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A new approach to mathematical description of structures of stochastic conditional indepen-
dence, namely by means of so-called imsets, is presented (imset is an abbreviation for integer-
valued multiset). It is shown how it is related to the “classical” approach, namely by means
of dependency models or semigraphoids. The main result consists in the theorem saying that a
probability measure has certain conditional independence structure (Cl-structure) if and ounly if
it satisfies the corresponding product formula.
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INTRODUCTION

The interest in stochastic conditional independence takes its origin from the theory of
probabilistic expert systems. To put it shortly, any conditional independence statement
can be interpreted as a certain qualitative relationship among symptoms. Therefore there
exists a possibility to determine a proper structural model of the probabilistic expert
system which is easy to understand. In fact, in the theoretical background of various
approaches to qualitative description of probabilistic models (influence diagrams , Markov
nets) the concept of conditional independence (CI) is hidden. To the best of my knowledge,
the importance of CI for probabilistic expert systems was at first highlighted by Pearl [16]
but there exist other approaches which more or less explicitly deal with CI [17,18,19,20,26].

The “classical” approach to description of Cl-structures (if graphical approaches are
omitted) used the concept of dependency model or of semigraphoid [15]. It motivated
attempts at “axiomatization” of Cli.e. to characterize relationships among Cl-statements
in a simple syntactic way. Nevertheless, as proved in [23] there exists no simple dimension-
independent deductive system describing relationships among Cl-statements. This fact
motivated a new approach to description of CI-structures [25], namely by means of imsets.
It promises to remove the above mentioned drawbacks. The aim of this article is to give
another view on this type of description of Cl-stuctures by showing that the complying
with such a model of Cl-structure is equivalent to the validity of certain product formula.
This equivalent definition could make the interpretation of these models more natural.

*This work was made in frame of the project “Explanatory power of probabilistic expert systems:

theoretical backgroud” , internal grant of Czechoslovak Academy of Sciences, 1.27510.
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NOTATION AND BASIC ARRANGEMENTS

Throughout this paper the following situation will be delt with:
A finite set N having at least two elements called the basic set is given,
le. 2 < card N < oo. Having disjoint sets A, B C N the juxtaposition AB will stand for
their union A U B in many examples. The class of all subsets of N will be denoted by
exp N, the class of its nontrivial subsets i.e. subsets having at least two elements will be
denoted by U: U ={S C N, cardS > 2}.
Having aset T C N its identificatori.e. the zero-one function on exp N (possibly restricted
to U) is defined as follows:

; 1 incase S =T
or(5) = { 0 incaseS#T.

Having a collection of nonempty finite sets {X; ; i € N} , an element of the corresponding

cartesian product x € J] X; and a set ) # .S C N the projection of z to [] X; will be
denoted by zg: < e

rg € [[ X; 1isspecified by [Vie S (xg);=ax;].

Ha,Vh;zSa pair a, b of real functions on a finite set X their scalar product will be denoted

by (a,b):
{a,b) = > alz)-blz).

reX
The set of integers will be denoted by Z, the set of nonnegative integers (including zero)

by Z*, the set of (strictly) positive integer (sometimes called natural numbers) by N and
the set of real numbers by R.

For the sake of brevity, having a probability measure ¢) on Y (or a function on expY’)
and y € Y the symbol Q(y) will be often used instead of Q({y}).

Having a function w : exp N — Z its positive and negative parts will be denoted by w,
and w_:

wy(S) = max{w(S),0} for SC N
w_(S) = max {—w(S),0} for S C N.

1. THE PRODUCT FORMULA GIVEN BY AN IMSET

This section contains basic definitions and the corresponding comments only. Namely,
the concepts of imset, its natural extension and finite-domain probability measure are
specified. Finally, the product formula given by an imset is introduced and a simple
example given.

Def. 1 (imset)

Every integer-valued function on U is called imset (on U).

The class of all imsets will be denoted by Z(U).

Nonnegative imsets will be called multisets, their class will be denoted by Z+(U).

Basic operations with imsets like summing, subtracting and multiplying by integers are
defined coordinatewisely. An imset v € Z(U) is called normalized iff the collection of
numbers {u(S); S € U} has no common prime divisor.
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Trivial examples of imsets are zero imset (a function ascribing zero to each set from i)
denoted by 0 and identificators for T" € U.

Remark The term multiset is borrowed from Aigner’s book about combinatorial theory
[1] while the word imset is our abbreviation for integer-valued multiset.

In some cases it will be convenient to regard imsets on U as functions on exp N. The
correctness of the definition of the right extension is based on the following lemma; its
proof is left to the reader.

Lemma Every imset u € Z(U) has uniquely determined extension

u:exp N — Z satisfying the following two conditions:

(N.1) Y A{u(S);SCc N=0

(N.2) VreN > {u(S);, re SCN}=0.

This adjudgement defines a one-to-one correspondence between Z(U) and the class of
integer-valued functions on exp N satisfying (N.1) — (N.2).

Def. 2 (natural extension)

Having an imset u on  the uniquely determined integer-valued function w on exp N
extending it and satisfying the normalization conditions (N.1) — (NN.2) will be called the
natural extension of u. It will be always denoted by @ (overline the original symbol).

The focus of our study are Cl-structures of finite number of random variables (i.e.
random systems). Nevertheless, in this article we limit ourselves to finite-valued random
variables. It is a common custom in literature to allude to random variables but in fact
deal with probability measures, namely their distributions. In the sequel, we decided both
to allude to and deal with probability measures.

Now, the relevant class of probability measures will be specified. As they serve as
distributions of random systems indexed by the basic set N their domains are cartesian
products indexed by .

Def. 3 (probability measure over N)
A probability measure over N (with finite domain) is specified by a collection of nonempty

finite sets {X; ; ¢ € N} and by a probability measure on the cartesian product [ X;.
ieN
Whenever () # S ¢ N the marginal measure of P is the probability measure P¥ on [] X;

i€S
defined by: P5(A)=P(Ax J] X;) whenever A C [] X;.
tEN\S el
It will be always denoted by the symbol of the original measure endowed with the upper

index identifying the marginal space. Moreover, the marginal measure P on [[ X; is
. teN
introduced as P itself, i.e. PN = P.

As mentioned above every assumption concerning Cl-stucture of a probability measure

is equivalent to the validity of certain product formula. Now, we are going to explain how
these formulas look.
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Def. 4 (product formula given by an imset)
Let P be a probability measure over N and u« be an imset on U. Say that P satisfies the
product formula given by w iff it holds:

vee [IX: TI (Pas)™ = [ (P%xg))™® (1.1)

iEN 0#SCN 0#SCN

The condition (1.1) is the above mentioned formula.

Remark Another possible way how to write product formulas is to introduce the conven-
tional symbol P?(xy) for 1 and write instead of (1.1) :

vee [T XTI (P(ag)™) = [T (P5(xg))"™- (1.2)

1EN SCN SCN

To illustrate this concept a simple example is given.

Example 1

Consider S, T € U with SNT =) and SUT = N. Put u = éy —bg— 6. Then w = u+dy
and the product formula given by u looks:

Vee [I X P(x)=PSxg)- PT(xy) (1.3)

1EN

2. DESCRIPTION OF CI-STRUCTURES

In this section the concept of CI is recalled and the “classical” ways to description of
Cl-structures are mentioned, especially by means of dependency models. The reason to
develop the new approach to description of Cl-structures from [25] is explained.

Def. 5 (conditional independence)
Let P be a probability measure over N and (A, B,C) is a triplet of pairwise disjoint
subsets of N where A and B are nonempty. Say that A is conditionally independent of
B given C in P and write A L B|C' (P) iff
Vee [T Xy PAP%uwape)- PO(xe) = PA%wac) - PP (ape).

iEN
Another phrase “ P obeys the triplet (A, B, C) 7 will be often used in the sequel.

There are many equivalent formulations of the statement A 1L B|C (P), for example:

- Va, a € HiGA )&—,j b,I; € HiEB 1‘{,,; cE HiGC .X{
PABC([a,b,)) - PAB([a. b, c]) = PABC([a,b, c]) - PABC([a,b, d])

- there exist functions 1 :(WHiGAC Xi—R and ¢ : [[;cpe Xi — R such that
Vo € [Lien Xi P B xape) = f(rac) - g(zpe)

- Ve € [[;ee X; with P9(¢) > 0 the conditional probability Pygc(:]c) is a product mea-
sure on ([ [;c 4 Xi) X (I;ep -Xi).

182



The last condition leads directly to the common interpretation of A L B|C: “getting
know the values of variables from C' the variables from A and B become independent
1.e. their probabilistic pieces of information become unrelevant”. Thus, the information
about Cl-structure can be obtained from experts too.

To approach CI to human understanding the Cl-structures were usually described by
means of graphs in literature. Two trends are distinguishable: by means of undirected
graphs (this stems from Markov field theory, the corresponding graph is called Markov net
[2,6,8,12] and by means of directed acyclic graphs (the long tradition started by geneticist
S. Wright [28] led to the concepts of influence diagram [5,17,18,19] and recursive models
[7,27]. Nevertheless both graphical approaches cannot describe all possible probabilistic
Cl-structures.

Thus, another natural way was proposed: to describe a CI-structure simply by the list
of valid CI-statements (i.e. triplets obeyed by the corresponding probability measure).
This led to the concept of dependency model introduced by Pearl and Paz [15]; their
definition is slightly modified here:

Def. 6 (dependency model, model of Cl-structure)

a) Denote by T'(IN) the set of triplets (A, B, C') of pairwise disjoint subsets of N where A
and B are nonempty. Every subset of T(N) will be called a dependency model over N.
b) Let P be a probability measure over N and I a dependency model over N. Say that
I is a submodel of Cl-structure of P iff P obeys every triplet from 1.

Further, say that I is the model of Cl-structure of P iff I is exactly the set of triplets
obeyed by P.

This terminology emphasizes the presented view on dependency models. Note that
authors dealing with dependency models have used also various another phrases:
“I is induced by P” in [26], “P is perfect for I” in [4], “I is conditional independence
relation corresponding to P” in [22].

Owing to well-known properties of CI (treated by Dawid [3] resp. Spohn [21] re-
sp. Smith [19]) some of dependency models cannot serve as (complete) models of CI-
structures. Therefore Pearl and Paz [15] introduced the concept of semigraphoid (= de-
pendency model satisfying the above mentioned properties) to describe Cl-structures. As
semigraphoids were defined as dependency models closed under 4 inference rules (called
axioms by Pearl and Paz) it gives a deductive mechanism to infer valid consequences of
input information about Cl-structure.

Unfortunately, the original hypothesis from [16] that semigraphoids coincide with the
(complete) models of Cl-structures appeared untrue [22]. Later, we even found that
models of Cl-structures cannot be described as dependency models closed under finite
number of inference rules [23]. This was strengthened by Geiger and Pearl] [4] who showed
that “disjunctive” inference rules cannot bring help.

These results led us to an attempt to develop an alternative way to description of CI-
structures, namely by means of faces and imsets [25]. The aim of this paper is to give an
equivalent view on “imsetal” models of CI-structures which brings an easier interpretation.
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3. INFORMATION-THEORETICAL APPROACH

This section recalls the information-theoretical concepts of entropic and multiinforma-
tion function and indicates how they enable to describe Cl-structures by means of imsets.
An initial connection with product formulas is established.

Entropic and multiinformation functions are real functions on erp N. In fact, the
value of entropic function for a set S is the entropy of the marginal measure P*® while
the value of multiinformation function is the relative entropy of P® with respect to the
product of its one-dimensional marginals.

Def. 7 (entropic function, multiinformation function)
Let P a probability measure over V.
Its entropic function H : exp N — R is defined as follows:

H®)= 0

H(S)= > Plx)-In(1/P(xs)) for#SCN.
z,P(x)>0

Its multiinformation function M : exp N — R is defined by:

M@) = 0
M(S)= > P(x)-In(P%(xs)/ [] P1¥(x;)) for#SCN.

x,P(x)>0 ieS

The restriction of the multiinformation function M to U will be denoted by m.

Remark Multiinformation generalizes the well-known information-theoretical concept of
mutual information and thus it serves as a quantitative characteristic of level of stochastic
dependence of more than two random variables. This view led us to accept the name
“multiinformation” in [22]. Another name “entaxy” was used in [9].

Now, some properties of these functions are mentioned. They explain why these
functions are good tools for study of CI. Firstly, a simple computation gives:

M(S)=—H(S)+ >, H(i) whenever S C N (of course > H(i) =0) (3.1)
€S i€l

Moreover, it is shown in [22] §4,5:

M(ABC)+ M(C) > M(AC)+ M(BC) whenever (A, B,C) € T(N) (3.2)

and

M(ABC) + M(C) = M(AC) + M(BC) iff A L B|C (P) for (4, B,C) e T(N) (3.3)

The idea of application of multiinformation function was the main step in the proof of
validity of new properties of CI in [22] and [23]. Nevertheless, the connection of entropic
and multiinformation functions with CI was recognized earlier - see [9] and [13].

As concerns the ability to describe CI for probability measures with finite domain
the entropic and multiinformation functions are equivalent (see below). Nevertheless,
their further capacities differ. Entropic function can be also used to describe functional
dependencies hidden in a discrete probability measure [11] while multiinformation function
can be applied to study of CI for continous or “mixed” probability measures [22].
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Lemma 1

Let P be a probability measure over N and u be an imset. Then the following equalities
are equivalent:

(a) (m,u)y=0

(b) (M,7w)=0

(¢) (H,u)y=0.

Proof: (a)&(b) is evident as M(S) = 0 for S € exp N\U. To see (b)&(¢) simply write

(b)&(
using (3.1) and (N.2): (M, uy= >, M(S)-u(S)= > {—H(S)+ ZH(/)} ca(S) =

- T H(S)uS) + KT H0-WS) = —(Hm Y T H)) =
—(H W)+ ¥ H(j) - { X w(T)} = —(H,u). ’ n

JjEN Ter

Def. 8 (probability measure complies with imset)
Let P be a probability measure over N and u an imset on U. Say that P complies with
u iff any of the conditions (a) - (¢) from Lemma 1 is fulfilled.

The above defined concept is related to the product formula validity as follows:

Lemma 2
Let P be a probability measure over N and u be an imset on (4. Consider the following
conditions:
(a) P satisfies the product formula given by u
(b)Vz € T X; with P(x) > 0it holds: [[ P*(xg)™) =1
ieN SCN
(¢) P complies with u.

Then (a) = (b) = (c).

Proof:  (a)=(b) is evident. To show (b)=(c) consider some z € [[ X; with P(z) > 0
ieN
and write using properties of l()gdlithm

S a(S) - In Po(ag) = 3 In PY(xs)™) =1In T[] P%(xg)™ =1Inl=0.

SCN SCN SCN

By multiplying these equalities by P(z) and summing over all such = € [] X; get :
1eEN

0= 5 Plx) S wS) - nPxs)= 5 3 Pla)-u(S) -InP*(xg) =

x,P(2)>0 SCN z,P(z)>0 SCN
=Y aS)- Y Plx)-InPxg)= Y, —u(S) H(S)=—(H,u)
SCN ,P(z)>0 SCN
, L.e. the condition (c) from Lemma 1 holds. |

4. STRUCTURAL IMSETS

The class of structural imsets is introduced in this section and the corresponding
dependency model is defined for every such imset. Then it is shown that complying a
probability measure with a structural imset introduced in the preceding section can be in-
terpreted as partial description of the CI-structure (namely by means of the corresponding
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dependency model). Special attention is devoted to the question how to recognize struc-
tural imsets. Last result says that any possible model of Cl-structure can be completely
described in such a way by a structural imset.

The class of all imsets on U/ is too wide for our purposes. Certain subclass will be
used to describe Cl-structures. These imsets, called structural, can be introduced as
“combinations” of so-called elementary imsets defined below.

Def. 9 (elementary imset)

An imset u € Z(U) is called elementary iff its natural extension has the form:
u=0sur — 05 —0r + bsqr where S, T C N card S\T = cardT\S = 1.
The set of elementary imsets will be denoted by E.

The following example illustrates this concept in case card N = 4.

Example 2

Suppose that N = {1,2,3,4}. By definition every elementary imset is “produced” by a
couple [S,T], necessarily 1 < card S = cardT < card N — 1.

Thus, elementary imsets can be naturally divided into classes according to the cardinality
of “producing” sets. In the considered case three classes can be distinguished:

E ... ie cardS = cardT =1
for instance S = {1} and T = {2} gives ¥ = d(1.2) — 6113 — Oq23 + Oy
and hence u = 6y 2y.
The corresponding list follows :
011,21, 0413y, 042,31, 041,43, 0424}, 043.4)-
Ey... le cardS =cardT =2
for instance S = {1,2} and T = {2,3} gives U = 61231 — (1.2} — Og2.3) + Oy2)
and hence u = 67153y — 61191 — Og2.33.
The corresponding list follows :
65{1727:5} - 5{172} - 5{2,,3}7 65{1727:5} - 5{172} - 5{1,,3}7 65{1727:5} - 5{173} - 5{273}7
65{17274} - 5{172} - 5{274}7 65{17274} - 5{172} - 5{174}7 65{17274} - 5{174} - 5{274}7
5{1,3,4} - 5{1,3} - 5{1,4}7 5{1,3,4} - 5{1,3} - 5{3,4}7 5{1,3,4} - 5{1,4} - 5{3,4}7
01234y — 01231 — O0(2.43, 01234} — 0123} — (3.4}, 0(2.34) — Of2,4) — 0(3.4}-
Es... ie cardS = cardT =3
for instance S = {1,2,3} and T = {1,2,4} gives
u=u="0y—01123 — 0124} 612}
The corresponding list follows :
On — 011231 — 0124y + Oq1.2)
On — 011231 — 0134 + Oq1.3)
O — 01123} — 0234y + 0p23),
On — Og1.24) — 04134y + 0414}
On — Og124) — O0q2.34) + Og2.4},
On — Og1.34) — Og2.34} + Og3.4).

Thus the total number of elementary imsets is 24 in this case.
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It makes no problem to give the formula for total number of elementary imsets:
card N - (card N — 1) - 2¢ardN=3,

Hint: the couple S, T can be characterized by the set (S\T)U(T\.9) of cardinality 2 and by the intersection

SNT ie. asubset of the complement.

Def. 10 (structural imset)
An imset u € Z(U) will be called structural iff it holds:

dneN k, €zt (forve k) n-u=> k,-v (4.1)
veEF

The following lemma enables to identify Cl-statements with structural imsets and to
ensure the correctness of further definition.

Lemma Whenever (A, B, C) € T(N) then the imset u € Z(U) determined by its natural
extension ¥ = dapc — 0ac — Opc + Oc 18 a structural imset.

Hint: This can be shown by induction according to card AB. Whenever card AB = 2 then w is an
elementary imset. In case card A > 2 chose © € A and “extend” w by :I:((SAB(:\{r} - 5A(f\{r})a however

in case card A = 1 take x € B.

Def. 11 (dependency model corresponding to imset)

a) To every triplet (A, B,C') € T(N) assign the structural imset denoted by i({A, B, C))
and specified by its natural extension d 4pc — dac — 0o + Oc.

b) Let u be a structural imset. The dependency model corresponding to v denoted by I,
is defined as follows:

(A,B,CY e I, iff [n € N n-u—i((A, B,C)) is a structural imset ].

Remark that dependency models corresponding to structural imsets are called struc-
tural semigraphoids in [25].

Lemma 3

Let P be a probability measure over N and u a structural imset on ¢/. Then the following
two conditions are equivalent:

(a) P complies with u

(b) I, is a submodel of Cl-structure of P.

Proof: Recall that M is the multiinformation function for P and m its restriction to U.
I. (m,v) >0 whenever v is a structural imset.

By (3.2) the inequality holds for elementary imsets, then use (4.1).

IL. (m,u) =0 = (b).

Consider (A, B,C') € I,, take the structural imset n - u — i((A, B,C)) with n € N and
write: 0= (m,n-u) = (m,n-u—i({(A,B,C))) + (m,i({A, B,C))).

Owing to I. both terms on the right-hand side are nonnegative and therefore they vanish.

Thus 0 = (m,i((A, B,C))) = (M, i((A,B,C)) ) gives by (3.3) A L B|C (P).
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III. (b) = (m, u) = 0.

By Def. 10 write n = > k, v withn € N, k, € Z*. Clearly, it suffices to show
veEE

(m,v) = 0 for each v € E with k, > 0. For this purpose find (A, B.C) € T(N) with
v=1i((A, B,C)). By Def. 11 (A, B,C) € I, and by (b) ' (P); hence by (3.3)
derive <m,v> = (M,7) = 0. |

The following question arises in connection with computer implementation of struc-
tural imsets: how to recognize whether an imset is structural? The presented definition of
structural imset is not suitable for solving this problem. Nevertheless, structural imsets
can be characterized in another more appropriate way. To formulate it some concept has
to be introduced.

Def. 12 (completely convex set function)

A set function ¢ : U — R is called a completely convex set function iff

its settled extension ¢ (i.e. ¢(T) = 0 for T' € exp N\U) satisfies the convexity condition:
(KUL)4+c¢KNL)>cK)+c(L) whenever K, L C N.

Remark The adjective ’convex’ is borrowed from game theory [14] while the adverb
‘completely’ indicates that the convexity condition concerns the extension.

Assertion 1

a) Let C denotes the class of completely convex set functions. Whenever u is an imset,
then it holds: [ w is structural | iff [ Ve € C' (¢, u) > 0 ].

Moreover, C' is the largest class satisfying the previous condition.

b) There (‘,letb the least finite set of normalized imsets A such that for each imset u € Z(U)
it holds: [ u is structural | iff [Va € A (a,u) > 0].

(According to the first part necessarily A C C.)

Proof: The first part of previous assertion is proved in [25] as Theorem 2.4b. The sec-
ond part is also mentioned in [25] as Assertion 1.4a, but the essential proof is in [24],
Proposition 7h. [ |

Thus from the theoretical point of view a clear criterion to recognize a structural imset
u is given: simply to check the validity of all inequalities (a,u) > 0 for a € A.
The following result says that structural imsets can describe all possible Cl-structures:

Assertion 2
Whenever P is a probability measure over N and I the model of Cl-structure of PP then
there exists a structural imset « such that I corresponds to w.

Proof: see Consequence 2.9 in [25]. ]
Remarks
a) It may happen that different structural imsets have the same corresponding depen-

dency model. Nevertheless, the pertinent equivalence of structural imsets can be grasped
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by means of the set A from Assertion 1b, for details see [25].

b) Our original conjecture that the models of CI-structures coincide with the dependency
models corresponding to structural imsets appeared unfortunately untrue (see [25]).

¢) However, the theory developed in [25] seems to admit modifications which promise to
give fitting description of Cl-structures for some special “nice” subclasses of probability
measures.

5. EQUIVALENCE RESULT

The aim of this paper is to show that a probability measure complies with a structural
imset u iff it satisfies the product formula given by w. This result can be shown under
certain formal additional assumption on wu, called regularity. All structural imsets in case
card N < 4 are shown to be regular; we conjecture that every structural imset satisfies
this condition. The main theorem contains the desired equivalence result.

Def. 13 (regular structural imset)

Consider a structural imset u and put:

A, ={S CN; ST forsomeT C N with u(T) < 0}

B,={SCN; SCT for someT C N with @(T") > 0}.

Say that u is regular iff only £ C B, satisfying the following three conditions:
[a] & is heriditary (ie. K CLe€& = Ke¢&)

b A, C&

[c] whenever K,L € & with (K\L,L\K,KNL) € [, then KUL€E

is B, itself.

Example 3

Every u € Z(U) of the form i({A, B,C)) for (A,B,C) € T(N) is a regular structural
imset. Especially, every elementary imset is regular.

Indeed: w is a structural imset according to the lemma before Def. 11. Clearly

A, ={K C N;K € ACor K C BC} and B, = {K C N; K C ABC}. Supposing
E C B, satisfies [a] — [¢], by [b] get AC, BC € €. As (A, B,C) € I, (sce Def. 11) by []
derive ABC' € £ and hence by [a] B, C E.

Some facts concerning the classes A, and B, (for a structural imset «) are needed to
derive certain sufficient condition for regularity. Firstly, considering S € A, find maximal
T C N with [S CT & u(T) # 0]. Denoting +" = S {éx; T C K} it makes no problem
to see u(T) = (r’, @) > 0. (for example Assertion la resp. (N.1) — (N.2) ). Hence:

A, C B, (5.1)
Moreover, evident facts

A=A, B, =8B, I, =1, whenever [ € N (5.2)
imply that « is regular iff [ - u is regular. To show

[u=y+w y,w structural imsets| = B, = B, U B, (5.3)

take S € B, and find a maximal T C N with [S C T & y(T) # 0]. As g(T') > 0 the
hypothesis S ¢ B, leads to the contradiction: 0 < (r7. %) + (rT,w) = (#rT,u) <0,
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Thus B, C B,, similarly B,, C B, and the inclusion B, C B, U B,, is evident.
You can derive from (5.3) and (5.2) by putting y = (((K\L, L\K, K N L)) (see Def. 11):
(K\L,I\K.KNL)el,= KULE€ B, (5.4)

Lemma 4 Suppose that every structural imset u satisfies:

n-u=>k,-owithneN 0 £GCFE k,eéN=[FweG A, CA] (5.5)
veG

Then every structural imset is regular.

Proof: Prove the regularity of a structural imset v by induction according to
r=min{g; 3G C E cardG = g such that n-u = >, k,-vforn € N, k, € z"}.

vel
In case r < 1 either u = 0 (then B, = §)) or w = [ -v for | € N and v € E (then use
the procedure from Example 3 combined with (5.2)). In case r > 1 consider a concrete

“minimal decomposition” n-u = > k,-v with G C E, cardG =r, n € N, k, € ZT.
veld

Necessarily k, > 0! Using (5.5) find w € G with A, C A, and put y = > Fk,-vie

veG\{w}

n-u=y+ky,- w. Toverify the regularity of u consider & C B, satisfying [a] — [¢] (see

Def. 13). Our aim is to show & = B,. Owing to (5.3) it suffices to verify B, C & and

B, C&.

I. B, C&

Indeed: Let be W = dxyp — 0 — 0 + Oxnr; as A, C A, by [b] derive K, L € £ and as

(K\L,L\K,KNL)€eI, by KULE€E. Hence by [a] B, CE.

II. B,C &

Indeed: The desired condition is equivalent to £ N B, = B,. Since y is regular by the

induction assumption it suffices to verify for &' = £ N B, the following three conditions:

[a'] &' is heriditary

v A, Cé&

] [K,.Le& (K\L,I\K,KNL)yel] = KULe¢&"

As B, is heriditary, [d'] follows from [a]. It makes no problem to see A, C A, U B, and

hence by [0] and I. A, C €. Thus [¥] follows from (5.1). To show [¢] realize that I, C I,

and [c] can be used to derive KUL € €. By (5.4) get KUL € &'. |

Consequence 1
In case card N < 4 every structural imset is regular.

Proof: The condition (5.5) will be verified for every structural imset in case card N = 4

(the same method can be used in simpler cases card N = 3 and card N = 2). Consider a

concrete “decomposition”:

n-u=>Y k,ovwithn €N, k, € z%, G={vekE k, >0} (define k, = 0 for v € E\G ).
veEl

Divide E into three classes Ey, Ey, E3 (see Example 2) and put: p; = > k, fori =1,2,3.

Z'EE,I'
Three basic cases can be distinguished:
Lpi=p=0

In this case n-u =), k, - v. It suffices to take arbitrary w € Ej3 with k, > 0 (note

vE 3
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that w(S) <0 & card S = 3 implies n - u(S) < 0 as v(S) <0 for every v € Ej).

II. py =0 p, >0

In this case n-u = >, k,-v and there exist v € E, with k, > 0. Consider the case
vEFaUHS3

ANA, # D (otherwise put w = v) and find S C N with v(S) < 0and VT D S u(T) > 0].
More concretely let S = {a,b} v = d(ape} — O{ap} — Ofac} Where N = {a,b, c, d}. Moreover
consider the following elementary imsets:

W= Ofapday = Ofadt — Ofp,a}
r= Oy = Opapdy — Oaed + Oady
ON = Ofabdy — Ofbedy + Ogp.ay
Oaber = Oaby = Obey

@
[l

o2

Our aim is to show that &, > 0 and A, C A,. For this purpose write n - [u({a,b}) +
u({a,b,d})| = +ky—k,—k,—k,—k, (for all remaining t € ExUE3 t({a,b})+t({a,b,d}) =
0). Hence k,, > k,+Fk,+k, implies both k,, > k, > 0and 0 > —k, > k, —k,, > n-u({a,d})
and 0 > —k, >k, — ky, > n-u({b,d}) (the inequality n-u({a,d}) < k, — k,, follows from
the fact t({a,d}) < 0 for remaining t € Ey U Es, similarly n - u({b,d}) < k, — k).

IIL. p; > 0

In this case take arbitrary w € E; with k,, > 0. By (5.1) and (5.3) A, C B, C B, i.e.
for each S € A, (cardS = 1) get > uy (L) > 0. Nevertheless by (N.2) > u_(K) =

SCk SCk
> Uy (K) and hence S € A,. |

SCcK

So far, we have no example of nonregular structural imset. Our conjecture is that it

cannot be found:

Conjecture Every structural imset is regular.
Now, the main result can be proved.

THEOREM
Let P be a probability measure over N and u be a regular structural imset on &/. Then
the following conditions are equivalent:

(a) P satisfies the product formula given by u (see Def. 4)

(b) Vo € [ X; with P(x) > 0 it holds [] P*(xs)"® =1
iEN SCN

(¢) P complies with u (see Def. 8)
(d) I, is a submodel of Cl-structure of P (see Def. 6,11).

Proof: By Lemma 2 (a)=-(b)=(c¢), by Lemma 3 (c)=-(d). It remains to show (d)=-(a).

For fixed x € [ X; two possibilities can occur:
iEN
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I [ PS(rs)™® =0.

SCN
In this case find K C N with [@(K) <0 & PN(ag) =0]. By (5 1) there exists T' with
[K CT & u(T) > 0]. Necessarily PT(ap) = 0 and hence [[ P*(xg)™) = 0.
SCN
. I Po(xs)™ > 0.
SCN

Put & = {S € B,; P°(xg) > 0}. Evidently & is heriditary and by the assumption A, C &.
Also the condition [c] from Def. 13 is valid, owing to (d):

(K\L,IN\K,KNLyel, = PrYxp) P (agnr) = PE(xg)- Ph(ay)

and hence PKUL(ZL“[(UL> > (. Therefore the regularity of v implies B, = £.

By Def. 10 n-u= > k,-vforn €N, k, €Z". For every v € E with k, > 0 consider
veF

(A,B,C) € T(A"’) with v = «((A, B, C}) As (A,B,C) € I,, by (d) A 2 (P) and
therefore by Def. 5 derive [[ P%(xg)™+) = H PS(xg)"-9),
SCN
All these formulas can be multiplied and there f(n( it holds:
T k) > ke (S)
[T P°(xg)<r = JI PS(:I;,S)LGE (5.6)
SCN SCN
Put w = > ky,- 74 —n-uy, evidently w = > k, -7 —n-u_. Of course w > 0 and
veE vel

w(S) > 0 implies [(Fv € E k, >0 ©(S) > 0] ie. S € B, C B, by (5.3) and (5.2).
Therefore S € £ and P~ (15)“(q > 0. Together H P(x¢)"®) > 0 and the equality

SCN
(5.6) can be divided by this number to get
[T P5(xs)" ™ = [ P¥(xg)" ™5 (5.7)
SCN SCN
Hence, the desired product formula easily follows. [ |

Remark The previous proof can be easily modified to show that for every strictly positive
probability measure and every structural imset u the conditions (a), (b), (c), (d) are
equivalent.

CONCLUSIONS

Thus, the theorem above relates three approaches to description of Cl-structures:
- by means of dependency models
- by means of imsets (information - theoretical definition)

- by means of product formula validity
and shows their equivalence.

Note that the description by means of imsets (and faces which are behind) is systemati-
cally treated and illustrated by examples in [25]. It is endowed by a deductive mechanism
allowing to infer Cl-statements from an input piece of information about Cl-structure
(finitely-implementable from theoretical point of view).

The description by means of product formula can be understood as a step to inter-
pretation of these Cl-structures. It seems to me that the presented models of description
of Cl-structures have similar reasons (or rights) to be called explicable as hierarchical
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log-linear models. In fact, a general log-linear model is specified by certain “formula” for
the probability measure, namely expressing it as a product of marginal factors. This is
close to the presented formulas and in some special cases (decomposable models) even
equivalent.

Another interesting analogy of our product formulas can be found in [10] where so-
called functional expressions satisfying the unity sum property are delt with. Some of
them (for example the expression from Example 4 there) correspond to product formulas
representing Cl-structure.

Note that as reported in [25] some graphical descriptions of Cl-structures can be
“translated” to imsets and these can be “forwarded” to product formulas. To inform the
reader we give the corresponding imset expressions here (without proof).

Having an influence diagram (= directed acyclic graph) let 7(k) denotes the set of
parents of a node k € N. The corresponding imset can be given by its natural extension:
U= 8n =8y + Dpen {050 = Spyunin) J-

Having a decomposable model specified by a triangulated (undirected) graph let C C
exp N denote the class of its maximal cliques. The corresponding imset is specified by:
7= b+ Sace (=15 - dg
(UB resp. NB denotes the union resp. intersection of sets from B ).
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