenever K;L 2 E with hKnL;LnK;K \ Li 2 Iu then K [ L 2 Eis Bu itself.Example 3Every u 2 Z(U) of the form i(hA;B;Ci) for hA;B;Ci 2 T (N) is a regular structuralimset. Especially, every elementary imset is regular.Indeed: u is a structural imset according to the lemma before Def. 11. ClearlyAu = fK � N ;K � AC or K � BCg and Bu = fK � N ;K � ABCg. SupposingE � Bu satis�es [a] � [c], by [b] get AC;BC 2 E . As hA;B;Ci 2 Iu (see Def. 11) by [c]derive ABC 2 E and hence by [a] Bu � E .Some facts concerning the classes Au and Bu (for a structural imset u) are needed toderive certain su�cient condition for regularity. Firstly, considering S 2 Au �nd maximalT � N with [S � T & u(T ) 6= 0]. Denoting rT =Pf�K ;T � Kg it makes no problemto see u(T ) = hrT ; ui � 0. (for example Assertion 1a resp. (N:1)� (N:2) ). Hence:Au � Bu (5:1)Moreover, evident factsAl�u = Au Bl�u = Bu Il�u = Iu whenever l 2 N (5:2)imply that u is regular i� l � u is regular. To show[u = y + w y;w structural imsets]) Bu = By [ Bw (5:3)take S 2 By and �nd a maximal T � N with [S � T & y(T ) 6= 0]. As y(T ) > 0 thehypothesis S 62 Bu leads to the contradiction: 0 < hrT ; yi+ hrT ; wi = hrT ; ui � 0.189



Thus By � Bu, similarly Bw � Bu and the inclusion Bu � By [ Bw is evident.You can derive from (5.3) and (5.2) by putting y = i(hKnL;LnK;K \ Li) (see Def. 11):hKnL;LnK;K \ Li 2 Iu ) K [ L 2 Bu (5:4)Lemma 4 Suppose that every structural imset u satis�es:[n � u = Pv2Gkv � v with n 2 N ; 6= G � E kv 2 N]) [9w 2 G Aw � Au] (5:5)Then every structural imset is regular.Proof: Prove the regularity of a structural imset u by induction according tor = min fg ; 9G � E cardG = g such that n � u = Pv2G kv � v for n 2 N ; kv 2 Z+g.In case r � 1 either u = 0 (then Bu = ;) or u = l � v for l 2 N and v 2 E (then usethe procedure from Example 3 combined with (5.2)). In case r > 1 consider a concrete\minimal decomposition" n � u = Pv2Gkv � v with G � E; cardG = r; n 2 N; kv 2 Z+.Necessarily kv > 0! Using (5.5) �nd w 2 G with Aw � Au and put y = Pv2Gnfwgkv � v i.e.n � u = y + kw � w. To verify the regularity of u consider E � Bu satisfying [a] � [c] (seeDef. 13). Our aim is to show E = Bu. Owing to (5.3) it su�ces to verify Bw � E andBy � E .I. Bw � EIndeed: Let be w = �K[L � �K � �L + �K\L; as Aw � Au by [b] derive K;L 2 E and ashKnL;LnK;K \ Li 2 Iu by [c] K [ L 2 E . Hence by [a] Bw � E .II. By � EIndeed: The desired condition is equivalent to E \ By = By. Since y is regular by theinduction assumption it su�ces to verify for E 0 = E \ By the following three conditions:[a0] E 0 is heriditary[b0] Ay � E 0[c0] [K;L 2 E 0 hKnL;LnK;K \ Li 2 Iy] ) K [ L 2 E 0.As By is heriditary, [a0] follows from [a]. It makes no problem to see Ay � Au [ Bw andhence by [b] and I. Ay � E . Thus [b0] follows from (5.1). To show [c0] realize that Iy � Iuand [c] can be used to derive K [ L 2 E . By (5.4) get K [ L 2 E 0. �Consequence 1In case cardN � 4 every structural imset is regular.Proof: The condition (5.5) will be veri�ed for every structural imset in case cardN = 4(the same method can be used in simpler cases cardN = 3 and cardN = 2). Consider aconcrete \decomposition":n � u = Pv2E kv � v with n 2 N; kv 2 Z+; G = fv 2 E; kv > 0g (de�ne kv = 0 for v 2 EnG ).Divide E into three classes E1; E2; E3 (see Example 2) and put: pi = Pv2Ei kv for i = 1; 2; 3:Three basic cases can be distinguished:I. p1 = p2 = 0In this case n � u = Pv2E3 kv � v. It su�ces to take arbitrary w 2 E3 with kw > 0 (note190



that w(S) < 0 & card S = 3 implies n � u(S) < 0 as v(S) � 0 for every v 2 E3).II. p1 = 0 p2 > 0In this case n � u = Pv2E2[E3 kv � v and there exist v 2 E2 with kv > 0. Consider the caseAvnAu 6= ; (otherwise put w = v) and �nd S � N with v(S) < 0 and [8T � S u(T ) � 0].More concretely let S = fa; bg v = �fa;b;cg� �fa;bg� �fa;cg where N = fa; b; c; dg. Moreoverconsider the following elementary imsets:w = �fa;b;dg � �fa;dg � �fb;dgx = �N � �fa;b;dg � �fa;c;dg + �fa;dgy = �N � �fa;b;dg � �fb;c;dg + �fb;dgz = �fa;b;cg � �fa;bg � �fb;cgOur aim is to show that kw > 0 and Aw � Au. For this purpose write n � [u(fa; bg) +u(fa; b; dg)] = +kw�kv�kx�ky�kz (for all remaining t 2 E2[E3 t(fa; bg)+t(fa; b; dg) =0). Hence kw � kv+kx+ky implies both kw � kv > 0 and 0 > �kv � kx�kw � n�u(fa; dg)and 0 > �kv � ky � kw � n � u(fb; dg) (the inequality n � u(fa; dg) � kx� kw follows fromthe fact t(fa; dg) � 0 for remaining t 2 E2 [ E3, similarly n � u(fb; dg) � ky � kw).III. p1 > 0In this case take arbitrary w 2 E1 with kw > 0. By (5.1) and (5.3) Aw � Bw � Bu i.e.for each S 2 Aw (card S = 1) get PS�K u+(K) > 0. Nevertheless by (N:2) PS�K u�(K) =PS�K u+(K) and hence S 2 Au. �So far, we have no example of nonregular structural imset. Our conjecture is that itcannot be found:Conjecture Every structural imset is regular.Now, the main result can be proved.THEOREMLet P be a probability measure over N and u be a regular structural imset on U . Thenthe following conditions are equivalent:(a) P satis�es the product formula given by u (see Def. 4)(b) 8x 2 Qi2N Xi with P (x) > 0 it holds QS�N P S(xS)u(S) = 1(c) P complies with u (see Def. 8)(d) Iu is a submodel of CI-structure of P (see Def. 6,11).Proof: By Lemma 2 (a))(b))(c), by Lemma 3 (c))(d). It remains to show (d))(a).For �xed x 2 Qi2N Xi two possibilities can occur:191



I. QS�N P S(xS)u�(S) = 0.In this case �nd K � N with [u(K) < 0 & PK(xK) = 0]. By (5.1) there exists T with[K � T & u(T ) > 0 ]. Necessarily P T (xT ) = 0 and hence QS�N P S(xS)u+(S) = 0.II. QS�N P S(xS)u�(S) > 0.Put E = fS 2 Bu;P S(xS) > 0g. Evidently E is heriditary and by the assumption Au � E .Also the condition [c] from Def. 13 is valid, owing to (d):hKnL;LnK;K \ Li 2 Iu ) PK[L(xK[L) � PK\L(xK\L) = PK(xK) � PL(xL)and hence PK[L(xK[L) > 0. Therefore the regularity of u implies Bu = E .By Def. 10 n � u = Pv2E kv � v for n 2 N; kv 2 Z+. For every v 2 E with kv > 0 considerhA;B;Ci 2 T (N) with v = i(hA;B;Ci). As hA;B;Ci 2 Iu, by (d) A ? BjC (P ) andtherefore by Def. 5 derive QS�N P S(xS)v+(S) = QS�N P S(xS)v�(S).All these formulas can be multiplied and therefore it holds:QS�N P S(xS)Pv2E kv �v+(S) = QS�N P S(xS)Pv2E kv �v�(S) (5:6)Put w = Pv2E kv � v+ � n � u+, evidently w = Pv2E kv � v� � n � u�. Of course w � 0 andw(S) > 0 implies [9v 2 E kv > 0 v(S) > 0] i.e. S 2 Bv � Bu by (5.3) and (5.2).Therefore S 2 E and P S(xS)w(S) > 0. Together QS�N P S(xS)w(S) > 0 and the equality(5:6) can be divided by this number to getQS�N P S(xS)n�u+(S) = QS�N P S(xS)n�u�(S) (5:7)Hence, the desired product formula easily follows. �Remark The previous proof can be easily modi�ed to show that for every strictly positiveprobability measure and every structural imset u the conditions (a), (b), (c), (d) areequivalent.CONCLUSIONSThus, the theorem above relates three approaches to description of CI-structures:- by means of dependency models- by means of imsets (information - theoretical de�nition)- by means of product formula validityand shows their equivalence.Note that the description by means of imsets (and faces which are behind) is systemati-cally treated and illustrated by examples in [25]. It is endowed by a deductive mechanismallowing to infer CI-statements from an input piece of information about CI-structure(�nitely-implementable from theoretical point of view).The description by means of product formula can be understood as a step to inter-pretation of these CI-structures. It seems to me that the presented models of descriptionof CI-structures have similar reasons (or rights) to be called explicable as hierarchical192



log-linear models. In fact, a general log-linear model is speci�ed by certain \formula" forthe probability measure, namely expressing it as a product of marginal factors. This isclose to the presented formulas and in some special cases (decomposable models) evenequivalent.Another interesting analogy of our product formulas can be found in [10] where so-called functional expressions satisfying the unity sum property are delt with. Some ofthem (for example the expression from Example 4 there) correspond to product formulasrepresenting CI-structure.Note that as reported in [25] some graphical descriptions of CI-structures can be\translated" to imsets and these can be \forwarded" to product formulas. To inform thereader we give the corresponding imset expressions here (without proof).Having an in
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