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CONDITIONAL INDEPENDENCES AMONG
FOUR RANDOM VARIABLES I.

F. MATUS and M. STUDENY?

The conditional independences within a system of four discrete random variables are
studied simultaneously. The problem where independences can occur at the same
time, called the problem of probabilistic representability, is attacked by an analysis
of cones of polymatroids. New results on the cone of all polymatroids satisfying
Ingleton inequalities imply a substantial reduction of the problem and an explicit

description of the remaining open cases.?

1. Introduction

Let N be a finite set and S(N) the family of all couples (ij|K) where K C N and ij
is the union of two, not necessarily different, singletons 7 and j of N — K. Elements and
singletons of N are not distinguished and the unions of subsets of N are written simply
as juxtapositions. Having a system of random variables £ = (&;);en with subsystems
¢k = (&k)rex, K C N, we introduce the notation

[€] ={(ij|K) € S(N); € Lj|K},
where £ : ¢ L j|K is the abbreviation of the statement “¢; is conditionally independent of
&; given {k”. The subsystem & is presumed to be constant.

A subfamily £ C S(N) is called probabilistically (p—) representable if there exists a
system &, called its p—representation, such that £ = [£]. We prefer to speak about a
relation £ for it is in fact a binary relation on the power set of N. The paper is intended
as the first installment of a series of papers whose final aim is to characterize the class
P(N) of all p-representable relations for a four-element set N.

First problems of this kind emerged in works of J. Pearl and his collaborators pre-
ceding his book [10], where the conditional independences among subsystems &7, &; and
¢k, I,J, K C N disjoint, were studied en block. The corresponding families of triplets
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(I, J, K) have been called conditional independence relations or also (in)dependence mod-
els. Let us remark that there is no loss of generality when the sets I and J are admitted
to be singletons only (cf. [6]) and that the original Pearl’s problem to characterize all con-
ditional independence relations is equivalent to the question which relation £ contained
in R(N) ={(ij|K) € S(N); i # j} is p—representable. Pearl’s conjecture about a simple
finite axiomatic framework appeared untrue [12].

The first steps toward the nondisjoint case and the above formulation of the problem
of p-representability were done in [7]. Note that the statement & : ¢ L i| K means that the
variable &; is functionally dependent on the subsystem &x and thus our setting includes
implicitly also this kind of dependence. In the very formulation the p-representable
relations comprise linear matroids (see [5]) and all p-representations of matroids are of a
highly symmetric form (see [7]). For other results and references see [5]-[8] and [11]-[14].

The original practical motivation stems from the observation that the knowledge of
P(N), at least for small sets N, might contribute to understanding of conditional infer-
ence in expert systems with uncertainty. The theoretical motivation is that of intriguing
“probabilistic combinatorial configurations”. In this respect our task resembles to con-
structions of the catalogues of combinatorial or algebraical structures and is analogically
intended to serve as a motivating source of examples.

The paper is organized as follows. In order to establish necessary notations we re-
view in Section 2 the methodology of [7] based on the use of Shannon entropy and related
cones of polymatroids. Accordingly, all relations from P(N) are viewed as p—representable
semimatroids; these are discussed in Section 3, where also the solution of the problem of
p-representability in the cases |N| < 3 is outlined. After recognizing the role of Ingleton
inequalities in the four-element case (Section 4) we introduce the notion of Ingleton semi-
matroid and prove that these semimatroids are p-representable. All canonical examples
are listed consequently. In the last two sections we characterize explicitly all semimatroids
that are not Ingleton. This will be the starting point of the next paper with same title.

2. Preliminaries

We shall work with real functions defined on the power set P(N) of N, with their
differences

Ah(ij|K) = h(iK) + h(jK) — h(ijK) — h(K), he RFM  (ij|K) e S(N),
and with the relations
[h] = {(ij|K) € S(N); AR(iIK) = 0}
The central place of our considerations will be occupied by the convex cone
H(N) = {h € RPM: b(B) = 0 and Ah(ij|K) >0, (ij|K) € S(N)};

this means that the set functions from H(/NV) are normalized, nondecreasing and semi-
modular. Note that the requirements Ah(i|K) > 0 for K # N — i are superfluous. Every
pair (NN, h) corresponds to a polymatroid, see [15].

A relation £ C S(N) is called semimatroid on N if and only if £ = [h] for some
h € H(N); we comment this situation also by saying that £ arises from h. For the class
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of all semimatroids on N we reserve the symbol S(N). Matroids are the semimatroids
arising from the rank functions of matroids, see [7], [15].

If £ is a system of random variables then we denote the Shannon entropy of the
subsystem &; by he(I), I C N. It is a well-known fact that the set function he (called in
(2] entropy function) belongs to H(N) and, moreover,

Ahe(ij|K) =0 < &:i Lj|K,  (ij|K) € S(N),

which implies [£] = [he]. Hence, every p-representable relation is a semimatroid; in
symbols P(N) C S(N).
The intersection of two semimatroids is a semimatroid ([h{] N [he] = [h1 + ho] for

any hi,he € H(N)) and thus (S(N),N) is a semilattice. The intersection of two p—
representable semimatroids is p-representable. In fact, if the independent systems ¢! and
£? are combined coordinatewise & = ((&/, £?))ien then the equality [£']N[€%] = [£] follows
from he = het + he2. Hence (P(N),N) is a subsemilattice of (S(V),N).

A semimatroid £ is said to be irreducible in S(N) (or S—irreducible) if it cannot be
written as a nontrivial intersection of two semimatroids from S(N), thus if £;NLs = £ and
L1,Ly € S(N) imply £ = L or Ly = L; see [1]. The same notion applies to (P(N),N).
Consequently, every S-irreducible semimatroid £ € P(N) is also P-irreducible. All
semilattices are considered for lattices in the usual sense.

Two relations £, L, C S(N) will be isomorphic if there exists a permutation 7 on N
such that (ij|K) € £, if and only if (7 (i) (j)|7(K)) € Lo, where m(K) = {r(k); k € K}.
A type will be a class of all isomorphic relations. If a relation is semimatroid which
is p—representable and irreducible in either of the above two senses then all isomorphic
relations are semimatroids with the corresponding properties, respectively. This makes
possible to use the introduced notions directly for types.

3. Semimatroids and polymatroids

In this section we shall describe the structure of the lattice of semimatroids and, as
an illustration, we solve the p-representability problem for at most three-element sets N.

The cone H(N) is pointed and has a finite number of extreme rays. By its face we
understand a nonempty intersection of H(/N) with one of its supporting hyperplanes.
Intersection of two faces is a face and the lattice of all faces of H(NN), denoted by F(N),
is known to be finite and atomic. Its atoms are the extreme rays of H(N). (All these
observations are almost trivial as they follow from general properties of cones in Euclidean
spaces, see e.g. [4].)

Lemma 1. The lattices S(N) and F(N) are antiisomorphic.

Proof. The binary relation (ij|K) o h < Ah(ij|K) = 0 between S(N) and H(V)
gives rise to Galois connection £ — L£* and F — F*. Here the closed convex cone

L*={h e H(N); V(ij|K) € L (ij|K)oh}={heH(N);[A] DL}, LcCSN),

is a face. To verify this fact the equivalent definition of faces requiring h, hy € F as soon
as ahy + hy € F for some hy, hy € H(N) and a > 0 is to be used. The relation

Fr={(ij|K) € S(N); Vh e F (ij|K) o h} = ({[r];h € 7}, F C H(N),
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is clearly a semimatroid.

Next, plainly £ = N{[h]; [h] D L} = L if L is a semimatroid. It rests to demonstrate
F = F** for faces. An appeal to the general properties of Galois connections will then
close the proof, cf. [1].

If 7 = H(N) then evidently F = F**. Let F = {h € H(N);(g,h) = 0} be a face
different from H(N), where ¢ € RP™) is a normal vector of a supporting hyperplane.
We can suppose g to satisfy g() = 0, g # 0 and (g, h) > 0 for any h € H(N). Then g
belongs to the polar cone of H(IV) and there exist nonnegative numbers a;|x) such that

(g,h) = Y auxAh(ij|K) , he RPN (@) =o0.
(ij| K)ES(N)

Denoting by £ = {(ij|K) € S(N); agjixy) > 0} # 0 we can write F = L* and as always

L* = L we have the desired F = F**. 1
Consequence 1. The lattice S(N) is coatomic. Its coatoms arise from the functions
generating extreme rays of H(N). |

A characterization of the extreme rays of the cone H(N) was found in [9]. It implies
that the rank function of a matroid generates an extreme ray of H(NN) if and only if the
matroid is connected after deleting all its loops.

If |N| < 3 then there are no other extreme rays and if |N| = 4 then the cone H(N)
has in addition to the 27 matroid extreme rays further 14 extreme rays (see e.g. [8]).
They are generated by the functions (i € N)

9?(1) =2, J=i. g =L ig,
=min{2, ]|}, J#1, =min{3, |J|+ 1}, i€ J,
and (i,j € N,i # j)
fij(K) =3, K € {ik, jk,il, jl, kl},
= min{4, 2| K|}, otherwise,

where kl = N —ij. The number of semimatroids irreducible in S(N) is thus 1, 2, 4, 9, 42
and the number of corresponding types is 1, 2, 3, 5, 12 for |[N| = 0,1, 2, 3,4, respectively.

In [5] we proved that every matroid which is linearly representable over a finite field is
also p-representable. Hence for |[N| < 4 all matroids are p-representable. Also the irre-
ducible semimatroids [¢\”] and [¢"'], i € N, are p-representable, as their free extensions
are the uniform matroids of rank 2 and 3 on a five-element set, respectively (for details on
extensions see [9], [7]). Their p-representations will be included in the Example below.
The semimatroids [ f;;] were found not to be p-representable in [7].

The above mentioned facts together with Consequence 1 allow us to state the equality
P(N) = S(N), |N| < 3. The lattice isomorphisms below may be trivially verified.

P(N) ~ P(N), INI <1,
~ U xP(N), IN| =2,
~ Vx P(N), IN| =3,

where U is a two-element lattice and V is the 22-element lattice of all semimatroids
which are contained in R(N), see Figure. The decompositions of S(V) into the Cartesian
products are not accidental, cf. [7].



4. Ingleton inequality

From now on we shall assume that the set N has four elements; |[N| = 4. For brevity
we omit N in expressions like P(N), H(N), etc. The symbols 4,7,k and [ will always
denote distinct elements of N.

The nonnegativity of the expression
Oh(ij) = h(ik) + h(jk) + h(il) + h(jl) + h(kl) — h(ij) — h(k) — h(l) — h(ikl) — h(jkI)

is a necessary condition for a matroid with the rank function A to be linear, see [3], [15].
By H" we denote the subcone of H defined by means of the six Ingleton inequalities
Oh(ig) > 0.

One of the main arts in our proofs below is the following chain of equalities exhibiting
five masks of Oh(ij). The function h is dropped out so that we work with functionals.

0O(ij) = A(KL|i) + A(KL7) + A(if]|0) — A(kL|D)
= A(kl|7) + A(lk) + A(i7]0) — AG10)
= A(ijlk) + AGik|l) + A(kl) ) — A(ik|7)
= A(ij|k) + A(ij|l) + A(kllig) — A(ig|kl)
= A(ijlk) + A(ik|l) + A(klig) — A(ik|jl) .

Lemma 2. The cone H® has 35 extreme rays; they coincide with the extreme rays of
H different from those generated by the functions f;;, 1,7 € N distinct.

Proof. We divide the cone H into two subcones H~ = {h € H;Vh < 0} and
H* = {h € H; VL > 0}, where

Vh =3 (=1)"'h(I) = Ah(ij|kl) + Ah(if|0) — Ah(ijlk) — Ah(ij]l), ke RPN

ICN

(4,7, k,l can be arbitrary distinct elements of N). By examining the fourth mask we may
realize the identity
A(if|0) + A(kllij) = O(if) + V,

and thus H- ¢ H". All matroid extreme rays of H belong clearly to H” as the cor-

responding matroids are linear and thus satisfy all Ingleton inequalities. From VgZ(Q) =
ng(?’) = —1 we deduce that H” has at least 35 extreme rays.

The second part of the proof is based on the fact that the cone H™ has exactly
33 extreme rays (see Example in [8]). These may be obtained by removing from the
previously mentioned 35 rays the two rays generated by the rank functions r; and r3 of
the uniform matroids of the ranks 1 and 3, respectively. It remains to verify that every
function h € H is a conical combination of 71,73 and a function g € H™. To this end let

us set

g =h—min{Ah(ij|0)} r1 — min{An(ij|kl)} r3 ,

where the minima range over six-element sets of differences. This function is plainly an
element of H” (note that dg = Oh as Or; = Ory = 0). It has one difference with () and
one difference with a two-element set on the second place of the indexing couple equal



to zero. We claim that ¢ € H™. Indeed, if Ag(ij|0) = 0 and Ag(kl|ij) = 0 then, due
to the above identity, Vg = —Og(ij) < 0. In addition, the equalities Ag(ij|})) = 0 and
Ag(ig|kl) - Ag(ik|jl) = 0 yield Vg = Ag(kl|ij) — Og(ij) < 0, as a consequence of the
fourth and fifth masks. 1

5. Ingleton semimatroids

We say that £ € S is an Ingleton semimatroid if and only if £ = [h] for some h € H".
This notion applies immediately to the types. The lattice of Ingleton semimatroids will

be denoted by S".

Theorem 1. Every Ingleton semimatroid is p—representable; formally ST C P. There
are eleven P—irreducible Ingleton types.

Proof. First assertion follows from Lemma 2 and from the discussion about the p—
representability of the coatoms of S in Section 3. Moreover, the lattice S™ is coatomic
and its coatoms are also coatoms of S by Consequence 1. Thus for Ingleton semimatroids
the S—irreducibility coincides with the P— and S”—irreducibility. 1

In the following example we list representatives of the P-irreducible Ingleton types
and give their p-representations. The employed notation for rank functions will be used
later.

Example. Let N = {1,2,3,4} and Q = {a,b,c,...} be a finite probability space
with the uniform probability distribution; the number of elementary events will be clear
from the context. Random variables on {2 are given as partitions corresponding to inverse
images.

1. L =8 = [0] is p-representable by constants £ = & = &3 = &4 = (a).

2. L= |[rf2’3’4}]| (the matroid of rank 1 with the loops 2, 3 and 4) is p-representable
by &1 = (a)(b), & = & = & = (ab).

3. L= |[rf3’4}]| (the matroid of rank 1 with the loops 3 and 4) has the p-representation
¢ consisting of §; = & = (a)(b), & = & = (ab).

4. L = |[rf4}]| (the matroid of rank 1 with the loop 4) has the p-representation & =
2 =& = (a)(b), & = (ab).

5. L = [r1] (the uniform matroid of rank 1) is represented by four identical nonconstant

random variables §; = & = & = &4 = (a)(b).

6. L= |[r§4}]| (the matroid with the loop 4 and with the uniform submatroid of rank
2 on {1,2,3}) has the p-representation given by & = (ab)(cd), & = (ac)(bd),
& = (ad)(bc) and &, = (abcd).

7. L= |[r%”4]| (the matroid with two parallel elements 1 and 4 and with the uniform
submatroid of rank 2 on {1,2,3}) has the p-representation as in the previous case
except from & = &;.

8. L = [ry] (the uniform matroid of rank 2) can be represented by &; = (abc)(def)(ghi),
& = (adg)(beh)(cfi), &3 = (aei)(bfg)(cdh) and & = (afh)(bdi)(ceg).
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9. £ = [r3] (the uniform matroid of rank 3) is representable by & = (abcd)(efgh),
& = (aceg)(bdfh), &3 = (abef)(cdgh) and &, = (adfg)(bceh).

10. L= |[g512)]| has the p-representation as in 6. but & = (a)(b)(c)(d).

11. L= |[gf’)]| is representable as in 9. but & = (ah)(bg)(cf)(de).

Every semimatroid above is accompanied by a “standard” p-representation &. This
p—representation has the property that the cardinality of its probability space is as small
as possible. Moreover, any p—representation of a semimatroid from 6.—11. that is defined
on a probability space of the same cardinality as the given (2 does not practically differ
from the standard £&. This means that its probability space must be equipped with the
uniform distribution and the p-representations (partitions) coincide up to a bijection (cf.
also Theorem of [7]). Note that every subsystem g of every standard &, taken as a
partition of €2, consists from blocks of the same cardinality. The corresponding entropy
functions are proportional to the rank functions, respectively. 1

6. More about the cone H

The last two sections of the paper are devoted to an explicit description of the class
S — S™ of semimatroids which are not Ingleton. This task calls for further insight into
the structure of the cone H.

Lemma 3. The cone Hj; = {h € H; Oh(ij) < 0}, i,j € N distinct, is the convex
hull of 15 extreme rays. They are generated by the 15 linearly independent functions f;j,
rijka Tiﬂa ’r’ikla T{kla T1, T3, ’r’ia T{a r’ika T{ka ’r’ila ’r{la TIZC and ’I“é, where kl = N — Z]

Proof. Looking at the five masks of O(ij) we observe that the cone Hj is defined
equivalently by the nonnegativity of —O(ij), of the four differences A(m|N —m), m € N,
and of the ten differences corresponding to the elements of the set

Mij = {(kllig), (i710), (ij1k), (ig|0), (kL]i), (KL17), (ik|D), ([, (illk), (511K)}

and, of course, by the normalizing equality h(()) = 0 (altogether by 15 inequalities). We
recall that the differences A(m|K), K # N — m, are irrelevant. Next,

[fij] = Mz O {(k[ig), (1]ig), (il k1), (3likL), (kligh), (I]ijk)}

and —0Of;;(ij) = 1.

For the rank function 7™, m € N, only one of the 15 inequalities is strict, namely
ArY~™(m|N — m) = 1. The similar claim is trivial also for r; with Ar;(ij|0)) = 1 and
for 73 with Ars(kl|ij) = 1. A bit more computation is needed for the rank functions rt
with Ari(kl|i) = 1 and ri with Ar¥(jl|k) = 1. The most tedious is the case of r§ with
Ark(ijll) = 1. The easiest way how to imagine these computations is, at least for us,
to think about the conditional independences among the p—representations listed in the
Example.

We conclude that —0(ij), A(l]ijk), A(kligl), A(Glikl), A(ijkl), A@iG|0), A(klij),
A (Kl|g), N(KLG), AGGUE), AGL k), A(GE|D, AGik|L), A(ij|l) and A(ij|k) are the coordi-
nate functionals of the declared functions, respectively. |



Consequence 2. A relation £ C |fi;],7,7 € N distinct, is a semimatroid if and only
if it satisfies

(k|ij) € £ & {(K|ij), (klij)} € L, ke N —ijl =N —ijk.

Proof. As A(klij) = A(kllij) + A(k|igl), every semimatroid clearly satisfies the
above two conditions. But, any semimatroid £ is uniquely determined by its intersection
with the class R'(N) = R(N) U {(m|N —m); m € N}, cf. [7]. If L C [fi;] then
LNAR'(N) = [h]NR'(N) for the sum h of some of the functions from Lemma 3 and if £
also satisfies the conditions then it is a semimatroid (£ = [h]). ]

Consequence 3. Let £, C Ly C [fij], 4,5 € N, i # j, be two semimatroids. If Ly is
p—representable then L, is p—representable, too. |

The next assertion is interesting on its own right.

Lemma 4. The intersection of two different cones HZ-Dj is contained in the cone H".
The cone H is the disjoint union of H® and the siz cones {h € H; Oh(ij) < 0}.

Proof. The first assertion follows from the identities (cf. masks 3 and 4)

O(ig) + O(ik) = A(ik|l) + A(Kl|g) + A(ig|l) + A(jlk),
O(ig) + a(kl) = A(ijlk) + A(igll) + A(kLi) + A (Klg).

Hence, any h € H — H" violates exactly one Ingleton inequality. 1

7. The remainder S — S”
Let us denote by

MU = L(k1li), (kI15), G100}, MUY = {(kL)0), (jiIk), (i510)},
M = {(ij|k), (ik|1), (K[7)},

ij
(ijlkl) _ (- . . (ikljl) _ e - . .
MG = {(ijlk), (i|D), (kllij)} and MGG = {(ij[k), (ik[1), (K]ij)}
the semimatroids (cf. Consequence 2) corresponding to the differences with the sign + in
the five masks of O(ij), with 4, j, k, [ distinct. We shall also permute i <» j and k <> [ in
these notations.

Theorem 2. A semimatroid L is not Ingleton if and only if there arei,j € N distinct
such that it is contained in [ f;;] and contains at least one of the 14 semimatroids ./\/ll(-;),
where (o) is an element of R(N)—M,; (equivalently, if and only if./\/lg;-) C Land(e) & L
for at least one (o) ).

Proof. If ./\/lij) C L C [fi], where (o) is a couple admissible in the upper index
position, and £ = [h], h € H, then Oh(ij) = —Ah(e) < 0 follows from the properly
chosen mask. Thus, £ ¢ S°.

Let £ be a semimatroid that is not Ingleton. Using Lemma 3 we derive £ C [f;;] for
some i,j € N distinct. Let us suppose that £ contains none of the relations ./\/li]) If
L =[h], h € H, Oh(ij) < 0, then we consider the new function g = h + Oh(ij) f;; which
satisfies, on account of Lemma 3, ¢ € H", Og(ij) = 0 and also [g] N [fi;] = [h]. The
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incidence (o) € [g] for a couple (o) € R(N) — [fi;] would imply ./\/li;) C [g] and hence
contradict MEJ) C [h] = L. The conclusion sounds that the semimatroids [¢] and [A]
coincide on R'(N), whence [g] = £ is Ingleton, i.e. again a contradiction. |

Consequence 4. A semimatroid L € P — S" is irreducible in P if and only if it is
mazimal in P — SP with respect to the inclusion.

Proof. If £L € P — S is maximal in P — S” and £ = £, N L, for some L;,L, € P
then at least one of the semimatroids £, and L5 is not Ingleton. But then it equals L.

If £L € P —S"is not maximal, i.e. L C £; € P — S" for some £, # L, then, by
Lemma 3, it is the intersection of an Ingleton semimatroid £, € P and £;. Choosing
properly i, j and (e) in Theorem 2 we get £ C [ f;;] and MEJ) C L C Ly. From (e) € Lo—L
we conclude that £ is not irreducible in P. |

Concluding, we summarize our results. For a four-element set we have reduced the
p-Tepresentability problem to the question which semimatroids from S — S” are p—
representable. This question concerns semimatroids restricted by ME]) C L C [fij], where
i,j € N are fixed and distinct, and where (o) € {(kl|0), (51|0), (ik|j), (ij|kl), (ik|jl)}.
Modulo permutations this is, roughly speaking, a reduction to less than 5 - 2!! cases. In
the next paper we promise a reduction of the problem by purely probabilistic methods to
less than 3 - 25 cases.

The final aim would be to complete the list from the Example by the P—irreducible
types which are not Ingleton. Having the extended list, any p—representable relation could
be obtained by means of permutations and intersections.
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